SP800LEN-L/TR [SIPEX]

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, LEAD FREE, MS-012AC, SOIC-16;
SP800LEN-L/TR
型号: SP800LEN-L/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, LEAD FREE, MS-012AC, SOIC-16

电池 微处理器 监控
文件: 总24页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP691A/693A/800L/800M  
Low Power Microprocessor Supervisory  
with Battery Switch-Over  
FEATURES  
TOP VIEW  
Precision 4.65V/4.40V Voltage Monitoring  
200ms Or Adjustable Reset Time  
100ms, 1.6s Or Adjustable Watchdog Time  
60µA Maximum Operating Supply Current  
2.0µA Maximum Battery Backup Current  
0.1µA Maximum Battery Standby Current  
1
2
3
4
5
6
7
8
16  
15  
VBATT  
VOUT  
RESET  
RESET  
Vcc  
14 WDO  
GND  
13  
12  
CEIN  
CEOUT  
WDI  
Corporation  
BATT ON  
LOWLINE  
11  
10  
Power Switching  
OSCIN  
PFO  
PFI  
250mA Output in Vcc Mode (0.6)  
25mA Output in Battery Mode (5)  
9
OSCSEL  
On-Board Gating of Chip-Enable Signals  
Memory Write-Cycle Completion  
6ns CE Gate Propagation Delay  
DIP/SO  
Now Available in Lead Free Packaging  
Voltage Monitor for Power-Fail or Low Battery  
Backup-Battery Monitor  
RESET Valid to Vcc=1V  
1% Accuracy Guaranteed (SP800L/800M)  
Pin Compatible Upgrade to MAX691A/693A/  
800L/800M  
DESCRIPTION  
The SP691A/693A/800L/800M is a microprocessor (µP) supervisory circuit that integrates  
a myriad of components involved in discrete solutions to monitor power-supply and  
battery-control functions in µP and digital systems. The SP691A/693A/800L/800M offers  
complete µP monitoring and watchdog functions. The SP691A/693A/800L/800M is ideal for  
a low-cost battery management solution and is well suited for portable, battery-powered  
applications with its supply current of 35µA. The 6ns chip-enable propagation delay,  
the 25mA current output in battery-backup mode, and the 250mA current output in  
standard operation also makes the SP691A/693A/800L/800M suitable for larger scale,  
high-performance equipment.  
Part Number  
SP691A  
RESET Threshold RESET Accuracy  
PFI Accuracy  
+4%  
Backup-Battery Switch  
4.65V  
4.40V  
4.65V  
4.40V  
+125mV  
+125mV  
+50mV  
+50mV  
YES  
YES  
YES  
YES  
SP693A  
+4%  
SP800L  
+1%  
SP800M  
+1%  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability.  
Enhanced ESD Specifications........................+4kV Human Body Model  
Power Dissipation Per Package  
16-pin PDIP (derate 14.3mW/OC above +70OC).......................1150mW  
16-pin Narrow SOIC (derate 13.6mW/OC above 70OC)............1090mW  
16-pin Wide SOIC (derate 11.2mW/OC above 70OC).................900mW  
Storage Temperature....................................................-65OC to +150OC  
Lead Temperature (soldering,10 sec).........................................+300OC  
Terminal Voltages (with respect to GND)  
VCC.......................................................................................-0.3V to +6V  
VBATT.....................................................................................-0.3V to +6V  
All Other Inputs........................................................-0.3V to (VCC +0.3V)  
Input Currents  
VCC Peak...........................................................................................1.0A  
VCC Continuous.............................................................................250mA  
VBATT Peak....................................................................................250mA  
VBATT Continuous............................................................................25mA  
GND, BATT ON............................................................................100mA  
All Other Inputs..............................................................................25mA  
ELECTRICAL CHARACTERISTICS  
VCC = +4.75V to +5.5V for the SP691A/800L, VCC = +4.5V to +5.5V for the SP693A/800M, VBATT = +2.8V, and TAMB = TMIN to TMAX unless otherwise  
noted. Typical values apply at TAMB=+25OC.  
PARAMETERS  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
Operating Voltage Range,  
VCC or VBATT, NOTE 1  
0
5.5  
V
V
Output Voltage, VOUT  
VCC-0.05  
VCC-0.3  
VCC-0.2  
VCC-0.015  
VCC-0.15  
VCC-0.09  
VCC=4.5V, IOUT=25mA  
in Normal Operating Mode  
VCC=4.5V, IOUT=250mA  
VCC=3.0V, VBATT=2.8V, IOUT=100mA  
VCC-to-VOUT On-Resistance  
VOUT in Battery-Backup Mode  
0.6  
0.9  
1.2  
2.0  
VCC=4.5V  
VCC=3.0V  
VBATT-0.3  
VBATT-0.1  
VBATT=4.5V, IOUT=20mA  
VBATT=2.8V, IOUT=10mA  
VBATT=2.0V, IOUT=5mA  
VBATT-0.25 VBATT-0.07  
VBATT-0.15 VBATT-0.05  
V
VBATT-to-VOUT On-Resistance  
5
7
15  
25  
30  
VBATT=4.5V  
VBATT=2.8V  
VBATT=2.0V  
10  
Supply Current in Normal  
Operating Mode, IVcc  
µA  
µA  
µA  
35  
0.001  
60  
2.0  
VCC>(VBATT-1V), excluding IOUT  
Supply Current in Battery-  
Backup Mode, IBATT, NOTE 2  
VCC<(VBATT-1.2V), VBATT=2.8V, excluding IOUT  
VCC>(VBATT+0.2V), excluding IOUT  
VBATT Standby Current, IBATT  
NOTE 3  
,
-0.1  
0.02  
Battery Switchover Threshold  
Battery Switchover Hysteresis  
VBATT+0.03  
VBATT-0.03  
power-up  
V
power-down  
60  
Peak to Peak  
mV  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
VCC = +4.75V to +5.5V for the SP691A/800L, VCC = +4.5V to +5.5V for the SP693A/800M, VBATT = +2.8V, and TAMB = TMIN to TMAX unless otherwise  
noted. Typical values apply at TAMB=+25OC.  
PARAMETERS  
MIN.  
TYP. MAX. UNITS CONDITIONS  
BATT ON Output Low  
Voltage  
0.1  
0.7  
0.4  
1.5  
ISINK=3.2mA  
ISINK=25mA  
V
BATT ON Output Short  
Circuit Current  
60  
15  
mA  
sink current  
1
100  
µA  
source current  
RESET, LOWLINE, AND WATCHDOG TIMER  
Reset Threshold Voltage  
4.50  
4.25  
4.60  
4.35  
4.65  
4.40  
4.65  
4.40  
4.75  
4.50  
4.70  
4.45  
SP691A  
SP693A  
SP800L  
SP800M  
V
Reset Threshold Hysteresis  
15  
80  
mV  
µs  
center-to-peak  
power down  
power down  
V
CC to RESET Delay  
LOWLINE to RESET Delay  
800  
ns  
Reset Active Timeout Period  
for the Internal Oscillator  
140  
200  
280  
ms  
power-up  
power-up  
Reset Active Timeout Period  
for the External Clock,  
NOTE 4  
clock  
2048  
cycles  
Watchdog Timeout Period for  
the Internal Oscillator  
1.0  
70  
1.6  
2.25  
140  
sec  
ms  
long period  
short period  
100  
Watchdog Timeout Period for  
the External Clock, NOTE 4  
4096  
1024  
clock long period  
cycles short period  
Minimum Watchdog Input  
Pulse Width  
100  
3.5  
ns  
V
VIL=0.8V,VIH=0.75xVCC  
RESET Output Voltage  
0.004  
0.1  
0.3  
0.4  
ISINK=50µA, VCC=1V, VCC falling  
ISINK=3.2mA, VCC=4.25V  
ISOURCE=1.6mA, VCC=5V  
RESET Output Short-Circuit  
Current  
7
20  
mA  
V
output source current  
ISINK=3.2mA  
RESET Output Voltage Low,  
NOTE 5  
0.1  
0.1  
0.4  
0.4  
LOWLINE Output Voltage  
ISINK=3.2mA, VCC=4.25V  
V
3.5  
3.5  
ISOURCE=1µA, VCC=5V  
LOWLINE Output Short  
Circuit Current  
µA  
V
15  
100  
0.4  
output source current  
WDO Output Voltage  
0.1  
ISINK=3.2mA  
ISOURCE=500µA, VCC=5V  
WDO Output Short-Circuit  
Current  
3
10  
mA  
output source current  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
3
ELECTRICAL CHARACTERISTICS  
VCC = +4.75V to +5.5V for the SP691A/800L, VCC = +4.5V to +5.5V for the SP693A/800M, VBATT = +2.8V, and TAMB = TMIN to TMAX unless otherwise  
noted. Typical values apply at TAMB=+25OC.  
PARAMETERS  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
WDI Threshold Voltage,  
NOTE 6  
0.75xVCC  
VIH  
V
0.8  
50  
VIL  
WDI Input Current  
-50  
-10  
20  
WDI=0V  
µA  
WDI=VOUT  
POWER-FAIL COMPARATOR  
1.237  
1.263  
PFI Input Threshold  
1.25  
1.25  
SP691A/693A, VCC=5V  
SP800L/800M, VCC=5V  
V
nA  
V
1.225  
1.275  
+25  
0.4  
PFI Leakage Current  
PFO Output Voltage  
+0.01  
0.1  
I
SINK=3.2mA  
3.5  
1
ISOURCE=1µA, VCC=5V  
PFO Short Circuit Current  
PFI-to-PFO Delay  
60  
15  
mA  
output sink current  
100  
µA  
output source current  
25  
60  
VOD=15mV  
VOD=15mV  
µs  
CHIP-ENABLE GATING  
CEIN Leakage Current  
+0.005  
65  
+1  
µA  
disable mode  
enable mode  
CEIN to CEOUT Resistance,  
NOTE 7  
150  
CEOUT Short-Circuit Current  
(RESET Active)  
0.1  
0.75  
6
2.0  
10  
mA  
ns  
disable mode, CEOUT=0V  
CEIN to CEOUT Propagation  
Delay, NOTE 8  
50source impedance driver, CLOAD=50pF  
CEOUT Output Voltage High  
(RESET Active)  
3.5  
2.7  
VCC=5V, IOUT= 100µA  
V
VCC=0V, VBATT=2.8V, IOUT=1µA  
RESET to CEOUT Delay  
12  
µs  
power-down  
INTERNAL OSCILLATOR  
OSCIN Leakage Current  
OSCIN Input Pull-Up Current  
OSCSEL Input Pull-Up Current  
OSCIN Frequency Range  
0.10  
10  
+5.0  
100  
100  
µA  
µA  
OSCSEL=0V  
OSCSEL=VOUT or floating, OSCIN=0V  
OSCSEL=0V  
10  
µA  
200  
kHz  
OSCSEL=0V  
OSCIN External Oscillator  
Threshold Voltage  
VOUT-0.3 VOUT-0.6  
3.65  
VIH  
VIL  
V
2.0  
OSCIN Frequency with  
External Capacitor  
2
kHz  
OSCSEL=0V, COSC=47pF  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
4
ELECTRICAL CHARACTERISTICS  
VCC = +4.75V to +5.5V for the SP691A/800L, VCC = +4.5V to +5.5V for the SP693A/800M, VBATT = +2.8V, and TAMB = TMIN to TMAX unless otherwise  
noted. Typical values apply at TAMB=+25OC.  
NOTE 1: Either VCC or VBATT can go to 0V, if the other is greater than 2.0V.  
NOTE 2: The supply current drawn by the SP691A/693A/800L/800M from the battery (excluding IOUT) typically  
goesto5µAwhen(VBATT -1V)<VCC <VBATT. Inmostapplications, thisisabriefperiodasVCC fallsthroughthisregion.  
NOTE 3: "+" = battery-discharging current, "-" = battery-charging current.  
NOTE 4: Although presented as typical values, the number of clock cycles for the reset and watchdog timeout  
periods are fixed and do not vary with process or temperature.  
NOTE 5: RESET is an open-drain output and sinks current only.  
NOTE 6: WDI is internally connected to a voltage divider between VOUT and GND. If unconnected, WDI is driven  
to 1.6V (typ), disabling the watchdog function.  
NOTE 7: The chip-enable resistance is tested with VCC = +4.75V for the SP691A/800L and VCC = +4.5V for the  
SP693A/800M. CEIN = CEOUT = VCC/2.  
NOTE 8: The chip-enable propagation delay is measured from the 50% point at CEIN to the 50% point at CEOUT  
.
TYPICAL PERFORMANCE CHARACTERISTICS  
(TAMB = 25oC, unless otherwise noted)  
2.5  
VCC = 5V  
VBATT = 2.8V  
43  
40  
37  
34  
31  
28  
25  
VCC = 1.6V  
VBATT = 2.8V  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-60  
-30  
0
30  
60  
90  
120  
-60  
-30  
0
30  
60  
90 120 150  
Temperature (oC)  
Temperature (oC)  
Figure 1. VCC Supply Current vs. Temperature (Normal  
Operating Mode)  
Figure 2. Battery Supply Current vs. Temperature  
(Battery-Backup Mode)  
14  
75.0  
VCC = 0V  
12  
VCC = 4.75V  
VBATT = 2.8V  
CE IN = VCC/2  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
10  
8
6
4
VBATT = 2V  
VBATT = 2.8V  
VBATT = 4.5V  
2
0
-80 -60 -40 -20  
0
20 40 60 80 100 120 140  
-60  
-30  
0
30  
60  
90 120 150  
Temperature (oC)  
Temperature (oC)  
Figure 4. VBATT to VOUT On-Resistance vs. Temperature  
Figure 3. Chip-Enable On-Resistance vs. Temperature  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
5
TYPICAL PERFORMANCE CHARACTERISTICS  
1.256  
VCC = 4.5V  
VBATT = 2.8V  
0.9  
0.7  
0.5  
0.3  
VCC = 5V  
VBATT = 0V  
1.252  
1.248  
1.244  
1.240  
1.236  
-60  
-30  
0
30  
60  
90 120 150  
-60  
-30  
0
30  
60  
90 120 150  
Temperature (oC)  
Temperature (oC)  
Figure 6. PFI Threshold vs. Temperature  
Figure 5. VCC to VOUT On-Resistance vs. Temperature  
4.69  
400  
VBATT = 0V  
4.68  
Sourcing VCC = 5V  
350  
Sinking VCC = 4.25V  
300  
4.67  
4.66  
VCC Rising  
VCC Falling  
250  
200  
150  
100  
50  
4.65  
4.64  
4.63  
4.62  
4.61  
4.60  
0
-60  
-60  
-30  
0
30  
60  
90 120 150  
-30  
0
30  
60  
90 120 150  
Temperature (oC)  
Temperature (oC)  
Figure 7. Reset Threshold vs. Temperature  
Figure 8. RESET Output Resistance vs. Temperature  
0.240  
1.E-04  
1.E-05  
VCC = 5V  
VBATT = 2.8V  
0.230  
VBATT = 2.8V  
1.E-06  
1.E-07  
1.E-08  
1.E-09  
1.E-10  
1.E-11  
1.E-12  
1.E-13  
1.E-14  
0.220  
0.210  
0.200  
0.190  
0.180  
0
1
2
3
4
5
-60  
-30  
0
30  
60  
90 120 150  
Temperature (oC)  
VCC (V)  
Figure 9. Reset Delay vs. Temperature  
Figure 10. Battery Current vs. Input Supply Voltage  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
6
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
1000  
100  
10  
Long Watchdog Timeout Period  
Reset Active Timeout Period  
Short Watchdog Timeout Period  
VCC = 5V  
VBATT = 2.8V  
25  
20  
15  
10  
5
50driver  
1
VCC = 5V  
VBATT = 2.8V  
0.1  
10  
0
100  
1000  
10000  
0
50  
100 150 200 250 300 350  
Cload (pF)  
OSCIN Capacitor (pF)  
Figure 11. Watchdog and Reset Timeout Period vs.  
Figure 12. Chip-Enable Propagation Delay vs. CEOUT  
Load Capacitance  
OSCIN Timing Capacitor (COSC  
)
1000  
1000  
100  
100  
10  
1
VCC = 4.5V  
VBATT = 0V  
VCC = 4.5V  
VBATT = 0V  
10  
Slope = 5Ω  
Slope = 0.6Ω  
1
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
Figure 13. VCC to VOUT vs. Output Current (Normal  
Operating Mode)  
Figure 14. VBATT to VOUT vs. Output Current (Battery-  
Backup Mode)  
+5V  
V
CC Reset  
Threshold  
0V  
80µs  
HI  
RESET  
LOW  
1.1µs  
HI  
LOWLINE  
LOW  
16µs  
HI  
CEOUT  
LOW  
Figure 15. VCC to LOWLINE and CEOUT Delay  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
7
PINOUT  
Pin 7 — OSCIN — External Oscillator Input.  
When OSCSEL is unconnected or driven  
HIGH, a 10µA pull-up connects from VOUT  
to this input pin, the internal oscillator sets  
the reset and watchdog timeout periods, and  
this input pin selects between fast and slow  
watchdog timeout periods. When OSCSEL is  
drivenLOW,theresetandwatchdogtimeout  
periods may be set either by a capacitor from  
this input pin to ground or by an external  
clock at this pin (refer to Figure 21).  
TOP VIEW  
1
2
3
4
5
6
7
8
16  
15  
VBATT  
VOUT  
RESET  
RESET  
Vcc  
14 WDO  
GND  
13  
12  
CEIN  
CEOUT  
WDI  
Corporation  
BATT ON  
LOWLINE  
11  
10  
OSCIN  
PFO  
PFI  
9
OSCSEL  
DIP/SO  
Pin 8 — OSCSEL — Oscillator Select. When  
OSCSEL is unconnected or driven HIGH, the  
internal oscillator sets the reset delay and  
watchdog timeout period. When OSCSEL is  
driven LOW, the external oscillator input  
pin, OSCIN, is enabled (refer to Table 1).  
This input pin has a 10µA internal pull-up.  
PIN ASSIGNMENTS  
Pin 1 — VBATT — Battery-Backup Input. Con-  
nect to the external battery supply or super-  
charging capacitor and charging circuit. If a  
backup battery is not provided, connect this  
pin to ground.  
Pin 9 — PFI — Power-Fail Input. This is the  
noninverting input to the power-fail  
comparator. When PFI is less than 1.25V,  
PFO goes low. Connect PFI to GND or  
VOUT when not used.  
Pin 2 —VOUT — Output Supply Voltage. VOUT  
connects to VCC when VCC is greater than  
VBATT and VCC is above the reset threshold.  
When VCC falls below VBATT and VCC is  
below the reset threshold, VOUT connects to  
VBATT. Connect a 0.1µF capacitor from VOUT  
to GND.  
Pin 10 — PFO — Power-Fail Output. This is  
the output of the power-fail comparator.  
PFO goes low when PFI is less than 1.25V.  
This is an uncommitted comparator, and  
has no effect on any other internal circuitry.  
Pin 3 — VCC — +5V Input Supply Voltage.  
Pin 4 — GND — Ground reference for all  
signals.  
Pin 11 — WDI — Watchdog Input. This is a  
three-level input pin. If WDI remains either  
HIGH or LOW for longer than the watchdog  
timeout period, WDO goes LOW and RESET  
isassertedfortheresettimeoutperiod. WDO  
remains LOW until the next transition at this  
input pin. Leaving this input pin unconnected  
disables the watchdog function. This input  
pin connects to an internal voltage divider  
between VOUT and ground, which sets it to  
mid-supply when left unconnected.  
Pin 5 — BATT ON — Battery On Output. Goes  
high when VOUT switches to VBATT. Goes low  
when VOUT switches to VCC. Connect the  
base of a PNP through a current-limiting  
resistor to BATT ON for VOUT current  
requirements greater than 250mA.  
Pin 6 — LOWLINE — Low Line Output. This  
output pin goes LOW when VCC falls below  
the reset threshold voltage. This output pin  
returns to its HIGH output as soon as VCC  
rises above the reset threshold voltage.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
8
Pin15RESETActiveLOWResetOutput.  
This output pin goes LOW whenever VCC  
falls below the reset threshold. This output  
pinwillremainlowtypicallyfor200msafter  
VCC crosses the reset threshold voltage on  
power-up.  
Pin 12 — CEOUT — Chip-Enable Output. This  
output pin goes LOW only when CEIN is  
LOW and VCC is above the reset threshold  
voltage. If CEIN is LOW when RESET is  
asserted, this output pin will stay low for  
16µs or until CEIN goes HIGH, whichever  
occurs first.  
Pin 16 — RESET — Active HIGH Reset  
Output. This output pin is open drain and  
the inverse of RESET.  
Pin13CEIN Chip-EnableInput. Thisisthe  
input pin to the chip-enable gating circuit.  
If this input pin is not used, connect it to  
ground or VOUT  
.
Pin 14 — WDO — Watchdog Output. If WDI  
remains HIGH or LOW longer than the  
watchdog timeout period, this output pin  
goes LOW and RESET is asserted for the  
reset timeout period. This output pin returns  
HIGH on the next transition at WDI.  
This output pin remains HIGH if WDI is  
unconnected.  
9
PFI  
10  
PFO  
1.25V  
Watchdog  
Transition  
Detector  
11  
14  
WDI  
WDO  
15  
Watchdog  
Timer  
RESET  
Reset  
16  
Generator  
8
7
RESET  
Reset /  
Watchdog  
Timebase  
OSCSEL  
OSCIN  
CEOUT  
Control  
6
LOWLINE  
4.65V or  
4.40V*  
3
V
CC  
2
5
V
OUT  
BATT ON  
GND  
4
1
V
BATT  
13  
CEIN  
* 4.65V for the SP691A/800L  
4.40V for the SP693A/800M  
12  
CEOUT  
Figure 16. Internal Block Diagram of the SP691A/693A/800L/800M  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
9
Unregulated DC  
R
1
2
PFI  
Regulated +5V  
R
VCC  
V
CC  
WDO  
alarm  
RESET  
PFO  
RESET  
µP  
NMI  
system  
status  
indicator  
LOWLINE  
WDI  
I/O LINE  
A0-A15  
Backup VBATT  
Supply  
Address  
Decode  
BUS  
BATT ON  
CEIN  
CMOS  
RAM  
to  
1
VCC  
VOUT  
RAM  
n
CEOUT  
GND  
0.1µF  
Figure 17. Typical Application Circuit of the SP691A/693A/800L/800M  
THEORY OF OPERATION  
FEATURES  
The SP691A/693A/800L/800M series is a  
complete µP supervisor IC and provides the  
following main functions:  
The SP691A/693A/800L/800M devices are  
microprocessor (µP) supervisory circuits that  
monitor the power supplied to digital circuits  
such as microprocessors, microcontrollers, or  
memory. The SP691A/693A/800L/800M series  
is an ideal solution for portable, battery-  
powered equipment that require power supply  
monitoring. The SP691A/693A/800L/800M  
watchdog functions will continuously oversee  
the operational status of a system. Implementing  
the SP691A/693A/800L/800M series will  
reduce the number of components and overall  
complexity in a design that requires power  
supply monitoring circuitry. The operational  
features and benefits of this series are described  
in more detail below.  
1) µP reset Reset output is asserted during  
power fluxiations such as power-up,  
power-down, and brown out conditions, and  
is guaranteed to be in the correct state for  
VCC down to 1V, even with no battery in  
the circuit.  
2) µP reset Reset output is pulsed if the  
optional watchdog timer has not been  
toggled within a specified time.  
3) Power Fail Comparator Provides for  
power-fail warning and low-battery  
detection, or monitors another power  
supply.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
10  
4) Watchdog function Monitors µP activity  
where the watchdog output goes to a logic  
LOW state if the watchdog input is not  
toggled for greater than the timeout period.  
15  
TO µP RESET  
RESET  
5) Internal switch Switches over from V  
if the VCC falls below the resCeCt  
10k  
to V  
thresBhAoTlTd.  
Corporation  
RESET and RESET Outputs  
The SP691A/693A/800L/800M devices'  
RESET and RESET outputs ensure that the µP  
powers up in a known state, and prevents  
code-execution errors during power-down or  
brownout conditions.  
Figure 18. External Pull-down Resistor Ensures  
RESET is Valid with VCC Down to Ground.  
10kand the output saturation voltage is below  
0.4V while sinking 40µA. When using a 10kΩ  
external pull-down resistor, the high state for  
the RESET output with Vcc = 4.75V is 4.5V  
typical. For battery voltages less than or equal  
to 2V connected to VBATT, RESET and RESET  
remains valid for VCC from 0V to 5.5V.  
The RESET output is active low, and typically  
sinks 3.2mA at 0.1V saturation voltage in its  
active state. When deasserted, RESET sources  
1.6mA at typically VOUT – 0.5V. RESET output  
is open drain, active high, and typically sinks  
3.2mA with a saturation voltage of 0.1V. When  
no backup battery is used, RESET output is  
guaranteed to be valid down to VCC = 1V, and  
an external 10kpull-down resistor on RESET  
ensures that RESET will be valid with VCC  
down to GND as shown on Figure 18. As VCC  
goes below 1V, the gate drive to the RESET  
output switch reduces accordingly, increasing  
the R (ON) and the saturation voltage. The  
10kDpS ull-down resistor ensures the parallel  
combination of switch plus resistor is around  
RESET and RESET are asserted whenVCC falls  
below the reset threshold and remain asserted  
for the Reset Timeout Period (200ms nominal)  
after VCC rises above the reset threshold voltage  
on power-up. Refer to Figure 19. The devices'  
battery-switchover comparator does not affect  
reset assertion. However, both reset outputs are  
asserted in battery-backup mode sinceVCC must  
be below the reset threshold to enter this mode.  
Vcc  
RESET  
THRESHOLD  
CE IN  
CE OUT  
12µ  
100µs  
100µs  
RESET  
RESET  
Figure 19. Reset and Chip-Enable Timing  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
11  
WDI  
WDO  
t
2
t
3
RESET  
t1  
t
1
t1  
t2  
t3  
= RESET Timeout Period  
= Normal Watchdog Timeout Period  
= Watchdog Timeout Period Immediately After RESET  
Figure 20. Watchdog Timeout Period and Reset Active Time  
Watchdog Function  
OSCIN  
No Connect  
No Connect  
X
X
7
8
The watchdog monitors µP activity via the  
Watchdog Input (WDI). If the µP becomes  
inactive, RESET and RESET are asserted.  
To use the watchdog function, connect WDI to  
a bus line or µP I/O line. If WDI remains high  
or low for longer than the watchdog timeout pe-  
riod (1.6s nominal). WDO, RESET, and RESET  
are asserted, indicating a software fault or idle  
conditions. Refer to RESET and RESET  
Outputs and Watchdog Output sections.  
OSCSEL  
1.6sec Normal Watchdog Timeout  
Internal Oscillator  
OSCIN  
7
OSCSEL  
8
No Connect  
X
Watchdog Input  
A change of logic state (minimum 100ns  
duration) at WDI during the watchdog period  
will reset the watchdog timer. The watchdog  
default timout is 1.6sec.  
100ms Normal Watchdog Timeout  
Internal Oscillator  
CIN  
To disable the watchdog function, leave WDI  
floating. An internal resistor network (100kΩ  
equivalent impedance at WDI) biases WDI to  
approximately 1.6V. Internal comparators  
detect this level and disable the watchdog timer.  
When Vcc is below the reset threshold, the  
watchdog function is disabled and WDI is  
disconnected from its internal resistor network,  
thus becoming high impedance.  
OSCIN  
7
OSCSEL  
8
600 x CIN  
47pF  
Normal Watchdog Timeout =  
External Oscillator  
[ms]  
Watchdog Output  
OSCIN  
7
WDO remains high if there is activity (transition  
or pulse) at WDI during the watchdog-timeout  
period. The watchdog function is disabled and  
WDO is a logic high when VCC is less than the  
reset threshold or when WDI is an open circuit.  
In watchdog mode, if no transition occurs at  
WDI during the watchdog-timeout period,  
OSCSEL  
8
Normal Watchdog Timeout = 1024 Clock Periods  
External Clock  
Figure 21. Selecting Timeout Periods  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
12  
Watchdog Timeout Period  
Normal Immediately After Reset  
4096 clocks  
OSCSEL  
OSCIN  
Reset Timeout Period  
LOW  
LOW  
External Clock Input  
External Capacitor  
LOW  
1024 clocks  
(600/47pF x C) ms  
100 ms  
2048 clocks  
(1200/47pF x C) ms  
200 ms  
(2.4/4 pf x C) sec  
7
Floating  
Floating  
1.6 s  
1.6 s  
Floating  
1.6 s  
200 ms  
Table 1. Reset Pulse Width and Watchdog Timeout Selections  
The 10ns maximum CE propagation from CEIN  
RESET and RESET are asserted for the reset  
timeout period (200ms nominal). WDO goes  
to logic low and remains low until the next  
transition at WDI. Refer to Figure 20. If WDI  
is held high or low indefinitely, RESET and  
RESET will generate 200ms pulses every 1.6s.  
WDO has a 2 x TTL output characteristic.  
to CE  
enables the SP691A/693A/800L/  
800M OdUeTvices to be used with most µPs.  
Chip-Enable Input  
CEIN is in high impedance (disabled mode)  
while RESET and/or RESET are asserted.  
Selecting an Alternative Watchdog  
Timeout Period  
During a power-down sequence whereV falls  
below the reset threshold, CE assumesCaC high  
impedance state when the volItNage at CEIN goes  
high or 12µs after RESET is asserted,  
whichever occurs first. Refer to Figure 19.  
During a power-up sequence, CEIN remains high  
impedance until RESET is deasserted.  
The OSC  
and OSCIN inputs control the  
watchdog SaErLe reset timeout periods. Floating  
OSCSEL and OSCIN or tying them both to VOUT  
selects the nominal 1.6s watchdog timeout  
period and 200ms reset timout period.  
Connecting OSC to ground and floating or  
connecting OSCSEILNtoV selects a 100ms nor-  
mal watchdog timeout pOeUriTod and a 1.6s timeout  
period immediately after reset. The reset timeout  
period remains 200ms. Refer to Figure 20.  
Select alternative timeout periods by connecting  
OSC to ground and connecting a capacitor  
betwSeEeLn OSCIN and ground, or by externally  
driving OSCIN . A synopsis of this control can  
be found in Figure 21 and Table 1.  
In the high-impedance mode, the leakage  
currents into CEIN are <1µA over temperature.  
In the low-impedance mode, the impedance of  
CE appears as a 65resistor in series with  
theIlNoad at CEOUT  
.
The propagation delay through the CE  
transmission gate depends on both the source  
impedance of the drive to CE and the  
capacitive loading on CEOUT IN(see the  
Chip-Enable Propagation Delay vs. CEOUT  
Load Capacitance graph in the Typical  
Performance Characteristics section). The  
CE propagation delay is defined from the 50%  
point on CEIN to the 50% point on CEOUT using  
a 50driver and 50pF of load capacitance as in  
Figure 22. For minimum propagation delay,  
minimize the capacitive load at CEOUT and use  
a low output-impedance driver.  
Chip-Enable Signal Gating  
The SP691A/693A/800L/800M devices  
provide internal gating of chip-enable (CE)  
signals, to prevent erroneous data from  
corrupting the CMOS RAM in the event of a  
power failure. During normal operation, the CE  
gate is enabled and passes all CE transitions.  
When reset is asserted, this path becomes  
disabled, preventing erroneous data from  
corrupting the CMOS RAM. The SP691A/  
693A/800L/800M devices use a series transmission  
gate from CEIN to CEOUT. Refer to Figure 16.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
13  
+5V  
V
CC  
VBATT  
CEIN  
1
13  
12  
V
BATT  
R
1
2.8V  
+2.0V  
to  
+5.5V  
PFI  
PFO  
CEOUT  
LOW BATT  
R
2
CLOAD  
4
GND  
GND  
Figure 22. Chip Enable Propagation Delay Test Circuit  
Figure 23. Low-Battery Indicator Circuit  
Power-Fail Output  
Chip-Enable Output  
The Power-Fail Output (PFO) goes low when  
PFI goes below 1.25V. It sinks 3.2mA with a  
saturation voltage of 0.1V. With PFI above  
1.25V, PFO is actively pulled to VOUT. PFO  
can be used to generate an NMI for the µP, as  
shown in Figure 17.  
In the enabled mode, the impedance of CEOUT  
is equivalent to 65in series with the source  
driving CE . In the disabled mode, the 65Ω  
transmissioInN gate is off and CE  
is actively  
pulled to VOUT. This source turnOsUoTff when the  
transmission gate is enabled.  
Battery-Backup Mode  
LOWLINE Output  
The SP691A/693A/800L/800M requires two  
conditions to switch to battery-backup mode:  
1) VCC must be below the reset threshold; 2)  
VCC must be below VBATT. Table 2 lists the  
status of the inputs and outputs in battery-  
backup mode.  
LOWLINE is the buffered output pin of the  
reset threshold comparator. Refer to Figure 16.  
LOWLINE typically sinks 3.2mA at 0.1V. For  
normal operation where VCC is above the reset  
threshold, LOWLINE is pulled to VOUT  
.
Power-Fail Comparator  
Battery-On Output  
The power-fail comparator is an uncommitted  
comparator that has no effect on the other  
functions of the SP691A/693A/800L/800M  
devices. Common uses include low battery  
detection, as found in Figure 23, and early  
power-fail detection when the unregulated power  
is easily accessible as shown in Figure 17.  
The Battery On Output (BATT ON) indicates  
the status of the internalVCC/battery-switchover  
comparator, which controls the internalVCC and  
VBATT switches. For VCC greater that VBATT  
(ignoring the small hysteresis effect), BATT ON  
is a logic low. For VCC less than V , BATT  
ON is a logic high. Use BATT ONBtAoTTindicate  
battery-switchover status or to supply base drive  
to an external pass transistor for higher-current  
applications. Refer to Figure 17.  
Power-Fail Input  
The Power-Fail Input (PFI) has a guaranteed  
input leakage of +25nA max over temperature.  
The typical comparator delay is 25µs from VIL  
to VOL (power failing), and 60µs from VIH to  
VOH (power being restored). Connect this  
input to ground if PFI is not used.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
14  
NAME  
VBATT  
VOUT  
STATUS  
PIN NUMBER  
Supply current is 1µA maximum when VCC<(VBATT-1.2V).  
VOUT connected to VBATT through an internal PMOS switch.  
Battery switchover comparator monitors VCC for active switchover. VCC is  
1
2
VCC  
3
disconnected from VOUT  
.
GND  
0V reference for all signals.  
4
5
BATT ON Logic HIGH. The open-circuit output voltage is equal to VOUT  
LOWLINE Logic LOW.  
.
6
OSCIN  
OSCSEL  
PFI  
OSCIN is ignored and is at high-Z.  
OSCSEL is ignored and is at high-Z.  
The power-fail comparator is disabled.  
7
8
9
PFO  
The power-fail comparator is disabled. PFO is forced to logic LOW.  
WDI is ignored and is at high-Z.  
10  
11  
12  
13  
14  
15  
16  
WDI  
CEOUT  
CEIN  
Logic HIGH. The open-circuit output voltage is equal to VOUT  
.
High-Z.  
WDO  
RESET  
RESET  
Logic HIGH. The open-circuit output voltage is equal to VOUT  
.
Logic LOW.  
High-Z.  
Table 2. Input and Output Status in Battery-Backup Mode; to enter the Battery-Backup Mode, VCC must be less than the  
reset threshold and less than VBATT  
.
Input Supply Voltage  
The Input Supply Voltage (VCC) should be a  
regulated +5V source. VCC connects to VOUT  
via a parallel diode and a large PMOS switch.  
The switch carries the entire current load for  
currents less than 250mA. The parallel diode  
carries any current in excess of 250mA. Both  
the switch and the diode have impedances  
less than 1each. Refer to Figure 24. The  
maximum continuous current is 250mA, but  
power-on transients may reach a maximum of 1A.  
V
BATT  
V
CC  
D2  
D1  
SW2  
SW1  
0.1µF  
VOUT  
Backup-Battery Input  
The Backup-Battery Input (VBATT) is similar  
to VCC, except the PMOS switch and parallel  
diode are much smaller. Refer to Figure 24.  
Accordingly, the on-resistances of the diode and  
the switch are each approximately 10.  
Figure 24. VCC and VBATT to VOUT Switch  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
15  
2) Battery-backup mode where VCC is typically  
within 0.7V below VBATT. All circuitry is  
powered from VBATT and the supply  
current from the battery is typically less  
than 5µA.  
+5V  
3
Vcc  
1N4148  
2
1
V
BATT  
V
OUT  
3) Battery-backup mode where VCC is less than  
VBATT by at least 0.7V. VBATT supply  
current is less than 1µA max.  
0.47F  
Corporation  
Using High Capacity Capacitor with the  
SP691A/693A/800L/800M Series  
VBATT has the same operating voltage range as  
VCC, and the battery-switchover threshold  
voltages are typically +30mV centered atVBATT,  
allowing use of a capacitor and a simple  
charging circuit as a backup source. Refer to  
Figure 25.  
GND  
4
Figure 25. High Capacity Capacitor on VBATT  
Continuous current should be limited to 25mA  
and peak currents (only during power-up)  
limited to 250mA. The reverse leakage of this  
input is less than 1µA over temperature and  
supply voltage.  
If VCC is above the reset threshold and VBATT  
is 0.5V above VCC, current flows to VOUT and  
VCC from VBATT until the voltage at VBATT is  
less than 0.5V above VCC.  
Output Supply Voltage  
Leakage current through the capacitor charging  
diode and SP691A/693A/800L/800M internal  
power diode eventually discharges the capacitor  
toVCC. Also, ifVCC andVBATT start from 0.5V  
above the reset threshold and power is lost at  
VCC, the capacitor onVBATT discharges through  
VCC untilVBATT reaches the reset threshold; the  
SP691A/693A/800L/800M devices then switch  
to battery-backup mode.  
The Output Supply Voltage (VOUT) supplies all  
the current to the external system and internal  
circuitry. All open-circuit outputs will assume  
theVOUT voltage in their high states rather than  
the VCC voltage. At the maximum source  
current of 250mA, VOUT will typically be  
150mV belowVCC. VOUT should be decoupled  
with 0.1µF capacitor.  
TYPICAL APPLICATIONS  
Using Separate Power Supplies forVBATT  
and V  
If usinCgCseparate power supplies for VCC and  
VBATT, VBATT must be less than 0.3V above  
VCC when VCC is above the reset threshold.  
As described in the previous section, if VBATT  
exceeds this limit and power is lost at VCC,  
current flows continuously from VBATT to  
VCC via the VBATT-to-VOUT diode and the  
VOUT-to-VCC switch until the circuit is broken.  
Refer to Figure 24.  
The SP691A/693A/800L/800M devices are not  
short-circuit protected. Shorting VOUT to  
ground, other than power-up transients such as  
charging a decoupling capacitor, may destroy  
the device. All open-circuit outputs swing  
between VOUT and GND rather than VCC and  
GND. If long leads connect to the chip inputs,  
ensure that these lines are free from ringing and  
other conditions that would forward bias the  
chip's protection diodes.  
Alternative Chip-Enable Gating  
There are three distinct modes of operation:  
Using memory devices with CE and CE inputs  
allows the CE loop of the SP691A/693A/800L/  
800M series to be bypassed. To do this,  
connect CEIN to ground, pull up CEOUT toVOUT,  
1) Normal operating mode with all circuitry  
powered from VCC. Typical supply current  
from VCC is 35µA, while only leakage  
currents flow from the battery.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
16  
+5V  
V
V
IN  
Minimum value of R  
P
is 1k.  
*
CC  
R
1
Maximum value of R  
P
is dependent  
on the connected number of RAMs, n.  
PFI  
V
OUT  
CEIN  
2
13  
4
R
2
R
3
*C  
1
RP*  
PFO  
CEOUT  
GND  
CE  
CE  
12  
*optional  
connect to µP  
1.25  
RAM  
1
GND  
CE  
CE  
V
TRIP  
=
RAM  
2
R
2
R
1
+ R  
2
Active-HIGH  
1.25  
V
=
L
- 1.25  
5.0 - 1.25  
CE Logic Lines  
+
=
CE  
CE  
R
3
R
1
for Memory Devices  
RAM  
3
R2  
1.25  
V
H
R2  
|| R  
3
PFO  
R
1
+ R  
2
|| R  
3
CE  
CE  
RAM  
n
+5V  
0V  
V
IN  
0V  
V
L
V
TRIP  
V
H
Figure 26. Alternate Chip Enable Gating  
Figure 27. Adding Hysteresis to the Power-Fail  
Comparator  
and connect CEOUT to the CE input of each  
memory device as shown in Figure 26. The CE  
input of each part then connects directly to the  
chip-select logic, which does not have to gated  
by the SP691A/693A/800L/800M devices.  
be larger than 10kto prevent it from loading  
down the PFO pin. Capacitor C1 adds additional  
noise rejection.  
Monitoring a Negative Voltage  
The power-fail comparator can be used to monitor  
a negative supply voltage using the circuit shown  
in Figure 28. When the negative supply is valid,  
PFO is low. When the negative supply voltage  
drops, PFO goes high. This circuit's accuracy is  
affected by the PFI threshold tolerance, theVCC  
voltage, and resistors R1 and R2.  
Adding Hysteresis to the Power-Fail  
Comparator  
Hysteresis adds noise margin to the power-fail  
comparator and prevents repeated triggering of  
PFO when VIN is near the power-fail comparator  
trip point. Figure 27 shows how to add hysteresis  
to the power-fail comparator. Select the ratio of  
R1 and R2 such that PFI sees 1.25V when VIN  
falls to the desired trip point (V ). Resistor  
R3 adds hysteresis. It will typicalTlyRIPbe an order  
of magnitude greater than R1 or R2. The  
current through R1 and R2 should be at least  
1µA to ensure that the 25nA (max) PFI input  
current does not shift the trip point. R3 should  
Backup-Battery Replacement  
The backup battery may be disconnected while  
VCC is above the reset threshold. No precautions  
are necessary to avoid spurious reset pulses.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
17  
+5V  
V
160  
120  
80  
40  
0
0.1µF Capacitor  
VOUT to GND  
CC  
R
1
PFI  
Above Line  
Reset Generated  
R2  
PFO  
V-  
GND  
1
10  
1000  
10000  
Reset Comparator Overdrive  
(Reset Threshold Voltage - VCC), (mV)  
1.25 - VTRIP  
5.0 - 1.25  
=
Figure 29. Maximum Transient Duration Without  
Causing a Reset Pulse vs. Reset Comparator Overdrive  
R2  
R1  
PFO  
+5V  
As the amplitude of the transient increases  
(i.e., goes farther below the reset threshold), the  
maximum allowable pulse width decreases.  
Typically, a VCC transient that goes 100mV  
below the reset threshold and lasts for 40µs or  
less will not cause a reset pulse to be issued.  
A 100nF bypass capacitor mounted close to the  
VCC pin provides additional transient immunity.  
0V  
0V  
V-  
*VTRIP  
*VTRIP is a negative voltage  
Figure 28. Monitoring a Negative Voltage  
Connecting aTiming Capacitor to OSCIN  
When OSC is connected to ground, OSCIN  
disconnectsSfErLom its internal 10µA pull-up and  
is internally connected to a +100nA current  
source. When a capacitor is connected from  
OSCIN to ground (to select an alternative  
watchdog timeout period), the current source  
charges and discharges the timing capacitor to  
create the oscillator that controls the reset and  
watchdog timeout period. To prevent timing  
errors, minimize external current leakage  
sources at this pin, and locate the capacitor as  
close to OSCIN as possible. The sum of any PC  
board leakage plus the OSC capacitor leakage  
must be small compared to +100nA.  
Negative-Going VCC Transients  
While asserting resets to the µP during power-up,  
power-down, and brownout conditions, these  
supervisors are relatively immune to short-  
duration negative-going VCC transients. It is  
usually undesirable to reset the µP when VCC  
experiences only small glitches.  
Refer to Figure 29 for a graph of the maximum  
transient duration vs. the reset-comparator over-  
drive for which reset pulses are not generated.  
The graph was produced using negative-going  
pulses, starting at 5V and ending below the  
reset threshold by the magnitude indicated  
(reset comparator overdrive). The graph shows  
the maximum pulse width a negative-goingVCC  
transient may typically have without causing a  
reset pulse to be issued.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
18  
Watchdog Software Considerations  
A way to help the watchdog timer keep a closer  
watch on software execution involves setting  
and resetting the watchdog input at different  
points in the program, rather than "pulsing" the  
watchdog input high-low-high or low-high-low.  
This technique avoids a "stuck" loop where the  
watchdog timer continues to be reset within the  
loop, keeping the watchdog from timing out.  
START  
SET  
WDI  
LOW  
SUBROUTINE  
OR PROGRAM LOOP  
SET WDI  
HIGH  
Figure 30 shows an example flow diagram  
where the I/O driving the watchdog input is set  
high at the beginning of the program, set low at  
the beginning of every subrouting or loop, then  
set high again when the program returns to the  
beginning. If the program should "hang" in any  
subroutine, the I/O is continually set low and  
the watchdog timer is allowed to time out,  
causing a reset or interrupt to be issued.  
RETURN  
END  
Figure 30. Watchdog Flow Diagram  
Maximum VCC Fall Time  
The VCC fall time is limited by the propagation  
delay of the battery switchover comparator and  
should not exceed 0.03V/µs. A standard rule of  
thumb for filter capacitance on most regulators  
is on the order of 100µF per amp of current.  
When the power supply is shut off or the main  
battery is disconnected, the associated initial  
VCC fall rate is just the inverse of 1A/100µF =  
0.01V/µs. TheVCC fall rate decreases with time  
as VCC falls exponentially, which more than  
satisfies the maximum fall-time requirement.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
19  
PACKAGE: 16 PIN NSOIC  
D
e
Ø
E/2  
E1  
E
E1/2  
L2  
Ø
Seating Plane  
Ø1  
L
1
L1  
Gauge Plane  
b
INDEX AREA  
(D/2 X E1/2)  
VIEW C  
TOP VIEW  
A1  
A
Seating Plane  
A2  
SIDE VIEW  
16 Pin NSOIC JEDEC MO-012 (AC) Variation  
MIN  
1.35  
0.1  
1.25  
0.31  
0.17  
NOM  
-
-
-
-
-
MAX  
1.75  
0.25  
1.65  
0.51  
0.25  
SYMBOL  
A
A1  
A2  
b
B
B
c
D
E
E1  
e
L
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
-
SEE VIEW C  
0.4  
1.27  
L1  
L2  
ø
1.04 REF  
0.25 BSC  
-
0º  
5º  
8º  
15º  
b
ø1  
-
Note: Dimensions in (mm)  
c
BASE METAL  
SECTION B-B  
WITH PLATING  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
20  
PACKAGE: 16 PIN WSOIC  
D
Ø1  
E/2  
E1  
E
Gauge Plane  
L2  
E1/2  
Ø
Seating Plane  
Ø1  
L
L1  
1
3
2
b
INDEX AREA  
(D/2 X E1/2)  
VIEW C  
e
TOP VIEW  
B
16 Pin SOIC JEDEC MS-013 (AA) Variation  
SEE VIEW C  
B
MIN  
2.35  
0.1  
2.05  
0.31  
0.2  
NOM  
-
-
-
MAX  
2.65  
0.3  
2.55  
0.51  
0.33  
SYMBOL  
A
A1  
A2  
b
-
c
-
D
E
E1  
e
L
10.30 BSC  
10.30 DSC  
7.50 BSC  
1.27 BSC  
-
A2  
A
Seating Plane  
SIDE VIEW  
A1  
0.4  
1.27  
L1  
L2  
ø
1.04 REF  
0.25 BSC  
-
0º  
5º  
8º  
15º  
ø1  
-
b
WITH PLATING  
Note: Dimensions in (mm)  
c
BASE METAL  
SECTION B-B  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
21  
PACKAGE: 16 PIN PDIP  
A1  
D
A
N
1
INDEX  
AREA  
A2  
D1  
E
E1  
L
b2  
b
e
b3  
2
3
N/2  
E
c
eA  
eB  
16 PIN PDIP JEDEC MS-001 (BB) Variation  
SYMBOL  
MIN  
-
NOM  
-
-
MAX  
0.21  
-
0.195  
0.022  
0.07  
0.045  
0.014  
0.755  
-
A
A1  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
0.15  
0.115  
0.014  
0.045  
0.3  
0.008  
0.735  
0.005  
0.3  
0.13  
0.018  
0.06  
0.039  
0.01  
0.75  
-
0.31  
0.25  
.100 BSC  
.300 BSC  
-
b
0.325  
0.28  
0.24  
C
-
0.43  
0.15  
0.115  
0.13  
Note: Dimensions in (mm)  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
22  
ORDERING INFORMATION  
Package Type  
Part Number  
Temperature Range  
SP691ACP ............................................... 0OC to +70OC............................................ 16-Pin PDIP  
SP691ACN ............................................... 0OC to +70OC......................................... 16-Pin NSOIC  
SP691ACN/TR ......................................... 0OC to +70OC......................................... 16-Pin NSOIC  
SP691ACT ............................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP691ACT/TR ......................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP691AEP ............................................. -40OC to +85OC .......................................... 16-Pin PDIP  
SP691AEN ............................................. -40OC to +85OC ....................................... 16-Pin NSOIC  
SP691AEN/TR ....................................... -40OC to +85OC ....................................... 16-Pin NSOIC  
SP691AET ............................................. -40OC to +85OC ...................................... 16-Pin WSOIC  
SP691AET/TR........................................ -40OC to +85OC ...................................... 16-Pin WSOIC  
SP693ACP ............................................... 0OC to +70OC............................................ 16-Pin PDIP  
SP693ACN ............................................... 0OC to +70OC......................................... 16-Pin NSOIC  
SP693ACN/TR ......................................... 0OC to +70OC......................................... 16-Pin NSOIC  
SP693ACT ............................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP693ACT/TR ......................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP693AEP ............................................. -40OC to +85OC .......................................... 16-Pin PDIP  
SP693AEN ............................................. -40OC to +85OC ....................................... 16-Pin NSOIC  
SP693AEN/TR ....................................... -40OC to +85OC ....................................... 16-Pin NSOIC  
SP693AET ............................................. -40OC to +85OC ...................................... 16-Pin WSOIC  
SP693AET/TR........................................ -40OC to +85OC ...................................... 16-Pin WSOIC  
Available in lead free packaging. To order add “-L” suffix to part number.  
Example: SP691AEN/TR = standard; SP691AEN-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 2500 for NSOIC and WSOIC.  
CLICK HERE TO ORDER SAMPLES  
Corporation  
ANALOG EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
23  
ORDERING INFORMATION  
Package Type  
Part Number  
Temperature Range  
SP800LCP ............................................... 0OC to +70OC............................................ 16-Pin PDIP  
SP800LCN ............................................... 0OC to +70OC......................................... 16-Pin NSOIC  
SP800LCN/TR ......................................... 0OC to +70OC......................................... 16-Pin NSOIC  
SP800LCT................................................ 0OC to +70OC........................................ 16-Pin WSOIC  
SP800LCT/TR.......................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP800LEP ............................................. -40OC to +85OC .......................................... 16-Pin PDIP  
SP800LEN ............................................. -40OC to +85OC ....................................... 16-Pin NSOIC  
SP800LEN/TR ....................................... -40OC to +85OC ....................................... 16-Pin NSOIC  
SP800LET.............................................. -40OC to +85OC ...................................... 16-Pin WSOIC  
SP800LET/TR ........................................ -40OC to +85OC ...................................... 16-Pin WSOIC  
SP800MCP .............................................. 0OC to +70OC............................................ 16-Pin PDIP  
SP800MCN .............................................. 0OC to +70OC......................................... 16-Pin NSOIC  
SP800MCN/TR ........................................ 0OC to +70OC......................................... 16-Pin NSOIC  
SP800MCT............................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP800MCT/TR ......................................... 0OC to +70OC........................................ 16-Pin WSOIC  
SP800MEP............................................. -40OC to +85OC .......................................... 16-Pin PDIP  
SP800MEN ............................................ -40OC to +85OC ....................................... 16-Pin NSOIC  
SP800MEN/TR....................................... -40OC to +85OC ....................................... 16-Pin NSOIC  
SP800MET ............................................. -40OC to +85OC ...................................... 16-Pin WSOIC  
SP800MET/TR ....................................... -40OC to +85OC ...................................... 16-Pin WSOIC  
Available in lead free packaging. To order add “-L” suffix to part number.  
Example: SP800MEN/TR = standard; SP800MEN-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 2500 for NSOIC and WSOIC.  
Corporation  
ANALOG EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Date: 4/18/05  
SP691A/693A/800L/800M Low Power Microprocessor Supervisor with Battery Switch-Over © Copyright 2005 Sipex Corporation  
24  

相关型号:

SP800LEN/TR

Low Power Microprocessor Supervisory with Battery Switch-Over
SIPEX

SP800LEP

Low Power Microprocessor Supervisory with Battery Switch-Over
SIPEX

SP800LEP-L

Power Supply Management Circuit, Fixed, 2 Channel, PDIP16, LEAD FREE, PLASTIC, MS-001BB, DIP-16
EXAR

SP800LEP-L

Power Supply Management Circuit, Fixed, 2 Channel, PDIP16, LEAD FREE, PLASTIC, MS-001BB, DIP-16
SIPEX

SP800LET

Low Power Microprocessor Supervisory with Battery Switch-Over
SIPEX

SP800LET-L

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, LEAD FREE, MS-013AA, SOIC-16
SIPEX

SP800LET/TR

Low Power Microprocessor Supervisory with Battery Switch-Over
SIPEX

SP800M

Low Power Microprocessor Supervisory with Battery Switch-Over
SIPEX

SP800MCN

Low Power Microprocessor Supervisory with Battery Switch-Over
SIPEX

SP800MCN

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, MS-012AC, SOIC-16
EXAR

SP800MCN-L

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, LEAD FREE, MS-012AC, SOIC-16
ROCHESTER

SP800MCN-L

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, LEAD FREE, MS-012AC, SOIC-16
EXAR