SP7516BN [SIPEX]

16-Bit Multiplying DACs; 16位乘法DAC
SP7516BN
型号: SP7516BN
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

16-Bit Multiplying DACs
16位乘法DAC

转换器 数模转换器 光电二极管
文件: 总8页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Corporation  
SP7516 and HS3160  
SIGNAL PROCESSING EXCELLENCE  
16-Bit Multiplying DACs  
Monolithic Construction  
16–Bit Resolution  
0.003% Non-Linearity  
Four-Quadrant Multiplication  
Latch-up Protected  
Low Power - 30mW  
Single +15V Power Supply  
DESCRIPTION…  
The SP7516 and HS3160 are precision 16-bit multiplying DACs, that provide four-quadrant  
multiplication. Both parts accept both AC and DC reference voltages. The SP7516 is available  
for use in commercial and industrial temperature ranges, packaged in a 24-pin SOIC. The  
HS3160 is available in commercial and military temperature ranges, packaged in a 22-pin  
side-brazed DIP.  
23  
V
REF  
Force  
22  
V
Sense  
REF  
2
I
I
2 Sense  
OUT  
OUT  
3
1
4
2 Force  
1
GND  
I
OUT  
21  
V
DD  
SP7516  
5
6
7
8
20  
24  
BIT1 BIT2 BIT3 BIT4  
(MSB)  
BIT16  
(LSB)  
R
FEEDBACK  
Switches shown in high state.  
21  
V
REF  
2
1
I
I
2
1
OUT  
OUT  
3
GND  
20  
V
DD  
HS3160  
4
5
6
7
19  
22  
BIT1 BIT2 BIT3 BIT4  
(MSB)  
BIT16  
(LSB)  
R
FEEDBACK  
Switches shown in high state.  
127  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
SPECIFICATIONS  
(Typical @ 25°C, nominal power supply, VREF = +10V, unipolar unless otherwise noted)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
DIGITAL INPUT  
Resolution  
16  
Bits  
2–Quad, Unipolar Coding  
4–Quad, Bipolar Coding  
Logic Compatibility  
Input Current  
Binary  
Offset Binary  
CMOS, TTL  
Note 1  
±1  
µA  
REFERENCE INPUT  
Voltage Range  
±25  
V
Note 2  
Input Impedance  
3.25  
75  
9.75  
KOhms  
ANALOG OUTPUT  
Scale Factor  
Scale Factor Accuracy  
Output Leakage  
225  
±1  
10  
µA/VREF  
%
Note 3  
Note 4  
nA  
Output Capacitance  
COUT 1, all inputs high  
COUT 1, all inputs low  
COUT 2, all inputs high  
COUT 2, all inputs low  
100  
50  
50  
pF  
pF  
pF  
pF  
100  
STATIC PERFORMANCE  
Integral Linearity  
SP7516KN/BN, HS3160–4  
SP7516JN/AN, HS3160–3  
Differential Linearity  
Note 5  
Note 6  
±0.003  
±0.006  
±0.006  
±0.012  
% FSR  
% FSR  
SP7516KN/BN, HS3160–4  
SP7516JN/AN, HS3160–3  
Monotonicity  
±0.003  
±0.006  
±0.006  
±0.012  
%FSR  
% FSR  
SP7516KN/BN, HS3160–4  
SP7516JN/AN, HS3160–3  
Guaranteed to 14 bits  
Guaranteed to 13 bits  
STABILITY  
(TMIN to TMAX)  
Scale Factor  
4
0.5  
0.5  
ppm FSR/°C  
ppm FSR/°C  
ppm FSR/°C  
Note 7 and 8  
Integral Linearity  
Differential Linearity  
Monotonicity Temp. Range  
SP7516JN/KN, HS3160C  
SP7516AN/BN  
1.0  
1.0  
0
–40  
–55  
+70  
+85  
+125  
°C  
°C  
°C  
HS3160B–_  
DYNAMIC PERFORMANCE  
Digital Small Signal Settling  
Digital Full Scale Settling  
Reference Feedthrough Error  
@ 1kHz  
1.0  
2.0  
µS  
µS  
(VREF = 20Vpp)  
200  
2
µV  
mV  
@ 10kHz  
Reference Input Bandwidth  
1
MHz  
POWER SUPPLY (VDD  
Operating Voltage  
Voltage Range  
Current  
)
+15 ±5%  
V
V
mA  
%/%  
+8  
+18  
2.0  
Note 9  
Rejection Ratio  
0.005  
128  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
SPECIFICATIONS (continued)  
(Typical @ 25°C, nominal power supply, VREF = +10V, unipolar unless otherwise noted)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
ENVIRONMENTAL AND MECHANICAL  
Operating Temperature  
SP7516JN/KN  
SP7516AN/BN  
HS3160–C  
0
–40  
0
–55  
–55  
–65  
+70  
+85  
+70  
+125  
+125  
+150  
°C  
°C  
°C  
°C  
°C  
°C  
HS3160–B  
HS3160–B/883  
Storage Temperature  
Package  
SP7516_N  
24-pin SOIC  
HS3160  
22–pin Side–Brazed DIP  
Notes:  
1.  
2.  
3.  
Digital input voltage must not exceed supply voltage or go below –0.5V ; “0” <0.8V; 2.4V < “1” VDD.  
AC or DC; use R6758–1 for fixed reference applications  
Using the internal feedback resistor and an external op amp. The Scale Factor can be adjusted externally by variable resistors in series with the  
reference input and/or in series to the internal feedback resistor. Please refer to the Applications Information section.  
At 25°C; the output leakage current will create an offset voltage at the external op amps output. It doubles every 10°C temperature increase.  
Integral Linearity is measured as the arithmetic mean value of the magnitudes of the greatest positive deviation and the greatest negative deviation from  
the theoretical value for any given input combination.  
4.  
5.  
6.  
7.  
8.  
9.  
Differential Linearity is the deviation of an output step form the theoretical value of 1LSB for any two adjacent digital input codes.  
At 25°C, the output leakage current will create an offset voltage output. It doubles every 10°C temperature increase.  
Using the internal feedback resistor and an external op amp.  
Use series 470ohm resistor to limit startup current.  
CHARACTERISTIC CURVES  
(Typical @ + 25°C, VDD = + 15VDC, VREF = + 10VDC, unless otherwise noted.)  
0.048  
50  
40  
30  
20  
10  
0
0.024  
0.012  
2 LSB  
0.006  
0.003  
1 LSB  
0.01  
0.1  
1
10  
V
-VOLTS  
REF  
1/2 LSB @ 16 BITS  
Integral Linearity Error vs. Reference Voltage  
0.048%  
0
10  
20  
30  
-mV  
40  
50  
V
OS  
Additional Linearity Error vs. Output-Amplifier  
Offset-Voltage (VREF = + 10V)  
0.024%  
0.012%  
0.01  
0.006%  
0.003%  
4
6
8
10  
V
12  
14  
16  
18  
0.008  
-VOLTS  
DD  
Linearity vs. Supply Voltage  
0.006  
2.5  
2.0  
1.5  
1.0  
0.004  
0.002  
0
4
6
8
10  
V
12  
14  
16  
18  
-VOLTS  
4
6
8
10  
V
12  
14  
16  
18  
DD  
10  
-VOLTS  
DD  
Gain Change vs. Supply Voltage  
Power Supply Current vs. Voltage  
129  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
Pin 15 – DB5 – Data Bit 11.  
PIN ASSIGNMENTS  
HS3160 22–PIN  
Pin 16 – DB4 – Data Bit 12.  
Pin 1 – IO1 – Current Output 1.  
Pin 2 – IO2 – Current Output 2.  
Pin 3 – GND – Ground.  
Pin 17 – DB3 – Data Bit 13.  
Pin 18 – DB2 – Data Bit 14.  
Pin 19 – DB1 – Data Bit 15.  
Pin 4 – DB15 – MSB, Data Bit 1.  
Pin 5 – DB14 – Data Bit 2.  
Pin 20 – DB0 – LSB, Data Bit 16.  
Pin 21 – VDD – Positive Supply Voltage.  
Pin 22 – VREF Sense – Reference Voltage Input.  
Pin 23 – VREF Force – Reference Voltage Input.  
Pin 24 – RFB – Feedback Resistor.  
Pin 6 – DB13 – Data Bit 3.  
Pin 7 – DB12 – Data Bit 4.  
Pin 8 – DB11 – Data Bit 5.  
Pin 9 – DB10 – Data Bit 6.  
Pin 10 – DB9 – Data Bit 7.  
FEATURES…  
Pin 11 – DB8 – Data Bit 8.  
The SP7516 and HS3160are precision 16-bit multi-  
plying DACs. The DACs are implemented as a one-  
chip CMOS circuit with a resistor ladder network.  
Pin 12 – DB7 – Data Bit 9.  
Pin 13 – DB6 – Data Bit 10.  
Pin 14 – DB5 – Data Bit 11.  
Pin 15 – DB4 – Data Bit 12.  
Pin 16 – DB3 – Data Bit 13.  
Pin 17 – DB2 – Data Bit 14.  
Pin 18 – DB1 – Data Bit 15.  
Pin 19 – DB0 – LSB, Data Bit 16.  
Pin 20 – VDD – Positive Supply Voltage.  
Pin 21 – VREF – Reference Voltage Input.  
Pin 22 – RFB – Feedback Resistor.  
ThreeoutputlinesareprovidedontheDACstoallow  
unipolar and bipolar output connection with a mini-  
mum of external components. The feedback resistor  
is internal. The resistor ladder network termination is  
externally available, thus eliminating an external re-  
sistor for the 1 LSB offset in bipolar mode.  
The SP7516 is available for use in commercial and  
industrial temperature ranges, packaged in a 24-pin  
SOIC. The HS3160 is available in commercial  
and military temperature ranges, packaged in a  
24–pin side–brazed DIP. For product processed  
and screened to the requirements of MIL–M–  
38510 and MIL–STD–883C, please consult the  
factory (HS3160B only).  
SP7516 24–PIN  
Pin 1 – IO1 – Current Output 1.  
Pin 2 – IO2 Sense – Current Output 2.  
Pin 3 – IO3 Force – Current Output 3.  
Pin 4 – GND – Ground.  
PRINCIPLES OF OPERATION  
TheSP7516/HS3160achievehighaccuracybyusing  
a decoded or segmented DAC scheme to implement  
this function. The following is a brief description of  
this approach.  
Pin 5 – DB15 – MSB, Data Bit 1.  
Pin 6 – DB14 – Data Bit 2.  
Pin 7 – DB13 – Data Bit 3.  
Pin 8 – DB12 – Data Bit 4.  
Pin 9 – DB11 – Data Bit 5.  
Pin 10 – DB10 – Data Bit 6.  
Pin 11 – DB9 – Data Bit 7.  
Pin 12 – DB8 – Data Bit 8.  
Pin 13 – DB7 – Data Bit 9.  
Pin 14 – DB6 – Data Bit 10.  
C
f
R
f
V
+
REF  
E
R
O
C
i
O
R
C
p
Figure 1. SP7516/HS3160 Equivalent Output Circuit  
130  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
- 1  
- 2  
2
(MSB)  
2
Output  
400  
470Ω  
V
V
REF  
DD  
0
0
1
1
0
0
200Ω  
1
0
1
1/4 Full-Scale  
1/2 Full-Scale  
3/4 Full-Scale  
R
I
FEEDBACK  
R
OS  
-
O1  
DIGITAL  
INPUTS  
A
+
I
O2  
SP7516  
HS3160  
V
Table 1. Contribution of the two MSB's  
OUT  
The most common technique for building a D/A  
converterofnbitsistousenswitchestoturnncurrent  
or voltage sources on or off. The n switches and n  
sourcesaredesignedsothateachswitchorbitcontrib-  
utestwiceasmuchtotheD/Aconverter’soutputasthe  
preceding bit. This technique is commonly known as  
binary weighting and allows an n-bit converter to  
generate 2n output levels by turning on the proper  
combination of bits.  
GND  
Figure 2. Unipolar Operation  
the same functional performance can be obtained.  
ThusbyreplacingthetwoMSBswitchesofaconven-  
tional converter with three switches properly de-  
coded, the contribution ofanyswitchisreducedfrom  
1/2to1/4.Thisreductioninsensitivityalsoreducesthe  
accuracy required of any switch for a given overall  
converter accuracy.  
In such a binary-weighted converter, the switch  
with the smallest contribution (the LSB) accounts  
-n  
for only 2 of the converter’s full-scale value.  
Similarly, the switch with the largest contribution  
(theMSB)accountsfor2-1orhalfoftheconverter’s  
full-scale output. Thus it is easy to see that a given  
percent change in the MSB will have a greater  
effect on the converter’s output than would a  
similar percent change in the LSB. For example, a  
1% change in the LSB of a 10 bit converter would  
only affect the output by 0.001% of full-scale. A  
1% change in the MSB of the same converter  
would affect the output by 0.5% of FSR.  
With the decoded converter described above, a 1%  
change in any of the converter’s switches will affect  
the output by no more than 0.25% of full-scale as  
compared to 0.5% for a conventional converter. In  
other words the conventional D/A converter can be  
made less sensitive to the quality of its individual bits  
by decoding.  
In the SP7516/HS3160 the first four MSB’s are  
decodedinto16levelswhichdrive15equallyweighted  
current sources. The sensitivity of each switch on the  
output is reduced by a factor of 8. Each of the 15  
sources contributes 6.25% output change rather than  
an MSB change of 50% for the common approach.  
In order to overcome the problem which results from  
the large weighting of the MSB, the two MSB’s can  
be decoded to three equally weighted sources. Table  
1 shows that all combinations of the two MSB’s of a  
converter result in four output levels. So by replacing  
the two MSB’s with three bits equally weighted at 1/  
4 full-scale and decoding the two MSB digital inputs  
into three lines which drive the equally weighted bits,  
400470Ω  
V
V
REF  
DD  
200Ω  
R
FEEDBACK  
R
OS1  
-
I
I
O1  
A
1
DIGITAL  
INPUTS  
SP7516  
HS3160  
TRANSFER FUNCTION (N=16)  
+
V
OUT  
4KΩ  
BINARY INPUT UNIPOLAR OUTPUT BIPOLAR OUTPUT  
4KΩ  
111...111  
100...001  
100...000  
011...111  
000…001  
000...000  
–VREF (1 - 2–N)  
–VREF (1/2 + 2–N  
–VREF /2  
–VREF (1 – 2 –(N – 1)  
)
O2  
–(N – 1)  
)
)
–VREF (2  
)
R
R
OS2  
GND  
0
R
OS2  
–VREF (1/2 – 2–N  
VREF (2 –(N – 1)  
)
-
A
2
–VREF (2(N – 1)  
)
VREF (1 – 2 –(N – 1)  
)
+
V
OUT1  
, A  
, OP-07  
2
A
1
0
VREF  
Table 2. Transfer Function  
Figure 3. Bipolar Operation  
131  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
HS3160, small values for Cf must be used. Resis-  
torRp canbeadded, thiswillparallelRjdecreasing  
the effective resistance. If Cf is reduced the band-  
widthwillbeincreasedandsettlingtimedecreased.  
However a system penalty for lowering Cf is to  
increase noise gain. The tradeoff is noise vs. set-  
tling time. If Rp is added then a large value (1µF or  
greater)non-polarizedcapacitorCp shouldbeadded  
in series with Rp to eliminate any DC drifts. If  
settling time is not important, eliminate Rp and Cp,  
and adjust Cf to prevent overshoot.  
V
DD  
470  
V
REF  
(+ 25V MAX)  
400  
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
V
LSB  
15  
14  
13  
12  
11  
10  
9
REF  
UNIPOLAR MODE  
(2-QUADRANT)  
V
+
DD  
200  
74273  
CLK  
R
F
2
V
OUT  
REF  
N
I
01  
02  
6
0 TO - V  
(1-2 -  
A
1
3
I
+
)
SP7516/  
S
HS3160  
R
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0S  
8
7
6
5
WR  
G2A  
74273  
74LS138  
4
3
2
BDSEL  
G2B  
C
A
2
MSB  
GND  
CLK  
A
A
1
0
B
A
ADDRESS DECODER  
LATCHES  
Figure 4. Microprocessor Interface to SP7514  
Output Offset  
In most applications, the output of the DAC is fed  
into an amplifier to convert the DAC’s current  
output to voltage. A little known and not com-  
monly discussed parameter is the linearity error  
versus offset voltage of the output amplifier. All  
CMOS DAC’s must operate into a virtual ground,  
i.e., the summing junction of an op amp. Any  
amplifier’soffsetfromtheamplifierwillappearas  
an error at the output (which can be related to  
LSB’s of error).  
Following the decoded section of the DAC a  
standard binary weighted R-2R approach is used.  
This divides each of the 16 levels (or 6.25% of  
F.S.) into 4096 discrete levels (the 12 LSB’s).  
Output Capacitance  
The SP7516/HS3160 have very low output ca-  
pacitance (CO). This is specified both with all  
switchesONandallswitchesOFF.Outputcapaci-  
tance varies from 50pF to 100pF over all input  
codes. This low capacitance is due in part to the  
decoding technique used. Smaller switches are  
used with resulting less capacitance. Three impor-  
tant system characteristics are affected by CO and  
CO; namely digital feedthrough, settling time,  
and bandwidth. The DAC output equivalent cir-  
cuit can be represented as shown in Figure 1.  
Most all CMOS DAC’s currently available are  
implemented using an R-2R ladder network. The  
formulafornonlinearityistypically0.67mV/mVOS  
(not derived here). However the SP7516 has a  
coefficient of only 0.065mV/mVOS. This is due to  
the decoding technique described earlier. CMOS  
DAC applications notes (including this one) al-  
ways show a potentiometer used to null out the  
amplifier’s offset. If an amplifier is chosen having  
‘pretrimmedoffsetitmaybepossibletoeliminate  
this component. Consider the following calcula-  
tions:  
Digital feedthrough is the change in analog output  
due to the toggling conditions on the converter  
input data lines when the analog input VREF is at  
0V. The SP7516/HS3160 very low CO and there-  
fore will yield low digital feedthrough. Inputs to  
the DAC can be buffered. This input latch with  
microprocessor control is shown in Figure 4.  
1.  
2.  
3.  
Using LF441A amplifier (low power - 741 pinout)  
Specified offset: 0.5mV max  
Temperature coefficient of input offset: 10µV/°C max  
Settling time is directly affected by CO. In Figure  
1, CO combines with Rf to add a pole to the open  
loop response, reducing bandwidth and causing  
excessive phase shift - which could result in  
ringing and/or oscillation. A feedback capaci-  
tor,Cf mustbeaddedtorestorestability.Evenwith  
Cf, there is still a zero-pole mismatch due to RiCO  
which is code dependent. This code dependent  
mismatch is minimized when CORi = RfCf. How-  
everCf mustnowbemadelargertocompensatefor  
worstcaseRiCO-resultinginreducedbandwidth  
and increased settling time. With the SP7516/  
V
OS max (0°C to 70°C)  
= 0.5mV + (70µV)10  
= 1.2mV  
Add'l nonlinearity (max)  
= 1.2mV x 0.065mV/mV  
= 78µV (1/2 LSB @ 16 Bits!)  
Where: 78µV = 1/2 LSB @ 16 Bits (10V range)  
Via the above configuration, theSP7516/HS3160  
can be used to divide an analog signal by digital  
code (i.e. for digitally controlled gain). The trans-  
fer function is given in Table 2, where the value of  
each bit is 0 or 1. Division by all “0”s is undefined  
and causes the op amp to saturate.  
132  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
Applications Information  
Unipolar Operation  
Figure 2 shows the interconnections for unipolar  
operation. Connect IO1 and FB1 as shown in dia-  
gram. Tie IO2 (Pin 7), FB3 (Pin 3), and FB4 (Pin 1)  
to Ground (Pin 8). As shown, a series resistor is  
recommended in the VDD supply line to limit  
current during ‘turn-on.’ To maintain specified  
linearity,externalamplifiersmustbezeroed. Apply  
an ALL “ZEROES” digital input and adjust ROS  
for VOUT = 0 ± 1mV. The SP7516 and HS3160  
have been used successfully with OP-07, OP-27  
and LF441A. For high speed applications the  
SP2525 is recommended.  
Bipolar Operation  
Figure 3 shows the interconnections for bipolar  
operation. Connect IO1, IO2, FB1, FB3, FB4 as  
shown in diagram. Tie LDTR to IO2. As shown, a  
series resistor is recommended in the VDD supply  
line to limit current during ‘turn-on. To maintain  
specified linearity, external amplifiers must be  
zeroed. ThisisbestdonewithVREF settozeroand,  
theDACregisterloadedwith10...0(MSB=1).Set  
R0S1 for V01 = 0. Set R0S2 for VOUT = 0. Set VREF  
to +10V and adjust RB for VOUT to be 0V.  
Grounding  
Connect all GND pins to system analog ground  
and tie this to digital ground. All unused input  
pins must be grounded.  
133  
Corporation  
SIGNAL PROCESSING EXCELLENCE  
ORDERING INFORMATION  
Model ................................................................ Monotonicity ................................ Temperature Range .................................... Package  
16-Bit Multiplying DAC  
HS3160C-3Q ............................................................ 13-Bit ............................................... 0°C to +70°C ................... 22-pin, 0.4" Side-Brazed DIP  
HS3160B-3Q ............................................................ 13-Bit ......................................... -55°C to +125°C ................... 22-pin, 0.4" Side-Brazed DIP  
HS3160B-3/883 ....................................................... 13-Bit ......................................... -55°C to +125°C ................... 22-pin, 0.4" Side-Brazed DIP  
HS3160C-4Q ............................................................ 14-Bit ............................................... 0°C to +70°C ................... 22-pin, 0.4" Side-Brazed DIP  
HS3160B-4Q ............................................................ 14-Bit ......................................... -55°C to +125°C ................... 22-pin, 0.4" Side-Brazed DIP  
HS3160B-4/883 ....................................................... 14-Bit ......................................... -55°C to +125°C .................. 22-pin , 0.4" Side-Brazed DIP  
SP7516JN ................................................................ 13-Bit ............................................... 0°C to +70°C ......................................24-pin, 0.3" SOIC  
SP7516KN ............................................................... 14-Bit ............................................... 0°C to +70°C ......................................24-pin, 0.3" SOIC  
SP7516AN ............................................................... 13-Bit .......................................... –40°C to +85°C ......................................24-pin, 0.3" SOIC  
SP7516BN ............................................................... 14-Bit .......................................... –40°C to +85°C ......................................24-pin, 0.3" SOIC  
134  
Corporation  
SIGNAL PROCESSING EXCELLENCE  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX