SP805LEN/TR [SIPEX]

Low Power Microprocessor Supervisory with Battery Switch-Over; 低功耗微处理器监控与电池切换
SP805LEN/TR
型号: SP805LEN/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Low Power Microprocessor Supervisory with Battery Switch-Over
低功耗微处理器监控与电池切换

电源电路 电池 电源管理电路 微处理器 光电二极管 监控
文件: 总16页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP690A/692A/802L/  
802M/805L/805M  
Low Power Microprocessor Supervisory  
with Battery Switch-Over  
FEATURES  
Precision Voltage Monitor:  
SP690A/SP802L/SP805L at 4.65V  
SP692A/SP802M/SP805M at 4.40V  
Reset Time Delay - 200ms  
1
2
3
4
8
7
6
5
VOUT  
VCC  
GND  
PFI  
VBATT  
8 PIN NSOIC  
RESET (RESET)*  
WDI  
PFO  
Watchdog Timer - 1.6 sec timeout  
Minimum component count  
60µA Maximum Operating Supply Current  
0.6µA Maximum Battery Backup Current  
0.1µA Maximum Battery Standby Current  
Power Switching  
*SP805 only  
Now Available in Lead Free Packaging  
Pin Compatible Upgrades to  
MAX690A/692A/802L/802M/805L  
250mA Output in VCC Mode (0.6)  
25mA Output in Battery Mode (5)  
Voltage Monitor for Power Fail or  
Low Battery Warning  
Available in 8 pin SO and DIP packages  
RESET asserted down to VCC = 1V  
APPLICATIONS  
Critical µP Power Monitoring  
Intellegent Instruments  
Computers  
Controllers  
DESCRIPTION  
The SP690A/692A/802L/802M/805L/805M are a family of microprocessor (µP) supervisory  
circuits that integrate a myriad of components involved in discrete solutions to monitor power-  
supply and battery-control functions in µP and digital systems. The series will significantly  
improve system reliability and operational efficiency when compared to discrete solutions.  
The features of the SP690A/692A/802L/802M/805L/805M include a watchdog timer, a µP  
reset and backup-battery switchover, and power-failure warning, a complete µP monitoring  
andwatchdogsolution. Theseriesisidealforapplicationsinautomotivesystems, computers,  
controllers, and intelligent instruments. All designs where it is critical to monitor the power  
supply to the µP and it’s related digital components will find the series to be an ideal solution.  
RESET  
Threshold  
RESET  
Accuracy  
PART NUMBER  
RESET Active  
PFI Accuracy  
SP690A  
SP692A  
SP802L  
SP802M  
SP805L  
SP805M  
4.65 V  
4.40 V  
4.65 V  
4.40 V  
4.65 V  
4.40 V  
125mV  
125mV  
75mV  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
4%  
4%  
2%  
2%  
4%  
4%  
75mV  
125mV  
125mV  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifica-  
tions below is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods of time  
may affect reliability and cause permanent damage to  
the device.  
VCC........................................................-0.3V to 6.0V  
VBATT.....................................................-0.3V to 6.0V  
All Other Inputs (NOTE 1)..................-0.3V to (VCC to 0.3V)  
Input Current:  
VCC.........................................................250mA  
VBATT........................................................50mA  
GND........................................................20mA  
Output Current:  
VOUT.....Short-Circuit Protected for up to 10sec  
All Other Inputs.................................20mA  
Rate of Rise, VCC,VBATT..................100V/µs  
Continuous Power Dissipation.......500mW  
Storage Temperature.......-65°C to +160°C  
Lead Temperature(soldering,10sec).................+300°C  
ESD Rating.............................................................4KV  
ELECTRICAL CHARACTERISTICS  
Vcc=4.75v to 5.50V for SP690A/SP802L/SP805L, VCC=4.50V to 5.50V for SP692A/SP802M/SP805M, VBATT=2.80V, TA=TMIN to TMAX, typical specified at 25OC,  
unless otherwise noted.  
PARAMETERS  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
Operating Voltage Range,  
0
5.5  
Volts  
VCC or VBATT, Note 2  
µA  
µA  
Supply Current, ISUPPLY  
,
35  
60  
excluding IOUT  
ISUPPLY in Battery Backup Mode,  
VCC = 0V, VBATT = 2.8V  
0.001  
0.6  
VBATT Standby Current, NOTE 3  
VOUT Output  
-0.1  
VCC > VBATT + 0.2V  
µA  
0.02  
VCC - 0.1  
VCC - 0.03  
VCC - 0.15  
I
OUT = 50mA  
Volts  
IOUT = 250mA  
VOUT in Battery-Backup Mode  
VCC < VBATT - 0.2V  
V
BATT -0.15 VBATT - 0.04  
VBATT - 0.20  
IOUT = 5mA  
Volts  
IOUT = 25mA  
Battery Switch Threshold,  
VCC to VBATT  
20  
Power-up  
mV  
mV  
-20  
Power-down  
Battery Switchover Hysteresis  
Reset Threshold  
40  
Peak to Peak  
4.50  
4.25  
4.55  
4.30  
4.65  
4.40  
4.75  
4.50  
4.70  
4.45  
SP690A, SP802L, SP805L  
SP692A, SP802M, SP805M  
SP802L, TA = +25° C, VCC falling  
SP802M, TA = +25° C, VCC falling  
Volts  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
Vcc=4.75v to 5.50V for SP690A/SP802L/SP805L, VCC=4.50V to 5.50V for SP692A/SP802M/SP805M, VBATT=2.80V, TA=TMIN to TMAX, typical specified at 25OC,  
unless otherwise noted.  
PARAMETERS  
MIN.  
TYP.  
40  
MAX.  
UNITS CONDITIONS  
Reset Threshold Hysteresis  
Reset Pulse Width, tRS  
RESET Output Voltage,  
NOTE 5  
mV  
ms  
Peak to Peak  
140  
200  
280  
VCC - 1.5  
ISOURCE = 800µA  
0.1  
0.4  
0.3  
Volts  
I
I
SINK = 3.2mA  
0.004  
SINK = 50µA, VCC = 1.0  
RESET Output Voltage,  
NOTE 6  
0.8  
ISOURCE = 4µA, VCC = 1.0V,  
Volts ISOURCE = 800µA  
SINK = 3.2mA  
V
CC - 1.5  
0.1  
0.4  
I
Watchdog Timeout, tWD  
1.00  
50  
1.60  
2.25  
sec  
ns  
NOTE 7  
WDI Pulse Width, tWP  
VIL = 0.4V, VIH = (0.8)(VCC)  
WDI Input Threshold,  
0.8  
Logic low  
Logic high  
Volts  
V
CC = 5V, NOTE 4  
3.5  
WDI Input Current  
50  
150  
WDI =VCC  
WDI = 0V  
µA  
-150  
-50  
PFI Input Threshold  
1.200  
1.225  
1.250  
1.250  
1.300  
1.275  
SP690A/692A, SP805L/M  
SP802L/M  
Volts  
nA  
PFI Input Current  
-25  
0.01  
25  
PFO Output Voltage  
V
CC - 1.5  
ISOURCE = 800µA  
Volts  
0.1  
0.4  
ISINK = 3.2mA  
NOTE 1: The input voltage limits on PFI (pin 4) and WDI (pin 6) may be exceeded if the current into  
these pins is limited to less than 10 mA.  
NOTE 2: Either VCC or VBATT can go to 0V if the other is greater than 2.0V.  
NOTE 3: "-" equals the battery-charging current, "+" equals the battery-discharging current.  
NOTE 4: WDI is guaranteed to be in an intermediate, non-logic level state if WDI is floating and VCC  
is in the operating voltage range. WDI is internally biased to 35% of VCC with an input impedance of  
50K.  
NOTE 5: SP690A, SP692A, SP802L, and SP802M only.  
NOTE 6: SP805L and SP805M only.  
NOTE 7: WDI Minimum Rise/Fall time is 2µs.  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
3
BATTERY-SWITCHOVER  
CIRCUITRY  
VBATT  
VOUT  
1
2
3
4
8
7
6
5
V
OUT  
V
BATT  
RESET (RESET)*  
VCC  
V
CC  
RESET  
GENERATOR  
RESET  
(RESET)*  
GND  
PFI  
WDI  
PFO  
1.25V  
*( ) SP805 only  
3.5V  
WATCHDOG  
TIMER  
WDI  
Figure 10. Pinout  
PIN ASSIGNMENTS  
0.8V  
Pin 1 —VOUT — Output Supply Voltage. VOUT  
connects to VCC when VCC is greater than  
VBATT and VCC is above the reset thresh-  
old. When VCC falls below VBATT and  
VCC is below the reset threshold, VOUT  
connects to VBATT. Connect a 0.1µF  
capacitor from VOUT to GND.  
PFI  
PFO  
1.25V  
*( ) SP805 only  
Pin 2 — VCC — +5V Supply Input  
Figure 11. Internal Block Diagram  
Pin3 — GND — Ground reference for all signals  
Pin 7 for SP805 only — RESET (Active High)–  
Reset Output is the inverse of RESET;  
when RESET is asserted, the RESET  
Pin 4 — PFI — Power-Fail Input. This is the  
noninverting input to the power-fail com-  
parator. When PFI is less than 1.25V,  
PFO goes low. Connect PFI to GND or  
VOUT when not used.  
output voltage = VCC or VBATT  
,
whichever is higher.  
Pin8—VBATT — Backup-BatteryInput. When  
VCC fallsbelowtheresetthreshold,VBATT  
will be switched to VOUT if VBATT is  
20mV greater than VCC. When VCC rises  
20mV above VBATT, VOUT will be  
Pin 5 — PFO — Power-Fail Output.  
Pin 6 — WDI — Watchdog Input. WDI is a  
three level input. If WDI remains high or  
lowfor1.6sec,theinternalwatchdogtimer  
triggers a reset. If WDI is left floating or  
connected to a high-impedance tri-state  
buffer, the watchdog feature is disabled.  
Theinternalwatchdogtimerclearswhen-  
ever reset is asserted.  
reconnected to VCC  
hysteresis prevents repeated switching if  
CC falls slowly.  
.
The 40mV  
V
Pin 7 for SP690A/692A/802 only — RESET  
(ActiveLow)ResetOutput.RESETOut-  
put goes low whenever VCC falls below  
the reset threshold or whenever WDI  
remains high or low longer than 1.6  
seconds. RESET remains low for 200ms  
after VCC crosses the reset threshold  
voltage on power-up or after being trig-  
gered by WDI.  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
4
TYPICAL PERFORMANCE CHARACTERISTICS  
PFI Threshold  
vs. Temperature  
V Supply Current vs.  
Temperature (Normal Mode)  
CC  
Battery Supply Current vs.  
Temperature (Backup Mode)  
1.256  
1.254  
1.252  
1.250  
1.248  
1.246  
2.9  
2.4  
1.9  
1.4  
0.9  
V =5V  
51  
47  
43  
39  
35  
31  
27  
23  
19  
CC  
V =5V  
V =0V  
CC  
CC  
V
BATT=0  
VBATT=2.8V  
VBATT=2.8V  
NO LOAD ON PFO  
0.4  
-0.1  
20 40 60 80 100 120 140  
-60 -40 -20  
0
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
Temperature Deg. C  
Temperature Deg. C  
Temperature Deg. C  
V to VOUT On  
Resistance vs. Temperature  
V
BATT to VOUT ON  
CC  
Reset Threshold  
vs. Temperature  
Resistance vs. Temperature  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
4.70  
15  
10  
5
V
BATT=0V  
V =0V  
VBATT=2V  
V =5V  
4.69  
4.68  
4.67  
4.66  
4.65  
4.64  
4.63  
4.62  
4.61  
4.60  
CC  
VBCACTT=0V  
SP690A  
Power Down  
VBATT=2.8V  
VBATT=4.5V  
0
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
Temperature Deg. C  
Temperature Deg. C  
Temperature Deg. C  
Reset Output Resistance  
vs. Temperature  
Reset Delay  
vs. Temperature  
Battery Current vs. V Voltage  
212  
CC  
600  
V =5V,VBATT=2.8V  
V =0V to 5V Step,  
IE+2  
IE+1  
IE+0  
IE-1  
IE-2  
IE-3  
IE-4  
IE-5  
IE-6  
IE-7  
IE-8  
CC  
CC  
210  
208  
206  
204  
202  
200  
Soucing Current  
V
BATT=2.8V  
500  
400  
300  
200  
100  
0
VBATT=2.8V  
V =0V,VBATT=2.8V  
CC  
Sink Current  
.0000  
5.000  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
VCC (0.5V/div)  
Temperature Deg. C  
Temperature Deg. C  
(25oC, unless otherwise noted)  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
5
1000  
100  
10  
1000  
100  
10  
V =4.5V  
V
BATT=4.5V  
CC  
V
BATT=0V  
V =0V  
SloCpCe=5  
Slope=0.6Ω  
1
1
1
10  
100  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
Figure 1. VCC to VOUT Vs. Output Current  
Figure 2. VBATT to VOUT Vs. Output Current  
VCC  
V
BATT = 0V  
T
A
= +25 C  
VCC  
V
TA  
BATT = 0V  
2V  
div  
= 25oC  
VCC  
0V  
RESET  
2K  
RESET  
RESET  
0V  
330pF  
GND  
1sec/div  
Figure 3A. SP690A RESET Output Voltage vs.  
Supply Voltage  
Figure 3B. Circuit for the SP690A/802L RESET  
Output Voltage vs. Supply Voltage  
V
CC  
VCC  
VCC  
2V  
div  
0V  
5V  
RESET  
RESET  
V
BATT  
0V  
330pF  
10K  
GND  
1sec/div  
Figure 4A. SP805L RESET Output Voltage vs.  
Supply Voltage  
Figure 4B. Circuit for the SP805 RESET Output  
Voltage vs. Supply Voltage  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
6
VCC  
VCC  
+5V  
+4V  
T
A
= +25 C  
RESET  
V
CC  
RESET  
+5V  
10K  
0V  
30pF  
GND  
2µs/div  
Figure 5B. Circuit for the SP690A/802L RESET  
Response Time  
Figure 5A. SP690A RESET Response Time  
V
CC  
+5V  
V
CC  
V
CC  
+4V  
+4V  
0V  
RESET  
RESET  
V
BATT  
330pF  
10KΩ  
GND  
2µs/div  
Figure 6B. Circuit for the SP805 RESET  
Response Time  
Figure 6A. SP805L RESET Response Time  
+5V  
V
CC = 5V  
VBATT = 0V  
+1.3V  
+1.2V  
PFI  
V
CC = +5V  
T
A
= +25 C  
1K  
PFO  
5V  
PFI  
PFO  
0V  
30pF  
+1.25V  
500ns/div  
Figure 7B. Circuit for the Power-Fail Comparator  
Response Time (FALL)  
Figure 7A. Power-Fail Comparator Response Time (FALL)  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
7
V
CC = 5V  
VBATT = 0V  
PFI  
+5V  
+1.3V  
+1.2V  
V
CC = +5V  
T
A
= +25 C  
PFI  
PFO  
3V  
0V  
PFO  
1K  
30pF  
+1.25V  
2µs/div  
Figure 8A. Power-Fail Comparator Response Time (RISE)  
Figure 8B. Circuit for the Power-Fail Comparator  
Response Time (RISE)  
+5V  
V
CC  
0V  
+5V  
tRS  
RESET*  
0V  
+5V  
RESET**  
3.0V  
0V  
+5V  
V
OUT  
3.0V  
0V  
+5V  
0V  
PFO  
*SP690A/692A/802L/802M  
**SP805L/805M  
V
BATT = PFI = 3.0V  
Figure 9. Timing Diagram  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
8
FEATURES  
THEORY OF OPERATION  
The SP690A/692A/802L/802M/805L/805M  
provide four key functions:  
1. AbatterybackupswitchingforCMOSRAM,  
CMOS microprocessors, or other logic.  
2. Aresetoutputduringpower-up, power-down  
and brownout conditions.  
3. A reset pulse if the optional watchdog timer  
has not been toggled within a specified time.  
4. A 1.25V threshold detector for power-fail  
warning, low battery detection, or to monitor a  
power supply other than +5V.  
The SP690A/692A/802L/802M/805L/805M  
microprocessor (µP) supervisory circuits  
monitor the power supplied to digital circuits  
such as microprocessors, microcontrollers, or  
memory. The series is an ideal solution for  
portable, battery-powered equipment that  
requires power supply monitoring. Implementing  
this series will reduce the number of  
components and overall complexity. The  
watchdog functions of this product family will  
continuously oversee the operational status of a  
system. Theoperationalfeaturesandbenefitsof  
theSP690A/692A/802L/802M/805L/805Mare  
described in more detail below.  
The parts differ in their reset-voltage threshold  
levels and reset outputs. The SP690A/802L/  
805L generate a reset when the supply voltage  
drops below 4.65V. The SP692A/802M/805M  
generate a reset below 4.40V.  
Reset Output  
The microprocessor's (µP's) reset input starts  
the µP in a known state. When the µP is in an  
unknown state, it should be held in reset. The  
SP690A/SP692A/SP802 assert reset during  
power-up and prevent code execution errors  
during power-down or brownout conditions.  
The SP690A/692A/802L/802M/805L/805M  
are ideally suited for applications in automotive  
systems, intelligent instruments, and battery-  
poweredcomputersandcontrollers. Alldesigns  
into an environment where it is critical to  
monitor the power supply to the µP and it’s  
related digital components will find the  
SSP690A/692A/802L/802M/805L/805M ideal.  
On power-up, once VCC reaches 1V, RESET is  
guaranteed to be a logic low. As VCC rises,  
RESET remains low. When VCC exceeds the  
reset threshold, RESET will remain low for  
200ms, Figure 9. If a brownout condition  
occurs and VCC dips below the reset threshold,  
RESET is triggered. Each time RESET is  
triggered, it stays low for the reset pulse width  
interval. If a brownout condition interrupts a  
previously initiated reset pulse, the reset pulse  
continues for another 200ms. On power-down,  
once VCC goes below the threshold, RESET is  
guaranteed to be logic low until VCC drops  
below 1V.  
Regulated +5V  
Unregulated  
DC  
0.1µF  
VCC  
VCC  
R1  
RESET RESET  
µP  
PFI  
NMI  
PFO  
WDI  
I/O LINE  
R2  
VOUT  
V
BATT  
GND  
RESET is also triggered by a watchdog timeout.  
If WDI remains either high or low for a period  
that exceeds the watchdog timeout period (1.6  
sec), RESET pulses low for 200mS. As long as  
RESET is asserted, the watchdog timer remains  
clear. When RESET comes high, the watchdog  
resumes timing and must be serviced within  
1.6sec. If WDI is tied high or low, a RESET  
pulse is triggered every 1.8sec (tWD plus tRS).  
GND  
BUS  
3.6V  
Lithium  
Battery  
VCC  
CMOS  
RAM  
GND  
Figure 12. Typical Operating Circuit  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
9
The SP805L/M active-high RESET output is  
the inverse of the SP690A/SP692A/SP802 RE-  
SET output, and is valid with VCC down to 1V.  
Some µP's, such as Intel's 80C51, require an  
active-high reset pulse.  
Power-Fail Comparator  
The Power-Fail Comparator can be used as an  
under-voltage detector to signal the failing of a  
power supply (it is completely separate from the  
rest of the circuitry and does not need to be  
dedicated to this function). The PFI input is  
compared to an internal 1.25V reference. If PFI  
is less than 1.25V, PFO goes low. The external  
voltage divider drives PFI to sense the  
unregulated DC input to the +5V regulator. The  
voltage-divider ratio can be chosen such that the  
voltage at PFI falls below 1.25V just before the  
+5V regulator drops out. PFO then triggers an  
interrupt which signals the µP to prepare for  
power-down.  
Watchdog Input  
The watchdog circuit monitors the µP's activity.  
If the µP does not toggle the watchdog input  
(WDI) within 1.6sec, a reset pulse is triggered.  
The internal 1.6sec timer is cleared by either a  
resetpulseorbyfloatingtheWDIinput. Aslong  
as RESET is asserted or the WDI input is  
floating, the timer remains cleared and does not  
count. As soon as RESET is released and WDI  
is driven high or low, the timer starts counting.  
It can detect pulses as short as 50ns.  
When VBATT connects to VOUT, the power-fail  
comparator is turned off and PFO is forced low  
to conserve backup-battery power.  
Backup-Battery Switchover  
In the event of a brownout or power failure, it  
may be necessary to preserve the contents of  
VBATT  
V
CC  
RAM. WithabackupbatteryinstalledatVBATT  
,
the RAM is assured to have power if VCC fails.  
As long as VCC exceeds the reset threshold,  
VOUT connects to VCC through a 0.6PMOS  
power switch. Once VCC falls below the reset  
threshold, VCC or VBATT, whichever is higher,  
switches to VOUT. VBATT connects to VOUT  
through a 5switch only when VCC is below the  
D2  
D1  
SW2  
SW1  
D3  
VOUT  
reset threshold and VBATT is greater than VCC  
.
GND  
When VCC exceeds the reset threshold, it is  
connected to VOUT, regardless of the voltage  
applied to VBATT Figure 13. During this time,  
the diode (D1) between VBATT and VOUT will  
conduct current from VBATT to VOUT if VBATT is  
CONDITION  
SW1  
Open  
SW2  
Closed  
Closed  
Open  
VCC > Reset Threshold  
more than .6V above VOUT  
.
VCC < Reset Threshold and  
VCC > VBATT  
Open  
When VBATT connects to VOUT, backup mode is  
activated and the internal circuitry will be pow-  
ered from the battery Figure 14. When VCC is  
just below VBATT, in the backup mode the  
current drawn from VBATT will be typically  
30µA. When VCC drops to more than 1V below  
VBATT,theinternalswitchovercomparatorshuts  
off and the supply current falls to less than 0.6µA.  
VCC < Reset Threshold and  
VCC < VBATT  
Closed  
Reset Threshold = 4.65V in SP690A/802L/805L  
Reset Threshold = 4.40V in SP692A/802M/805M  
Figure 13. BACKUP-BATTERY Switchover Block Diagram  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
10  
SIGNAL  
STATUS  
+5V  
V
VCC  
Disconnected from VOUT  
CC  
Connected to VBATT through  
VOUT  
VBATT  
PFI  
an internal 8PMOS switch  
CONNECT TO  
STATIC RAM  
V
OUT  
V
BATT  
Connected to VOUT. Current  
drawn from the battery is  
less than 0.6µA, as long as  
CONNECT  
TO µP  
RESET  
0.1F  
(RESET)*  
V
CC < VBATT - 1V.  
GND  
*( ) SP805L only  
Power-fail comparator is  
disabled.  
Figure 16. Backup Power Source Using High Capacity  
Capacitor with SP690A/802L/805L and a +5V ±5% Supply  
PFO  
RESET  
RESET  
WDI  
Logic low  
Logic low  
Logic high (SP805 only)  
Watchdog timer is disabled  
If VCC is above the reset threshold and VBATT  
is 0.5V above VCC, current flows to VOUT and  
VCC from VBATT until the voltage at VBATT is  
less than 0.5V above VCC.  
Figure 14. Input and Output Status in Battery-Backup Mode.  
To enter the Battery-Backup mode, VCC must be less than the  
Reset threshold and less than VBATT  
.
Leakage current through the capacitor charging  
diode and the SP690A/SP802L/SP805L internal  
power diode eventually discharges the capacitor  
to VCC. Also, if VCC and VBATT start from 0.5V  
above the reset threshold and power is lost at  
VCC, the capacitor onVBATT discharges through  
VCC untilVBATT reaches the reset threshold; the  
SP690A/SP802L/SP805L then switches to  
battery-backup mode.  
Using a High Capacity Capacitor  
as a Backup Power Source  
VBATT has the same operating voltage range as  
VCC, and the battery-switchover threshold volt-  
ages are typically +20mV centered at VBATT,  
allowing use of a capacitor and a simple charging  
circuit as a backup source (see Figure 16).  
MAXIMUM  
PART  
+5V  
BACKUP-BATTERY  
NUMBER  
VOLTAGE [V]  
V
CC  
CONNECT TO  
STATIC RAM  
V
OUT  
SP690A  
SP802L  
SP805L  
V
BATT  
4.80  
4.55  
0.1F  
CONNECT  
RESET  
(RESET)*  
TO µP  
100K  
SP692A  
SP802M  
SP805M  
GND  
*( ) SP805M only  
Figure 15. Allowable BACKUP-BATTERY Voltages  
Figure 17. Backup Power Source Using High Capacity  
Capacitor with SP692A/802M/805M and a +5V ±10% Supply  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
11  
Operation Without a Backup Power  
Source  
+5V  
V
V
IN  
CC  
If a backup power source is not used, ground  
VBATT and connect VOUT to VCC. Since there is  
no need to switch over to any backup power  
source, VOUT does not need to be switched. A  
direct connection to VCC eliminates any voltage  
drops across the switch which may push VOUT  
R
1
PFI  
R
2
R
3
*C  
1
PFO  
below VCC  
.
*optional  
connect to µP  
1.25  
GND  
Replacing the Backup Battery  
V
TRIP  
=
The backup battery can be removed while VCC  
remains valid, without danger of triggering  
RESET/RESET. AslongasVCC staysabovethe  
reset threshold, battery-backup mode cannot be  
entered.  
R
2
R1  
+ R  
2
1.25  
VL  
- 1.25  
5.0 - 1.25  
+
=
R
3
R1  
R2  
1.25  
VH  
=
Adding Hysteresis to the Power-Fail  
Comparator  
R2  
|| R  
3
PFO  
R1  
+ R  
2
|| R  
3
Hysteresis adds a noise margin to the power-fail  
comparator and prevents repeated triggering of  
PFO when VIN is close to its trip point. Figure 18  
shows how to add hysteresis to the power-fail  
comparator. Select the ratio of R1 and R2 such  
that PFI sees 1.25V when VIN falls to its trip  
point (VTRIP). R3 adds the hysteresis. It will  
typicallybeanorderofmagnitudegreater(about  
10 times) than R1 or R2. The current through R1  
and R2 should be at least 1µA to ensure that the  
25nA (max) PFI input current does not shift the  
trip point. R3 should be larger than 10Kso it  
does not load down the PFO pin. Capacitor C1  
adds additional noise rejection.  
+5V  
0V  
VIN  
0V  
VL  
VTRIP  
VH  
Figure 18. Adding Hysteresis to the POWER-FAIL  
Comparator  
Allowable Backup Power-Source  
Batteries  
Lithium batteries work very well as backup  
batteries due to very low self-discharge rate and  
high energy density. Single lithium batteries  
with open-circuit voltages of 3.0V to 3.6V are  
ideal. Any battery with an open-circuit voltage  
less than the minimum reset threshold plus 0.3V  
can be connected directly to the VBATT input of  
this series with no additional circuitry; see  
FIGURE 12. However, batteries with open-  
circuit voltages that are greater than this value  
cannot be used for backup, as current is sourced  
into VOUT through the diode (D1 in Figure 13)  
when VCC is close to the reset threshold.  
Monitoring a Negative Voltage  
The power-fail comparator can be used to monitor  
a negative supply rail using the circuit of Figure  
19. When the negative rail is valid, PFO is low.  
When the negative supply voltage drops, PFO  
goes high. This circuit's accuracy is  
affected by the PFI threshold tolerance, the VCC  
voltage, and the resistors, R1 and R2.  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
12  
+5V  
V
Buffered RESET connects to System Components  
CC  
R1  
+5V  
V
+5V  
V
PFI  
CC  
CC  
R2  
PFO  
µP  
RESET  
RESET  
V-  
4.7K  
GND  
1.25 - VTRIP  
GND  
GND  
5.0 - 1.25  
=
R2  
R1  
PFO  
Figure 20. Interfacing to Microprocessors with  
Bidirectional RESET I/O  
+5V  
0V  
0V  
V-  
*VTRIP  
*VTRIP is a negative voltage  
Figure 19. Monitoring a Negative Voltage  
Interfacing to Microprocessors with  
Bidirectional Reset Pins  
Microprocessors with bidirectional reset pins,  
such as the Motorola 68HC11 series, can con-  
tend with this series' RESET output. If, for  
example, the RESET output is driven high and  
the µP wants to pull it low, indeterminate logic  
levels may result. To correct this, connect a  
4.7Kresistor between the RESET output and  
the µP reset I/O, as in Figure 20. Buffer the  
RESET output to other system components.  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
13  
PACKAGE: 8 PIN PDIP  
N
E
INDEX  
AREA  
E
E1  
2
3
N/2  
1
c
eA  
A1  
eB  
D
A
e
A2  
D1  
L
b
b2  
b3  
b
c
8 PIN PDIP JEDEC MS-001 (BA) Variation  
SYMBOL  
MIN  
-
NOM  
-
-
MAX  
0.21  
-
0.195  
0.022  
0.07  
0.045  
0.014  
0.4  
A
A1  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
0.15  
0.115  
0.014  
0.045  
0.3  
0.008  
0.355  
0.005  
0.3  
0.13  
0.018  
0.06  
0.039  
0.01  
0.365  
-
0.31  
0.25  
.100 BSC  
.300 BSC  
-
-
0.325  
0.28  
0.24  
-
0.43  
0.15  
0.115  
0.13  
Note: Dimensions in (mm)  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
14  
PACKAGE: 8 PIN NSOIC  
D
Ø
e
E/2  
L2  
E1  
E1/2  
E
Ø
Seating Plane  
Ø1  
L
L1  
Gauge Plane  
VIEW C  
1
b
INDEX AREA  
(D/2 X E1/2)  
TOP VIEW  
A1  
A
Seating Plane  
A2  
SIDE VIEW  
8 Pin NSOIC JEDEC MO-012 (AA) Variation  
MIN  
1.35  
0.1  
1.25  
0.31  
0.17  
NOM  
-
-
-
-
-
MAX  
1.75  
0.25  
1.65  
0.51  
0.24  
SYMBOL  
A
A1  
A2  
b
B
B
SEE VIEW C  
c
D
E
E1  
e
L
4.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
-
0.4  
1.27  
b
L1  
L2  
ø
1.04 REF  
0.25 BSC  
-
0º  
5º  
8º  
15º  
ø1  
-
c
Note: Dimensions in (mm)  
BASE METAL  
SECTION B-B  
WITH PLATING  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
15  
ORDERING INFORMATION  
Model  
Temperature Range  
Package Types  
SP690ACN........................................................0°C to +70°C.....................................................8-Pin NSOIC  
SP690ACN/TR...................................................0°C to +70°C.....................................................8-Pin NSOIC  
SP690ACP........................................................0°C to +70°C.........................................................8-Pin PDIP  
SP690AEN......................................................-40°C to +85°C.....................................................8-Pin NSOIC  
SP690AEN/TR.................................................-40°C to +85°C.....................................................8-Pin NSOIC  
SP690AEP.......................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP692ACN........................................................0°C to +70°C......................................................8-Pin NSOIC  
SP692ACN/TR..................................................0°C to +70°C......................................................8-Pin NSOIC  
SP692ACP........................................................0°C to +70°C.........................................................8-Pin PDIP  
SP692AEN......................................................-40°C to +85°C.....................................................8-Pin NSOIC  
SP692AEN/TR................................................-40°C to +85°C.....................................................8-Pin NSOIC  
SP692AEP.......................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP802LCN........................................................0°C to +70°C......................................................8-Pin NSOIC  
SP802LCN/TR..................................................0°C to +70°C......................................................8-Pin NSOIC  
SP802LCP........................................................0°C to +70°C.........................................................8-Pin PDIP  
SP802LEN.......................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP802LEN/TR.................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP802LEP.......................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP802MCN.......................................................0°C to +70°C......................................................8-Pin NSOIC  
SP802MCN/TR.................................................0°C to +70°C......................................................8-Pin NSOIC  
SP802MCP.......................................................0°C to +70°C.........................................................8-Pin PDIP  
SP802MEN......................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP802MEN/TR................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP802MEP......................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP805LCN........................................................0°C to +70°C......................................................8-Pin NSOIC  
SP805LCN/TR..................................................0°C to +70°C......................................................8-Pin NSOIC  
SP805LCP........................................................0°C to +70°C.........................................................8-Pin PDIP  
SP805LEN.......................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP805LEN/TR.................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP805LEP.......................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP805MCN.......................................................0°C to +70°C......................................................8-Pin NSOIC  
SP805MCN/TR..................................................0°C to +70°C......................................................8-Pin NSOIC  
SP805MCP.......................................................0°C to +70°C.........................................................8-Pin PDIP  
SP805MEN......................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP805MEN/TR................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP805MEP......................................................-40°C to +85°C.......................................................8-Pin PDIP  
Available in lead free packaging. To order add “-L” suffix to part number.  
Example: SP802LCN/TR = standard; SP802LCN-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity 2,500 for NSOIC.  
CLICK HERE TO ORDER SAMPLES  
Sipex Corporation  
Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
ANALOG EXCELLENCE  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
Date: 11/29/04  
SP690A/692A Low Power Microprocessor Supervisory with Battery Switch-Over  
© Copyright 2004 Sipex Corporation  
16  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX