AM41LV320MB10IS [SPANSION]

Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM; 堆叠式多芯片封装( MCP ) 32兆位( 4米×8位/ 2的M× 16位)闪存和4兆位( 512K ×8位/ 256千×16位)静态RAM
AM41LV320MB10IS
型号: AM41LV320MB10IS
厂家: SPANSION    SPANSION
描述:

Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
堆叠式多芯片封装( MCP ) 32兆位( 4米×8位/ 2的M× 16位)闪存和4兆位( 512K ×8位/ 256千×16位)静态RAM

闪存
文件: 总67页 (文件大小:968K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am41LV3204M  
Data Sheet  
July 2003  
The following document specifies Spansion memory products that are now offered by both Advanced  
Micro Devices and Fujitsu. Although the document is marked with the name of the company that orig-  
inally developed the specification, these products will be offered to customers of both AMD and  
Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal datasheet improvement and are noted in the  
document revision summary, where supported. Future routine revisions will occur when appropriate,  
and changes will be noted in a revision summary.  
Continuity of Ordering Part Numbers  
AMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM. To order  
these products, please use only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion  
memory solutions.  
Publication Number 30119 Revision A Amendment +1 Issue Date June 10, 2003  
PRELIMINARY  
Am41LV3204M  
Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash  
Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM  
DISTINCTIVE CHARACTERISTICS  
— 4-word/8-byte page read buffer  
MCP Features  
— 16-word/32-byte write buffer  
Power supply voltage of 2.7 to 3.3 volt  
Low power consumption (typical values at 3.0 V, 5  
High Performance  
MHz)  
— Access time as fast as 100ns initial 30 ns page Flash  
— 30 mA typical initial Page read current; 10 mA typical  
70 ns SRAM  
intra-Page read current  
Package  
— 50 mA typical erase/program current  
— 69-Ball FBGA  
— 1 µA typical standby mode current  
— 8 x 10 x 1.2 mm  
Operating Temperature  
— –40°C to +85°C  
SOFTWARE & HARDWARE FEATURES  
Software features  
— Program Suspend & Resume: read other sectors  
before programming operation is completed  
Flash Memory Features  
— Erase Suspend & Resume: read/program other  
sectors before an erase operation is completed  
ARCHITECTURAL ADVANTAGES  
Single power supply operation  
— 3 V for read, erase, and program operations  
— Data# polling & toggle bits provide status  
— Unlock Bypass Program command reduces overall  
multiple-word programming time  
Manufactured on 0.23 µm MirrorBit process  
technology  
— CFI (Common Flash Interface) compliant: allows host  
system to identify and accommodate multiple flash  
devices  
SecSi (Secured Silicon) Sector region  
— 128-word/256-byte sector for permanent, secure  
identification through an 8-word/16-byte random  
Electronic Serial Number, accessible through a  
command sequence  
Hardware features  
— Sector Group Protection: hardware-level method of  
preventing write operations within a sector group  
Temporary Sector Unprotect: VID-level method of  
changing code in locked sectors  
— May be programmed and locked at the factory or by  
the customer  
— WP#/ACC input:  
Flexible sector architecture  
Write Protect input (WP#) protects top or bottom two  
sectors regardless of sector protection settings  
ACC (high voltage) accelerates programming time for  
higher throughput during system production  
— Sixty-three 32 Kword/64-kbyte sectors  
— Eight 4 Kword/8-kbyte boot sectors  
Compatibility with JEDEC standards  
— Provides pinout and software compatibility for  
single-power supply flash, and superior inadvertent  
write protection  
— Hardware reset input (RESET#) resets device  
SRAM Features  
Minimum 100,000 erase cycle guarantee per sector  
20-year data retention at 125°C  
Power dissipation  
— Operating: 30 mA maximum  
— Standby: 10 µA maximum  
PERFORMANCE CHARACTERISTICS  
High performance  
CE1s# and CE2s Chip Select  
Power down features using CE1s# and CE2s  
Data retention supply voltage: 1.5 to 3.3 volt  
— 100 ns access time  
— 30 ns page read times  
Byte data control: LB#s (DQ7–DQ0),  
— 0.5 s typical sector erase time  
UB#s (DQ15–DQ8)  
— 15 µs typical write buffer word programming time:  
16-word/32-byte write buffer reduces overall  
programming time for multiple-word updates  
Publication# 30119 Rev: A Amendment/+1  
Issue Date: June 10, 2003  
This document contains information on a product under development at Advanced Micro Devices. The information  
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed  
product without notice.  
Refer to AMD’s Website (www.amd.com) for the latest information.  
P R E L I M I N A R Y  
GENERAL DESCRIPTION  
Am29LV320MT Features  
Hardware data protection measures include a low  
VCC detector that automatically inhibits write opera-  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of sectors of memory.  
This can be achieved in-system or via programming  
equipment.  
The Am29LV320MT/B is a 32 Mbit, 3.0 volt single  
power supply flash memory device organized as  
2,097,152 words or 4,194,304 bytes. The device has  
an 8/16-bit bus and can be programmed either in the  
host system or in standard EPROM programmers.  
Word mode data appears on DQ15–DQ0. The device  
is designed to be programmed in-system with the  
standard 3.0 volt VCC supply, and can also be pro-  
grammed in standard EPROM programmers.  
The Erase Suspend/Erase Resume feature allows  
the host system to pause an erase operation in a  
given sector to read or program any other sector and  
then complete the erase operation. The Program  
Suspend/Program Resume feature enables the host  
system to pause a program operation in a given sector  
to read any other sector and then complete the pro-  
gram operation.  
LV320MT/B has an access time of 100 ns. Note that  
the access time has a specific operating voltage range  
(VCC) as specified in the Product Selector Guide and  
the Ordering Information sections. The device is of-  
fered in a 69-ball Fine Pitch BGA.  
The hardware RESET# pin terminates any operation  
in progress and resets the device, after which it is then  
ready for a new operation. The RESET# pin may be  
tied to the system reset circuitry. A system reset would  
thus also reset the device, enabling the host system to  
read boot-up firmware from the Flash memory device.  
The devices require only a single 3.0 volt power sup-  
ply for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the  
program and erase operations.  
The device is entirely command set compatible with  
the JEDEC single-power-supply Flash standard.  
Commands are written to the device using standard  
microprocessor write timing. Write cycles also inter-  
nally latch addresses and data needed for the pro-  
gramming and erase operations.  
The device reduces power consumption in the  
standby mode when it detects specific voltage levels  
on CE# and RESET#, or when addresses have been  
stable for a specified period of time.  
The Write Protect (WP#) feature protects the top or  
bottom two sectors by asserting a logic low on the  
WP#/ACC pin. The protected sector will still be pro-  
tected even during accelerated programming.  
The sector erase architecture allows memory sec-  
tors to be erased and reprogrammed without affecting  
the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
The SecSi (Secured Silicon) Sector provides a  
128-word/256-byte area for code or data that can be  
permanently protected. Once this sector is protected,  
no further changes within the sector can occur.  
Device programming and erasure are initiated through  
command sequences. Once a program or erase oper-  
ation has begun, the host system need only poll the  
DQ7 (Data# Polling) or DQ6 (toggle) status bits or  
monitor the Ready/Busy# (RY/BY#) output to deter-  
mine whether the operation is complete. To facilitate  
programming, an Unlock Bypass mode reduces com-  
mand sequence overhead by requiring only two write  
cycles to program data instead of four.  
AMD MirrorBit flash technology combines years of  
Flash memory manufacturing experience to produce  
the highest levels of quality, reliability and cost effec-  
tiveness. The device electrically erases all bits within a  
sector simultaneously via hot-hole assisted erase. The  
data is programmed using hot electron injection.  
2
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
TABLE OF CONTENTS  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 4  
Flash Memory Block Diagram. . . . . . . . . . . . . . . . 5  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . 8  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . 9  
Table 2. Device Bus OperationsFlash Word Mode, CIOf = VIH,  
DQ7: Data# Polling .................................................................35  
Figure 8. Data# Polling Algorithm .................................................. 35  
DQ6: Toggle Bit I ....................................................................36  
Figure 9. Toggle Bit Algorithm........................................................ 37  
DQ2: Toggle Bit II ................................................................... 37  
Reading Toggle Bits DQ6/DQ2 ...............................................37  
DQ5: Exceeded Timing Limits ................................................ 38  
DQ3: Sector Erase Timer ....................................................... 38  
DQ1: Write-to-Buffer Abort .....................................................38  
Table 15. Write Operation Status ................................................... 38  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 39  
Figure 10. Maximum Negative Overshoot Waveform ................... 39  
Figure 11. Maximum Positive Overshoot Waveform..................... 39  
Operating Ranges. . . . . . . . . . . . . . . . . . . . . . . . . 39  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 40  
SRAM DC and Operating Characteristics. . . . . . 41  
Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 12. Test Setup.................................................................... 42  
Table 16. Test Specifications ......................................................... 42  
Key to Switching Waveforms. . . . . . . . . . . . . . . . 42  
Figure 13. Input Waveforms and Measurement Levels ................. 42  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 43  
Flash Read-Only Operations .................................................43  
Figure 14. Read Operation Timings ............................................... 43  
Figure 15. Page Read Timings ...................................................... 44  
Hardware Reset (RESET#) .................................................... 45  
Figure 16. Reset Timings ............................................................... 45  
Flash Erase and Program Operations .................................... 46  
Figure 17. Program Operation Timings.......................................... 47  
Figure 18. Accelerated Program Timing Diagram.......................... 47  
Figure 19. Chip/Sector Erase Operation Timings .......................... 48  
Figure 20. Data# Polling Timings (During Embedded Algorithms). 49  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)...... 50  
Figure 22. DQ2 vs. DQ6................................................................. 50  
Temporary Sector Unprotect .................................................. 51  
Figure 23. Temporary Sector Group Unprotect Timing Diagram ... 51  
Figure 24. Sector Group Protect and Unprotect Timing Diagram .. 52  
Alternate CE# Controlled Erase and Program Operations ..... 53  
Figure 25. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings.......................................................................... 54  
SRAM Read Cycle ..................................................................55  
Figure 26. SRAM Read CycleAddress Controlled...................... 55  
Figure 27. SRAM Read Cycle........................................................ 56  
SRAM Write Cycle ..................................................................57  
Figure 28. SRAM Write CycleWE# Control ................................ 57  
Figure 29. SRAM Write CycleCE1#s Control ............................. 58  
Figure 30. SRAM Write CycleUB#s and LB#s Control............... 59  
Erase And Programming Performance. . . . . . . . 60  
Flash Latchup Characteristics. . . . . . . . . . . . . . . 60  
Package Pin Capacitance. . . . . . . . . . . . . . . . . . . 61  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SRAM Data Retention. . . . . . . . . . . . . . . . . . . . . . 62  
Figure 31. CE#1 Controlled Data Retention Mode......................... 62  
Figure 32. CE2s Controlled Data Retention Mode......................... 62  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 63  
TLB06969-Ball Fine-pitch Ball Grid Array (FBGA)  
SRAM Word Mode, CIOs = V ......................................................11  
IL  
Table 3. Device Bus OperationsFlash Byte Mode, CIOf = V ;  
SS  
SRAM Word Mode, CIOs = V .....................................................12  
CC  
Table 4. Device Bus OperationsFlash Byte Mode, CIOf = V ; SRAM  
IL  
Byte Mode, CIOs = V ..................................................................13  
SS  
Requirements for Reading Array Data ...................................14  
Page Mode Read ....................................................................14  
Writing Commands/Command Sequences ............................14  
Write Buffer ............................................................................. 14  
Accelerated Program Operation .............................................14  
Autoselect Functions .............................................................. 14  
Automatic Sleep Mode ...........................................................15  
RESET#: Hardware Reset Pin ...............................................15  
Output Disable Mode .............................................................. 15  
................................................................................................ 16  
Sector Group Protection and Unprotection ............................. 18  
Table 6. Am29LV320MT Top Boot Sector Protection .....................18  
................................................................................................ 18  
Table 7. Am29LV320MB Bottom Boot Sector Protection ................18  
Write Protect (WP#) ................................................................18  
Temporary Sector Group Unprotect ....................................... 19  
Figure 1. Temporary Sector Group Unprotect Operation................ 19  
Figure 2. In-System Sector Group Protect/Unprotect Algorithms ... 20  
SecSi (Secured Silicon) Sector Flash Memory Region .......... 21  
Table 8. SecSi Sector Contents ......................................................21  
Figure 3. SecSi Sector Protect Verify.............................................. 22  
Hardware Data Protection ......................................................22  
Low VCC Write Inhibit ............................................................ 22  
Write Pulse Glitch” Protection ...............................................22  
Logical Inhibit .......................................................................... 22  
Power-Up Write Inhibit ............................................................ 22  
Common Flash Memory Interface (CFI). . . . . . . 22  
Command Definitions . . . . . . . . . . . . . . . . . . . . . 25  
Reading Array Data ................................................................25  
Reset Command .....................................................................26  
Autoselect Command Sequence ............................................26  
Enter SecSi Sector/Exit SecSi Sector Command Sequence ..26  
Word Program Command Sequence .....................................26  
Unlock Bypass Command Sequence .....................................27  
Write Buffer Programming ......................................................27  
Accelerated Program .............................................................. 28  
Figure 4. Write Buffer Programming Operation............................... 29  
Figure 5. Program Operation .......................................................... 30  
Program Suspend/Program Resume Command Sequence ... 30  
Figure 6. Program Suspend/Program Resume............................... 31  
Chip Erase Command Sequence ........................................... 31  
Sector Erase Command Sequence ........................................31  
Figure 7. Erase Operation............................................................... 32  
Erase Suspend/Erase Resume Commands ........................... 32  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 35  
8 x 10 mm Package ................................................................ 64  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 65  
June 10, 2003  
Am41LV3204M  
3
P R E L I M I N A R Y  
PRODUCT SELECTOR GUIDE  
Am41LV3204M  
Family Part Number  
Flash Memory  
SRAM  
Standard Voltage  
Speed Option  
10  
10  
Range: VCC = 2.7–3.3 V  
Max Access Time (ns)  
Max. CE# Access (ns)  
100  
100  
30  
70  
70  
Max. Page Access Time (tPACC  
OE# Access (ns)  
)
N/A  
35  
30  
Note: See “AC Characteristics” for full specifications.  
MCP BLOCK DIAGRAM  
VCC  
f
VSS  
A20 to A0  
RY/BY#  
A20 to A0  
A1  
WP#/ACC  
RESET#  
CE#f  
32 M Bit  
Flash Memory  
DQ15/A-1 to DQ0  
CIOf  
DQ15/A-1 to DQ0  
VCCs/VCCQ VSS/VSSQ  
A17 to A0  
SA  
4 M Bit  
Static RAM  
LB#s  
UB#s  
WE#  
DQ15/A-1 to DQ0  
OE#  
CE1#s  
CE2s  
CIOs  
4
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
FLASH MEMORY BLOCK DIAGRAM  
DQ15DQ0  
VCC  
VSS  
Sector Switches  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#f  
WE#  
State  
Control  
WP#/ACC  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#f  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
A20–A0  
June 10, 2003  
Am41LV3204M  
5
P R E L I M I N A R Y  
CONNECTION DIAGRAMS  
69-ball Fine-pitch BGA  
Top View, Balls Facing Down  
Flash only  
SRAM only  
A1  
A5  
NC  
B5  
A6  
A10  
NC  
NC  
NC  
B1  
B3  
B4  
B6  
B7  
B8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
Shared  
C2  
A3  
C3  
A6  
C4  
C5  
C6  
C7  
A19  
D7  
A9  
C8  
A12  
D8  
A13  
E8  
A14  
F8  
C9  
A15  
D9  
NC  
UB# RESET# CE2s  
D5  
D2  
A2  
D3  
A5  
D4  
D6  
A18 RY/BY# A20  
E1  
NC  
F1  
NC  
E2  
A1  
E3  
A4  
E4  
A17  
F4  
E7  
A10  
F7  
E9  
NC  
E10  
NC  
F2  
A0  
F3  
F9  
A16  
G9  
F10  
NC  
V
SS  
DQ1  
DQ6  
G7  
SA#  
G8  
G2  
CE#f  
H2  
G3  
OE#  
H3  
G4  
DQ9  
H4  
G5  
DQ3  
H5  
G6  
DQ4  
H6  
DQ13 DQ15/A-1 CIOf  
H7  
DQ12  
J7  
H8  
DQ7  
J8  
H9  
V
CC  
f
V s  
CC  
CE1#s DQ0  
DQ10  
J4  
V
SS  
J3  
J5  
J6  
DQ8  
DQ2  
DQ11 CIOs  
DQ5  
DQ14  
K1  
K5  
K6  
K10  
NC  
NC  
NC  
NC  
integrity may be compromised if the package body is  
exposed to temperatures about 150°C for prolonged  
periods of time.  
SPECIAL PACKAGE HANDLING  
INSTRUCTIONS FOR FBGA PACKAGES  
Special handling is required for Flash Memory products  
in molded packages (BGA). The package and/or data  
6
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
PIN DESCRIPTION  
A20–A0  
= 21 Address inputs  
LOGIC SYMBOL  
DQ14–DQ0 = 15 Data inputs/outputs  
21  
DQ15/A-1  
= DQ15 (Data input/output, word mode),  
A20–A0  
CE1#s  
16 or 8  
A-1 (25B Address input, byte mode)  
DQ15–DQ0  
(A-1)  
CE#f  
= Chip Enable input (Flash)  
CE2s  
OE#  
CE1#s, CE2s= Chip Enable (SRAM)  
OE#  
WE#  
= Output Enable input (Flash)  
= Write Enable input (Flash)  
WE#  
WP#/ACC  
WP#/ACC = Hardware Write Protect input/Pro-  
gramming Acceleration input (Flash)  
RESET#f  
UB#s  
RESET#f  
= Hardware Reset Pin input (Flash)  
VCC  
f
= Flash 3.0 volt-only single power sup-  
ply (see Product Selector Guide for  
speed options and voltage  
LB#s  
CIOs  
RY/BY#  
supply tolerances)  
SA#  
CIOf  
VCC  
VSS  
NC  
s
= SRAM Power Supply  
= Device Ground  
= Pin Not Connected Internally  
= Upper Byte Control (SRAM)  
= Lower Byte Control (SRAM)  
= I/O Configuration (SRAM)  
CIOs = VIH = Word Mode (x16)  
CIOs = VIL = Byte Mode (X8)  
= Highest Order Address Pin (SRAM)  
Byte Mode  
UB#s  
LB#s  
CIOs  
SA  
CIOf  
= I/O Configuration (Flash)  
CIOf = VIH = Word Mode (x16)  
CIOf = VIL = Byte Mode (X8)  
June 10, 2003  
Am41LV3204M  
7
P R E L I M I N A R Y  
ORDERING INFORMATION  
The order number (Valid Combination) is formed by the following:  
Am41LV32x 10  
4
M
T
I
T
TAPE AND REEL  
T
S
=
=
7 inches  
13 inches  
TEMPERATURE RANGE  
Industrial (–40°C to +85°C)  
I
=
SPEED OPTION  
See Product Selector Guide and Valid Combinations  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top sector  
Bottom sector  
PROCESS TECHNOLOGY  
0.23 µm MirrorBit  
M
=
SRAM DEVICE DENSITY  
4 Mbits  
4
=
AMD DEVICE NUMBER/DESCRIPTION  
Am41LV3204M  
Stacked Multi-Chip Package (MCP) Flash Memory and SRAM  
Am29LV320M 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) Flash Memory and  
4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult the local AMD sales office to confirm  
availability of specific valid combinations and to check on newly re-  
leased combinations  
Order Number  
Am41LV3204MT10I  
Am41LV3204MB10I  
Package Marking  
M410000095  
T
M410000096  
8
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
DEVICE BUS OPERATIONS  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the in-  
puts and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
June 10, 2003  
Am41LV3204M  
9
P R E L I M I N A R Y  
Table 1. Device Bus Operations—Flash Word Mode, CIOf = VIH, SRAM Word Mode, CIOs = VIH  
Operation  
(Notes 1, 2)  
WP#/ACC DQ7– DQ15–  
CE#f CE1#s CE2s OE# WE# SA  
Addr. LB#s UB#s RESET#  
(Note 4)  
DQ0  
DQ8  
H
X
H
X
H
X
X
L
X
L
X
L
Read from Flash  
L
L
H
X
H
L
X
X
X
AIN  
AIN  
X
X
X
X
X
X
X
H
L/H  
DOUT  
DOUT  
Write to Flash  
Standby  
L
H
(Note 4)  
H
DIN  
DIN  
VCC  
0.3 V  
±
VCC ±  
0.3 V  
X
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
H
H
H
H
X
X
X
X
L
X
L
Output Disable  
L
L
H
H
L/H  
X
H
X
H
X
L
Flash Hardware  
Reset  
X
L
X
X
X
X
X
X
X
L
L/H  
X
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Protect  
(Note 5)  
H
L
X
X
VID  
L/H  
DIN  
X
X
X
H
X
L
X
L
SADD,  
A6 = H,  
A1 = H,  
A0 = L  
Sector Unprotect  
(Note 5)  
L
X
H
H
X
L
L
X
H
X
X
X
X
X
X
X
VID  
VID  
H
(Note 6)  
(Note 6)  
X
DIN  
H
X
X
L
Temporary Sector  
Unprotect  
X
DIN  
High-Z  
DOUT  
L
H
L
L
L
DOUT  
Read from SRAM  
Write to SRAM  
L
L
H
H
AIN  
High-Z DOUT  
DOUT High-Z  
H
L
L
DIN  
High-Z  
DIN  
DIN  
DIN  
H
X
L
X
AIN  
H
L
L
H
X
H
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SA = SRAM Address  
Input, Byte Mode, SADD = Flash Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Other operations except for those indicated in this column are inhibited.  
2. Do not apply CE#f = VIL, CE1#s = VIL and CE2s = VIH at the same time.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC = VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by 40%.  
5. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “” section.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector protection  
depends on whether they were last protected or unprotected using the method described in “”. If WP#/ACC = VHH, all sectors will  
be unprotected.  
10  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Table 2. Device Bus Operations—Flash Word Mode, CIOf = VIH, SRAM Word Mode, CIOs = VIL  
Operation  
(Notes 1, 2)  
LB#s  
(Note 3) (Note 3)  
UB#s  
WP#/ACC DQ7– DQ15–  
CE#f CE1#s CE2s OE# WE# SA Addr.  
RESET#  
(Note 4)  
DQ0  
DQ8  
H
X
H
X
H
X
L
X
L
Read from Flash  
Write to Flash  
L
L
H
L
X
X
AIN  
AIN  
X
X
X
X
H
L/H  
DOUT  
DOUT  
X
L
L
H
H
(Note 3)  
DIN  
DIN  
X
L
VCC  
0.3 V  
±
VCC ±  
0.3 V  
Standby  
X
H
X
X
H
X
X
SA  
X
X
X
X
X
DNU  
X
X
DNU  
X
H
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
Output Disable  
L
H
X
L
H
L/H  
L/H  
H
X
H
Flash Hardware  
Reset  
X
L
L
X
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Protect  
(Note 5)  
H
L
X
X
X
VID  
L/H  
DIN  
X
X
H
X
L
X
L
SADD,  
A6 = H,  
A1 = H,  
A0 = L  
Sector Unprotect  
(Note 5)  
L
H
X
L
X
X
X
X
X
X
VID  
(Note 6)  
(Note 6)  
DIN  
X
H
X
L
X
L
Temporary Sector  
Unprotect  
X
X
AIN  
VID  
DIN  
High-Z  
Read from SRAM  
Write to SRAM  
H
H
H
H
L
H
L
SA  
SA  
AIN  
AIN  
X
X
X
X
H
H
X
X
DOUT High-Z  
DIN High-Z  
L
X
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SA = SRAM Address  
Input, Byte Mode, SADD = Flash Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out, DNU = Do Not Use  
Notes:  
1. Other operations except for those indicated in this column are inhibited.  
2. Do not apply CE#f = VIL, CE1#s = VIL and CE2s = VIH at the same time.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC = VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by 40%.  
5. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “” section.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector protection  
depends on whether they were last protected or unprotected using the method described in “”. If WP#/ACC = VHH, all sectors will  
be unprotected.  
June 10, 2003  
Am41LV3204M  
11  
P R E L I M I N A R Y  
Table 3. Device Bus Operations—Flash Byte Mode, CIOf = VIL; SRAM Word Mode, CIOs = VCC  
Operation  
(Notes 1, 2)  
LB#s  
(Note 3) (Note 3)  
UB#s  
WP#/ACC DQ7– DQ15–  
CE#f CE1#s CE2s OE# WE# SA  
Addr.  
RESET#  
(Note 4)  
DQ0  
DQ8  
H
X
H
X
H
X
X
L
X
L
X
L
Read from Flash  
Write to Flash  
Standby  
L
L
H
X
H
X
H
L
X
X
X
X
X
AIN  
X
X
X
X
X
X
H
L/H  
DOUT  
High-Z  
L
AIN  
X
H
(Note 3)  
H
DIN  
High-Z  
VCC  
0.3 V  
±
VCC ±  
0.3 V  
X
H
X
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
L
X
L
Output Disable  
L
L
H
X
H
L/H  
X
H
X
H
X
L
Flash Hardware  
Reset  
X
L
X
X
X
X
L
L/H  
X
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Protect  
(Note 5)  
H
L
X
X
VID  
L/H  
DIN  
X
X
H
X
L
X
L
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector  
Unprotect  
(Note 5)  
L
X
H
H
X
L
L
X
H
X
X
X
X
X
X
X
VID  
VID  
H
(Note 6)  
(Note 6)  
X
DIN  
X
Temporary  
Sector  
Unprotect  
H
X
x
AIN  
DIN  
High-Z  
L
L
H
L
L
L
DOUT  
High-Z  
DOUT  
DIN  
DOUT  
DOUT  
High-Z  
DIN  
Read from  
SRAM  
L
L
H
H
AIN  
H
L
L
Write to SRAM  
H
X
L
X
AIN  
H
L
L
H
X
High-Z  
DIN  
DIN  
H
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SA = SRAM Address  
Input, Byte Mode, SADD = Flash Sector Address, AIN = Address In (for Flash Byte Mode, DQ15 = A-1), DIN = Data In, DOUT  
Data Out  
=
Notes:  
1. Other operations except for those indicated in this column are inhibited.  
2. Do not apply CE#f = VIL, CE1#s = VIL and CE2s = VIH at the same time.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC = VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by 40%.  
5. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “” section.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector protection  
depends on whether they were last protected or unprotected using the method described in “”. If WP#/ACC = VHH, all sectors will  
be unprotected.  
12  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Table 4. Device Bus Operations—Flash Byte Mode, CIOf = VIL; SRAM Byte Mode, CIOs = VSS  
Operation  
(Notes 1, 2)  
LB#s  
(Note 3) (Note 3)  
UB#s  
WP#/ACC DQ7– DQ15–  
CE#f CE1#s CE2s OE# WE# SA  
Addr.  
RESET#  
(Note 4)  
DQ0  
DQ8  
H
X
H
X
H
X
L
X
L
Read from Flash  
Write to Flash  
L
L
H
L
X
X
AIN  
X
X
X
X
H
L/H  
DOUT  
High-Z  
X
L
L
H
AIN  
H
(Note 3)  
DIN  
High-Z  
X
L
VCC  
0.3 V  
±
VCC ±  
0.3 V  
Standby  
X
H
X
X
H
X
X
SA  
X
X
X
X
X
DNU  
X
X
DNU  
X
H
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
Output Disable  
H
H
X
L
H
L/H  
L/H  
H
X
H
Flash Hardware  
Reset  
X
L
L
X
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Protect  
(Note 5)  
H
L
X
X
X
VID  
L/H  
DIN  
X
X
H
X
L
X
L
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Unprotect  
(Note 5)  
L
H
X
L
X
X
X
X
X
X
VID  
(Note 6)  
(Note 6)  
DIN  
DIN  
X
H
X
L
X
L
Temporary  
Sector Unprotect  
X
X
AIN  
VID  
High-Z  
Read from SRAM  
Write to SRAM  
H
H
H
H
L
H
L
SA  
SA  
AIN  
AIN  
X
X
X
X
H
H
X
X
DOUT  
DIN  
High-Z  
High-Z  
L
X
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SA = SRAM Address  
Input, Byte Mode, SADD = Flash Sector Address, AIN = Address In (for Flash Byte Mode, DQ15 = A-1), DIN = Data In, DOUT  
Data Out, DNU = Do Not Use  
=
Notes:  
1. Other operations except for those indicated in this column are inhibited.  
2. Do not apply CE#f = VIL, CE1#s = VIL and CE2s = VIH at the same time.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC = VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by 40%.  
5. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “”.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector protection  
depends on whether they were last protected or unprotected using the method described in “”. If WP#/ACC = VHH, all sectors will  
be unprotected.  
June 10, 2003  
Am41LV3204M  
13  
P R E L I M I N A R Y  
tails on programming data to the device using both  
standard and Unlock Bypass command sequences.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output con-  
trol and gates array data to the output pins. WE#  
should remain at VIH. The CIOf pin determines  
whether the device outputs array data in words or  
bytes.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Tables 3 and 2 indicates the  
address space that each sector occupies.  
Refer to the DC Characteristics table for the active  
current specification for the write mode. The AC Char-  
acteristics section contains timing specification tables  
and timing diagrams for write operations.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid  
data on the device data outputs. The device remains  
enabled for read access until the command register  
contents are altered.  
Write Buffer  
Write Buffer Programming allows the system to write a  
maximum of 16 words/32-bytes in one programming  
operation. This results in faster effective programming  
time than the standard programming algorithms. See  
“Write Buffer” for more information.  
Accelerated Program Operation  
The device offers accelerated program operations  
through the ACC function. This is one of two functions  
provided by the WP#/ACC pin. This function is prima-  
rily intended to allow faster manufacturing throughput  
at the factory.  
See “Reading Array Data” for more information. Refer  
to the AC Flash Read-Only Operations table for timing  
specifications and to Figure 14 for the timing diagram.  
Refer to the DC Characteristics table for the active  
current specification on reading array data.  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
mal operation. Note that the WP#/ACC pin must not  
be at VHH for operations other than accelerated pro-  
gramming, or device damage may result. In addition,  
no external pullup is necessary since the WP#/ACC  
Page Mode Read  
The device is capable of fast page mode read and is  
compatible with the page mode Mask ROM read oper-  
ation. This mode provides faster read access speed  
for random locations within a page. The page size of  
the device is 4 words/8-bytes. The appropriate page is  
selected by the higher address bits A(max)–A2. Ad-  
dress bits A1–A0 determine the specific word within a  
page. This is an asynchronous operation; the micro-  
processor supplies the specific word location.  
The random or initial page access is equal to tACC or  
tCE and subsequent page read accesses (as long as  
the locations specified by the microprocessor falls  
within that page) is equivalent to tPACC. When CE#f is  
deasserted and reasserted for a subsequent access,  
the access time is tACC or tCE. Fast page mode ac-  
cesses are obtained by keeping the “read-page ad-  
dresses” constant and changing the “intra-read page”  
addresses.  
pin has internal pullup to VCC  
.
Autoselect Functions  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ7–DQ0. Standard read cycle timings apply in  
this mode. Refer to the Autoselect Mode and Autose-  
lect Command Sequence sections for more informa-  
tion.  
Writing Commands/Command Sequences  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
Standby Mode  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
The device features an Unlock Bypass mode to facil-  
itate faster programming. Once the device enters the  
Unlock Bypass mode, only two write cycles are re-  
quired to program a word or byte, instead of four. The  
“Word Program Command Sequence” section has de-  
The device enters the CMOS standby mode when the  
CE#f and RESET# pins are both held at VCC ± 0.3 V.  
14  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
(Note that this is a more restricted voltage range than  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is  
ready to accept another command sequence, to en-  
sure data integrity.  
VIH.) If CE#f and RESET# are held at VIH, but not  
within VCC ± 0.3 V, the device will be in the standby  
mode, but the standby current will be greater. The de-  
vice requires standard access time (tCE) for read ac-  
cess when the device is in either of these standby  
modes, before it is ready to read data.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS±0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will  
be greater.  
Refer to the DC Characteristics table for the standby  
current specification.  
Automatic Sleep Mode  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of  
the CE#, WE#, and OE# control signals. Standard ad-  
dress access timings provide new data when ad-  
dresses are changed. While in sleep mode, output  
data is latched and always available to the system.  
Refer to the DC Characteristics table for the automatic  
sleep mode current specification.  
Refer to the AC Characteristics tables for RESET# pa-  
rameters and to Figure 16 for the timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is  
disabled. The output pins are placed in the high  
impedance state.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
June 10, 2003  
Am41LV3204M  
15  
P R E L I M I N A R Y  
Table 5. Am29LV320M Top Boot Sector Architecture  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
Address Range  
SA0  
SA1  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001101xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011000xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
101011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
100100xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–00FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
00000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
16  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Table 5. Am29LV320M Top Boot Sector Architecture  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
Address Range  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3F1FFFh  
3F2000h–3F3FFFh  
3F4000h–3F5FFFh  
3F6000h–3F7FFFh  
3F8000h–3F9FFFh  
3FA000h–3FBFFFh  
3FC000h–3FDFFFh  
3FE000h–3FFFFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
June 10, 2003  
Am41LV3204M  
17  
P R E L I M I N A R Y  
Sector Group Protection and  
Unprotection  
Sector/  
Sector Block Size  
Sector  
A20–A12  
111111011h  
111111100h  
111111101h  
111111110h  
111111111h  
SA66  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
The hardware sector group protection feature disables  
both program and erase operations in any sector  
group. In this device, a sector group consists of four  
adjacent sectors that are protected or unprotected at  
the same time (see Tables 4 and 6). The hardware  
sector group unprotection feature re-enables both pro-  
gram and erase operations in previously protected  
sector groups. Sector group protection/unprotection  
can be implemented via two methods.  
SA67  
SA68  
SA69  
SA70  
Table 7. Am29LV320MB Bottom Boot  
Sector Protection  
Sector protection/unprotection requires VID on the RE-  
SET# pin only, and can be implemented either in-sys-  
tem or via programming equipment. Figure 2 shows  
the algorithms and Figure 24 shows the timing dia-  
gram. This method uses standard microprocessor bus  
cycle timing. For sector group unprotect, all unpro-  
tected sector groups must first be protected prior to  
the first sector group unprotect write cycle.  
Sector/  
Sector Block Size  
Sector  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
A20–A12  
000000000h  
000000001h  
000000010h  
000000011h  
000000100h  
000000101h  
000000110h  
000000111h  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
The device is shipped with all sector groups unpro-  
tected. AMD offers the option of programming and  
protecting sector groups at its factory prior to shipping  
the device through AMD’s ExpressFlash™ Service.  
Contact an AMD representative for details.  
8 Kbytes  
8 Kbytes  
000001XXXh,  
000010XXXh,  
000011XXXh,  
SA8–SA10  
192 (3x64) Kbytes  
It is possible to determine whether a sector group is  
protected or unprotected. See the Autoselect Mode  
section for details.  
SA11–SA14  
SA15–SA18  
SA19–SA22  
SA23–SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55–SA58  
SA59–SA62  
SA63–SA66  
SA67–SA70  
0001XXXXXh  
0010XXXXXh  
0011XXXXXh  
0100XXXXXh  
0101XXXXXh  
0110XXXXXh  
0111XXXXXh  
1000XXXXXh  
1001XXXXXh  
1010XXXXXh  
1011XXXXXh  
1100XXXXXh  
1101XXXXXh  
1110XXXXXh  
1111XXXXXh  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
Table 6. Am29LV320MT Top Boot  
Sector Protection  
Sector/  
Sector  
A20–A12  
Sector Block Size  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
SA0-SA3  
0000XXXXXh  
0001XXXXXh  
0010XXXXXh  
0011XXXXXh  
0100XXXXXh  
0101XXXXXh  
0110XXXXXh  
0111XXXXXh  
1000XXXXXh,  
1001XXXXXh  
1010XXXXXh  
1011XXXXXh  
1100XXXXXh  
1101XXXXXh  
1110XXXXXh  
SA4-SA7  
SA8-SA11  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32–SA35  
SA36–SA39  
SA40–SA43  
SA44–SA47  
SA48–SA51  
SA52-SA55  
SA56-SA59  
Write Protect (WP#)  
The Write Protect function provides a hardware  
method of protecting the top two or bottom two sectors  
without using VID. WP# is one of two functions pro-  
vided by the WP#/ACC input.  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in the first  
or last sector independently of whether those sectors  
were protected or unprotected using the method de-  
scribed in “Sector Group Protection and Unprotection”.  
Note that if WP#/ACC is at VIL when the device is in  
111100XXXh  
111101XXXh  
111110XXXh  
SA60-SA62  
192 (3x64) Kbytes  
SA63  
SA64  
SA65  
111111000h  
111111001h  
111111010h  
8 Kbytes  
8 Kbytes  
8 Kbytes  
18  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
the standby mode, the maximum input load current is  
increased. See the table in “DC Characteristics”.  
START  
If the system asserts VIH on the WP#/ACC pin, the de-  
vice reverts to whether the top or bottom two sectors  
were previously set to be protected or unprotected  
using the method described in “Sector Group Protec-  
tion and Unprotection”. Note: No external pullup is  
necessary since the WP#/ACC pin has internal pullup  
to VCC  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
Temporary Sector Group Unprotect  
(Note: In this device, a sector group consists of four adjacent  
sectors that are protected or unprotected at the same time  
(see Table 6).  
RESET# = VIH  
This feature allows temporary unprotection of previ-  
ously protected sector groups to change data in-sys-  
tem. The Sector Group Unprotect mode is activated by  
setting the RESET# pin to VID. During this mode, for-  
merly protected sector groups can be programmed or  
erased by selecting the sector group addresses. Once  
VID is removed from the RESET# pin, all the previ-  
ously protected sector groups are protected again.  
Figure 1 shows the algorithm, and Figure 23 shows  
the timing diagrams, for this feature.  
Temporary Sector  
Group Unprotect  
Completed (Note 2)  
Notes:  
1. All protected sector groups unprotected (If WP# = VIL,  
the first or last sector will remain protected).  
2. All previously protected sector groups are protected  
once again.  
Figure 1. Temporary Sector Group  
Unprotect Operation  
June 10, 2003  
Am41LV3204M  
19  
P R E L I M I N A R Y  
START  
START  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
Protect all sector  
groups: The indicated  
portion of the sector  
group protect algorithm  
must be performed for all  
unprotected sector  
groups prior to issuing  
the first sector group  
unprotect address  
RESET# = VID  
Wait 1 µs  
Wait 1 µs  
Temporary Sector  
Group Unprotect  
Mode  
Temporary Sector  
Group Unprotect  
Mode  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
group address  
All sector  
groups  
No  
protected?  
Yes  
Sector Group Protect:  
Write 60h to sector  
group address with  
A6–A0 = 0xx0010  
Set up first sector  
group address  
Sector Group  
Unprotect:  
Wait 150 µs  
Write 60h to sector  
group address with  
A6–A0 = 1xx0010  
Verify Sector Group  
Protect: Write 40h  
to sector group  
address with  
A6–A0 = 0xx0010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
Verify Sector Group  
Unprotect: Write  
40h to sector group  
address with  
Read from  
sector group address  
with A6–A0  
= 0xx0010  
Increment  
PLSCNT  
A6–A0 = 1xx0010  
No  
No  
PLSCNT  
= 25?  
Read from  
sector group  
address with  
Data = 01h?  
Yes  
A6–A0 = 1xx0010  
No  
Yes  
Set up  
next sector group  
address  
Protect  
another  
sector group?  
Yes  
No  
PLSCNT  
= 1000?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
Last sector  
group  
verified?  
No  
Device failed  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Sector Group  
Unprotect  
Sector Group  
Protect  
Sector Group  
Protect complete  
Write reset  
command  
Algorithm  
Algorithm  
Sector Group  
Unprotect complete  
Figure 2. In-System Sector Group Protect/Unprotect Algorithms  
Am41LV3204M  
20  
June 10, 2003  
P R E L I M I N A R Y  
Factory Locked: SecSi Sector Programmed and  
SecSi (Secured Silicon) Sector Flash  
Memory Region  
Protected At the Factory  
In devices with an ESN, the SecSi Sector is protected  
when the device is shipped from the factory. The SecSi  
Sector cannot be modified in any way. See Table 5 for  
SecSi Sector addressing.  
The SecSi (Secured Silicon) Sector feature provides a  
Flash memory region that enables permanent part  
identification through an Electronic Serial Number  
(ESN). The SecSi Sector is 128 words in length, and  
uses a SecSi Sector Indicator Bit (DQ7) to indicate  
whether or not the SecSi Sector is locked when  
shipped from the factory. This bit is permanently set at  
the factory and cannot be changed, which prevents  
cloning of a factory locked part. This ensures the secu-  
rity of the ESN once the product is shipped to the field.  
Customers may opt to have their code programmed by  
AMD through the AMD ExpressFlash service. The de-  
vices are then shipped from AMD’s factory with the  
SecSi Sector permanently locked. Contact an AMD  
representative for details on using AMD’s Express-  
Flash service.  
AMD offers the device with the SecSi Sector either  
factory locked or customer lockable. The fac-  
tory-locked version is always protected when shipped  
from the factory, and has the SecSi (Secured Silicon)  
Sector Indicator Bit permanently set to a “1.” The cus-  
tomer-lockable version is shipped with the SecSi Sec-  
tor unprotected, allowing customers to program the  
sector after receiving the device. The customer-lock-  
able version also has the SecSi Sector Indicator Bit  
permanently set to a “0.” Thus, the SecSi Sector Indi-  
cator Bit prevents customer-lockable devices from  
being used to replace devices that are factory locked.  
Customer Lockable: SecSi Sector NOT  
Programmed or Protected At the Factory  
As an alternative to the factory-locked version, the de-  
vice may be ordered such that the customer may pro-  
gram and protect the 128-word/256-bytes SecSi  
sector.  
The system may program the SecSi Sector using the  
write-buffer, accelerated and/or unlock bypass meth-  
ods, in addition to the standard programming com-  
mand sequence. See Command Definitions.  
Programming and protecting the SecSi Sector must be  
used with caution since, once protected, there is no  
procedure available for unprotecting the SecSi Sector  
area and none of the bits in the SecSi Sector memory  
space can be modified in any way.  
The SecSi sector address space in this device is allo-  
cated as follows:  
Table 8. SecSi Sector Contents  
SecSi Sector  
Address  
Range  
Standard  
Factory  
Locked  
The SecSi Sector area can be protected using one of  
the following procedures:  
ExpressFlash  
Factory Locked  
Customer  
Lockable  
x16  
000000h–  
000007h  
ESN or determined  
by customer  
ESN  
Write the three-cycle Enter SecSi Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 2, ex-  
cept that RESET# may be at either VIH or VID. This  
allows in-system protection of the SecSi Sector  
without raising any device pin to a high voltage.  
Note that this method is only applicable to the SecSi  
Sector.  
Determined by  
customer  
000008h–  
00007Fh  
Determined  
by customer  
Unavailable  
The system accesses the SecSi Sector through a  
command sequence (see “Enter SecSi Sector/Exit  
SecSi Sector Command Sequence”). After the system  
has written the Enter SecSi Sector command se-  
quence, it may read the SecSi Sector by using the ad-  
dresses normally occupied by the first sector (SA0).  
This mode of operation continues until the system is-  
sues the Exit SecSi Sector command sequence, or  
until power is removed from the device. On power-up,  
or following a hardware reset, the device reverts to  
sending commands to sector SA0.  
To verify the protect/unprotect status of the SecSi  
Sector, follow the algorithm shown in Figure 3.  
Once the SecSi Sector is programmed, locked and  
verified, the system must write the Exit SecSi Sector  
Region command sequence to return to reading and  
writing within the remainder of the array.  
June 10, 2003  
Am41LV3204M  
21  
P R E L I M I N A R Y  
hardware data protection measures prevent accidental  
erasure or programming, which might otherwise be  
caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system  
noise.  
START  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control  
pins to prevent unintentional writes when VCC is  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
greater than VLKO  
.
A1 = 1, A0 = 0  
Write Pulse “Glitch” Protection  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
Noise pulses of less than 5 ns (typical) on OE#, CE#f  
or WE# do not initiate a write cycle.  
A1 = 1, A0 = 0  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
Figure 3. SecSi Sector Protect Verify  
Power-Up Write Inhibit  
Hardware Data Protection  
If WE# = CE#f = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to the read mode on power-up.  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Tables 10 and 13  
for command definitions). In addition, the following  
COMMON FLASH MEMORY INTERFACE (CFI)  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
given in Tables 69. To terminate reading CFI data,  
the system must write the reset command.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 69. The  
system must write the reset command to return the de-  
vice to reading array data.  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the  
World Wide Web at http://www.amd.com/flash/cfi. Al-  
ternatively, contact an AMD representative for copies  
of these documents.  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses  
22  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Table 9. CFI Query Identification String  
Addresses  
(x16)  
Addresses  
(x8)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 10. System Interface String  
Addresses  
(x16)  
Addresses  
(x8)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
36h  
38h  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0007h  
0007h  
000Ah  
0000h  
0001h  
0005h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
V
PP Max. voltage (00h = no VPP pin present)  
Typical timeout per single word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
June 10, 2003  
Am41LV3204M  
23  
P R E L I M I N A R Y  
Table 11. Device Geometry Definition  
Addresses Addresses  
(x16)  
(x8)  
Data  
Description  
27h  
4Eh  
0016h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device, 02h = boot  
device)  
2Ch  
58h  
0002h  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
007Fh  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
003Eh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information (refer to CFI publication 100)  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
24  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Table 12. Primary Vendor-Specific Extended Query  
Addresses Addresses  
(x16)  
(x8)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
0008h  
Process Technology (Bits 7-2) 0010b = 0.23 µm MirrorBit  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
0002h  
0001h  
0001h  
0004h  
0000h  
0000h  
0001h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
04 = 29LV800 mode  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
00h = Uniform Device without WP# protect, 02h = Bottom Boot Device, 03h = Top  
Boot Device, 04h = Uniform sectors bottom WP# protect, 05h = Uniform sectors top  
WP# protect  
4Fh  
50h  
9Eh  
A0h  
0003h  
0001h  
Program Suspend  
00h = Not Supported, 01h = Supported  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Tables 10 and 13 define the valid register  
command sequences. Writing incorrect address and  
data values or writing them in the improper se-  
quence may place the device in an unknown state. A  
reset command is then required to return the device to  
reading array data.  
pens first. Refer to the AC Characteristics section for  
timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. The device is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
All addresses are latched on the falling edge of WE#  
or CE#f, whichever happens later. All data is latched  
on the rising edge of WE# or CE#f, whichever hap-  
After the device accepts an Erase Suspend command,  
the device enters the erase-suspend-read mode, after  
June 10, 2003  
Am41LV3204M  
25  
P R E L I M I N A R Y  
which the system can read data from any  
Autoselect Command Sequence  
non-erase-suspended sector. After completing a pro-  
gramming operation in the Erase Suspend mode, the  
system may once again read array data with the same  
exception. See the Erase Suspend/Erase Resume  
Commands section for more information.  
The autoselect command sequence allows the host  
system to read several identifier codes at specific ad-  
dresses:  
A7:A0  
(x16)  
A6:A-1  
(x8)  
Identifier Code  
The system must issue the reset command to return  
the device to the read (or erase-suspend-read) mode  
if DQ5 goes high during an active program or erase  
operation, or if the device is in the autoselect mode.  
See the next section, Reset Command, for more infor-  
mation.  
Manufacturer ID  
Device ID, Cycle 1  
00h  
01h  
00h  
02h  
Device ID, Cycle 2  
0Eh  
1Ch  
Device ID, Cycle 3  
0Fh  
1Eh  
SecSi Sector Factory Protect  
Sector Protect Verify  
03h  
06h  
(SA)02h  
(SA)04h  
See also Requirements for Reading Array Data in the  
Device Bus Operations section for more information.  
The Flash Read-Only Operations table provides the  
read parameters, and Figure 14 shows the timing dia-  
gram.  
Note: The device ID is read over three cycles. SA = Sector  
Address.  
Tables 10 and 13 show the address and data require-  
ments. This method is an alternative to that shown in  
Table 3, which is intended for PROM programmers  
and requires VID on address pin A9. The autoselect  
command sequence may be written to an address that  
is either in the read or erase-suspend-read mode. The  
autoselect command may not be written while the de-  
vice is actively programming or erasing.  
Reset Command  
Writing the reset command resets the device to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the autoselect command. The  
device then enters the autoselect mode. The system  
may read at any address any number of times without  
initiating another autoselect command sequence.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to the read  
mode. Once erasure begins, however, the device ig-  
nores reset commands until the operation is complete.  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the device to  
the read mode. If the program command sequence is  
written while the device is in the Erase Suspend mode,  
writing the reset command returns the device to the  
erase-suspend-read mode. Once programming be-  
gins, however, the device ignores reset commands  
until the operation is complete.  
The system must write the reset command to return to  
the read mode (or erase-suspend-read mode if the de-  
vice was previously in Erase Suspend).  
Enter SecSi Sector/Exit SecSi Sector  
Command Sequence  
The SecSi Sector region provides a secured data area  
containing an 8-word/16-byte random Electronic Serial  
Number (ESN). The system can access the SecSi  
Sector region by issuing the three-cycle Enter SecSi  
Sector command sequence. The device continues to  
access the SecSi Sector region until the system is-  
sues the four-cycle Exit SecSi Sector command se-  
quence. The Exit SecSi Sector command sequence  
returns the device to normal operation. Tables 10 and  
13 show the address and data requirements for both  
command sequences. See also “SecSi (Secured Sili-  
con) Sector Flash Memory Region” for further informa-  
tion. Note that the ACC function and unlock bypass  
modes are not available when the SecSi Sector is en-  
abled.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to the read mode. If the de-  
vice entered the autoselect mode while in the Erase  
Suspend mode, writing the reset command returns the  
device to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the device to the  
read mode (or erase-suspend-read mode if the device  
was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Pro-  
gramming operation, the system must write the  
Write-to-Buffer-Abort Reset command sequence to  
reset the device for the next operation.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The pro-  
gram command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up  
command. The program address and data are written  
26  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
next, which in turn initiate the Embedded Program al-  
Write Buffer Programming  
gorithm. The system is not required to provide further  
controls or timings. The device automatically provides  
internally generated program pulses and verifies the  
programmed cell margin. Tables 10 and 13 show the  
address and data requirements for the word program  
command sequence.  
Write Buffer Programming allows the system write to a  
maximum of 16 words in one programming operation.  
This results in faster effective programming time than  
the standard programming algorithms. The Write  
Buffer Programming command sequence is initiated  
by first writing two unlock cycles. This is followed by a  
third write cycle containing the Write Buffer Load com-  
mand written at the Sector Address in which program-  
ming will occur. The fourth cycle writes the sector  
address and the number of word locations, minus one,  
to be programmed. For example, if the system will pro-  
gram 6 unique address locations, then 05h should be  
written to the device. This tells the device how many  
write buffer addresses will be loaded with data and  
therefore when to expect the Program Buffer to Flash  
command. The number of locations to program cannot  
exceed the size of the write buffer or the operation will  
abort.  
When the Embedded Program algorithm is complete,  
the device then returns to the read mode and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7 or DQ6. Refer to the Write Operation Status sec-  
tion for information on these status bits.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. The program command sequence should  
be reinitiated once the device has returned to the read  
mode, to ensure data integrity. Note that the SecSi  
Sector, autoselect, and CFI functions are unavailable  
when a program operation is in progress.  
The fifth cycle writes the first address location and  
data to be programmed. The write-buffer-page is se-  
lected by address bits AMAX–A4. All subsequent ad-  
dress/data pairs must fall within the  
selected-write-buffer-page. The system then writes the  
remaining address/data pairs into the write buffer.  
Write buffer locations may be loaded in any order.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from “0” back to a “1.” Attempting to do so may  
cause the device to set DQ5 = 1, or cause the DQ7  
and DQ6 status bits to indicate the operation was suc-  
cessful. However, a succeeding read will show that the  
data is still “0.” Only erase operations can convert a  
“0” to a “1.”  
The write-buffer-page address must be the same for  
all address/data pairs loaded into the write buffer. This  
means Write Buffer Programming cannot be per-  
formed across multiple write-buffer pages. This also  
means that Write Buffer Programming cannot be per-  
formed across multiple sectors. If the system attempts  
to load programming data outside of the selected  
write-buffer page, the operation will abort.  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram words to the device faster than using the stan-  
dard program command sequence. The unlock  
bypass command sequence is initiated by first writing  
two unlock cycles. This is followed by a third write  
cycle containing the unlock bypass command, 20h.  
The device then enters the unlock bypass mode. A  
two-cycle unlock bypass program command sequence  
is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass pro-  
gram command, A0h; the second cycle contains the  
program address and data. Additional data is pro-  
grammed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the stan-  
dard program command sequence, resulting in faster  
total programming time. Tables 10 and 13 show the re-  
quirements for the command sequence.  
Note that if a Write Buffer address location is loaded  
multiple times, the address/data pair counter will be  
decremented for every data load operation. The host  
system must therefore account for loading a  
write-buffer location more than once. The counter  
decrements for each data load operation, not for each  
unique write-buffer-address location. Note also that if  
an address location is loaded more than once into the  
buffer, the final data loaded for that address will be  
programmed.  
Once the specified number of write buffer locations  
have been loaded, the system must then write the Pro-  
gram Buffer to Flash command at the sector address.  
Any other address and data combination aborts the  
Write Buffer Programming operation. The device then  
begins programming. Data polling should be used  
while monitoring the last address location loaded into  
the write buffer. DQ7, DQ6, DQ5, and DQ1 should be  
monitored to determine the device status during Write  
Buffer Programming.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the data  
90h. The second cycle must contain the data 00h. The  
device then returns to the read mode.  
June 10, 2003  
Am41LV3204M  
27  
P R E L I M I N A R Y  
The write-buffer programming operation can be sus-  
command sequence must be written to reset the de-  
vice for the next operation. Note that the full 3-cycle  
Write-to-Buffer-Abort Reset command sequence is re-  
quired when using Write-Buffer-Programming features  
in Unlock Bypass mode.  
pended using the standard program suspend/resume  
commands. Upon successful completion of the Write  
Buffer Programming operation, the device is ready to  
execute the next command.  
The Write Buffer Programming Sequence can be  
aborted in the following ways:  
Accelerated Program  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH for operations  
other than accelerated programming, or device dam-  
age may result. In addition, no external pullup is nec-  
essary since the WP#/ACC pin has internal pullup to  
Load a value that is greater than the page buffer  
size during the Number of Locations to Program  
step.  
Write to an address in a sector different than the  
one specified during the Write-Buffer-Load com-  
mand.  
Write an Address/Data pair to  
a
different  
write-buffer-page than the one selected by the  
Starting Address during the write buffer data load-  
ing stage of the operation.  
VCC  
.
Write data other than the Confirm Command after  
Figure 5 illustrates the algorithm for the program oper-  
ation. Refer to the Flash Erase and Program Opera-  
tions table in the AC Characteristics section for  
parameters, and Figure 17 for timing diagrams.  
the specified number of data load cycles.  
The abort condition is indicated by DQ1 = 1, DQ7 =  
DATA# (for the last address location loaded), DQ6 =  
toggle, and DQ5=0. A Write-to-Buffer-Abort Reset  
28  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Yes  
Buffer Operation?  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
(Note 1)  
Write next address/data pair  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Notes:  
1. When Sector Address is specified, any address in  
the selected sector is acceptable. However, when  
loading Write-Buffer address locations with data, all  
addresses must fall within the selected Write-Buffer  
Page.  
Read DQ7 - DQ0 at  
Last Loaded Address  
2. DQ7 may change simultaneously with DQ5.  
Therefore, DQ7 should be verified.  
3. If this flowchart location was reached because  
DQ5= “1”, then the device FAILED. If this  
flowchart location was reached because DQ1=  
“1”, then the Write to Buffer operation was  
ABORTED. In either case, the proper reset  
command must be written before the device can  
begin another operation. If DQ1=1, write the  
Write-Buffer-Programming-Abort-Reset  
Yes  
DQ7 = Data?  
No  
No  
command. if DQ5=1, write the Reset command.  
No  
DQ1 = 1?  
Yes  
DQ5 = 1?  
Yes  
4. See Tables 10 and 13 for command sequences  
required for write buffer programming.  
Read DQ7 - DQ0 with  
address = Last Loaded  
Address  
Yes  
(Note 2)  
DQ7 = Data?  
No  
(Note 3)  
FAIL or ABORT  
PASS  
Figure 4. Write Buffer Programming Operation  
Am41LV3204M  
June 10, 2003  
29  
P R E L I M I N A R Y  
Program Suspend/Program Resume  
Command Sequence  
The Program Suspend command allows the system to  
interrupt a programming operation or a Write to Buffer  
programming operation so that data can be read from  
any non-suspended sector. When the Program Sus-  
pend command is written during a programming pro-  
cess, the device halts the program operation within 15  
µs maximum (5 µs typical) and updates the status bits.  
Addresses are not required when writing the Program  
Suspend command.  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
After the programming operation has been sus-  
pended, the system can read array data from any  
non-suspended sector. The Program Suspend com-  
mand may also be issued during a programming oper-  
ation while an erase is suspended. In this case, data  
may be read from any addresses not in Erase Sus-  
pend or Program Suspend. If a read is needed from  
the SecSi Sector area (One-time Program area), then  
user must use the proper command sequences to  
enter and exit this region.  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
The system may also write the autoselect command  
sequence when the device is in the Program Suspend  
mode. The system can read as many autoselect  
codes as required. When the device exits the autose-  
lect mode, the device reverts to the Program Suspend  
mode, and is ready for another valid operation. See  
Autoselect Command Sequence for more information.  
Programming  
Completed  
Note: See Tables 10 and 13 for program command  
sequence.  
After the Program Resume command is written, the  
device reverts to programming. The system can de-  
termine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard pro-  
gram operation. See Write Operation Status for more  
information.  
Figure 5. Program Operation  
The system must write the Program Resume com-  
mand (address bits are don’t care) to exit the Program  
Suspend mode and continue the programming opera-  
tion. Further writes of the Resume command are ig-  
nored. Another Program Suspend command can be  
written after the device has resume programming.  
30  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
When the Embedded Erase algorithm is complete, the  
device returns to the read mode and addresses are no  
longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, or DQ2.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0h  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that oc-  
curs, the chip erase command sequence should be  
reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 µs  
Autoselect and SecSi Sector  
Read data as  
required  
read operations are also allowed  
Figure 7 illustrates the algorithm for the erase opera-  
tion. Refer to the Flash Erase and Program Opera-  
tions tables in the AC Characteristics section for  
parameters, and Figure 19 section for timing dia-  
grams.  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
reading?  
No  
Sector Erase Command Sequence  
Yes  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command. Tables 10 and 13 shows  
the address and data requirements for the sector  
erase command sequence. Note that the SecSi Sec-  
tor, autoselect, and CFI functions are unavailable  
when a program operation is in progress.  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
Figure 6. Program Suspend/Program Resume  
Chip Erase Command Sequence  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Tables 10 and  
13 shows the address and data requirements for the  
chip erase command sequence. Note that the SecSi  
Sector, autoselect, and CFI functions are unavailable  
when a program operation is in progress.  
After the command sequence is written, a sector erase  
time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than 50  
µs, otherwise erasure may begin. Any sector erase  
address and command following the exceeded  
time-out may or may not be accepted. It is recom-  
mended that processor interrupts be disabled during  
this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector  
Erase command is written. Any command other than  
Sector Erase or Erase Suspend during the  
time-out period resets the device to the read  
mode. The system must rewrite the command se-  
quence and any additional addresses and commands.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out (See the section on DQ3:  
June 10, 2003  
Am41LV3204M  
31  
P R E L I M I N A R Y  
Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command  
sequence.  
Erase Suspend/Erase Resume  
Commands  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
for erasure. This command is valid only during the  
sector erase operation, including the 50 µs time-out  
period during the sector erase command sequence.  
The Erase Suspend command is ignored if written dur-  
ing the chip erase operation or Embedded Program  
algorithm.  
When the Embedded Erase algorithm is complete, the  
device returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the erase operation by reading DQ7, DQ6, or  
DQ2 in the erasing sector. Refer to the Write Opera-  
tion Status section for information on these status bits.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once the device has returned to  
reading array data, to ensure data integrity.  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a typi-  
cal of 5 µs (maximum of 20 µs) to suspend the erase  
operation. However, when the Erase Suspend com-  
mand is written during the sector erase time-out, the  
device immediately terminates the time-out period and  
suspends the erase operation.  
Figure 7 illustrates the algorithm for the erase opera-  
tion. Refer to the Flash Erase and Program Opera-  
tions tables in the AC Characteristics section for  
parameters, and Figure 19 section for timing dia-  
grams.  
After the erase operation has been suspended, the  
device enters the erase-suspend-read mode. The sys-  
tem can read data from or program data to any sector  
not selected for erasure. (The device “erase sus-  
pends” all sectors selected for erasure.) Reading at  
any address within erase-suspended sectors pro-  
duces status information on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
After an erase-suspended program operation is com-  
plete, the device returns to the erase-suspend-read  
mode. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard word program operation.  
Refer to the Write Operation Status section for more  
information.  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. Refer to the  
Autoselect Mode and Autoselect Command Sequence  
sections for details.  
No  
Data = FFh?  
Yes  
To resume the sector erase operation, the system  
must write the Erase Resume command. The address  
of the erase-suspended sector is required when writ-  
ing this command. Further writes of the Resume com-  
mand are ignored. Another Erase Suspend command  
can be written after the chip has resumed erasing.  
Erasure Completed  
Notes:  
1. See Tables 10 and 13 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 7. Erase Operation  
32  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
Command Definitions  
Table 13. Command Definitions (Flash, x16 mode, CIOf = VIH)  
Bus Cycles (Notes 1–4)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Command Sequence  
(Notes)  
Addr Data  
Addr Data  
Addr  
Data  
Addr  
Data  
Addr Data Addr Data  
Read (Note 5)  
Reset (Note 6)  
Manufacturer ID  
1
1
4
6
RA  
XXX  
555  
555  
RD  
F0  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X00  
X01  
0001  
227E  
Device ID (Note 8)  
X0E 221A X0F 2201  
SecSi Sector Factory Protect  
(Note 9)  
4
4
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X03  
(Note 9)  
00/01  
Sector Group Protect Verify  
(Note 10)  
(SA)X02  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
6
1
3
3
2
2
6
6
1
1
1
555  
555  
555  
555  
SA  
AA  
AA  
AA  
AA  
29  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
SA  
88  
90  
A0  
25  
XXX  
PA  
00  
PD  
WC  
Write to Buffer (Note 11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (Note 12)  
Unlock Bypass  
SA  
PA  
PD  
WBL  
PD  
555  
555  
XXX  
XXX  
555  
555  
BA  
AA  
AA  
A0  
90  
2AA  
2AA  
PA  
55  
55  
PD  
00  
55  
55  
555  
555  
F0  
20  
Unlock Bypass Program (Note 13)  
Unlock Bypass Reset (Note 14)  
Chip Erase  
XXX  
2AA  
2AA  
AA  
AA  
B0  
30  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (Note 15)  
Program/Erase Resume (Note 16)  
CFI Query (Note 17)  
BA  
55  
98  
Legend:  
X = Don’t care  
SA = Sector Address of sector to be verified (in autoselect mode) or  
erased. Address bits A20–A15 uniquely select any sector.  
WBL = Write Buffer Location. Address must be within the same write  
buffer page as PA.  
RA = Read Address of the memory location to be read.  
RD = Read Data read from location RA during read operation.  
PA = Program Address . Addresses latch on the falling edge of the  
WE# or CE# pulse, whichever happens later.  
WC = Word Count. Number of write buffer locations to load minus 1.  
PD = Program Data for location PA. Data latches on the rising edge of  
WE# or CE# pulse, whichever happens first.  
Notes:  
1. See Table 1 for description of bus operations.  
9. WP# protects the top two address sectors, the data is 98h for  
factory locked and 18h for not factory locked.  
2. All values are in hexadecimal.  
10. The data is 00h for an unprotected sector group and 01h for a  
protected sector group.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
11. The total number of cycles in the command sequence is  
determined by the number of words written to the write buffer. The  
maximum number of cycles in the command sequence is 21.  
4. During unlock cycles, when lower address bits are 555 or 2AAh  
as shown in table, address bits higher than A11 (except where  
BA, PA, or SA is required) and data bits higher than DQ7 are  
don’t cares.  
12. Command sequence resets device for next command after  
aborted write-to-buffer operation.  
5. No unlock or command cycles required when device is in read  
mode.  
13. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
6. The Reset command is required to return to the read mode (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when the device is in the autoselect mode, or if DQ5 goes high  
while the device is providing status information.  
14. The Unlock Bypass Reset command is required to return to the  
read mode when the device is in the unlock bypass mode.  
15. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation.  
7. The fourth cycle of the autoselect command sequence is a read  
cycle. Data bits DQ15–DQ8 are don’t care except for RD, PD,  
and WC. See the Autoselect Command Sequence section for  
more information.  
16. The Erase Resume command is valid only during the Erase  
Suspend mode.  
8. The device ID must be read in three cycles. The data is 2201h for  
top boot.  
17. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
June 10, 2003  
Am41LV3204M  
33  
P R E L I M I N A R Y  
Table 14. Command Definitions (Flash x8 Mode, CIOf = VIL)  
Bus Cycles (Notes 1–4)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Command Sequence  
(Notes)  
Addr Data  
Addr Data  
Addr  
Data  
Addr  
Data  
Addr Data Addr Data  
Read (Note 5)  
Reset (Note 6)  
Manufacturer ID  
1
1
4
6
RA  
RD  
F0  
XXX  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
AAA  
90  
90  
X00  
X02  
01  
7E  
Device ID (Note 8)  
X1C  
1A  
X1E 00/01  
SecSi Sector Factory Protect  
(Note 9)  
4
4
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
AAA  
90  
90  
X06  
(Note 9)  
00/01  
Sector Group Protect Verify  
(Note 10)  
(SA)X04  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
6
1
3
3
2
2
6
6
1
1
1
AAA  
AAA  
AAA  
AAA  
SA  
AA  
AA  
AA  
AA  
29  
555  
555  
555  
555  
55  
55  
55  
55  
AAA  
AAA  
AAA  
SA  
88  
90  
A0  
25  
XXX  
PA  
00  
PD  
BC  
Write to Buffer (Note 11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (Note 12)  
Unlock Bypass  
SA  
PA  
PD  
WBL  
PD  
AAA  
AAA  
XXX  
XXX  
AAA  
AAA  
BA  
AA  
AA  
A0  
90  
555  
555  
PA  
55  
55  
PD  
00  
55  
55  
AAA  
AAA  
F0  
20  
Unlock Bypass Program (Note 13)  
Unlock Bypass Reset (Note 14)  
Chip Erase  
XXX  
555  
555  
AA  
AA  
B0  
30  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (Note 15)  
Program/Erase Resume (Note 16)  
CFI Query (Note 17)  
BA  
AA  
98  
Legend:  
X = Don’t care  
SA = Sector Address of sector to be verified (in autoselect mode) or  
erased. Address bits A20–A15 uniquely select any sector.  
WBL = Write Buffer Location. Address must be within the same write  
buffer page as PA.  
RA = Read Address of the memory location to be read.  
RD = Read Data read from location RA during read operation.  
PA = Program Address . Addresses latch on the falling edge of the  
WE# or CE# pulse, whichever happens later.  
BC = Byte Count. Number of write buffer locations to load minus 1.  
PD = Program Data for location PA. Data latches on the rising edge of  
WE# or CE# pulse, whichever happens first.  
Notes:  
1. See Table 1 for description of bus operations.  
bottom two address sectors, the data is 88h for factory locked and  
08h for not factor locked.  
2. All values are in hexadecimal.  
10. The data is 00h for an unprotected sector group and 01h for a  
protected sector group.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
11. The total number of cycles in the command sequence is  
determined by the number of words written to the write buffer. The  
maximum number of cycles in the command sequence is 37.  
4. During unlock cycles, when lower address bits are 555 or AAAh  
as shown in table, address bits higher than A11 (except where BA  
is required) and data bits higher than DQ7 are don’t cares.  
12. Command sequence resets device for next command after  
aborted write-to-buffer operation.  
5. No unlock or command cycles required when device is in read  
mode.  
13. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
6. The Reset command is required to return to the read mode (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when the device is in the autoselect mode, or if DQ5 goes high  
while the device is providing status information.  
14. The Unlock Bypass Reset command is required to return to the  
read mode when the device is in the unlock bypass mode.  
7. The fourth cycle of the autoselect command sequence is a read  
cycle. Data bits DQ15–DQ8 are don’t care. See the Autoselect  
Command Sequence section for more information.  
15. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation.  
8. The device ID must be read in three cycles. The data is 01h for  
top boot and 00h for bottom boot  
16. The Erase Resume command is valid only during the Erase  
Suspend mode.  
9. If WP# protects the top two address sectors, the data is 98h for  
factory locked and 18h for not factory locked. If WP# protects the  
17. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
34  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
WRITE OPERATION STATUS  
The device provides several bits to determine the status of  
a program or erase operation: DQ2, DQ3, DQ5, DQ6, and  
DQ7. Table 11 and the following subsections describe the  
function of these bits. DQ7 and DQ6 each offer a method  
for determining whether a program or erase operation is  
complete or in progress. The device also provides a  
hardware-based output signal, RY/BY#, to determine  
whether an Embedded Program or Erase operation is  
in progress or has been completed.  
valid data, the data outputs on DQ0–DQ6 may be still  
invalid. Valid data on DQ0–DQ7 will appear on suc-  
cessive read cycles.  
Table 11 shows the outputs for Data# Polling on DQ7.  
Figure 8 shows the Data# Polling algorithm. Figure 20  
in the AC Characteristics section shows the Data#  
Polling timing diagram.  
DQ7: Data# Polling  
START  
The Data# Polling bit, DQ7, indicates to the host system  
whether an Embedded Program or Erase algorithm is in  
progress or completed, or whether the device is in Erase  
Suspend. Data# Polling is valid after the rising edge of the  
final WE# pulse in the command sequence.  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Program algorithm, the device out-  
puts on DQ7 the complement of the datum programmed to  
DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to  
DQ7. The system must provide the program address to  
read valid status information on DQ7. If a program address  
falls within a protected sector, Data# Polling on DQ7 is ac-  
tive for approximately 1 µs, then the device returns to the  
read mode.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the device enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 100 µs, then  
the device returns to the read mode. If not all selected  
sectors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected. However, if the sys-  
tem reads DQ7 at an address within a protected  
sector, the status may not be valid.  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
Just prior to the completion of an Embedded Program  
or Erase operation, DQ7 may change asynchronously  
with DQ0–DQ6 while Output Enable (OE#) is asserted  
low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on  
when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device has com-  
pleted the program or erase operation and DQ7 has  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 8. Data# Polling Algorithm  
June 10, 2003  
Am41LV3204M  
35  
P R E L I M I N A R Y  
After an erase command sequence is written, if all sectors  
RY/BY#: Ready/Busy#  
selected for erasing are protected, DQ6 toggles for approxi-  
mately 100 µs, then returns to reading array data. If not all  
selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the se-  
lected sectors that are protected.  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
The system can use DQ6 and DQ2 together to determine  
whether a sector is actively erasing or is erase-suspended.  
When the device is actively erasing (that is, the Embedded  
Erase algorithm is in progress), DQ6 toggles. When the de-  
vice enters the Erase Suspend mode, DQ6 stops toggling.  
However, the system must also use DQ2 to determine  
which sectors are erasing or erase-suspended. Alterna-  
tively, the system can use DQ7 (see the subsection on  
DQ7: Data# Polling).  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the standby  
mode, or in the erase-suspend-read mode. Table 11  
shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
DQ6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
Table 11 shows the outputs for Toggle Bit I on DQ6.  
Figure 9 shows the toggle bit algorithm. Figure 21 in  
the “AC Characteristics” section shows the toggle bit  
timing diagrams. Figure 22 shows the differences be-  
tween DQ2 and DQ6 in graphical form. See also the  
subsection on DQ2: Toggle Bit II.  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE# to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
36  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
START  
Read DQ7–DQ0  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE# to con-  
trol the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 11 to compare out-  
puts for DQ2 and DQ6.  
Read DQ7–DQ0  
No  
Toggle Bit  
= Toggle?  
Yes  
Figure 9 shows the toggle bit algorithm in flowchart  
form, and the section “DQ2: Toggle Bit II” explains the  
algorithm. See also the RY/BY#: Ready/Busy# sub-  
section. Figure 21 shows the toggle bit timing diagram.  
Figure 22 shows the differences between DQ2 and  
DQ6 in graphical form.  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 9 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically,  
the system would note and store the value of the tog-  
gle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the fol-  
lowing read cycle.  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not completed the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
Note: The system should recheck the toggle bit even if  
DQ5 = “1” because the toggle bit may stop toggling as DQ5  
changes to “1.” See the subsections on DQ6 and DQ2 for  
more information.  
Figure 9. Toggle Bit Algorithm  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the previ-  
ous paragraph. Alternatively, it may choose to perform  
June 10, 2003  
Am41LV3204M  
37  
P R E L I M I N A R Y  
other system tasks. In this case, the system must start  
mand. When the time-out period is complete, DQ3  
switches from a “0” to a “1.” If the time between addi-  
tional sector erase commands from the system can be  
assumed to be less than 50 µs, the system need not  
monitor DQ3. See also the Sector Erase Command  
Sequence section.  
at the beginning of the algorithm when it returns to de-  
termine the status of the operation (top of Figure 9).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or  
write-to-buffer time has exceeded a specified internal  
pulse count limit. Under these conditions DQ5 produces a  
“1,” indicating that the program or erase cycle was not suc-  
cessfully completed.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is  
“1,” the Embedded Erase algorithm has begun; all fur-  
ther commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,” the  
device will accept additional sector erase commands.  
To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to  
and following each subsequent sector erase com-  
mand. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
The device may output a “1” on DQ5 if the system tries  
to program a “1” to a location that was previously pro-  
grammed to “0.” Only an erase operation can  
change a “0” back to a “1.” Under this condition, the  
device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a “1.”  
In all these cases, the system must write the reset  
command to return the device to the reading the array  
(or to erase-suspend-read if the device was previously  
in the erase-suspend-program mode).  
Table 11 shows the status of DQ3 relative to the other  
status bits.  
DQ3: Sector Erase Timer  
DQ1: Write-to-Buffer Abort  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
DQ1 indicates whether a Write-to-Buffer operation  
was aborted. Under these conditions DQ1 produces a  
“1”.  
The  
system  
must  
issue  
the  
Write-to-Buffer-Abort-Reset command sequence to re-  
turn the device to reading array data. See Write Buffer  
Table 15. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
DQ1 RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
0
Standard  
Mode  
N/A  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Sector  
Suspend  
Non-Program  
Read  
Suspended Sector  
Erase-Suspended  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Sector  
Suspend  
Erase  
Suspend  
Mode  
Non-EraseSuspended  
Read  
Data  
Sector  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the  
maximum timing limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to ‘1’ when tthe device has aborted the write-to-buffer operation.  
38  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C  
20 ns  
20 ns  
+0.8 V  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . –65°C to +125°C  
–0.5 V  
–2.0 V  
Voltage with Respect to Ground  
VCCf/VCCs (Note 1) . . . . . . . . . . . .–0.3 V to +4.0 V  
RESET#f (Note 2). . . . . . . . . . . .0.5 V to +12.5 V  
WP#/ACC . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . –0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
20 ns  
Figure 10. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot VSS to –2.0 V for periods of up to 20 ns.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
See Figure 10. During voltage transitions, input or I/O  
pins may overshoot to VCC +2.0 V for periods up to 20  
ns. See Figure 11.  
20 ns  
VCC  
+2.0 V  
VCC  
+0.5 V  
2. Minimum DC input voltage on pins A9, OE#, ACC, and  
RESET# is –0.5 V. During voltage transitions, A9, OE#,  
ACC, and RESET# may overshoot VSS to –2.0 V for  
periods of up to 20 ns. See Figure 10. Maximum DC  
input voltage on pin A9, OE#, ACC, and RESET# is  
+12.5 V which may overshoot to +14.0 V for periods up  
to 20 ns.  
2.0 V  
20 ns  
20 ns  
Figure 11. Maximum Positive  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
OPERATING RANGES  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C  
Supply Voltages  
V
CCf/VCCs for full voltage range . . . . . . . . . . 2.7–3.3 V  
Note: Operating ranges define those limits between which  
the functionality of the device is guaranteed.  
June 10, 2003  
Am41LV3204M  
39  
P R E L I M I N A R Y  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
(Notes)  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
VCC = VCC max  
,
ILI  
Input Load Current (1)  
±1.0  
µA  
ILIT  
ILR  
A9, ACC Input Load Current  
Reset Leakage Current  
VCC = VCC max; A9 = 12.5 V  
35  
35  
µA  
µA  
VCC = VCC max; RESET# = 12.5 V  
VOUT = VSS to VCC  
VCC = VCC max  
,
ILO  
Output Leakage Current  
±1.0  
µA  
5 MHz  
1 MHz  
15  
15  
30  
10  
50  
20  
20  
50  
20  
60  
VCC Active Read Current  
(2, 3)  
ICC1  
CE# = VIL, OE# = VIH,  
mA  
ICC2  
ICC3  
ICC4  
VCC Initial Page Read Current (2, 3)  
VCC Intra-Page Read Current (2, 3)  
VCC Active Write Current (3, 4)  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
mA  
mA  
mA  
CE#, RESET# = VCC ± 0.3 V,  
WP# = VIH  
ICC5  
ICC6  
ICC7  
VCC Standby Current (3)  
VCC Reset Current (3)  
1
1
1
5
5
5
µA  
µA  
µA  
RESET# = VSS ± 0.3 V, WP# = VIH  
VIH = VCC ± 0.3 V;  
VIL = VSS ± 0.3 V, WP# = VIH  
Automatic Sleep Mode (3, 5)  
VIL  
VIH  
Input Low Voltage (6)  
Input High Voltage (6)  
–0.5  
0.8  
V
V
0.7 x VCC  
VCC + 0.5  
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VCC = 2.7 –3.6 V  
11.5  
12.5  
V
VOL  
VOH1  
Output Low Voltage  
IOL = 4.0 mA, VCC = VCC min = VIO  
0.15 x VCC  
V
V
V
V
IOH = –2.0 mA, VCC = VCC min = VIO 0.85 VCC  
IOH = –100 µA, VCC = VCC min = VIO VCC–0.4  
2.3  
Output High Voltage  
VOH2  
VLKO  
Low VCC Lock-Out Voltage (7)  
2.5  
Notes:  
1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ± 5.0 µA.  
2. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH.  
3. Maximum ICC specifications are tested with VCC = VCCmax.  
4. ICC active while Embedded Erase or Embedded Program is in progress.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep mode current is  
200 nA.  
6. VCC voltage requirements.  
7. Not 100% tested.  
40  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
SRAM DC AND OPERATING CHARACTERISTICS  
Parameter  
Symbol  
Parameter Description  
Input Leakage Current  
Test Conditions  
VIN = VSS to VCC  
Min  
–1.0  
–1.0  
Typ  
Max  
1.0  
Unit  
µA  
ILI  
CE1#s = VIH, CE2s = VIL or OE# =  
VIH or WE# = VIL, VIO= VSS to VCC  
ILO  
Output Leakage Current  
1.0  
µA  
IIO = 0 mA, CE1#s = VIL, CE2s =  
WE# = VIH, VIN = VIH or VIL  
ICC  
Operating Power Supply Current  
3
3
mA  
mA  
Cycle time = 1 µs, 100% duty,  
I
IO = 0 mA, CE1#s 0.2 V,  
CE2 VCC – 0.2 V, VIN 0.2 V or  
IN VCC – 0.2 V, CIOs = VSS or  
I
CC1s  
Average Operating Current  
Average Operating Current  
V
VCC  
Cycle time = Min., IIO = 0 mA,  
100% duty, CE1#s = VIL, CE2s =  
VIH, VIN = VIL = or VIH, CIOs = VSS  
or VCC  
I
CC2s  
30  
mA  
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 2.1 mA  
0.4  
V
V
IOH = –1.0 mA  
2.4  
CE1#s = VIH, CE2 = VIL, Other  
inputs = VIH or VIL  
ISB  
Standby Current (TTL)  
0.3  
10  
mA  
CE1#s VCC – 0.2 V, CE2 VCC  
0.2 V (CE1#s controlled) or CE2 ≤  
0.2 V (CE2s controlled) Other  
input = 0 ~ VCC, CIOs = VSS or VCC  
ISB1  
Standby Current (CMOS)  
µA  
June 10, 2003  
Am41LV3204M  
41  
P R E L I M I N A R Y  
TEST CONDITIONS  
Table 16. Test Specifications  
Test Condition All Speeds  
1 TTL gate  
3.3 V  
Unit  
Output Load  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.0–3.0  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 12. Test Setup  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 13. Input Waveforms and Measurement Levels  
42  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Flash Read-Only Operations  
Parameter  
JEDEC  
tAVAV  
Std. Description  
Test Setup  
Speed  
100  
100  
100  
30  
Unit  
ns  
tRC Read Cycle Time (Note 1)  
tACC Address to Output Delay  
tCE Chip Enable to Output Delay  
tPACC Page Access Time  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
tAVQV  
CE#, OE# = VIL  
OE# = VIL  
ns  
tELQV  
ns  
ns  
tGLQV  
tEHQZ  
tGHQZ  
tOE Output Enable to Output Delay  
30  
ns  
tDF  
tDF  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
30  
ns  
30  
ns  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold  
tOEH  
Toggle and  
Data# Polling  
Time (Note 1)  
10  
Notes:  
1. Not 100% tested.  
2. See Figure 12 and Table 12 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#f  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#f  
Figure 14. Read Operation Timings  
June 10, 2003  
Am41LV3204M  
43  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Same Page  
A20  
-
-
A2  
A0  
A1  
Ad  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#f  
OE#  
Figure 15. Page Read Timings  
44  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
RESET# Pin Low (NOT During Embedded  
Speed  
Unit  
tReady  
Max  
500  
ns  
Algorithms) to Read Mode (See Note)  
tRP  
tRH  
RESET# Pulse Width  
Min  
Min  
Min  
500  
50  
ns  
ns  
µs  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
tRPD  
20  
Note: Not 100% tested.  
CE#f, OE#  
tRH  
RESET#  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
CE#f, OE#  
RESET#  
tRP  
Figure 16. Reset Timings  
June 10, 2003  
Am41LV3204M  
45  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Flash Erase and Program Operations  
Parameter  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Description  
Speed  
100  
0
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
tAVWL  
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
ns  
tWLAX  
45  
ns  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
45  
0
ns  
ns  
ns  
Data Hold Time  
tOEPH  
Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
tWP  
tWPH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
CE# Hold Time  
Write Pulse Width  
35  
30  
240  
Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Effective Write Buffer Program Operation  
(Notes 2, 4)  
Per Word  
Typ  
Typ  
15  
µs  
µs  
tWHWH1  
tWHWH1  
Accelerated Effective Write Buffer  
Per Word  
11.8  
Program Operation (Notes 2, 4)  
Single Word Program Operation (Note 2)  
Single Word Accelerated Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
Typ  
Typ  
Typ  
Min  
Min  
60  
54  
µs  
µs  
tWHWH2  
tWHWH2  
tVHH  
0.5  
250  
50  
sec  
ns  
VHH Rise and Fall Time (Note 1)  
tVCS  
VCC Setup Time (Note 1)  
µs  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words programmed.  
4. Effective write buffer specification is based upon a 16-word write buffer operation.  
46  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#f  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
Data  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 17. Program Operation Timings  
VHH  
VIL or VIH  
VIL or VIH  
ACC  
tVHH  
tVHH  
Figure 18. Accelerated Program Timing Diagram  
June 10, 2003  
Am41LV3204M  
47  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#f  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
VCC  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.  
2. These waveforms are for the word mode.  
Figure 19. Chip/Sector Erase Operation Timings  
48  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#f  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
Complement  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Status Data  
True  
DQ6–DQ0  
Valid Data  
Status Data  
True  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 20. Data# Polling Timings (During Embedded Algorithms)  
June 10, 2003  
Am41LV3204M  
49  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#f  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status  
read cycle, and array data read cycle  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle  
DQ2 and DQ6.  
Figure 22. DQ2 vs. DQ6  
50  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
tVIDR  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
4
µs  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRSP  
Figure 23. Temporary Sector Group Unprotect Timing Diagram  
June 10, 2003  
Am41LV3204M  
51  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
V
ID  
IH  
V
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect or Unprotect  
60h 60h  
Verify  
40h  
Data  
Sector Group Protect: 150 µs,  
Sector Group Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
* For sector group protect, A6–A0 = 0xx0010. For sector group unprotect, A6–A0 = 1xx0010.  
Figure 24. Sector Group Protect and Unprotect Timing Diagram  
52  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Description  
Speed  
100  
0
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
tAVWL  
tELAX  
tDVEH  
tEHDX  
ns  
tAH  
45  
ns  
tDS  
45  
ns  
tDH  
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
WE# Hold Time  
CE# Pulse Width  
45  
30  
240  
tCPH  
CE# Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Effective Write Buffer Program  
Per Word  
Typ  
15  
µs  
Operation (Notes 2, 4)  
Accelerated Effective Write Buffer  
Program Operation (Notes 2, 4)  
tWHWH1  
tWHWH1  
Per Word  
Typ  
Typ  
Typ  
11.8  
60  
µs  
µs  
µs  
Single Word Program Operation (Note 2)  
Single Word Accelerated Programming Operation (Note  
2)  
54  
tWHWH2  
tWHWH2  
tRH  
Sector Erase Operation (Note 2)  
Typ  
Min  
0.5  
50  
sec  
ns  
RESET# High Time Before Write (Note 1)  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words programmed.  
4. Effective write buffer specification is based upon a 16-word write buffer operation.  
June 10, 2003  
Am41LV3204M  
53  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#f  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
Data  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
Figure 25. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings  
54  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
SRAM Read Cycle  
Speed Option  
Parameter  
Symbol  
Unit  
Description  
10  
70  
70  
70  
35  
70  
tRC  
tAA  
CO1, tCO2  
tOE  
Read Cycle Time  
Min  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
Chip Enable to Output  
Output Enable Access Time  
LB#s, UB#s to Access Time  
Max  
Max  
Max  
Max  
t
tBA  
Chip Enable (CE1#s Low and CE2s High) to Low-Z  
Output  
tLZ1, tLZ2  
Min  
10  
ns  
tBLZ  
tOLZ  
HZ1, tHZ2  
tBHZ  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
Min  
Min  
Max  
Max  
Max  
Min  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
t
25  
25  
25  
10  
UB#s, LB#s Disable to High-Z Output  
Output Disable to High-Z Output  
Output Data Hold from Address Change  
tOHZ  
tOH  
tRC  
Address  
Data Out  
tAA  
tOH  
Data Valid  
Previous Data Valid  
Figure 26. SRAM Read Cycle—Address Controlled  
Note: CE1#s = OE# = VIL, CE2s = WE# = VIH, UB#s and/or LB#s = VIL  
June 10, 2003  
Am41LV3204M  
55  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
tRC  
Address  
tAA  
tCO1  
tOH  
CE#1s  
CE2s  
tCO2  
tBA  
tHZ  
UB#s, LB#s  
tBHZ  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
Data Out  
High-Z  
Data Valid  
Figure 27. SRAM Read Cycle  
Notes:  
1. WE# = VIH, if CIOs is low.  
2. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output  
voltage levels.  
3. At any given temperature and voltage condition, tHZ (Max.) is less than tLZ (Min.) both for a given device and from device to  
device interconnection.  
56  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
SRAM Write Cycle  
Speed Option  
Parameter  
Description  
Symbol  
Unit  
10  
70  
60  
0
tWC  
tCw  
tAS  
Write Cycle Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End of Write  
Address Setup Time  
tAW  
tBW  
tWP  
tWR  
Address Valid to End of Write  
UB#s, LB#s to End of Write  
Write Pulse Time  
60  
60  
50  
0
Write Recovery Time  
0
tWHZ  
Write to Output High-Z  
ns  
20  
30  
0
tDW  
tDH  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
ns  
ns  
ns  
tOW  
5
tWC  
Address  
CE1#s  
CE2s  
tWR  
tCW  
(See Note 1)  
tAW  
tCW  
(See Note 1)  
tWP  
(See Note 4)  
WE#  
tAS  
(See Note 3)  
tDH  
tDW  
Data In  
Data Out  
High-Z  
Data Valid  
High-Z  
tWHZ  
tOW  
Data Undefined  
Notes:  
1. WE# controlled.  
2. tCW is measured from CE1#s going low to the end of write.  
3. tWR is measured from the end of write to the address change. tWR applied in case a write ends as CE1#s or WE# going high.  
4. tAS is measured from the address valid to the beginning of write.  
5. A write occurs during the overlap (tWP) of low CE#1 and low WE#. A write begins when CE1#s goes low and WE# goes low when  
asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation. A  
write ends at the earliest transition when CE1#s goes high and WE# goes high. The tWP is measured from the beginning of write  
to the end of write.  
Figure 28. SRAM Write Cycle—WE# Control  
June 10, 2003  
Am41LV3204M  
57  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
tWC  
Address  
tAS (See Note 2 )  
tCW  
tWR (See Note 4)  
(See Note 3)  
CE1#s  
tAW  
CE2s  
tBW  
UB#s, LB#s  
tWP  
(See Note 5)  
WE#  
tDW  
tDH  
Data Valid  
Data In  
Data Out  
High-Z  
High-Z  
Notes:  
1. CE1#s controlled.  
2. tCW is measured from CE1#s going low to the end of write.  
3. tWR is measured from the end of write to the address change. tWR applied in case a write ends as CE1#s or WE# going high.  
4. tAS is measured from the address valid to the beginning of write.  
5. A write occurs during the overlap (tWP) of low CE#1 and low WE#. A write begins when CE1#s goes low and WE# goes low when  
asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation. A  
write ends at the earliest transition when CE1#s goes high and WE# goes high. The tWP is measured from the beginning of write  
to the end of write.  
Figure 29. SRAM Write Cycle—CE1#s Control  
58  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
AC CHARACTERISTICS  
tWC  
Address  
CE1#s  
tCW  
(See Note 2)  
tWR (See Note 3)  
tAW  
tCW (See Note 2)  
CE2s  
tBW  
UB#s, LB#s  
tAS  
tWP  
(See Note 4)  
(See Note 5)  
WE#  
tDW  
tDH  
Data In  
Data Out  
Data Valid  
High-Z  
High-Z  
Notes:  
1. UB#s and LB#s controlled.  
2. tCW is measured from CE1#s going low to the end of write.  
3. tWR is measured from the end of write to the address change. tWR applied in case a write ends as CE1#s or WE# going high.  
4. tAS is measured from the address valid to the beginning of write.  
5. A write occurs during the overlap (tWP) of low CE#1 and low WE#. A write begins when CE1#s goes low and WE# goes low when  
asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation. A  
write ends at the earliest transition when CE1#s goes high and WE# goes high. The tWP is measured from the beginning of write  
to the end of write.  
Figure 30. SRAM Write Cycle—UB#s and LB#s Control  
June 10, 2003  
Am41LV3204M  
59  
P R E L I M I N A R Y  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
µs  
Comments  
Sector Erase Time  
Chip Erase Time  
0.5  
32  
3.5  
64  
Excludes 00h programming  
prior to erasure (Note 6)  
Byte  
Word  
Byte  
60  
600  
600  
540  
540  
1200  
38  
Single Word/Byte Program Time (Note 3)  
60  
µs  
54  
µs  
Accelerated Single Word/Byte Program Time  
(Note 3)  
Word  
54  
µs  
Total Write Buffer Program Time (Note 4)  
Effective Write Buffer Program Time (Note 5)  
240  
7.5  
15  
µs  
Excludes system level  
overhead (Note 7)  
Per Byte  
Per Word  
µs  
75  
µs  
Total Accelerated Write Buffer Program Time (Note 4)  
200  
6.25  
12.5  
31.5  
1040  
33  
µs  
Per Byte  
Per Word  
µs  
Effective Accelerated Write Buffer Program Time  
(Note 5)  
65  
µs  
Chip Program Time  
73  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, Programming specification assume that  
all bits are programmed to 00h.  
2. Maximum values are measured at VCC = 3.0, worst case temperature. Maximum values are valid up to and including 100,000  
program/erase cycles.  
3. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer.  
4. For 1-16 words or 1-32 bytes programmed in a single write buffer programming operation.  
5. Effective write buffer specification is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer operation.  
6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
7. System-level overhead is the time required to execute the command sequence (s) for the program command. See Table11 for  
further information on command definitions.  
8. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
FLASH LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including OE#, and RESET#f)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
–1.0 V  
VCC + 1.0 V  
+100 mA  
V
CC Current  
–100 mA  
Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
60  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
PACKAGE PIN CAPACITANCE  
Parameter Symbol  
Parameter Description  
Test Setup  
Typ  
4.2  
5.4  
3.9  
Max  
5.0  
6.5  
4.7  
Unit  
pF  
CIN  
COUT  
CIN2  
Input Capacitance  
Output Capacitance  
Control Pin Capacitance  
VIN = 0  
VOUT = 0  
VIN = 0  
Fine-Pitch BGA  
Fine-Pitch BGA  
Fine-Pitch BGA  
pF  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
DATA RETENTION  
Parameter Description  
Test Conditions  
150°C  
Min  
Unit  
Years  
Years  
10  
20  
Minimum Pattern Data Retention Time  
125°C  
June 10, 2003  
Am41LV3204M  
61  
P R E L I M I N A R Y  
SRAM DATA RETENTION  
Parameter  
Symbol  
Parameter Description  
Min  
Typ  
Max  
3.3  
10  
Unit  
V
Test Setup  
VDR  
VCC for Data Retention  
Data Retention Current  
CE1#s VCC – 0.2 V (Note 1)  
2.7  
VCC = 3.0 V, CE1#s VCC – 0.2 V  
(Note 1)  
1.0  
(Note 2)  
IDR  
µA  
tSDR  
tRDR  
Data Retention Set-Up Time  
Recovery Time  
0
ns  
ns  
See data retention waveforms  
tRC  
Notes:  
1. CE1#s VCC – 0.2 V, CE2s VCC – 0.2 V (CE1#s controlled) or CE2s 0.2 V (CE2s controlled).  
2. Typical values are not 100% tested.  
Data Retention Mode  
tSDR  
tRDR  
VCC  
2.7V  
2.2V  
VDR  
CE1#s VCC  
-0.2 V  
CE1#s  
GND  
Figure 31. CE#1 Controlled Data Retention Mode  
Data Retention Mode  
VCC  
2.7 V  
CE2#s  
tSDR  
tRDR  
VDR  
<
CE2#s 0.2 V  
0.4 V  
GND  
Figure 32. CE2s Controlled Data Retention Mode  
62  
Am41LV3204M  
June 10, 2003  
Representatives in U.S. and Canada  
Sales Offices and Representatives  
ARIZONA,  
North America  
Tempe - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(480)839-2320  
CALIFORNIA,  
ALABAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(256)830-9192  
ARIZONA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(602)242-4400  
CALIFORNIA,  
Calabasas - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(818)878-5800  
Irvine - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (949)261-2123  
San Diego - Centaur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(858)278-4950  
Santa Clara - Fourfront. . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)350-4800  
CANADA,  
Burnaby, B.C. - Davetek Marketing. . . . . . . . . . . . . . . . . . . .(604)430-3680  
Calgary,Alberta - Davetek Marketing. . . . . . . . . . . . . . . . .(403)283-3577  
Kanata, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . . . .(613)592-9540  
Mississauga, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . .(905)672-2030  
St Laurent, Quebec - J-Squared Tech. . . . . . . . . . . . . . . . ( 5 1 4 ) 74 7 - 1 2 1 1  
COLORADO,  
Irvine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(949)450-7500  
Sunnyvale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)732-2400  
COLORADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(303)741-2900  
CONNECTICUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(203)264-7800  
FLORIDA,  
Clearwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(727)793-0055  
Miami (Lakes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 0 5 ) 8 2 0 - 1 1 1 3  
GEORGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(770)814-0224  
ILLINOIS,  
Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(630)773-4422  
MASSACHUSETTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (781)213-6400  
MICHIGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(248)471-6294  
MINNESOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(612)745-0005  
NEW JERSEY,  
Chatham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 97 3 ) 7 0 1 - 1 7 7 7  
NEWYORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(716)425-8050  
NORTH CAROLINA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(919)840-8080  
OREGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(503)245-0080  
PENNSYLVANIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 1 5 ) 3 4 0 - 1 1 8 7  
SOUTH DAKOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(605)692-5777  
TEXAS,  
Golden - Compass Marketing . . . . . . . . . . . . . . . . . . . . . .(303)277-0456  
FLORIDA,  
Melbourne - Marathon Technical Sales . . . . . . . . . . . . . . . .(321)728-7706  
Ft. Lauderdale - Marathon Technical Sales . . . . . . . . . . . . . .(954)527-4949  
Orlando - Marathon Technical Sales . . . . . . . . . . . . . . . . . .(407)872-5775  
St. Petersburg - Marathon Technical Sales . . . . . . . . . . . . . .(727)894-3603  
GEORGIA,  
Duluth - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . (678)584-1128  
ILLINOIS,  
Skokie - Industrial Reps, Inc. . . . . . . . . . . . . . . . . . . . . . . . .(847)967-8430  
INDIANA,  
Kokomo - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (765)457-7241  
IOWA,  
Cedar Rapids - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . (319)294-1000  
KANSAS,  
Lenexa - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 1 3 ) 4 69 - 1 3 1 2  
MASSACHUSETTS,  
Austin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(512)346-7830  
Dallas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(972)985-1344  
Houston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(281)376-8084  
VIRGINIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(703)736-9568  
Burlington - Synergy Associates . . . . . . . . . . . . . . . . . . . . .(781)238-0870  
MICHIGAN,  
Brighton - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(810)227-0007  
MINNESOTA,  
St. Paul - Cahill, Schmitz & Cahill, Inc. . . . . . . . . . . . . . . . . .(651)699-0200  
MISSOURI,  
St. Louis - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . .(314)997-4558  
NEW JERSEY,  
International  
AUSTRALIA, North Ryde . . . . . . . . . . . . . . . . . . . . . . .TEL(61)2-88-777-222  
BELGIUM,Antwerpen . . . . . . . . . . . . . . . . . . . . . . . .TEL(32)3-248-43-00  
BRAZIL, San Paulo . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(55)11-5501-2105  
CHINA,  
Beijing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)10-6510-2188  
Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)21-635-00838  
Shenzhen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)755-246-1550  
FINLAND, Helsinki . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 5 8 ) 8 8 1 - 3 1 1 7  
FRANCE, Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 3 ) - 1 - 4 975 1 0 1 0  
GERMANY,  
Bad Homburg . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(49)-6172-92670  
Munich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 4 9 ) - 8 9 - 4 5 0 5 3 0  
HONG KONG, Causeway Bay . . . . . . . . . . . . . . . . . . .TEL(85)2-2956-0388  
ITALY, Milan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 9 ) - 0 2 - 3 8 1 9 6 1  
INDIA, New Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 9 1 ) 1 1 - 62 3 - 8 62 0  
JAPAN,  
es  
Mt. Laurel - SJ Associates . . . . . . . . . . . . . . . . . . . . . . . . .(856)866-1234  
NEWYORK,  
Buffalo - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . ( 7 1 6 ) 74 1 - 7 1 1 6  
East Syracuse - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . (315) 437-8343  
Pittsford - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . .(716)586-3660  
Rockville Centre - SJ Associates . . . . . . . . . . . . . . . . . . . . (516)536-4242  
NORTH CAROLINA,  
Raleigh - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . .(919)846-5728  
OHIO,  
Middleburg Hts - Dolfuss Root & Co. . . . . . . . . . . . . . . . .(440)816-1660  
Powell - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . . . (614)781-0725  
Vandalia - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . .(937)898-9610  
Westerville - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . (614)523-1990  
OREGON,  
Lake Oswego - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . .(503)670-0557  
UTAH,  
Murray - Front Range Marketing . . . . . . . . . . . . . . . . . . . .(801)288-2500  
VIRGINIA,  
Osaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(81)6-6243-3250  
Tokyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(81)3-3346-7600  
KOREA, Seoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(82)2-3468-2600  
RUSSIA, Moscow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(7)-095-795-06-22  
SWEDEN, Stockholm . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(46)8-562-540-00  
TAIWAN,Taipei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(886)2-8773-1555  
UNITED KINGDOM,  
Frimley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(44)1276-803100  
Haydock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(44)1942-272888  
Glen Burnie - Coherent Solution, Inc. . . . . . . . . . . . . . . . . ( 4 1 0 ) 76 1 - 2 2 5 5  
WASHINGTON,  
Kirkland - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . .(425)822-9220  
WISCONSIN,  
Pewaukee - Industrial Representatives . . . . . . . . . . . . . . . .(262)574-9393  
Advanced Micro Devices reserves the right to make changes in its product without notice  
in order to improve design or performance characteristics.The performance  
characteristics listed in this document are guaranteed by specific tests, guard banding,  
design and other practices common to the industry. For specific testing details, contact  
your local AMD sales representative.The company assumes no responsibility for the use of  
any circuits described herein.  
Representatives in Latin America  
ARGENTINA,  
Capital Federal Argentina/WW Rep. . . . . . . . . . . . . . . . . . . .54-11)4373-0655  
CHILE,  
Santiago - LatinRep/WWRep. . . . . . . . . . . . . . . . . . . . . . . . . .(+562)264-0993  
COLUMBIA,  
Bogota - Dimser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 7 1 ) 4 1 0 - 4 1 8 2  
MEXICO,  
Guadalajara - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . .(523)817-3900  
Mexico City - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . .(525)752-2727  
Monterrey - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . . .(528)369-6828  
PUERTO RICO,  
© Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD Arrow logo and combination thereof, are trademarks of  
Advanced Micro Devices, Inc. Other product names are for informational purposes only  
and may be trademarks of their respective companies.  
Boqueron - Infitronics. . . . . . . . . . . . . . . . . . . . . . . . . . . .(787)851-6000  
One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453 408-732-2400  
TWX 910-339-9280 TELEX 34-6306 800-538-8450 http://www.amd.com  
©2003 Advanced Micro Devices, Inc.  
01/03  
Printed in USA  
PHYSICAL DIMENSIONS  
P R E L I M I N A R Y  
TLB069—69-Ball Fine-pitch Ball Grid Array (FBGA) 8 x 10 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
J
H
G
F
E
D
C
B
A
K
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
69X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
PACKAGE  
JEDEC  
TLB 069  
N/A  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
10.00 mm X 8.00 mm PACKAGE  
NOTE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
4. e REPRESENTS THE SOLDER BALL GRID PITCH.  
5. SYMBOL "MD" IS THE BALL MATRIX IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX IN THE "E" DIRECTION.  
SYMBOL  
A
MIN.  
---  
NOM.  
---  
MAX.  
1.20  
---  
PROFILE  
BALL HEIGHT  
A1  
0.20  
0.81  
---  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
n IS THE NUMBER OF POPULATED SOLDER BALL  
POSITIONS FOR MATRIX SIZE MD X ME.  
D
10.00 BSC  
8.00 BSC  
7.20 BSC  
7.20 BSC  
10  
E
BODY SIZE  
6. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
E1  
7. SD AND SE ARE MEASURED WITH RESPECT TO  
DATUMS A AND B AND DEFINE THE POSITION OF THE  
CENTER SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS  
IN THE OUTER ROW SD OR SE = 0.000.  
69  
Ob  
eE  
0.33  
---  
0.43  
BALL DIAMETER  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS  
IN THE OUTER ROW, SD OR SE = E/2  
0.80 BSC  
0.80 BSC  
0.40 BSC  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF  
DEPOPULATED BALLS.  
SD/SE  
SOLDER BALL PLACEMENT  
9. NOT USED.  
A2,A3,A4,A7,A8,A9,B2,B9,B10 DEPOPULATED SOLDER BALLS  
C1,C10,D1,D10,E5,E6,F5,F6  
G1,G10,H1,H10  
J1,J2,J9,J10,K2,K3,K4,K7,K8,K9  
10. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER  
OR INK MARK, METALLIZED MARK INDENTATION OR  
OTHER MEANS.  
w052903-163814C  
64  
Am41LV3204M  
June 10, 2003  
P R E L I M I N A R Y  
REVISION SUMMARY  
Connection Diagram  
Revision A (March 21, 2003)  
Corrected pinout numbering.  
Initial release.  
Pin Description  
Revision A+1 (June 10, 2003)  
Added CIOf and DQ15/A-1  
Global  
Changed datasheet name to Am41LV3204.  
Trademarks  
Copyright © 2003 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
June 10, 2003  
Am41LV3204M  
65  
P R E L I M I N A R Y  
66  
Am41LV3204M  
June 10, 2003  

相关型号:

AM41LV320MB10IT

Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
SPANSION

AM41LV320MT10IS

Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
SPANSION

AM41LV320MT10IT

Stacked Multi-chip Package (MCP) 32 Mbit (4 M x 8 bit/2 M x 16-bit) Flash Memory and 4 Mbit (512K x 8-Bit/256 K x 16-Bit) Static RAM
SPANSION

AM41PDS3224D

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD

AM41PDS3224DB100IS

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD

AM41PDS3224DB100IT

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD

AM41PDS3224DB10FS

Memory Circuit, 2MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION

AM41PDS3224DB10FT

Memory Circuit, 2MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION

AM41PDS3224DB10IS

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD

AM41PDS3224DB10IT

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD

AM41PDS3224DB110IS

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD

AM41PDS3224DB110IT

32 Megabit (2 M x 16-Bit) CMOS 1.8 Volt-only, Simultaneous Operation, Page Mode Flash Memory and 4 Mbit (512 K x 8-Bit/256 K x 16-Bit) Static RAM
AMD