AM29LV320DT120EI [SPANSION]

Flash, 2MX16, 120ns, PDSO48, MO-142DD, TSOP-48;
AM29LV320DT120EI
型号: AM29LV320DT120EI
厂家: SPANSION    SPANSION
描述:

Flash, 2MX16, 120ns, PDSO48, MO-142DD, TSOP-48

光电二极管 内存集成电路 闪存
文件: 总57页 (文件大小:1070K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am29LV320D  
Data Sheet  
RETIRED  
PRODUCT  
This product has been retired and is not available for designs. For new and current designs,  
S29AL032D supersedes Am29LV320D and is the factory-recommended migration path. Please refer  
to the S29AL032D datasheet for specifications and ordering information. Availability of this docu-  
ment is retained for reference and historical purposes only.  
April 2005  
The following document specifies Spansion memory products that are now offered by both Advanced  
Micro Devices and Fujitsu. Although the document is marked with the name of the company that  
originally developed the specification, these products will be offered to customers of both AMD and  
Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal datasheet improvement and are noted in the  
document revision summary, where supported. Future routine revisions will occur when appro-  
priate, and changes will be noted in a revision summary.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion  
memory solutions.  
Publication Number 23579 Revision C Amendment 8 Issue Date December 14, 2005  
THIS PAGE LEFT INTENTIONALLY BLANK.  
Am29LV320D  
32 Megabit (4 M x 8-Bit/2 M x 16-Bit)  
CMOS 3.0 Volt-only, Boot Sector Flash Memory  
This product has been retired and is not available for designs. For new and current designs, S29AL032D supersedes Am29LV320D and is the factory-recommended migration path. Please  
refer to the S29AL032D datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.  
DISTINCTIVE CHARACTERISTICS  
ARCHITECTURAL ADVANTAGES  
„
„
Minimum 1 million erase cycles guaranteed per  
sector  
„
Secured Silicon  
20 Year data retention at 125°C  
— 64 Kbyte Sector Size; Replacement/substitute  
— Reliable operation for the life of the system  
devices (such as Mirrorbit) have 256 bytes.  
Factory locked and identifiable: 16 bytes (8 words)  
available for secure, random factory Electronic Serial  
Number; verifiable as factory locked through  
SOFTWARE FEATURES  
„
„
Supports Common Flash Memory Interface (CFI)  
Erase Suspend/Erase Resume  
autoselect function. ExpressFlash option allows  
entire sector to be available for factory-secured data  
— Suspends erase operations to allow programming in  
non-suspended sectors  
Customer lockable: Can be programmed once and  
then permanently locked after being shipped from  
AMD  
„
„
Data# Polling and Toggle Bits  
— Provides a software method of detecting the status of  
program or erase cycles  
„
Zero Power Operation  
Unlock Bypass Program command  
— Sophisticated power management circuits reduce  
power consumed during inactive periods to nearly  
zero.  
— Reduces overall programming time when issuing  
multiple program command sequences  
„
„
Package options  
— 48-pin TSOP  
— 48-ball FBGA  
HARDWARE FEATURES  
„
„
Any combination of sectors can be erased  
Ready/Busy# output (RY/BY#)  
Sector Architecture  
— Hardware method for detecting program or erase  
cycle completion  
— Eight 8 Kbyte sectors  
— Sixty-three 64 Kbyte sectors  
Top or bottom boot block  
„
„
Hardware reset pin (RESET#)  
„
„
„
— Hardware method of resetting the internal state  
machine to the read mode  
Manufactured on 0.23 µm process technology  
Compatible with JEDEC standards  
WP#/ACC input pin  
— Pinout and software compatible with  
single-power-supply flash standard  
— Write protect (WP#) function allows protection of two  
outermost boot sectors, regardless of sector protect  
status  
PERFORMANCE CHARACTERISTICS  
— Acceleration (ACC) function provides accelerated  
program times  
„
High performance  
— Access time as fast 90 ns  
„
Sector protection  
— Program time: 7µs/word typical utilizing Accelerate  
function  
— Hardware method of locking a sector, either  
in-system or using programming equipment, to  
prevent any program or erase operation within that  
sector  
„
Ultra low power consumption (typical values)  
— 2 mA active read current at 1 MHz  
Temporary Sector Unprotect allows changing data in  
protected sectors in-system  
— 10 mA active read current at 5 MHz  
— 200 nA in standby or automatic sleep mode  
Publication# 23579  
Issue Date: December 14, 2005  
Rev: C Amendment/8  
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data  
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.  
Refer to AMD’s Website (www.amd.com) for the latest information.  
D A T A S H E E T  
GENERAL DESCRIPTION  
The Am29LV320D is a 32 megabit, 3.0 volt-only flash  
memory device, organized as 2,097,152 words of 16  
bits each or 4,194,304 bytes of 8 bits each. Word  
mode data appears on DQ0–DQ15; byte mode data  
appears on DQ0–DQ7. The device is designed to be  
programmed in-system with the standard 3.0 volt VCC  
supply, and can also be programmed in standard  
EPROM programmers.  
or both. Customer Lockable parts may utilize the Se-  
cured Silicon sector as bonus space, reading and writ-  
ing like any other flash sector, or may permanently  
lock their own code there.  
The device offers complete compatibility with the  
JEDEC single-power-supply Flash command set  
standard. Commands are written to the command  
register using standard microprocessor write timings.  
Reading data out of the device is similar to reading  
from other Flash or EPROM devices.  
The device is available with an access time of 90 or  
120 ns. The devices are offered in 48-pin TSOP and  
48-ball FBGA packages. Standard control pins—chip  
enable (CE#), write enable (WE#), and output enable  
(OE#)—control normal read and write operations, and  
avoid bus contention issues.  
The host system can detect whether a program or  
erase operation is complete by using the device sta-  
tus bits: RY/BY# pin, DQ7 (Data# Polling) and  
DQ6/DQ2 (toggle bits). After a program or erase cycle  
is completed, the device automatically returns to the  
read mode.  
The device requires only a single 3.0 volt power sup-  
ply for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the  
program and erase operations.  
The sector erase architecture allows memory sec-  
tors to be erased and reprogrammed without affecting  
the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Am29LV320D Features  
The Secured Silicon sector is an extra sector capa-  
ble of being permanently locked by AMD or custom-  
ers. The Secured Silicon Indicator Bit (DQ7) is  
permanently set to a 1 if the part is factory locked,  
and set to a 0 if customer lockable. This way, cus-  
tomer lockable parts can never be used to replace a  
factory locked part. Note that the Am29LV320D has  
a Secured Silicon sector size of 64 Kbytes. AMD  
devices designated as replacements or substi-  
tutes, such as the Am29LV320M, have 256 bytes.  
This should be considered during system design.  
Hardware data protection measures include a low  
VCC detector that automatically inhibits write opera-  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of mem-  
ory. This can be achieved in-system or via program-  
ming equipment.  
The device offers two power-saving features. When  
addresses are stable for a specified amount of time,  
the device enters the automatic sleep mode. The  
system can also place the device into the standby  
mode. Power consumption is greatly reduced in both  
modes.  
Factory locked parts provide several options. The Se-  
cured Silicon sector may store a secure, random 16  
byte ESN (Electronic Serial Number), customer code  
(programmed through AMD’s ExpressFlash service),  
2
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
TABLE OF CONTENTS  
Continuity of Specifications ....................................................... i  
For More Information ................................................................. i  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . 1  
ARCHITECTURAL ADVANTAGES ...................................... 1  
PERFORMANCE CHARACTERISTICS ............................... 1  
SOFTWARE FEATURES ..................................................... 1  
HARDWARE FEATURES .................................................... 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . 2  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . 6  
Special Package Handling Instructions .................................... 7  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 9  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . 10  
Table 1. Am29LV320D Device Bus Operations ..............................10  
Word/Byte Configuration ........................................................ 11  
Requirements for Reading Array Data ................................... 11  
Writing Commands/Command Sequences ............................ 11  
Accelerated Program Operation .......................................... 11  
Autoselect Functions ........................................................... 11  
Standby Mode ........................................................................ 12  
Automatic Sleep Mode ........................................................... 12  
RESET#: Hardware Reset Pin ............................................... 12  
Output Disable Mode .............................................................. 12  
Table 2. Top Boot Sector Addresses (Am29LV320DT) ..................13  
Table 3. Top Boot Secured Silicon Sector Addresses ................... 14  
Table 4. Bottom Boot Sector Addresses (Am29LV320DB) .............14  
Table 5. Bottom Boot Secured Silicon Sector Addresses.............. 15  
Autoselect Mode ..................................................................... 16  
Table 6. Autoselect Codes (High Voltage Method) ........................16  
Sector/Sector Block Protection and Unprotection .................. 17  
Table 7. Top Boot Sector/Sector Block Addresses  
Reset Command ..................................................................... 25  
Autoselect Command Sequence ............................................ 25  
Table 13. Autoselect Codes ........................................................... 25  
Enter Secured Silicon Sector/Exit Secured Silicon Sector  
Command Sequence ..............................................................25  
Byte/Word Program Command Sequence ............................. 26  
Unlock Bypass Command Sequence .................................. 26  
Figure 4. Program Operation ......................................................... 27  
Chip Erase Command Sequence ........................................... 27  
Sector Erase Command Sequence ........................................ 27  
Erase Suspend/Erase Resume Commands ...........................28  
Figure 5. Erase Operation.............................................................. 28  
Command Definitions ............................................................. 29  
Table 14. Am29LV320D Command Definitions ............................. 29  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 30  
DQ7: Data# Polling ................................................................. 30  
Figure 6. Data# Polling Algorithm .................................................. 30  
RY/BY#: Ready/Busy# ............................................................ 31  
DQ6: Toggle Bit I .................................................................... 31  
Figure 7. Toggle Bit Algorithm........................................................ 31  
DQ2: Toggle Bit II ................................................................... 31  
Reading Toggle Bits DQ6/DQ2 ............................................... 32  
DQ5: Exceeded Timing Limits ................................................ 32  
DQ3: Sector Erase Timer ....................................................... 32  
Table 15. Write Operation Status ................................................... 33  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 34  
Figure 8. Maximum Negative Overshoot Waveform ...................... 34  
Figure 9. Maximum Positive Overshoot Waveform........................ 34  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . 34  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 35  
CMOS Compatible .................................................................. 35  
Zero-Power Flash ................................................................. 36  
Figure 10. ICC1 Current vs. Time (Showing Active and  
Automatic Sleep Currents)............................................................. 36  
Figure 11. Typical ICC1 vs. Frequency............................................ 36  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 12. Test Setup.................................................................... 37  
Table 16. Test Specifications ......................................................... 37  
Figure 13. Input Waveforms and Measurement Levels ................. 37  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 38  
Read-Only Operations ........................................................... 38  
Figure 14. Read Operation Timings............................................... 38  
Hardware Reset (RESET#) .................................................... 39  
Figure 15. Reset Timings............................................................... 39  
Word/Byte Configuration (BYTE#) ............................................. 40  
Figure 16. BYTE# Timings for Read Operations............................ 40  
Figure 17. BYTE# Timings for Write Operations............................ 40  
Erase and Program Operations ................................................. 41  
Figure 18. Program Operation Timings.......................................... 42  
Figure 19. Chip/Sector Erase Operation Timings .......................... 43  
Figure 20. Data# Polling Timings (During Embedded Algorithms). 44  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)...... 45  
Figure 22. DQ2 vs. DQ6................................................................. 45  
Temporary Sector Unprotect ..................................................... 46  
Figure 23. Temporary Sector Unprotect Timing Diagram .............. 46  
Figure 24. Accelerated Program Timing Diagram.......................... 46  
Figure 25. Sector/Sector Block Protect and  
for Protection/Unprotection .............................................................17  
Table 8. Bottom Boot Sector/Sector Block  
Addresses for Protection/Unprotection ...........................................17  
Write Protect (WP#) ................................................................ 18  
Temporary Sector Unprotect .................................................. 18  
Figure 1. Temporary Sector Unprotect Operation........................... 18  
Figure 2. In-System Sector Protect/Unprotect Algorithms .............. 19  
Secured Silicon Sector Flash Memory Region ....................... 20  
Factory Locked: Secured Silicon Sector Programmed  
and Protected at the Factory ............................................... 20  
Customer Lockable: Secured Silicon Sector NOT Programmed  
or Protected at the Factory .................................................. 20  
Figure 3. Secured Silicon Sector Protect Verify.............................. 21  
Hardware Data Protection ...................................................... 21  
Low VCC Write Inhibit ......................................................... 21  
Write Pulse “Glitch” Protection ............................................ 21  
Logical Inhibit ...................................................................... 21  
Power-Up Write Inhibit ......................................................... 21  
Common Flash Memory Interface (CFI) . . . . . . .21  
Table 9. CFI Query Identification String.......................................... 22  
Table 10. System Interface String................................................... 22  
Table 11. Device Geometry Definition ............................................ 23  
Table 12. Primary Vendor-Specific Extended Query ...................... 24  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 25  
Reading Array Data ................................................................ 25  
Unprotect Timing Diagram ............................................................. 47  
Alternate CE# Controlled Erase and Program Operations ........ 48  
Figure 26. Alternate CE# Controlled Write  
December 14, 2005  
Am29LV320D  
3
D A T A S H E E T  
(Erase/Program) Operation Timings ............................................... 49  
Ordering Information ............................................................ 53  
Secured Silicon Flash Memory Region ............................... 53  
Command Definitions .......................................................... 53  
AC Characteristics ............................................................... 53  
DC Characteristics ............................................................... 53  
TSOP, SO, and BGA Package Capacitance ....................... 53  
Distinctive Characteristics ................................................... 53  
Secured Silicon Flash Memory Region ............................... 53  
Command Definitions .......................................................... 54  
Erase and Programming Performance ................................ 54  
Distinctive Characteristics ................................................... 54  
Secured Silicon Sector ........................................................ 54  
Valid Combinations ..............................................................54  
Command Definitions .......................................................... 54  
Ordering Information ............................................................ 54  
Product Selector Guide ....................................................... 54  
Global .................................................................................. 54  
Ordering Information ............................................................ 54  
Erase and Programming Performance ................................ 54  
AC Characteristics ............................................................... 54  
Erase and Program Operations ........................................... 54  
Alternate CE# Control Erase and Program Operations ....... 54  
Command Definitions .......................................................... 54  
Global .................................................................................. 54  
Common Flash Memory Interfacte (CFI) ............................. 54  
Global .................................................................................. 54  
Erase And Programming Performance . . . . . . . . 50  
Latchup Characteristics . . . . . . . . . . . . . . . . . . . 50  
TSOP and BGA Package Capacitance . . . . . . . 50  
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 51  
FBD048—48-ball Fine-Pitch Ball Grid Array (FBGA)  
6 x 12 mm package ................................................................... 51  
TS 048—48-Pin Standard TSOP ............................................... 52  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 53  
Ordering Information ............................................................ 53  
Connection Diagrams .......................................................... 53  
Global .................................................................................. 53  
Table 3, Top Boot Secured Silicon Sector Addresses ......... 53  
Sector/Sector Block Protection and Unprotection ............... 53  
Secured Silicon Sector Flash Memory Region .................... 53  
Global .................................................................................. 53  
Ordering Information ............................................................ 53  
Table 1, Am29LV320D Device Bus Operations ................... 53  
Secured Silicon Sector Flash Memory Region .................... 53  
Autoselect Command Sequence ......................................... 53  
Table 14, Am29LV320D Command Definitions ................... 53  
Erase and Program Operations table .................................. 53  
Figure 3, Secured Silicon Sector Protect Verify ................... 53  
Distinctive Characteristics ................................................... 53  
Connection Diagrams .......................................................... 53  
4
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
PRODUCT SELECTOR GUIDE  
Family Part Number  
Am29LV320D  
Standard Voltage Range: VCC = 2.7–3.6 V  
90R Standard Voltage Range: VCC = 3.0–3.6 V  
Speed Option  
90  
120  
120  
120  
50  
Max Access Time (ns)  
CE# Access (ns)  
90  
90  
40  
OE# Access (ns)  
BLOCK DIAGRAM  
DQ0DQ15 (A-1)  
RY/BY#  
VCC  
Sector Switches  
VSS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
State  
Control  
WE#  
BYTE#  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
A0–A20  
December 14, 2005  
Am29LV320D  
5
D A T A S H E E T  
CONNECTION DIAGRAMS  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
VSS  
CE#  
A0  
48-Pin Standard TSOP  
A19  
A20  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE#  
RESET#  
NC  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
6
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
CONNECTION DIAGRAMS  
48-Ball FBGA  
Top View, Balls Facing Down  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
VSS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
VCC  
WE# RESET#  
NC  
A19  
DQ5  
DQ12  
DQ4  
A3 B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
VSS  
CE#  
OE#  
Special Package Handling Instructions  
Special handling is required for Flash Memory prod-  
ucts in molded (TSOP, BGA) packages.  
The package and/or data integrity may be compro-  
mised if the package body is exposed to temperatures  
above 150°C for prolonged periods of time.  
December 14, 2005  
Am29LV320D  
7
D A T A S H E E T  
PIN DESCRIPTION  
LOGIC SYMBOL  
A0–A20  
= 21 Addresses  
21  
DQ0–DQ14 = 15 Data Inputs/Outputs  
A0–A20  
16 or 8  
DQ15/A-1  
= DQ15 (Data Input/Output, word  
mode), A-1 (LSB Address Input, byte  
mode)  
DQ0–DQ15  
(A-1)  
CE#  
OE#  
CE#  
OE#  
WE#  
= Chip Enable  
= Output Enable  
= Write Enable  
WE#  
WP#/ACC  
RESET#  
BYTE#  
WP#/ACC = Hardware Write Protect/  
Acceleration Pin  
RY/BY#  
RESET#  
BYTE#  
RY/BY#  
VCC  
= Hardware Reset Pin, Active Low  
= Selects 8-bit or 16-bit mode  
= Ready/Busy Output  
= 3.0 volt-only single power supply  
(see Product Selector Guide for speed  
options and voltage supply tolerances)  
VSS  
NC  
= Device Ground  
= Pin Not Connected Internally  
8
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid  
Combination) is formed by a combination of the following:  
Am29LV320D  
T
90  
E
C
TEMPERATURE RANGE  
I
=
=
=
=
=
=
Industrial (–40°C to +85°C)  
Industrial (–40°C to +85°C) with Pb-free package  
Commercial (0°C to +70°C)  
Commercial (0°C to +70°C) with Pb-free package  
Automotive In-Cabin (-40°C to +105°C)  
Automotive In-Cabin (-40°C to +105°C) with Pb-free package  
F
C
D
V
Y
PACKAGE TYPE  
E
=
48-Pin Thin Small Outline Package (TSOP)  
Standard Pinout (TS 048)  
WM  
=
48-ball Fine-Pitch Ball Grid Array (FBGA)  
0.80 mm pitch, 6 x 12 mm package (FBD048)  
SPEED OPTION  
See Product Selector Guide and Valid Combinations  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top boot sector  
Bottom boot sector  
DEVICE NUMBER/DESCRIPTION  
Am29LV320D  
32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS Boot Sector Flash Memory  
3.0 Volt-only Read, Program and Erase  
Valid Combinations for TSOP  
Packages  
Speed  
(Ns)  
VCC  
Range  
Valid Combinations for FBGA Packages  
Order Number Package Marking  
AM29LV320DT90,  
AM29LV320DT90R,  
AM29LV320DB90R  
L320DT90V,  
L320DB90V  
WMC,  
WMI,  
WMD,  
WMF  
90  
90  
3.0– 3.6V  
2.7– 3.6V  
2.7– 3.6V  
2.7 – 3,6V  
AM29LV320DB90  
C, I,  
D, F  
Am29LV320DT90,  
Am29LV320DB90  
EC, EI,  
ED, EF  
AM29LV320DT120,  
AM29LV320DB120  
L320DT12V,  
L320DB12V  
AM29LV320DT120,  
AM29LV320DB120  
Am29LV320DT120  
Am29LV320DB120  
L320DT12V  
L320DB12V  
120  
120  
WNV  
V, Y  
Am29LV320DT120  
Am29LV320DB120  
EV, EY  
Valid Combinations  
Valid Combinations list configurations planned to be sup-  
ported in volume for this device. Consult the local AMD sales  
office to confirm availability of specific valid combinations and  
to check on newly released combinations.  
December 14, 2005  
Am29LV320D  
9
D A T A S H E E T  
DEVICE BUS OPERATIONS  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the in-  
puts and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
Table 1. Am29LV320D Device Bus Operations  
DQ8–DQ15  
BYTE#  
Addresses  
(Note 2)  
DQ0–  
DQ7  
BYTE#  
= VIH  
Operation  
CE# OE# WE# RESET# WP#/ACC  
= VIL  
Read  
Write  
L
L
L
H
H
H
L
L
H
H
L/H  
(Note 3)  
VHH  
AIN  
AIN  
AIN  
DOUT  
DOUT  
DQ8–DQ14  
= High-Z,  
DQ15 = A-1  
(Note 4) (Note 4)  
(Note 4) (Note 4)  
Accelerated Program  
Standby  
L
H
VCC  
0.3 V  
±
VCC ±  
0.3 V  
X
X
H
X
High-Z High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
SA, A6 = L,  
A1 = H, A0 = L  
Sector Protect (Note 2)  
L
L
H
H
X
L
L
VID  
VID  
VID  
L/H  
(Note 4)  
(Note 4)  
X
X
X
X
Sector Unprotect  
(Note 2)  
SA, A6 = H,  
A1 = H, A0 = L  
(Note 3)  
(Note 3)  
Temporary Sector  
Unprotect  
X
X
AIN  
(Note 4) (Note 4)  
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 11.5–12.5 V, X = Don’t Care, SA = Sector Address,  
AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Addresses are A20:A0 in word mode (BYTE# = VIH), A20:A-1 in byte mode (BYTE# = VIL).  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See “Sector/Sector  
Block Protection and Unprotection” on page 17.  
3. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector protection  
depends on whether they were last protected or unprotected using the method described in “Sector/Sector Block Protection and  
Unprotection” on page 17. If WP#/ACC = VHH, all sectors are unprotected.  
4. DIN or DOUT as required by command sequence, data polling, or sector protection algorithm.  
10  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Unlock Bypass mode, only two write cycles are re-  
Word/Byte Configuration  
quired to program a word or byte, instead of four. The  
“Word/Byte Configuration” on page 11 section con-  
tains details on programming data to the device using  
both standard and Unlock Bypass command se-  
quences.  
The BYTE# pin controls whether the device data I/O  
pins operate in the byte or word configuration. If the  
BYTE# pin is set at logic ‘1’, the device is in word con-  
figuration, DQ0–DQ15 are active and controlled by  
CE# and OE#.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Table 2 on page 13 through  
Table 5 on page 15 indicate the address space that  
each sector occupies. A “sector address” is the ad-  
dress bits required to uniquely select a sector.  
If the BYTE# pin is set at logic ‘0’, the device is in byte  
configuration, and only data I/O pins DQ0–DQ7 are  
active and controlled by CE# and OE#. The data I/O  
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is  
used as an input for the LSB (A-1) address function.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The “AC  
Characteristics” on page 38 section contains timing  
specification tables and timing diagrams for write oper-  
ations.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output con-  
trol and gates array data to the output pins. WE#  
should remain at VIH. The BYTE# pin determines  
whether the device outputs array data in words or  
bytes.  
Accelerated Program Operation  
The device offers accelerated program operations  
through the ACC function. This is one of two functions  
provided by the WP#/ACC pin. This function is prima-  
rily intended to allow faster manufacturing throughput  
at the factory.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid  
data on the device data outputs. The device remains  
enabled for read access until the command register  
contents are altered.  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
mal operation. Note that the WP#/ACC pin must not be  
at VHH for operations other than accelerated program-  
ming, or device damage may result. In addition, the  
WP#/ACC pin must not be left floating or unconnected;  
inconsistent behavior of the device may result.  
See “Requirements for Reading Array Data” on  
page 11 for more information. Refer to the AC  
Read-Only Operations table for timing specifications  
and to Figure 14, on page 38 for the timing diagram.  
ICC1 in the DC Characteristics table represents the ac-  
tive current specification for reading array data.  
Autoselect Functions  
Writing Commands/Command Sequences  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ7–DQ0. Standard read cycle timings apply in  
this mode. Refer to the “Autoselect Mode” on page 16  
and “Autoselect Command Sequence” on page 25  
sections for more information.  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
For program operations, the BYTE# pin determines  
whether the device accepts program data in bytes or  
words. Refer to “Word/Byte Configuration” on page 11  
for more information.  
ICC6 and ICC7 in the DC Characteristics table represent  
the current specifications for read-while-program and  
read-while-erase, respectively.  
The device features an Unlock Bypass mode to facili-  
tate faster programming. Once the device enters the  
December 14, 2005  
Am29LV320D  
11  
D A T A S H E E T  
SET# pin is driven low for at least a period of tRP, the  
Standby Mode  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is  
ready to accept another command sequence, to en-  
sure data integrity.  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
The device enters the CMOS standby mode when the  
CE# and RESET# pins are both held at VCC 0.3 V.  
(Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within  
VCC 0.3 V, the device is in the standby mode, but the  
standby current is greater. The device requires stan-  
dard access time (tCE) for read access when the de-  
vice is in either of these standby modes, before it is  
ready to read data.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS 0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS 0.3 V, the standby current is  
greater.  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a  
time of tREADY (during Embedded Algorithms). The sys-  
tem can thus monitor RY/BY# to determine whether  
the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing  
(RY/BY# pin is “1”), the reset operation is completed  
within a time of tREADY (not during Embedded Algo-  
rithms). The system can read data tRH after the RE-  
SET# pin returns to VIH.  
ICC3 in the DC Characteristics table represents the  
standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of  
the CE#, WE#, and OE# control signals. Standard ad-  
dress access timings provide new data when ad-  
dresses are changed. While in sleep mode, output  
data is latched and always available to the system.  
ICC4 in the “DC Characteristics” on page 35 table rep-  
resents the automatic sleep mode current specifica-  
tion.  
Refer to the AC Characteristics tables for RESET# pa-  
rameters and to Figure 15, on page 39 for the timing  
diagram.  
Output Disable Mode  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
When the OE# input is at VIH, output from the device is  
disabled. The output pins are placed in the high  
impedance state.  
12  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Table 2. Top Boot Sector Addresses (Am29LV320DT) (Sheet 1 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
SA0  
Address Range  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
000000h–07FFFh  
008000h–0FFFFh  
010000h–17FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
December 14, 2005  
Am29LV320D  
13  
D A T A S H E E T  
Table 2. Top Boot Sector Addresses (Am29LV320DT) (Sheet 2 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Address Range  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3F1FFFh  
3F2000h–3F3FFFh  
3F4000h–3F5FFFh  
3F6000h–3F7FFFh  
3F8000h–3F9FFFh  
3FA000h–3FBFFFh  
3FC000h–3FDFFFh  
3FE000h–3FFFFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH).  
Table 3. Top Boot Secured Silicon Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Address Range  
111111xxx  
64/32  
3F0000h–3FFFFFh  
1F8000h–1FFFFFh  
Table 4. Bottom Boot Sector Addresses (Am29LV320DB) (Sheet 1 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
SA0  
Address Range  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
8/4  
000000h-001FFFh  
002000h-003FFFh  
004000h-005FFFh  
006000h-007FFFh  
008000h-009FFFh  
00A000h-00BFFFh  
00C000h-00DFFFh  
00E000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
SA1  
8/4  
SA2  
8/4  
SA3  
8/4  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
14  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Table 4. Bottom Boot Sector Addresses (Am29LV320DB) (Sheet 2 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Address Range  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
111000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH).  
Table 5. Bottom Boot Secured Silicon Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Address Range  
000000xxx  
64/32  
000000h-00FFFFh  
00000h-07FFFh  
December 14, 2005  
Am29LV320D  
15  
D A T A S H E E T  
protection, the sector address must appear on the ap-  
Autoselect Mode  
propriate highest order address bits (see Table 2 on  
page 13 through Table 5 on page 15). Table 6 on  
page 16 shows the remaining address bits that are  
don’t care. When all necessary bits are set as re-  
quired, the programming equipment may then read the  
corresponding identifier code on DQ7–DQ0.  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equip-  
ment to automatically match a device to be pro-  
grammed with its corresponding programming  
algorithm. However, the autoselect codes can also be  
accessed in-system through the command register.  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Table 14 on page 29.  
This method does not require VID. Refer to the “Au-  
toselect Command Sequence” on page 25 section for  
more information.  
When using programming equipment, the autoselect  
mode requires VID (11.5 V to 12.5 V) on address pin  
A9. Address pins A6, A1, and A0 must be as shown in  
Table 6 on page 16. In addition, when verifying sector  
Table 6. Autoselect Codes (High Voltage Method)  
DQ8 to DQ15  
A20  
to  
A11  
to  
A8  
to  
A5  
to  
DQ7  
to  
BYTE#= BYTE#  
Description  
Manufacturer ID: AMD  
Device ID: Am29LV320D  
CE# OE#  
WE#  
H
A12  
A10  
A9  
A7  
A6  
L
A2  
A1  
L
A0  
L
VIH  
= VIL  
DQ0  
VID  
L
L
L
L
X
X
X
X
X
X
X
X
X
X
01h  
VID  
VID  
H
L
L
H
22h  
X
F6 (T), F9h (B)  
01h (protected),  
00h (unprotected)  
Sector Protection Verification  
L
L
L
L
H
H
SA  
X
X
X
X
X
L
L
X
X
H
H
L
X
X
X
X
Secured Silicon Sector  
Indicator Bit (DQ7)  
99h (factory locked),  
19h (not factory locked)  
VID  
H
Legend: T = Top Boot Block, B = Bottom Boot Block, L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t  
care.  
16  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Sector/Sector Block Protection and  
Unprotection  
Sector / Sector  
Block  
A20–A12  
Sector/Sector Block Size  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
SA62-SA59  
SA58-SA55  
SA54-SA51  
SA50-SA47  
SA46-SA43  
SA42-SA39  
SA38-SA35  
SA34-SA31  
SA30-SA27  
SA26-SA23  
SA22–SA19  
SA18-SA15  
SA14-SA11  
1101XXXXX  
1100XXXXX  
1011XXXXX  
1010XXXXX  
1001XXXXX  
1000XXXXX  
0111XXXXX  
0110XXXXX  
0101XXXXX  
0100XXXXX  
0011XXXXX  
0010XXXXX  
0001XXXXX  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both pro-  
gram and erase operations in previously protected  
sectors. Sector protection/unprotection can be imple-  
mented via two methods.  
(Note: For the following discussion, the term “sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see  
Table 7 on page 17 and Table 8 on page 17).  
Table 7. Top Boot Sector/Sector Block Addresses  
for Protection/Unprotection  
000011XXX,  
000010XXX,  
000001XXX  
SA10-SA8  
192 (3x64) Kbytes  
Sector / Sector  
Block  
A20–A12  
Sector/Sector Block Size  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
000000111  
000000110  
000000101  
000000100  
000000011  
000000010  
000000001  
000000000  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
000000XXX,  
000001XXX,  
000010XXX  
000011XXX  
SA0-SA3  
256 (4x64) Kbytes  
SA4-SA7  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
SA8-SA11  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56-SA59  
Sector Protection and unprotection requires VID on the  
RESET# pin only, and can be implemented either  
in-system or via programming equipment. Figure 2, on  
page 19 shows the algorithms and Figure 25, on page  
47 shows the timing diagram. This method uses stan-  
dard microprocessor bus cycle timing. For sector un-  
protect, all unprotected sectors must first be protected  
prior to the first sector unprotect write cycle.  
The sector unprotect algorithm unprotects all sectors  
in parallel. All previously protected sectors must be in-  
dividually re-protected. To change data in protected  
sectors efficiently, the temporary sector unprotect  
function is available. See Temporary Sector Unpro-  
tect” on page 18.  
111100XXX,  
111101XXX,  
111110XXX  
SA60-SA62  
192 (3x64) Kbytes  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
The alternate method intended only for programming  
equipment, and requires VID on address pin A9 and  
OE#. This method is compatible with programmer rou-  
tines written for earlier 3.0 volt-only AMD flash de-  
vices. For detailed information, contact an AMD  
representative.  
Table 8. Bottom Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at its factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
Sector / Sector  
Block  
A20–A12  
Sector/Sector Block Size  
256 (4x64) Kbytes  
111111XXX,  
111110XXX,  
111101XXX,  
111100XXX  
SA70-SA67  
SA66-SA63  
It is possible to determine whether a sector is pro-  
tected or unprotected. See “Autoselect Mode” on  
page 16 for details.  
1110XXXXX  
256 (4x64) Kbytes  
December 14, 2005  
Am29LV320D  
17  
D A T A S H E E T  
erased by selecting the sector addresses. Once VID is  
Write Protect (WP#)  
removed from the RESET# pin, all the previously pro-  
tected sectors are protected again. Figure 1, on page  
18 shows the algorithm, and Figure 23, on page 46  
shows the timing diagrams, for this feature.  
The Write Protect function provides a hardware  
method of protecting certain boot sectors without  
using VID. This function is one of two provided by the  
WP#/ACC pin.  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in the two  
“outermost” 8 Kbyte boot sectors independently of  
whether those sectors were protected or unprotected  
using the method described in “Sector/Sector Block  
Protection and Unprotection” on page 17. The two out-  
ermost 8 Kbyte boot sectors are the two sectors con-  
START  
RESET# = VID  
(Note 1)  
taining  
the  
lowest  
addresses  
in  
a
bottom-boot-configured device, or the two sectors con-  
taining the highest addresses in a top-boot-configured  
device.  
Perform Erase or  
Program Operations  
If the system asserts VIH on the WP#/ACC pin, the de-  
vice reverts to whether the two outermost 8K Byte  
boot sectors were last set to be protected or unpro-  
tected. That is, sector protection or unprotection for  
these two sectors depends on whether they were last  
protected or unprotected using the method described  
in “Sector/Sector Block Protection and Unprotection”  
on page 17.  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Note that the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may  
result.  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL,  
outermost boot sectors remain protected).  
Temporary Sector Unprotect  
2. All previously protected sectors are protected once  
again.  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID (11.5 V – 12.5 V). During this mode,  
formerly protected sectors can be programmed or  
Figure 1. Temporary Sector Unprotect Operation  
18  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 1 μs  
Wait 1 μs  
unprotect address  
No  
First Write  
Cycle = 60h?  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 2. In-System Sector Protect/Unprotect Algorithms  
December 14, 2005  
Am29LV320D  
19  
D A T A S H E E T  
In devices that have an ESN, a Bottom Boot device  
Secured Silicon Sector Flash Memory  
Region  
has the 16-byte (8-word) ESN in sector 0 at addresses  
00000h–0000Fh in byte mode (or 00000h–00007h in  
word mode). In the Top Boot device the ESN is in sec-  
tor 63 at addresses 3F0000h–3F000Fh in byte mode  
(or 1F8000h–1F8007h in word mode). Note that in up-  
coming top boot versions of this device, the ESN is lo-  
cated in sector 70 at addresses 3FE000h–3FE00Fh in  
byte mode (or 1FF000h–1FF007h in word mode).  
The Secured Silicon sector provides a Flash memory  
region that enables permanent part identification  
through an Electronic Serial Number (ESN). The Se-  
cured Silicon sector uses a Secured Silicon Indicator  
Bit (DQ7) to indicate whether or not the Secured Sili-  
con sector is locked when shipped from the factory.  
This bit is permanently set at the factory and cannot  
be changed, which prevents cloning of a factory locked  
part. This ensures the security of the ESN once the  
product is shipped to the field. Note that the  
Am29LV320D has a Secured Silicon sector size of  
64 Kbytes. AMD devices designated as replace-  
ments or substitutes, such as the Am29LV320M,  
have 256 bytes. This should be considered during  
system design.  
Customers may opt to have their code programmed by  
AMD through the AMD ExpressFlash service. AMD  
programs the customer’s code, with or without the ran-  
dom ESN. The devices are then shipped from AMD’s  
factory with the Secured Silicon Sector permanently  
locked. Contact an AMD representative for details on  
using AMD’s ExpressFlash service.  
Customer Lockable: Secured Silicon Sector NOT  
Programmed or Protected at the Factory  
AMD offers the device with the Secured Silicon sector  
either factory locked or customer lockable. The fac-  
tory-locked version is always protected when shipped  
from the factory, and has the Secured Silicon sector  
Indicator Bit permanently set to a “1.The cus-  
tomer-lockable version is shipped with the Secured  
Silicon sector unprotected, allowing customers to uti-  
lize the that sector in any manner they choose. The  
customer-lockable version has the Secured Silicon In-  
dicator Bit permanently set to a “0.Thus, the Secured  
Silicon Indicator Bit prevents customer-lockable de-  
vices from being used to replace devices that are fac-  
tory locked.  
The customer lockable version allows the Secured Sil-  
icon Sector to be programmed once and then perma-  
nently locked after it ships from AMD. Note that the  
Am29LV320D has a Secured Silicon Sector size of  
64 Kbytes. AMD devices designated as replace-  
ments or substitutes, such as the Am29LV320M,  
have 256 bytes. This should be considered during  
system design. Additionally, note the change in  
the location of the ESN in upcoming top boot fac-  
tory locked devices. Note that the accelerated pro-  
gramming (ACC) and unlock bypass functions are not  
available when programming the Secured Silicon Sec-  
tor.  
The system accesses the Secured Silicon sector  
through a command sequence (see “Enter Secured  
Silicon Sector/Exit Secured Silicon Sector  
Command Sequence” on page 25). After the system  
writes the Enter Secured Silicon sector command se-  
quence, it may read the Secured Silicon Sector by  
using the addresses normally occupied by the boot  
sectors. This mode of operation continues until the  
system issues the Exit Secured Silicon Sector com-  
mand sequence, or until power is removed from the  
device. On power-up, or following a hardware reset,  
the device reverts to sending commands to the boot  
sectors.  
The Secured Silicon Sector area can be protected  
using the following procedures:  
Write the three-cycle Enter Secured Silicon Sector  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 2, on  
page 19, except that RESET# may be at either VIH  
or VID. This allows in-system protection of the Se-  
cured Silicon Sector without raising any device pin  
to a high voltage. Note that this method is only ap-  
plicable to the Secured Silicon Sector.  
To verify the protect/unprotect status of the Secured  
Silicon Sector, follow the algorithm shown in Figure  
3, on page 21.  
Factory Locked: Secured Silicon Sector  
Programmed and Protected at the Factory  
Once the Secured Silicon Sector is locked and veri-  
fied, the system must write the Exit Secured Silicon  
Sector command sequence to return to reading and  
writing the remainder of the array.  
In a factory locked device, the Secured Silicon Sector  
is protected when the device is shipped from the fac-  
tory. The Secured Silicon Sector cannot be modified in  
any way. The device is available preprogrammed with  
one of the following:  
The Secured Silicon Sector protection must be used  
with caution since, once protected, there is no proce-  
dure available for unprotecting the Secured Silicon  
Sector area and none of the bits in the Secured Silicon  
Sector memory space can be modified in any way.  
A random, secure ESN only  
Customer code through the ExpressFlash service  
Both a random, secure ESN and customer code  
through the ExpressFlash service.  
20  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE#  
or WE# do not initiate a write cycle.  
START  
Logical Inhibit  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
Wait 1 μs  
Power-Up Write Inhibit  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
If WE# = CE# = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to the read mode on power-up.  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
A1 = 1, A0 = 0  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
A1 = 1, A0 = 0  
Figure 3. Secured Silicon Sector Protect Verify  
Hardware Data Protection  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The sys-  
tem can read CFI information at the addresses given  
in Table 9 on page 22 through Table 12 on page 24. To  
terminate reading CFI data, the system must write the  
reset command.  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Table 14 on  
page 29 for command definitions). In addition, the fol-  
lowing hardware data protection measures prevent ac-  
cidental erasure or programming, which might  
otherwise be caused by spurious system level signals  
during VCC power-up and power-down transitions, or  
from system noise.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Table 9 on page 22  
through Table 12 on page 24. The system must write  
the reset command to return the device to the reading  
array data.  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control  
pins to prevent unintentional writes when VCC is  
For further information, please refer to the CFI Specifi-  
cation, CFI Publication 100, and the application note  
“Common Flash Interface Version 1.4 Vendor Specific  
Extensions”. Contact an AMD representative for cop-  
ies of these documents.  
greater than VLKO  
.
December 14, 2005  
Am29LV320D  
21  
D A T A S H E E T  
Table 9. CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 10. System Interface String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data Description  
VCC Min. (write/erase)  
0027h  
1Bh  
1Ch  
36h  
38h  
D7–D4: volt, D3–D0: 100 millivolt  
VCC Max. (write/erase)  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
22  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Table 11. Device Geometry Definition  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0016h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0002h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
003Eh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
December 14, 2005  
Am29LV320D  
23  
D A T A S H E E T  
Table 12. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0031h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
0000h  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
0002h  
0004h  
0001h  
0004h  
0000h  
0000h  
0000h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
04 = 29LV800 mode  
Simultaneous Operation  
00 = Not Supported  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
4Fh  
9Ah  
9Ch  
9Eh  
00B5h  
00C5h  
000Xh  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
02h = Bottom Boot Device, 03h = Top Boot Device  
24  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Table 14 on page 29 defines the valid  
register command sequences. Note that writing incor-  
rect address and data values or writing them in the im-  
proper sequence may place the device in an unknown  
state. A reset command is required to return the de-  
vice to normal operation.  
pend-read mode. Once programming begins, however,  
the device ignores reset commands until the operation  
is complete.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to the read mode. If the de-  
vice entered the autoselect mode while in the Erase  
Suspend mode, writing the reset command returns the  
device to the erase-suspend-read mode.  
All addresses are latched on the falling edge of WE#  
or CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristics section for timing  
diagrams.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the device to the  
read mode (or erase-suspend-read mode if the device  
was in Erase Suspend).  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. The device is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to read several identifier codes at specific ad-  
dresses:  
Table 13. Autoselect Codes  
After the device accepts an Erase Suspend command,  
the device enters the erase-suspend-read mode, after  
which the system can read data from any  
non-erase-suspended sector. After completing a pro-  
gramming operation in the Erase Suspend mode, the  
system may once again read array data with the same  
exception. See “Erase Suspend/Erase Resume Com-  
mands” on page 28 for more information.  
Identifier Code  
Manufacturer ID  
Device ID  
Address  
00h  
01h  
Secured Silicon Sector  
Factory Protect  
03h  
Sector Group Protect Verify  
(SA)02h  
Table 14 on page 29 shows the address and data re-  
quirements. This method is an alternative to that  
shown in Table 6 on page 16, which is intended for  
PROM programmers and requires VID on address pin  
A9. The autoselect command sequence may be writ-  
ten to an address within sector that is either in the read  
or erase-suspend-read mode. The autoselect com-  
mand may not be written while the device is actively  
programming or erasing.  
The system must issue the reset command to return  
the device to the read (or erase-suspend-read) mode if  
DQ5 goes high during an active program or erase op-  
eration, or if the device is in the autoselect mode. See  
the next section, “Reset Command, for more informa-  
tion.  
See also “Requirements for Reading Array Data” on  
page 11 for more information. The Read-Only Opera-  
tions table provides the read parameters, and Figure  
14, on page 38 shows the timing diagram.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the autoselect command. The  
device then enters the autoselect mode. The system  
may read at any address any number of times without  
initiating another autoselect command sequence.  
Reset Command  
Writing the reset command resets the device to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
The system must write the reset command to return to  
the read mode (or erase-suspend-read mode if the de-  
vice was previously in Erase Suspend).  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to which the  
system was writing to the read mode. Once erasure  
begins, however, the device ignores reset commands  
until the operation is complete.  
Enter Secured Silicon Sector/Exit Secured  
Silicon Sector Command Sequence  
The Secured Silicon sector provides a secured data  
area containing a random, sixteen-byte electronic se-  
rial number (ESN). The system can access the Se-  
cured Silicon sector by issuing the three-cycle Enter  
Secured Silicon sector command sequence. The de-  
vice continues to access the Secured Silicon sector  
until the system issues the four-cycle Exit Secured Sil-  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the device to  
which the system was writing to the read mode. If the  
program command sequence is written to a sector that  
is in the Erase Suspend mode, writing the reset  
command returns the device to the erase-sus-  
December 14, 2005  
Am29LV320D  
25  
D A T A S H E E T  
icon sector command sequence. The Exit Secured Sil- data is still “0.Only erase operations can convert a “0”  
icon sector command sequence returns the device to  
normal operation. Table 14 on page 29 shows the ad-  
dress and data requirements for both command se-  
quences. Note that the ACC function and unlock  
bypass modes are not available when the device en-  
ters the Secured Silicon sector. See also “Secured Sil-  
icon Sector Flash Memory Region” on page 20 for  
further information.  
to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes or words to the device faster than using the  
standard program command sequence. The unlock  
bypass command sequence is initiated by first writing  
two unlock cycles. This is followed by a third write  
cycle containing the unlock bypass command, 20h.  
The device then enters the unlock bypass mode. A  
two-cycle unlock bypass program command sequence  
is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass pro-  
gram command, A0h; the second cycle contains the  
program address and data. Additional data is pro-  
grammed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the stan-  
dard program command sequence, resulting in faster  
total programming time. Table 14 on page 29 shows  
the requirements for the command sequence.  
Byte/Word Program Command Sequence  
The system may program the device by word or byte,  
depending on the state of the BYTE# pin. Program-  
ming is a four-bus-cycle operation. The program com-  
mand sequence is initiated by writing two unlock write  
cycles, followed by the program set-up command. The  
program address and data are written next, which in  
turn initiate the Embedded Program algorithm. The  
system is not required to provide further controls or  
timings. The device automatically provides internally  
generated program pulses and verifies the pro-  
grammed cell margin. Table 14 on page 29 shows the  
address and data requirements for the byte program  
command sequence. Note that the autoselect, Se-  
cured Silicon sector, and CFI modes are unavailable  
while a programming operation is in progress.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the data  
90h. The second cycle need only contain the data 00h.  
The device then re turns to the read mode.  
When the Embedded Program algorithm is complete,  
the device then returns to the read mode and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. Refer to “Write Operation Sta-  
tus” on page 30 for information on these status bits.  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH any operation  
other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not  
be left floating or unconnected; inconsistent behavior  
of the device may result.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. The program command sequence should  
be reinitiated once the device returns to the read  
mode, to ensure data integrity.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from “0” back to a “1.Attempting to do so may  
cause the device to set DQ5 = 1, or cause the DQ7  
and DQ6 status bits to indicate the operation was suc-  
cessful. However, a succeeding read shows that the  
Figure 4, on page 27 illustrates the algorithm for the  
program operation. Refer to the table “Erase and Pro-  
gram Operations” on page 41 for parameters, and Fig-  
ure 18, on page 42 for timing diagrams.  
26  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
RY/BY#. Refer to “Write Operation Status” on page 30  
for information on these status bits.  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that oc-  
curs, the chip erase command sequence should be  
reinitiated once the device returns to reading array  
data, to ensure data integrity.  
START  
Write Program  
Command Sequence  
Figure 5, on page 28 illustrates the algorithm for the  
erase operation. Refer to table “Erase and Program  
Operations” on page 41 for parameters, and Figure  
19, on page 43 section for timing diagrams.  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command. Table 14 on page 29  
shows the address and data requirements for the sec-  
tor erase command sequence. Note that the autose-  
lect, Secured Silicon sector, and CFI modes are  
unavailable while an erase operation is in progress.  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
Programming  
Completed  
Note: See Table 14 on page 29 for program command  
sequence.  
After the command sequence is written, a sector erase  
time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than  
50 µs, otherwise the last address and command may  
not be accepted, and erasure may begin. It is recom-  
mended that processor interrupts be disabled during  
this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector  
Erase command is written. Any command other than  
Sector Erase or Erase Suspend during the  
time-out period resets the device to the read  
mode. The system must rewrite the command se-  
quence and any additional addresses and commands.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 14 on  
page 29 shows the address and data requirements for  
the chip erase command sequence. Note that the au-  
toselect, Secured Silicon sector, and CFI modes are  
unavailable while an erase operation is in progress.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer timed out (See the section “DQ3: Sec-  
tor Erase Timer” on page 32.). The time-out begins  
from the rising edge of the final WE# pulse in the com-  
mand sequence.  
When the Embedded Erase algorithm is complete, the  
device returns to the read mode and addresses are no  
longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, DQ2, or  
When the Embedded Erase algorithm is complete, the  
device returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the erase operation by reading DQ7, DQ6,  
December 14, 2005  
Am29LV320D  
27  
D A T A S H E E T  
DQ2, or RY/BY# in the erasing sector. Refer to “Write  
mode. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard Byte Program operation.  
Refer to “Write Operation Status” on page 30 for more  
information.  
Operation Status” on page 30 for information on these  
status bits.  
Once the sector erase operation begins, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once the device returns to read-  
ing array data, to ensure data integrity.  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. Refer to  
“Autoselect Mode” on page 16 and “Autoselect Com-  
mand Sequence” on page 25 for details.  
To resume the sector erase operation, the system  
must write the Erase Resume command. Further  
writes of the Resume command are ignored. Another  
Erase Suspend command can be written after the chip  
resumes erasing.  
Figure 5, on page 28 illustrates the algorithm for the  
erase operation. Refer to table “Erase and Program  
Operations” on page 41 for parameters, and Figure  
19, on page 43 for timing diagrams.  
Erase Suspend/Erase Resume  
Commands  
START  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
for erasure. This command is valid only during the sec-  
tor erase operation, including the 50 µs time-out pe-  
riod during the sector erase command sequence. The  
Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program  
algorithm.  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a max-  
imum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written  
during the sector erase time-out, the device immedi-  
ately terminates the time-out period and suspends the  
erase operation.  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
After the erase operation is suspended, the device en-  
ters the erase-suspend-read mode. The system can  
read data from or program data to any sector not se-  
lected for erasure. (The device “erase suspends” all  
sectors selected for erasure.) Reading at any address  
within erase-suspended sectors produces status infor-  
mation on DQ7–DQ0. The system can use DQ7, or  
DQ6 and DQ2 together, to determine if a sector is ac-  
tively erasing or is erase-suspended. Refer to the  
“Write Operation Status” on page 30 section for infor-  
mation on these status bits.  
Yes  
Erasure Completed  
Notes:  
1. See Table 14 on page 29 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 5. Erase Operation  
After an erase-suspended program operation is com-  
plete, the device returns to the erase-suspend-read  
28  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Command Definitions  
Table 14. Am29LV320D Command Definitions  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data  
Data  
Addr  
Data  
Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
XXX  
555  
AAA  
555  
AAA  
555  
RD  
F0  
Word  
Manufacturer ID  
Byte  
2AA  
555  
2AA  
555  
2AA  
555  
AAA  
555  
4
4
AA  
AA  
55  
55  
90  
90  
X00  
01  
Word  
X01  
X02  
X03  
(see  
Table 6)  
Device ID  
Byte  
AAA  
555  
Secured Silicon  
Factory Protect (Note  
9)  
Word  
4
AA  
55  
90  
99/19  
00/01  
Byte  
AAA  
555  
AAA  
X06  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
(SA)X02  
(SA)X04  
Sector Protect Verify  
(Note 10)  
4
3
4
4
3
AA  
AA  
AA  
AA  
AA  
55  
55  
55  
55  
55  
90  
88  
90  
A0  
20  
Enter Secured Silicon Sector  
Exit Secured Silicon Sector  
Program  
AAA  
555  
AAA  
555  
Word  
Byte  
XXX  
PA  
00  
AAA  
555  
AAA  
555  
Word  
Byte  
PD  
AAA  
555  
AAA  
555  
Word  
Byte  
Unlock Bypass  
AAA  
XXX  
AAA  
Unlock Bypass Program (Note 11)  
Unlock Bypass Reset (Note 12)  
A0  
90  
PD  
00  
2
2
XXX  
555  
AAA  
555  
AAA  
XXX  
XXX  
55  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
Chip Erase  
Byte  
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
AAA  
Word  
Sector Erase  
Byte  
6
SA  
AAA  
AAA  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
1
1
B0  
30  
Word  
CFI Query (Note 15)  
Byte  
1
98  
AA  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE# pulse, whichever happens  
later.  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A20–A12 uniquely select any sector.  
Notes:  
1. See Table 1 for description of bus operations.  
9. The data is 99h for factory locked and 19h for not factory locked.  
2. All values are in hexadecimal.  
10. The data is 00h for an unprotected sector and 01h for a protected  
sector.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
11. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
4. Data bits DQ15–DQ8 are don’t care in command sequences,  
except for RD and PD.  
12. The Unlock Bypass Reset command is required to return to the  
read mode when the device is in the unlock bypass mode.  
5. Unless otherwise noted, address bits A20–A11 are don’t cares.  
13. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation.  
6. No unlock or command cycles required when device is in read  
mode.  
7. The Reset command is required to return to the read mode (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a device is in the autoselect mode, or if DQ5 goes high  
(while the device is providing status information).  
14. The Erase Resume command is valid only during the Erase  
Suspend mode.  
15. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
8. The fourth cycle of the autoselect command sequence is a read  
cycle. Data bits DQ15–DQ8 are don’t care. See the Autoselect  
Command Sequence section for more information.  
December 14, 2005  
Am29LV320D  
29  
D A T A S H E E T  
WRITE OPERATION STATUS  
The device provides several bits to determine the sta-  
tus of a program or erase operation: DQ2, DQ3, DQ5,  
DQ6, and DQ7. Table 15 on page 33 and the following  
subsections describe the function of these bits. DQ7  
and DQ6 each offer a method for determining whether  
a program or erase operation is complete or in  
progress. The device also provides a hardware-based  
output signal, RY/BY#, to determine whether an Em-  
bedded Program or Erase operation is in progress or  
is completed.  
the program or erase operation and DQ7 contains  
valid data, the data outputs on DQ0–DQ6 may be still  
invalid. Valid data on DQ0–DQ7 appears on succes-  
sive read cycles.  
Table 15 on page 33 shows the outputs for Data# Poll-  
ing on DQ7. Figure 6, on page 30 shows the Data#  
Polling algorithm. Figure 20, on page 44 in the AC  
Characteristics section shows the Data# Polling timing  
diagram.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host sys-  
tem whether an Embedded Program or Erase algo-  
rithm is in progress or completed, or whether a device  
is in Erase Suspend. Data# Polling is valid after the  
rising edge of the final WE# pulse in the command se-  
quence.  
START  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Program algorithm, the device  
outputs on DQ7 the complement of the datum pro-  
grammed to DQ7. This DQ7 status also applies to pro-  
gramming during Erase Suspend. When the  
Embedded Program algorithm is complete, the device  
outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status  
information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to the read  
mode.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the device enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 100 µs, then the  
device returns to the read mode. If not all selected  
sectors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected. However, if the sys-  
tem reads DQ7 at an address within a protected  
sector, the status may not be valid.  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
Just prior to the completion of an Embedded Program  
or Erase operation, DQ7 may change asynchronously  
with DQ0–DQ6 while Output Enable (OE#) is asserted  
low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on  
when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device completes  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
30  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
gorithm. Figure 21, on page 45 in the “AC Characteris-  
RY/BY#: Ready/Busy#  
tics” section shows the toggle bit timing diagrams.  
Figure 22, on page 45 shows the differences between  
DQ2 and DQ6 in graphical form. See also the subsec-  
tion on DQ2: Toggle Bit II.  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
pull-up resistor to VCC  
.
START  
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the standby  
mode, or in the erase-suspend-read mode. Table 15  
on page 33 shows the outputs for RY/BY#.  
Read DQ7–DQ0  
Read DQ7–DQ0  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device entered the Erase Sus-  
pend mode. Toggle Bit I may be read at any address,  
and is valid after the rising edge of the final WE# pulse  
in the command sequence (prior to the program or  
erase operation), and during the sector erase time-out.  
No  
Toggle Bit  
= Toggle?  
Yes  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE# to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
No  
DQ5 = 1?  
Yes  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are pro-  
tected.  
Read DQ7–DQ0  
Twice  
Toggle Bit  
= Toggle?  
No  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is  
erase-suspended. When the device is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
DQ6 toggles. When the device enters the Erase Sus-  
pend mode, DQ6 stops toggling. However, the system  
must also use DQ2 to determine which sectors are  
erasing or erase-suspended. Alternatively, the system  
can use DQ7 (see the subsection on “DQ7: Data#  
Polling” on page 30).  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5  
= “1” because the toggle bit may stop toggling as DQ5  
changes to “1.See the subsections on DQ6 and DQ2 for  
more information.  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
Figure 7. Toggle Bit Algorithm  
DQ6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
Table 15 on page 33 shows the outputs for Toggle Bit I  
on DQ6. Figure 7, on page 31 shows the toggle bit al-  
December 14, 2005  
Am29LV320D  
31  
D A T A S H E E T  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time ex-  
ceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a “1,indicating that  
the program or erase cycle was not successfully  
completed.  
DQ2 toggles when the system reads at addresses  
within those sectors that were selected for erasure.  
(The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the  
sector is actively erasing or is erase-suspended. DQ6,  
by comparison, indicates whether the device is ac-  
tively erasing, or is in Erase Suspend, but cannot dis-  
tinguish which sectors are selected for erasure. Thus,  
both status bits are required for sector and mode infor-  
mation. Refer to Table 15 on page 33 to compare out-  
puts for DQ2 and DQ6.  
The device may output a “1” on DQ5 if the system tries  
to program a “1” to a location that was previously pro-  
grammed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the  
device halts the operation, and when the timing limit is  
exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write  
the reset command to return to the read mode (or to  
the erase-suspend-read mode if the device was previ-  
ously in the erase-suspend-program mode).  
Figure 7, on page 31 shows the toggle bit algorithm in  
flowchart form, and the section “DQ2: Toggle Bit II” on  
page 31 explains the algorithm. See also the DQ6:  
Toggle Bit I subsection. Figure 21, on page 45 shows  
the toggle bit timing diagram. Figure 22, on page 45  
shows the differences between DQ2 and DQ6 in  
graphical form.  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure started. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
mand. When the time-out period is complete, DQ3  
switches from a “0” to a “1.If the time between addi-  
tional sector erase commands from the system can be  
assumed to be less than 50 µs, the system need not  
monitor DQ3. See also the Sector Erase Command  
Sequence section.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7, on page 31 for the following discus-  
sion. Whenever the system initially begins reading tog-  
gle bit status, it must read DQ7–DQ0 at least twice in a  
row to determine whether a toggle bit is toggling. Typi-  
cally, the system would note and store the value of the  
toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
completed the program or erase operation. The sys-  
tem can read array data on DQ7–DQ0 on the following  
read cycle.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device accepted the  
command sequence, and then read DQ3. If DQ3 is “1,”  
the Embedded Erase algorithm started; all further  
commands (except Erase Suspend) are ignored until  
the erase operation is complete. If DQ3 is “0,the de-  
vice accepts additional sector erase commands. To  
ensure the command is accepted, the system software  
should check the status of DQ3 prior to and following  
each subsequent sector erase command. If DQ3 is  
high on the second status check, the last command  
might not have been accepted.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device successfully completed the pro-  
gram or erase operation. If it is still toggling, the device  
did not completed the operation successfully, and the  
system must write the reset command to return to  
reading array data.  
Table 15 on page 33 shows the status of DQ3 relative  
to the other status bits.  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the previ-  
ous paragraph. Alternatively, it may choose to perform  
other system tasks. In this case, the system must start  
at the beginning of the algorithm when it returns to de-  
termine the status of the operation (top of Figure 7, on  
page 31).  
32  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Table 15. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
Erase-Suspend-  
Read  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation exceeds the maximum timing limits. Refer  
to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
December 14, 2005  
Am29LV320D  
33  
D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
VCC (Note 1). . . . . . . . . . . . . . . . . –0.5 V to +4.0 V  
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C  
A9, OE#, RESET#,  
Ambient Temperature  
and WP#/ACC (Note 2) . . . . . . . –0.5 V to +12.5 V  
with Power Applied. . . . . . . . . . . . . . –65°C to +125°C  
All other pins (Note 1) . . . . . .0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . . 200 mA  
Voltage with Respect to Ground  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot VSS to –2.0 V for periods of up to 20 ns.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
See Figure 8, on page 34. During voltage transitions,  
input or I/O pins may overshoot to VCC +2.0 V for periods  
up to 20 ns. See Figure 9, on page 34.  
20 ns  
20 ns  
+0.8 V  
V
SS–0.5 V  
VSS–2.0 V  
2. Minimum DC input voltage on pins A9, OE#, RESET#,  
and WP#/ACC is –0.5 V. During voltage transitions, A9,  
OE#, WP#/ACC, and RESET# may overshoot VSS to  
–2.0 V for periods of up to 20 ns. See Figure 8, on page  
34. Maximum DC input voltage on pin A9 is +12.5 V  
which may overshoot to +14.0 V for periods up to 20 ns.  
Maximum DC input voltage on WP#/ACC is +9.5 V which  
may overshoot to +12.0 V for periods up to 20 ns.  
20 ns  
Figure 8. Maximum Negative  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
20 ns  
VCC+2.0 V  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
V
CC+0.5 V  
2.0 V  
20 ns  
20 ns  
Figure 9. Maximum Positive  
Overshoot Waveform  
OPERATING RANGES  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C  
VCC Supply Voltages  
V
CC for all devices . . . . . . . . . . . . . . . . .2.7 V to 3.6 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
34  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
IN = VSS to VCC  
VCC = VCC max  
Min  
Typ  
Max  
Unit  
V
,
ILI  
Input Load Current  
±3.0  
µA  
ILIT  
ILR  
A9 Input Load Current  
VCC = VCC max; A9 = 12.5 V  
35  
35  
µA  
µA  
RESET# Input Load Current  
VCC = VCC max; RESET# = 12.5 V  
V
OUT = VSS to VCC  
,
ILO  
Output Leakage Current  
±1.0  
µA  
VCC = VCC max  
5 MHz  
1 MHz  
5 MHz  
1 MHz  
10  
2
16  
4
CE# = VIL, OE# = VIH,  
Byte Mode  
VCC Active Read Current  
(Notes 1, 2)  
ICC1  
mA  
10  
2
16  
4
CE# = VIL, OE# = VIH,  
Word Mode  
ICC2  
ICC3  
ICC4  
VCC Active Write Current (Notes 2, 3) CE# = VIL, OE# = VIH, WE# = VIL  
15  
0.2  
0.2  
30  
5
mA  
µA  
µA  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
CE#, RESET# = VCC ± 0.3 V  
RESET# = VSS ± 0.3 V  
5
V
IH = VCC ± 0.3 V;  
ICC5  
Automatic Sleep Mode (Notes 2, 4)  
0.2  
5
µA  
VIL = VSS ± 0.3 V  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
0.7 x VCC  
VCC + 0.3  
Voltage for WP#/ACC Sector  
Protect/Unprotect and Program  
Acceleration  
VHH  
VCC = 3.0 V 10%  
11.5  
11.5  
12.5  
V
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VCC = 3.0 V ± 10%  
12.5  
0.45  
VOL  
VOH1  
VOH2  
VLKO  
Output Low Voltage  
IOL = 4.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
0.85 VCC  
VCC–0.4  
2.3  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
V
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH.  
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep mode current is  
200 nA.  
5. Not 100% tested.  
December 14, 2005  
Am29LV320D  
35  
D A T A S H E E T  
DC CHARACTERISTICS  
Zero-Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 10. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
12  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 11. Typical ICC1 vs. Frequency  
36  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
TEST CONDITIONS  
Table 16. Test Specifications  
3.3 V  
Test Condition  
Output Load  
90  
120  
Unit  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
100  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
0.0–3.0  
ns  
V
C
L
6.2 kΩ  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 12. Test Setup  
Key To Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 13. Input Waveforms and Measurement Levels  
December 14, 2005  
Am29LV320D  
37  
D A T A S H E E T  
AC CHARACTERISTICS  
Read-Only Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std. Description  
Test Setup  
90  
90  
90  
90  
40  
120  
120  
120  
120  
50  
Unit  
ns  
tRC  
tACC  
tCE  
tOE  
tDF  
Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
Address to Output Delay  
CE#, OE# = VIL  
OE# = VIL  
ns  
Chip Enable to Output Delay  
ns  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
ns  
16  
16  
ns  
tDF  
ns  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 12, on page 37 and Table 16 on page 37 for test  
specifications.  
tRC  
Addresses Stable  
Addresses  
tACC  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 14. Read Operation Timings  
38  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
t
RH  
tRP  
Figure 15. Reset Timings  
December 14, 2005  
Am29LV320D  
39  
D A T A S H E E T  
AC CHARACTERISTICS  
Word/Byte Configuration (BYTE#)  
Parameter  
JEDEC  
Std.  
tELFL/ ELFH  
tFLQZ  
Description  
90  
120  
Unit  
ns  
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
5
16  
ns  
tFHQV  
90  
120  
ns  
CE#  
OE#  
BYTE#  
tELFL  
Data Output  
(DQ0–DQ14)  
Data Output  
(DQ0–DQ7)  
BYTE#  
DQ0–DQ14  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
DQ15/A-1  
BYTE#  
tFLQZ  
tELFH  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ0–DQ7)  
Data Output  
(DQ0–DQ14)  
DQ0–DQ14  
DQ15/A-1  
mode  
Address  
Input  
DQ15  
Output  
tFHQV  
Figure 16. BYTE# Timings for Read Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note: Refer to the Erase/Program Operations table for tAS and tAH specifications.  
Figure 17. BYTE# Timings for Write Operations  
40  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Description  
90  
120  
Unit  
ns  
Write Cycle Time (Note 1)  
Min  
Min  
Min  
Min  
90  
120  
tAVWL  
Address Setup Time  
0
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
ns  
tWLAX  
45  
45  
50  
50  
ns  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
35  
50  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
Byte  
30  
0
9
tWHWH1  
tWHWH1 Programming Operation (Note 2)  
µs  
µs  
Word  
11  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
Typ  
7
tWHWH2 Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Max  
0.7  
50  
0
sec  
µs  
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
ns  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See “Erase And Programming Performance” on page 50 for more information.  
December 14, 2005  
Am29LV320D  
41  
D A T A S H E E T  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 18. Program Operation Timings  
42  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status” on  
page 30).  
2. These waveforms are for the word mode.  
Figure 19. Chip/Sector Erase Operation Timings  
December 14, 2005  
Am29LV320D  
43  
D A T A S H E E T  
AC CHARACTERISTICS  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
Status Data  
True  
DQ0–DQ6  
Valid Data  
Status Data  
True  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 20. Data# Polling Timings (During Embedded Algorithms)  
44  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle  
DQ2 and DQ6.  
Figure 22. DQ2 vs. DQ6  
December 14, 2005  
Am29LV320D  
45  
D A T A S H E E T  
AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std.  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 23. Temporary Sector Unprotect Timing Diagram  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
tVHH  
Figure 24. Accelerated Program Timing Diagram  
46  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector/Sector Block Protect or Unprotect  
60h 60h  
Verify  
40h  
Data  
Sector/Sector Block Protect: 150 µs,  
Sector/Sector Block Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 25. Sector/Sector Block Protect and  
Unprotect Timing Diagram  
December 14, 2005  
Am29LV320D  
47  
D A T A S H E E T  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Description  
90  
120  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
90  
120  
tAVWL  
tELAX  
tDVEH  
tEHDX  
0
ns  
tAH  
45  
45  
50  
50  
ns  
tDS  
ns  
tDH  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
45  
50  
tCPH  
30  
9
Byte  
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
µs  
Word  
11  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
Notes:  
tWHWH1  
Typ  
Typ  
7
µs  
tWHWH2 Sector Erase Operation (Note 2)  
0.7  
sec  
1. Not 100% tested.  
2. See “Erase And Programming Performance” on page 50 for more information.  
48  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
AC CHARACTERISTICS  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 26. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
December 14, 2005  
Am29LV320D  
49  
D A T A S H E E T  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
µs  
Comments  
Sector Erase Time  
0.7  
50  
9
15  
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
Byte Program Time  
Word Program Time  
Accelerated Byte/Word Program Time  
300  
360  
210  
108  
72  
11  
7
µs  
Excludes system level  
overhead (Note 5)  
µs  
Byte Mode  
36  
24  
Chip Program Time  
(Note 3)  
sec  
Word Mode  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally,  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V,  
4. In the pre-programming step of the Embedded Erase  
algorithm, all bytes are programmed to 00h before erasure.  
1,000,000 cycles.  
3. The typical chip programming time is considerably less than  
the maximum chip programming time listed, since most  
bytes program faster than the maximum program times  
listed.  
5. System-level overhead is the time required to execute the  
two- or four-bus-cycle sequence for the program command.  
See Table 14 on page 29 for further information on  
command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
–1.0 V  
VCC + 1.0 V  
+100 mA  
V
CC Current  
–100 mA  
Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
TSOP AND BGA PACKAGE CAPACITANCE  
Parameter Symbol  
Parameter Description  
Test Setup  
Typ  
6
Max  
7.5  
5.0  
12  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
TSOP  
CIN  
Input Capacitance  
VIN = 0  
VOUT = 0  
VIN = 0  
Fine-pitch BGA  
TSOP  
4.2  
8.5  
5.4  
7.5  
3.9  
COUT  
Output Capacitance  
Fine-pitch BGA  
TSOP  
6.5  
9
CIN2  
Control Pin Capacitance  
Fine-pitch BGA  
4.7  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
DATA RETENTION  
Parameter Description  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
50  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
PHYSICAL DIMENSIONS  
FBD048—48-ball Fine-Pitch Ball Grid Array (FBGA)  
6 x 12 mm package  
Dwg rev AF; 1/2000  
xFBD 048  
6.00 mm x 12.00 mm  
PACKAGE  
1.20  
0.20  
0.84  
12.00 BSC  
0.94  
6.00 BSC  
5.60 BSC  
4.00 BSC  
8
6
48  
0.25 0.30  
0.35  
0.80 BSC  
0.40 BSC  
December 14, 2005  
Am29LV320D  
51  
D A T A S H E E T  
PHYSICAL DIMENSIONS  
TS 048—48-Pin Standard TSOP  
Dwg rev AA; 10/99  
52  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
REVISION SUMMARY  
Revision A (November 1, 2000)  
Initial release.  
Erase and Program Operations table  
Corrected to indicate tBUSY specification is a maximum  
value.  
Revision A+1 (January 23, 2001)  
Revision B+1 (July 30, 2002)  
Ordering Information  
Figure 3, Secured Silicon Sector Protect Verify  
Corrected FBGA part number table to include bottom  
boot part numbers.  
Deleted fifth block in flowchart and modified text in  
fourth block.  
Revision A+2 (February 1, 2001)  
Revision C (October 25, 2002)  
Connection Diagrams  
Distinctive Characteristics  
Corrected FBGA ball matrix.  
Changed endurance from “write” to “erase” cycles.  
Revision A+3 (July 2, 2001)  
Connection Diagrams  
Global  
Deleted ultrasonic reference and added package  
types to special package handling text.  
Changed data sheet status from Advance Information  
to Preliminary.  
Ordering Information  
Table 3, Top Boot Secured Silicon Sector  
Addresses  
Added commercial temperature range and removed  
extended temperature range.  
Corrected sector block size for SA60–SA62 to 3x64.  
Secured Silicon Flash Memory Region  
Sector/Sector Block Protection and Unprotection  
Customer Lockable subsection: Deleted reference to  
alternate method of sector protection.  
Noted that sectors are erased in parallel.  
Secured Silicon Sector Flash Memory Region  
Command Definitions  
Noted changes for upcoming versions of these de-  
vices: reduced Secured Silicons ector size, different  
ESN location for top boot devices, and deletion of Se-  
cured Silicon erase functionality. Current versions of  
these devices remain unaffected.  
Noted the following:  
Autoselect, Secured Silicon, and CFI functions are not  
available during a program or erase operation.  
ACC and unlock bypass modes are not available when  
the Secured Silicon Sector is enabled.  
Revision B (July 12, 2002)  
Writing incorrect data or commands may place the de-  
vice in an unknown state. A reset command is then re-  
quired.  
Global  
Deleted Preliminary status from document.  
Ordering Information  
AC Characteristics  
Deleted burn-in option.  
Read-only Operations; Word/Byte Configuration:  
Changed tDF and tFLQZ to 16 ns for all speed options.  
Table 1, Am29LV320D Device Bus Operations  
DC Characteristics  
In the legend, corrected VHH maximum voltage to 12.5  
V.  
Deleted IACC and added ILR specifications from table.  
Secured Silicon Sector Flash Memory Region  
TSOP, SO, and BGA Package Capacitance  
Added description of Secured Silicon protection verifi-  
cation.  
Added BGA capacitance to table.  
Revision C+1 (February 16, 2003)  
Autoselect Command Sequence  
Distinctive Characteristics  
Clarified description of function.  
Added reference to MirrorBit in Secured Silicon sec-  
tion.  
Table 14, Am29LV320D Command Definitions  
Corrected autoselect codes for Secured Silicon Fac-  
tory Protect.  
Added Sector Architecture section.  
Secured Silicon Flash Memory Region  
Referenced MirrorBit for an example in last sentence  
of first paragraph.  
December 14, 2005  
Am29LV320D  
53  
D A T A S H E E T  
Command Definitions  
Erase and Programming Performance  
Changed the first address of the Unlock Bypass Reset  
from BA to XXX.  
Updated Chip Erase Time.  
AC Characteristics  
Erase and Programming Performance  
Added tRH line to Figure 15.  
Corrected the Sector Erase Time Typical to 0.7.  
Erase and Program Operations  
t
Revision C+2 (April 4, 2003)  
Corrected Sector Erase Operation time ( WHWH2)  
Distinctive Characteristics  
Alternate CE# Control Erase and Program  
Operations  
Clarified reference to MirrorBit in Secured Silicon sec-  
tion.  
t
Corrected Sector Erase Operation time ( WHWH2)  
Secured Silicon Sector  
Command Definitions  
Clarified reference of MirrorBit for an example in last  
sentence of first paragraph.  
Update text in Sector Erase Command Sequence  
paragraph.  
Revision C+3 (September 19, 2003)  
Revision C+7 (July 11, 2005)  
Valid Combinations  
Global  
Added the 90R package to table.  
Added text to first page of data sheet and cover page  
indicating that the Am29LV320D is now superceded by  
the S29AL032D device.  
Revision C+4 (April 5, 2004)  
Command Definitions  
Replaced all occurences of “SecSi Sector” with “Se-  
cured Silicon Sector” to reflect change of terminology.  
Changed first address data for Erase Suspend/Re-  
sume from BA to XXX.  
Common Flash Memory Interfacte (CFI)  
Revision C+5 (June 4, 2004)  
Added reference to application note. Deleted link to  
CFI documents available on the world wide web.  
Ordering Information  
Added Lead-free (Pb-free) options to the temperature  
ranges breakout table and valid combinations table.  
Revision C+8 (December 14, 2005)  
Global  
Product Selector Guide  
This product has been retired and is not available for  
designs. For new and current designs, S29AL032D  
supersedes Am29LV320D and is the factory-recom-  
mended migration path. Please refer to the  
S29AL032D datasheet for specifications and ordering  
information. Availability of this document is retained for  
reference and historical purposes only.  
Added 90R voltage range.  
Revision C+6 (November 15, 2004)  
Global  
Added Colophon. Updated Trademarks. Added refer-  
ence links  
Ordering Information  
Added Automotive In-Cabin temperature range and  
associated part numbers in the valid combination ta-  
ble.  
54  
Am29LV320D  
December 14, 2005  
D A T A S H E E T  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limita-  
tion, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as con-  
templated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion LLC will not be liable  
to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign  
Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks  
Copyright © 2000-2005 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
December 14, 2005  
Am29LV320D  
55  

相关型号:

AM29LV320DT120EV

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD

AM29LV320DT120EV

Flash, 2MX16, 120ns, PDSO48, MO-142DD, TSOP-48
SPANSION

AM29LV320DT120EY

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD

AM29LV320DT120EY

Flash, 2MX16, 120ns, PDSO48, LEAD FREE, MO-142DD, TSOP-48
SPANSION

AM29LV320DT120WMC

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD

AM29LV320DT120WMC

Flash, 2MX16, 120ns, PBGA48, 6 X 12 MM, 0.80 MM PITCH, FBGA-48
SPANSION

AM29LV320DT120WMD

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD

AM29LV320DT120WMF

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD

AM29LV320DT120WMF

Flash, 2MX16, 120ns, PBGA48, 6 X 12 MM, 0.80 MM PITCH, LEAD FREE, FBGA-48
SPANSION

AM29LV320DT120WMI

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD

AM29LV320DT120WMI

Flash, 2MX16, 120ns, PBGA48, 6 X 12 MM, 0.80 MM PITCH, FBGA-48
SPANSION

AM29LV320DT120WMV

32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory
AMD