SP9840KN [SIPEX]

8-Bit Octal, 4-Quadrant Multiplying, BiCMOS DAC; 8位八路, 4象限乘法, BiCMOS工艺DAC
SP9840KN
型号: SP9840KN
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

8-Bit Octal, 4-Quadrant Multiplying, BiCMOS DAC
8位八路, 4象限乘法, BiCMOS工艺DAC

转换器 数模转换器 光电二极管 信息通信管理
文件: 总10页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SP9840/43  
8-Bit Octal, 4-Quadrant Multiplying, BiCMOS DAC  
Replaces 8 Potentiometers and 8 Op amps  
Operates from Single +5V Supply  
5 MHz 4-Quadrant Multiplying Band-  
width  
Eight Inputs/Eight Outputs (SP9840)  
Four Inputs/Eight Outputs (SP9843)  
3-Wire Serial Input  
0.8MHz Data Update Rate  
+3.25V Output Swing  
Midscale Preset  
Programmable Signal Inversion  
Low 70mW Power Dissipation  
(9mW/DAC)  
DESCRIPTION…  
The SP9840 and SP9843 are general purpose octal DACs in a single package. The SP9840  
features eight individual reference inputs, while the SP9843 provides four pair of voltage  
reference inputs. Both parts feature 5MHz bandwidth, four–quadrant multiplication, and a three–  
wire serial interface. Other features include midscale preset, programmable signal inversion and  
low power dissipation from a single +5V supply. Devices are available in commercial and  
industrial temperature ranges.  
VIN1  
V
OUT1  
8
+
Data  
8
DAC 1  
Clock  
Serial Data Input  
Serial Data Output  
SERIAL  
REGISTER  
8 x 8  
DAC  
REGISTER  
Preset  
Load  
4
VIN8  
LOGIC  
8
V
OUT8  
8
Decoded  
Address  
DAC 8  
V
REF Low  
SP9840 shown  
257  
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation of the device  
at these or any other above those indicated in the operation  
sections of the specifications below is not implied. Exposure to  
absolute maximum rating conditions for extended periods of time  
may affect reliability.  
CAUTION:  
Whileallinputandoutputpinshave  
internal protection networks, these  
parts should be considered ESD  
(ElectroStatic Discharge) sensitive de-  
vices. Permanent damage may occur on  
unconnected devices subject to high en-  
ergy electrostatic fields. Unused devices  
must be stored in conductive foam or  
shunts. Personnel should be properly  
grounded prior to handling this device.  
The protective foam should be discharged  
to the destination socket before devices are  
removed.  
VDD to GND ...................................................................... -0.3V, +7V  
VINX to GND ............................................................................... VDD  
VREFL to GND ............................................................................. VDD  
VOUTX to GND ............................................................................ VDD  
Short Circuit IOUTX to GND ............................................ Continuous  
Digital Input & Output Voltage to GND ....................................... VDD  
Operating Temperature Range  
Commercial ............................................................... 0°C to +70°C  
Extended Industrial ................................................. -40°C to +85°C  
Maximum Junction Temperature (TJ max) .......................... +150°C  
Storage Temperature ................................................. -65° to 150°C  
Lead Temperature (Soldering, 10 sec) ............................... +300°C  
Package Power Dissipation .................................. (TJ max - TA)/8JA  
Thermal Resistance 8JA  
P-DIP .................................................................................. 57°C/W  
SOIC-24 .............................................................................. 70°C/W  
SPECIFICATIONS  
(VDD = +5V, All VINX= 0V, VREFL = 1.625V, TA = 25° C for commercial–grade parts;  
T
MIN TA = TMAX for industrial–grade parts; specifications apply to  
all DAC's unless noted otherwise.)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
SIGNAL INPUTS  
Input Voltage Range  
Input Resistance  
SP9840  
0
3.25  
V
VDD = 4.75V, VREFL = 1.625V  
D = 2BH, Code Dependent  
3.1  
1.55  
6.2  
3.1  
k  
kΩ  
SP9843  
Input Capacitance  
SP9840  
SP9843  
VREFL Resistance  
VREFL Capacitance  
Note 1  
19  
38  
1.3  
190  
30  
60  
pF  
pF  
kΩ  
pF  
0.68  
2.4  
Note 1 and 2  
Note 1  
250  
DIGITAL INPUTS  
Logic High  
Logic Low  
Input Current  
Input Capacitance  
Input Coding  
V
V
µA  
pF  
0.8  
±10  
8
Offset Binary  
Note 3  
STATIC ACCURACY  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity  
Half-Scale Output Voltage  
Minimum Output Voltage  
Output Voltage Drift  
8
Bits  
LSB  
LSB  
V
mV  
µV/°C  
±0.75  
±0.3  
1.625  
20  
±1.5  
±1  
1.650  
100  
Note 4  
Note 4  
1.600  
3
PR = LOW, V  
= 1.625V  
D=FF ; I  
=R0EF.1L mA  
25  
PR = HLOSWINK  
DYNAMIC PERFORMANCE  
Multiplying Gain Bandwidth  
Slew Rate  
5
MHz  
VIN(X) = 100mVP–P + 1.625V dc  
Measured 10% to 90%  
V = 3.2V  
Positive  
Negative  
Total Harmonic Distortion  
3.0  
–3.0  
7.9  
–8.3  
0.003  
V/µs  
V/µs  
%
V = –3.2V  
V (X) = 3VP–P +1.625V dc,  
DI=NFFH; 1KHz, fLP=80KHz  
±1 LSB Error Band  
Note 5  
Output Settling Time  
Crosstalk  
0.7  
70  
µs  
dB  
60  
Digital Feedthrough  
Wideband Noise  
SINAD  
6
42.5  
89  
nVs  
µVrms  
dB  
D = 0H to FF  
VOUT = 3.25V,H400Hz to 80kHz  
V (X) = 3VP–P +1.625V dc,  
DI=NFFH; 1KHz, fLP=80KHz  
Note 6  
Digital Crosstalk  
6
nVs  
258  
SPECIFICATIONS (continued)  
VDD = +5V, All VINX= +0V, VREFL = 1.625, TA = 25° C for commercial–grade parts;  
TMIN TA = TMAX for industrial–grade parts; specifications apply to all  
DAC's unless noted otherwise.)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
DAC OUTPUTS  
Voltage Range  
Output Current  
Capacitive Load  
0
±10  
VDD – 1.5  
V
mA  
pF  
RL = 5k, VDD = 4.75V  
Note 7  
No Oscillation  
±15  
47,000  
DIGITAL OUTPUT  
Logic High  
Logic Low  
3.5  
V
V
IOH = –0.4mA  
IOL = 1.5mA  
0.4  
POWER REQUIREMENTS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
4.75  
5.00  
14  
70  
5.25  
V
mA  
mW  
To rated specifications  
PR = LOW  
PR = LOW  
ENVIRONMENTAL AND MECHANICAL  
Operating Temperature Range  
Commercial  
Industrial  
Storage Temperature Range  
Package  
0
–40  
–65  
+70  
+85  
+150  
°C  
°C  
°C  
SP9840N  
SP9840S  
24–pin, 0.3" Plastic DIP  
24–pin 0.3" SOIC  
SP9843S  
20–pin, 0.3" SOIC  
Note 8  
Notes:  
1.  
2.  
3.  
Code dependent  
All VIN(x) = GND; D = 55H  
Offset binary refers to the output voltage with respect to the signal ground at VREFL. For a positive  
VIN(x), the output will increase from negative fullscale to VREFL to positive (fullscale–1 LSB) as the  
input code is incremented from 0 to 128 to 255. Note that when VIN(x) is tied to ground and VREFL is  
driven to +1.625V, as in the production tests above, then the resulting DC at VOUT(x) will decrease  
from +2VREFL to VREFL/128 as the code is increased from 00H to FFH, due to the VIN(x) input being tied  
negative with respect to VREFL  
.
4.  
5.  
The op amp limits linearity for VOUT <100mV. When VIN(x) is driven above ground such that the  
output voltage remains above 100mV, then the linearity specifications apply to all codes. For  
VREFL=1.625V, and VIN(x)=GND, codes 248 through 255 are not included in differential or integral  
linearity tests. Integral and differential linearity are computed with respect to the best fit straight line  
through codes 0 through 248.  
SP9840 is measured between adjacent channels, F=100kHz. SP9843 is measured between  
adjacent pairs, F=100kHz.  
6.  
7.  
8.  
SP9843 only; measured between channels with shared input; D = 7FH to 80H  
VOUT < 10mV, VREFL = 1.625V, PR = LOW.  
For plastic DIP, consult factory  
259  
Pin17—CLOCK—SerialClockInput;positive-edge  
triggered.  
SP9840 PINOUT  
V
C
1
2
3
4
5
6
7
8
9
24 V  
23 V  
22 V  
21 V  
D
OUT  
OUT  
V
B
C
IN  
Pin18—SDO—SerialDataOutput;activetotem-pole  
output.  
OUT  
V
A
B
A
D
IN  
DD  
OUT  
V
V
IN  
IN  
20 SDI  
SP9840  
Pin 19 — GND — Ground.  
V
19 GND  
18 SDO  
REFL  
PRESETL  
V
IN  
E
17 CLOCK  
16 LOADH  
Pin 20 — SDI — Serial Data Input.  
V
IN  
F
V
E 10  
F 11  
15 V  
14 V  
13 V  
H
OUT  
IN  
IN  
Pin 21 — V — Positive 5V Power Supply.  
DD  
V
G
OUT  
V
OUT  
G 12  
H
OUT  
Pin 22 — V D — DACD Reference Voltage Input.  
IN  
Pin 23 — V C — DACC Reference Voltage Input.  
IN  
Pin 1 — V C — DACC Voltage Output.  
OUT  
Pin 24 — V D — DACD Voltage Output.  
OUT  
Pin 2 — V B — DACB Voltage Output.  
OUT  
SP9843 PINOUT  
Pin 3 — V A — DACA Voltage Output.  
OUT  
V
C
1
2
3
4
5
6
7
8
9
20 V  
D
OUT  
OUT  
Pin 4 — V B — DAC B Reference Voltage Input.  
IN  
V
B
19 V C/D  
IN  
OUT  
V
A
18 V  
DD  
OUT  
Pin 5 — V A — DAC A Reference Voltage Input.  
IN  
V
A/B  
17 SDI  
IN  
V
L
16 GND  
15 SDO  
REF  
SP9843  
PRESETL  
E/F  
Pin6—V L—DACReferenceVoltageInputLow,  
REF  
V
14 CLOCK  
13 LOADH  
IN  
common to all DACs.  
V
E
OUT  
V
F
12 V G/H  
IN  
OUT  
Pin 7 — PRESETL — Preset Input; active low; all  
V
OUT  
G 10  
11 V  
H
OUT  
DAC registers forced to 80 .  
H
Pin 8 — V E — DAC E Reference Voltage Input.  
IN  
Pin 1 — V C — DACC Voltage Output.  
OUT  
Pin 9 — V F — DAC F Reference Voltage Input.  
IN  
Pin 2 — V B — DACB Voltage Output.  
OUT  
Pin 10 — V E — DACE Voltage Output.  
OUT  
Pin 3 — V A — DACA Voltage Output.  
OUT  
Pin 11 — V F — DACF Voltage Output.  
OUT  
Pin 4 — V A/B — DACA and B Reference Voltage  
Input.  
IN  
Pin 12 — V G — DACG Voltage Output.  
OUT  
Pin 13 — V H — DACH Voltage Output.  
Pin 5 — VREFL — DAC Reference Voltage  
Input Low, common to all DACs.  
OUT  
Pin 14 — V G — DACG Reference Voltage Input.  
IN  
Pin 6 — PRESETL — Preset Input; active low; all  
Pin 15 — V H — DACH Reference Voltage Input.  
DAC registers forced to 80 .  
IN  
H
Pin 16 — LOADH — Load DAC Register  
Strobe; active high input that transfers the data  
bits from the Serial Input Register into the  
decoded DAC Register. Refer to Table 1.  
Pin 7 — V E/F — DAC E and F Reference Voltage  
Input.  
IN  
Pin 8 — V E — DACE Voltage Output.  
OUT  
260  
Pin 9 — V F — DACF Voltage Output.  
Eachchannelconsistsofavoltage–outputDAC,  
realized using CMOS switches and thin–film  
resistors in an inverted R–2R configuration.  
Each DAC drives the positive terminal of an op  
amp, configured for a gain of –1 to +1 using  
equalvaluethin–filmfeedbackandgain–setting  
resistors. Signal return is the VREFL pin, the  
common reference input return for the eight  
DAC–op amp channels.  
OUT  
Pin 10 — V G — DACG Voltage Output.  
OUT  
Pin 11 — V H — DACH Voltage Output.  
OUT  
Pin12—V G/HDACGandHReferenceVoltage  
IN  
Input.  
Pin 13 — LOADH — Load DAC Register Strobe;  
active high input that transfers the data bits from the  
SerialInputRegisterintothedecodedDACRegister.  
Refer to Table 1.  
As shown in Figure 1, the DAC section can be  
thought of as a potentiometer across VIN(X) to  
VREFL. If this potentiometer is set to its minimum  
value of 0/256, the potentiometer will have no  
effect on the gain, and the output will be –RF/RIN  
= –1 times the input. If the potentiometer could  
be set to 256/256, then the amplifier positive  
terminal would see 100% of any input and no  
current would flow through RIN. The circuit  
would behave as a non–inverting unity gain  
circuit, although with a noise gain of two, not  
one. In reality, the "potentiometer" can only be  
set to 255/256, and the maximum positive gain  
is 0.992 times the voltage between VIN(X) and  
Pin14—CLOCK—SerialClockInput;positive-edge  
triggered.  
Pin15—SDO—SerialDataOutput;activetotem-pole  
output.  
Pin 16 — GND — Ground.  
Pin 17 — SDI — Serial Data Input.  
Pin 18 — V — Positive 5V Power Supply.  
VREFL.  
DD  
Pin19—V C/DDACCandDReferenceVoltage  
Input.  
The true relation between the DC levels at the  
VIN(X) pins, VREFL and the output can be de-  
scribed as:  
IN  
Pin 20 — V D — DACD Voltage Output.  
OUT  
D
F1  
(
)
VOUT  
=
1  
VIN VREFL +VREFL  
((  
)
)
128  
SP9840/SP9843  
Theory of Operation  
where D is programmable from 0 to 255.  
Each of the eight channels of the SP9840/9843  
can be used for signal reconstruction, as a pro-  
grammable DC source, or as a programmable  
signed attenuator of –1 to +0.992 times a multi-  
plyingACreferenceinput.Theruggedwideband  
output amplifiers provide both current sink and  
source capability to DC applications, even into  
difficult loads. The DC source mode mimics the  
functionality of a programmable trimpot, with  
the added benefit of a low–impedance buffered  
output.Theamplifier'sbandwidthandhighopen  
loop gain allow use in programmable signed  
attenuator applications where even low–distor-  
tion, highresolutionsignals, suchasaudio, must  
begatedonandoff,programmablephaseshifted  
by 0° or 180° or gain controlled over a –42 to  
0dB range at either phase.  
For single supply operation VREFL is usually  
externally driven to some voltage above ground  
— typically 1.5 to 2.5V. IF V  
is driven to  
1.5V, and VIN(X) is groundeRdE,FLthen code 0  
wouldoutput+3.0V, andcode255wouldoutput  
+11.7mV. If V  
were grounded and VIN(X)  
driven to 1.5V,RtEhFLen codes between 0 and 128  
would attempt to drive the output below ground,  
which will saturate the output amplifier at some  
voltage slightly above ground.  
USING THE SP9840/9843  
Multiplication of Input Voltages  
While both the SP9840 and SP9843 are capable of  
four–quadrant multiplication, this terminology is not  
261  
LAST  
FIRST  
D
D
D
D
D
D
D
D
A
A
A
A
3
0
1
2
3
4
5
6
7
0
1
2
LSB  
MSB LSB  
MSB  
DATA  
ADDRESS  
A
A
A
DAC Updated  
A
2
3
1
0
0
0
0
0
1
1
1
1
0
0
.
0
0
0
0
0
0
0
0
1
1
.
0
0
1
1
0
0
1
1
0
0
.
No Operation  
DACA  
0
1
0
1
0
1
0
1
0
1
.
DACB  
DACC  
DACD  
DACE  
DACF  
DACG  
DACH  
No Operation  
.
.
.
.
.
.
1
1
1
No operation  
1
D
D
D
D
D
D
D
D
DAC Output Voltage  
7
6
5
4
3
2
1
0
D
V
=
1  
VIN VREFL +VREF  
( )  
OUT  
128  
–2V  
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
REF  
0
.
.
.
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
.
1
0
0
1
0
0
1
0
1
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Table 1. Serial Input Decoded Truth Table  
very precise when describing a system which runs  
fromasinglepositivesupply.Traditionally,thequad-  
rants have been defined with respect to 0V. A two–  
quadrant multiplying DAC could produce negative  
output voltages only if a negative voltage reference  
were applied. A four–quadrant device could also  
produce a code–controlled negative output from a  
positive reference, or a code–controlled positive out-  
put from a negative reference. If ground is used to  
delineate the quadrants, then the SP9840/SP9843  
should be considered single–quadrant multiplying  
devices, as their output op amps cannot produce  
voltages below ground.  
In reality, it is possible to define a DC voltage as a  
signal ground in a single supply system. If the DAC's  
V
pin is driven to the voltage chosen as pseudo–  
grRoEuFnL d, then each voltage output will exhibit 4–  
quadrant behavior with respect to pseudoground. For  
codes greater than 128, the output voltage will enter  
the quadrant below the pseudoground voltage when  
the input voltage goes below pseudoground. For  
codes less than 128, the output voltage will be below  
pseudogroundwhentheinputisabovepseudoground.  
When V  
is driven to some positive voltage and  
VIN(X) iRsEFgLrounded, the device performs as if it  
were a buffered trimpot tied between ground and  
a voltage equal to two times V . This mode of  
operation can be used as anRE"FiLnverted single–  
quadrant"sourcewithanapproximaterangeof0to  
(VREFL*2)Volts. Because the output voltage will  
decrease as the code is increased, this mode is  
considered to be inverted with respect to normal  
single–quadrant operation. Note that the mini-  
mum output voltage will be 1LSB above VIN(X).  
+5V  
VDD  
VIN(X)  
+
VOUT  
VREFL  
DAC  
D
128  
3
VOUT  
=
1 VIN VREFL +VREFL  
(
)
Figure 2a and 2b show "inverted single–quadrant"  
and 4–quadrant performance of the SP9840/9843.  
Figure 1. DAC and Output Amplifier Circuit  
262  
a)  
b)  
Figure 2. a) Inverted Single–Quadrant Operation; b) 4–Quadrant Operation  
Applications which require two–quadrant operation  
with respect to pseudoground should use the SIPEX  
SP9841orSP9842two–quadrantmultiplyingDACs.  
amplifier cannot drive. This minimum voltage  
is in the 15 to 25mV range. It varies within a  
package with each op amp's offset voltage and  
biasingvariations. Ifaninputvoltagelowerthan  
this minimum, such as code 255 when VIN(X) is  
grounded, is requested, feedback within the op  
amp circuit will force internal nodes to the rails,  
while the output will remain saturated near this  
minimum value. Non–saturated monotonic be-  
havior returns between 25mV and 100mV at the  
output, but full open loop gain and linearity are  
not apparent until the output voltage is nearly  
100mV above the negative supply. Four–quad-  
rant (programmable signed attenuator) applica-  
tions usually bias VREFL up at system  
pseudoground, well above this saturation re-  
gion, and therefore maintain linearity even at  
high attenuations (i.e. near code 80HEX).  
The choice of voltage to use for the pseudoground is  
limitedbythelegalvoltageswingattheopampoutput.  
The op amp exhibits excellent linearity for output  
voltages between, conservatively, 100mV and VDD  
1.5V. The op amp BiCMOS output stage consists of  
annpnfollowerloadedbyanNMOScommonsourced  
to ground. This circuit exhibits wide bandwidth and  
cansourcelargecurrents, whileretainingthecapabil-  
ity of driving the output to voltages close to ground.  
Atoutputvoltagesbelow25mV,feedbackforces  
some op amp internal nodes toward the supply  
rails. The NMOS pull–down device gets driven  
hard and the NMOS device enters the linear  
region — it begins to function in the same  
manner as a 50 ohm resistor. In reality, the  
wideband amplifier output stage sinks some  
internalquiescentcurrentevenwhendrivingthe  
output towards ground. This sunk current drops  
across the output stage NMOS transistor ON–  
resistance and internal routing resistance to pro-  
videaminimumoutputvoltagebelowwhichthe  
Driving the Reference Inputs  
The eight independent VIN inputs of the SP9840, and  
the four–pair of inputs in theSP9843, exhibit a code–  
dependentinputresistance, asshowninthespecifica-  
tions, and as a typical graph. In general, these inputs  
should be driven by an amplifier capable of handling  
SDI  
X
CLK  
LOADH  
PRESETL  
LOGIC OPERATION  
L
L
L
H
H
No Change  
Data  
Shift In One Bit from SDI  
Shift Out 12–clock delayed data at SDO  
X
X
X
L
X
H
L
All DAC Registers Preset to 80H (Note 1)  
H
Load Serial Register Data into DAC(X) Register  
Note 1: "Preset" may not persist at all DACs if LOADH is high when PRESETL returns high.  
Table 2. Logic Control Input Truth Table.  
263  
the specified load resistance and capacitance. The  
reference inputs are useful for both AC and DC input  
sources. However, series resistance into these pins  
will degrade the linearity of the DAC — 50 Ohms of  
seriesresistancecancauseupto0.5LSBofadditional  
integrallinearitydegradationforcodesnearzero, due  
to the code–dependent input current dropping across  
thiserrorresistance.AC–coupledapplicationsshould  
use the largest capacitor value (lowest series imped-  
ance) which is practical, or use an external buffer to  
drive the inputs.  
Interfacing to the SP9840/SP9843  
A simple serial interface, similar to that used in a  
74HC594 shift–register with output latch, has been  
implemented in these products. A serial clock is used  
to strobe serial data into a 12–stage shift–register at  
eachrisingclockedge.Thefirstfourserialbitscontain  
theaddressoftheDACtobeupdated, MSBfirst. The  
next 8 bits contain the binary value to be loaded into  
thedesiredDAC,againMSBfirst.Afterthe12thserial  
bit is clocked in, the LOADH line can be strobed to  
latchthe8bitsofdataintothedataholdingregisterfor  
the desired DAC. The address bits feed a decoding  
network which steers the LOADH pulse to the clock  
input of the desired DAC data holding register. The  
output of the 12th shift–register is also buffered and  
brought out as the SERIAL DATA OUT (SDO),  
which can be used to cascade multiple devices, or for  
data verification purposes.  
TheDACswitchesfunctioninabreak–before–make  
manner in order to minimize current spikes at the  
reference inputs. The reference inputs can withstand  
drivingvoltagesslightlybeyondthepowerrailswith-  
out harm; the gain of ±1 at the op amps limits the  
choice of V /VREFL combinations if clipping is to be  
avoidedatvIeNryhighorverylowcodes.Notethatrail–  
to–rail inputs can always be attenuated by choosing a  
code nearer midscale, if clipping of the output is  
undesirable.  
The address field is set up such that DACA is ad-  
dressed at 0001 (binary) and the others consecutively  
through DACH at 1000(binary). Address 0000(bi-  
nary) will not affect the operation of any channel, as  
this combination is easily generated inadvertently at  
power–up. Other no–operation addresses exist at  
1001(binary) through 1111(binary). Another use for  
no–operation addresses is to mask off updates of any  
DAC channel in a multiple–part system with cas-  
caded serial inputs and outputs. By sending a valid  
address and data only to the desired channel, it is  
possible to simplify the system hardware by driving  
the LOADH pin at each part in parallel from a single  
source. Table 1 shows a register–level diagram of the  
addresses, data, and the resulting operation.  
Output Considerations  
Each DAC output amplifier can easily drive 1Kohm  
loads in parallel with 15pF at its rated slew rate. The  
uniqueBiCMOSamplifierdesignalsoensuresstabil-  
ity into heavily capacitive loads — up to 47,000pF.  
Undertheseconditions,theslewratewillbelimitedby  
the instantaneous current available for charging the  
capacitance—theslewratewillbeseverelydegraded,  
and some damped ringing will occur. Especially  
under heavy capacitive loading, a large, low imped-  
ancelocalbypasscapacitorwillberequired.A0.047µF  
ceramic in parallel with a low–ESR 2.2 to 10µF  
tantalum are recommended for worst–case loads.  
A fourth control pin, PRESETL, can be used to  
simultaneously preset all DAC data holding registers  
to their mid–scale (80H) values. This will asynchro-  
nouslyforceallDACoutputstobufferthevoltagesat  
theirrespectiveinputstotheiroutputswithunitygain.  
Thisfeatureisusefulatpower–up,asasimpleresistor  
to the supply and capacitor to ground can insure that  
all DAC outputs start at a known voltage. For four–  
channel multiplying applications, this sets the default  
start–upgaintozero;only70dBoffeedthroughfrom  
the VIN(X) inputs will be present at the outputs. Table  
2 summarizes the operation of the four digital inputs.  
The amplifier outputs can withstand momentary  
shorts to V or ground. Continuous short circuit  
operation cDaDn result in thermally induced damage,  
and should be avoided.  
If the input reference voltage is reduced to 0.6V, then  
both the amplifier and DAC are functional at room  
temperatureatsupplyvoltagesaslowas2.5V.AtVDD  
= 2.7V, power dissipation is 9.3mW typical, with the  
serialclockat4MHz,or7.0mWtypicalwiththeserial  
clock gated off.  
264  
The four digital control input pins have been  
designed to accept TTL (0.8V to 2.0V minimum)  
or full 5V CMOS input levels. The serial data  
output can drive either TTL or CMOS inputs.  
Timing information is shown in Figure 3. Serial  
data is fully clocked into the shift–register after 12  
clock rising edges, subject to the described setup  
and hold times. After the shift–register data is  
valid, the LOADH line can be pulsed high to load  
data into the desired DAC data register, which  
switchestheDACtothenewinputcode.Theserial  
clock input should not see a rising edge while the  
LOADH pulse is high in order to prevent shift–  
register data from corruption during data register  
loading.  
Theserialclockanddatainputpinsaredesignedtobe  
compatibleasslavesunderNationalSemiconductor's  
Microwire™ and MicrowirePlus™ protocols and  
under Motorola's SPI™ and QSPI™ protocols. In  
somemicro–controllers,theinterfaceiscompletedby  
programming a bit in a general–purpose I/O port as a  
level, used to strobe the LOADH line at the DACs.  
This is done in a manner similar to that used for  
generating a Chip Select signal, which is necessary  
when driving some other Microwire™ peripherals.  
tPR  
1
0
PRESET  
tS  
(FFH)  
V
±1 LSB  
ERROR BAND  
OUT (08H)  
1
0
SDI  
A
A
A
A
D
D
D
D
D
D
D
D
0
3
2
1
0
7
6
5
4
3
2
1
1
0
CLOCK  
LOAD  
1
0
FS  
VOUT  
0
SERIAL DATA INPUT TIMING DETAIL (PRESET = Logic "1"; VIN(X) = 1.5V; VREFL = 0V)  
AX or DX  
1
0
SERIAL  
DATA IN  
tDS  
tDH  
SERIAL  
DATA OUT  
1
0
tPD  
tCH  
1
0
CLOCK  
LOAD  
tCL  
tCLKD  
tLD  
tLDCK  
1
0
tS  
(FFH)  
V
±1 LSB  
ERROR BAND  
OUT (08H)  
CHARACTERISTICS  
(Typical @ 25°C with VDD = +5V unless otherwise noted.)  
PARAMETER  
Input Clock Pulse Width (tCH, tCL)  
MIN.  
50  
TYP.  
MAX.  
UNIT  
ns  
CONDITIONS  
Data Setup Time (tDS  
Data Hold Time (tDH  
CLK to SDO Propagation Delay (tPD  
DAC Register Load Pulse Width (tLD)  
Preset Pulse Width (tPR  
Clock Edge to Load Time (tCKLD  
)
30  
20  
ns  
ns  
ns  
ns  
ns  
ns  
)
)
100  
50  
50  
30  
)
)
Load Edge to Next Clock Edge (tLDCK)  
60  
ns  
Figure 3. Timing  
265  
ORDERING INFORMATION  
Model  
Reference Inputs  
Temperature Range  
Package  
SP9840KN ................................... Eight, independent ............................................... 0° to + 70°C ................................. 24–pin, 0.3" Plastic DIP  
SP9840BN ................................... Eight, independent ............................................... –40° to + 85°C ............................. 24–pin, 0.3" Plastic DIP  
SP9840KS ................................... Eight, independent ............................................... 0° to + 70°C ........................................... 24–pin, 0.3" SOIC  
SP9840BS ................................... Eight, independent ............................................... –40° to + 85°C ....................................... 24–pin, 0.3" SOIC  
SP9843KS ................................... Four pair ............................................................... 0° to + 70°C ........................................... 20–pin, 0.3" SOIC  
SP9843BS ................................... Four pair ............................................................... –40° to + 85°C ....................................... 20–pin, 0.3" SOIC  
266  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX