AM49PDL127AH61FS [SPANSION]

暂无描述;
AM49PDL127AH61FS
型号: AM49PDL127AH61FS
厂家: SPANSION    SPANSION
描述:

暂无描述

闪存 存储 内存集成电路 静态存储器
文件: 总82页 (文件大小:1319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am49PDL127AH/  
Am49PDL129AH  
Data Sheet  
July 2003  
The following document specifies Spansion memory products that are now offered by both Advanced  
Micro Devices and Fujitsu. Although the document is marked with the name of the company that orig-  
inally developed the specification, these products will be offered to customers of both AMD and  
Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal datasheet improvement and are noted in the  
document revision summary, where supported. Future routine revisions will occur when appropriate,  
and changes will be noted in a revision summary.  
Continuity of Ordering Part Numbers  
AMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM. To order  
these products, please use only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion  
memory solutions.  
Publication Number 30535 Revision A Amendment +1 Issue Date December 18, 2003  
THIS PAGE LEFT INTENTIONALLY BLANK.  
ADVANCE INFORMATION  
Am49PDL127AH/Am49PDL129AH  
Stacked Multi-Chip Package (MCP) Flash Memory and pSRAM  
128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and  
16 Mbit (1 M x 16-Bit) CMOS Pseudo Static RAM  
DISTINCTIVE CHARACTERISTICS  
Minimum 1 million erase cycle guarantee per sector  
MCP Features  
Power supply voltage of 2.7 to 3.3 volt  
PERFORMANCE CHARACTERISTICS  
High performance  
High Performance  
Access time as fast as 65 ns initial / 25 ns page  
Page access times as fast as 25 ns  
Random access times as fast as 65 ns  
Package  
73-Ball FBGA  
Power consumption (typical values at 10 MHz)  
Operating Temperature  
45 mA active read current  
25 mA program/erase current  
1 µA typical standby mode current  
–40°C to +85°C  
Flash Memory Features  
SOFTWARE FEATURES  
ARCHITECTURAL ADVANTAGES  
Software command-set compatible with JEDEC 42.4  
128 Mbit Page Mode device  
standard  
Page size of 8 words: Fast page read access from random  
locations within the page  
Backward compatible with Am29F and Am29LV families  
CFI (Common Flash Interface) complaint  
Dual Chip Enable inputs (PDL129 only)  
Provides device-specific information to the system, allowing  
host software to easily reconfigure for different Flash devices  
Two CE# inputs control selection of each half of the memory  
space  
Erase Suspend / Erase Resume  
Single power supply operation  
Suspends an erase operation to allow read or program  
operations in other sectors of same bank  
Full Voltage range: 2.7 to 3.3 volt read, erase, and program  
operations for battery-powered applications  
Unlock Bypass Program command  
Simultaneous Read/Write Operation  
Reduces overall programming time when issuing multiple  
program command sequences  
Data can be continuously read from one bank while  
executing erase/program functions in another bank  
Zero latency switching from write to read operations  
HARDWARE FEATURES  
FlexBank Architecture  
4 separate banks, with up to two simultaneous operations  
per device  
PDL127:  
Ready/Busy# pin (RY/BY#)  
Provides a hardware method of detecting program or erase  
cycle completion  
Hardware reset pin (RESET#)  
Hardware method to reset the device to reading array data  
WP#/ACC (Write Protect/Acceleration) input  
Bank A: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank B: 48 Mbit (32 Kw x 96)  
Bank C: 48 Mbit (32 Kw x 96)  
Bank D: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
At VIL, hardware level protection for the first and last two 4K  
word sectors.  
PDL129:  
At VIH, allows removal of sector protection  
At VHH, provides accelerated programming in a factory  
setting  
Bank 1A: 48 Mbit (32 Kw x 96)  
Bank 1B: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank 2A: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank 2B: 48 Mbit (32 Kw x 96)  
Persistent Sector Protection  
SecSiTM (Secured Silicon) Sector region  
A command sector protection method to lock combinations  
of individual sectors and sector groups to prevent program or  
erase operations within that sector  
Up to 128 words accessible through a command sequence  
Up to 64 factory-locked words  
Up to 64 customer-lockable words  
Sectors can be locked and unlocked in-system at VCC level  
Both top and bottom boot blocks in one device  
Manufactured on 0.13 µm process technology  
20-year data retention at 125°C  
Password Sector Protection  
A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups to  
prevent program or erase operations within that sector using  
a user-defined 64-bit password  
This document contains information on a product under development at Advanced Micro Devices. The information  
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed  
product without notice.  
Publication Number: 30535 Rev: A Amendment: +1  
Issue Date: December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PSRAM FEATURES  
Power dissipation  
Operating: 40 mA maximum  
Standby: 70 µA maximum  
Deep power-down standby: 5 µA  
CE1s# and CE2ps Chip Select  
Power down features using CE1s# and CE2ps  
Data retention supply voltage: 2.7 to 3.3 volt  
Byte data control: LB#s (DQ7–DQ0), UB#s (DQ15–DQ8)  
8-word page mode access  
2
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
GENERAL DESCRIPTION (PDL129)  
The Am29PDL129H is a 128 Mbit, 3.0 volt-only Page Mode  
and Simultaneous Read/Write Flash memory device orga-  
nized as 8 Mwords. The word-wide data (x16) appears on  
DQ15-DQ0. This device can be programmed in-system or in  
The device is entirely command set compatible with the  
JEDEC 42.4 single-power-supply Flash standard. Com-  
mands are written to the command register using standard  
microprocessor write timing. Register contents serve as in-  
puts to an internal state-machine that controls the erase and  
programming circuitry. Write cycles also internally latch ad-  
dresses and data needed for the programming and erase  
operations. Reading data out of the device is similar to read-  
ing from other Flash or EPROM devices.  
standard EPROM programmers. A 12.0 V V  
quired for write or erase operations.  
is not re-  
PP  
The device offers fast page access time of 25 and 30 ns,  
with corresponding random access times of 65 and 70 ns,  
respectively, allowing high speed microprocessors to oper-  
ate without wait states. To eliminate bus contention the de-  
vice has separate chip enable (CE#f1, CE#f2), write enable  
(WE#) and output enable (OE#) controls. Dual Chip Enables  
allow access to two 64 Mbit partitions of the 128 Mbit mem-  
ory space.  
Device programming occurs by executing the program com-  
mand sequence. The Unlock Bypass mode facilitates faster  
programming times by requiring only two write cycles to pro-  
gram data instead of four. Device erasure occurs by execut-  
ing the erase command sequence.  
The host system can detect whether a program or erase op-  
eration is complete by reading the DQ7 (Data# Polling) and  
DQ6 (toggle) status bits. After a program or erase cycle has  
been completed, the device is ready to read array data or ac-  
cept another command.  
Simultaneous Read/Write Operation with  
Zero Latency  
The Simultaneous Read/Write architecture provides simul-  
taneous operation by dividing the memory space into 4  
banks, which can be considered to be four separate memory  
arrays as far as certain operations are concerned. The de-  
vice can improve overall system performance by allowing a  
host system to program or erase in one bank, then immedi-  
ately and simultaneously read from another bank with zero  
latency (with two simultaneous operations operating at any  
one time). This releases the system from waiting for the  
completion of a program or erase operation, greatly improv-  
ing system performance.  
The sector erase architecture allows memory sectors to be  
erased and reprogrammed without affecting the data con-  
tents of other sectors. The device is fully erased when  
shipped from the factory.  
Hardware data protection measures include a low V de-  
CC  
tector that automatically inhibits write operations during  
power transitions. The hardware sector protection feature  
disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or  
via programming equipment.  
The device can be organized in both top and bottom sector  
configurations. The banks are organized as follows:  
The Erase Suspend/Erase Resume feature enables the  
user to put erase on hold for any period of time to read data  
from, or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved. If a  
read is needed from the SecSi Sector area (One Time Pro-  
gram area) after an erase suspend, then the user must use  
the proper command sequence to enter and exit this region.  
Chip Enable Configuration  
CE#f1 Control  
CE#f2 Control  
Bank 1A  
Bank 2A  
48 Mbit (32 Kw x 96)  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank 1B  
Bank 2B  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
Page Mode Features  
The page size is 8 words. After initial page access is accom-  
plished, the page mode operation provides fast read access  
speed of random locations within that page.  
The device offers two power-saving features. When ad-  
dresses have been stable for a specified amount of time, the  
device enters the automatic sleep mode. The system can  
also place the device into the standby mode. Power con-  
sumption is greatly reduced in both these modes.  
Standard Flash Memory Features  
AMD’s Flash technology combined years of Flash memory  
manufacturing experience to produce the highest levels of  
quality, reliability and cost effectiveness. The device electri-  
cally erases all bits within a sector simultaneously via  
Fowler-Nordheim tunneling. The data is programmed using  
hot electron injection.  
The device requires a single 3.0 volt power supply (2.7 V  
to 3.3 V) for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the program  
and erase operations.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
3
A D V A N C E I N F O R M A T I O N  
GENERAL DESCRIPTION (PDL127)  
The Am29PDL127H is a 128 Mbit, 3.0 volt-only Page Mode  
and Simultaneous Read/Write Flash memory device orga-  
nized as 8 Mwords. The word-wide data (x16) appears on  
DQ15-DQ0. This device can be programmed in-system or in  
microprocessor write timing. Register contents serve as in-  
puts to an internal state-machine that controls the erase and  
programming circuitry. Write cycles also internally latch ad-  
dresses and data needed for the programming and erase  
operations. Reading data out of the device is similar to read-  
ing from other Flash or EPROM devices.  
standard EPROM programmers. A 12.0 V V  
quired for write or erase operations.  
is not re-  
PP  
The device offers fast page access time of 25 and 30 ns,  
with corresponding random access times of 65 and 70 ns,  
respectively, allowing high speed microprocessors to oper-  
ate without wait states. To eliminate bus contention the de-  
vice has separate chip enable (CE#f1), write enable (WE#)  
and output enable (OE#) controls. Simultaneous Read/Write  
Operation with Zero Latency  
Device programming occurs by executing the program com-  
mand sequence. The Unlock Bypass mode facilitates faster  
programming times by requiring only two write cycles to pro-  
gram data instead of four. Device erasure occurs by execut-  
ing the erase command sequence.  
The host system can detect whether a program or erase op-  
eration is complete by reading the DQ7 (Data# Polling) and  
DQ6 (toggle) status bits. After a program or erase cycle has  
been completed, the device is ready to read array data or ac-  
cept another command.  
The Simultaneous Read/Write architecture provides simul-  
taneous operation by dividing the memory space into 4  
banks, which can be considered to be four separate memory  
arrays as far as certain operations are concerned. The de-  
vice can improve overall system performance by allowing a  
host system to program or erase in one bank, then immedi-  
ately and simultaneously read from another bank with zero  
latency (with two simultaneous operations operating at any  
one time). This releases the system from waiting for the  
completion of a program or erase operation, greatly improv-  
ing system performance.  
The sector erase architecture allows memory sectors to be  
erased and reprogrammed without affecting the data con-  
tents of other sectors. The device is fully erased when  
shipped from the factory.  
Hardware data protection measures include a low V de-  
CC  
tector that automatically inhibits write operations during  
power transitions. The hardware sector protection feature  
disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or  
via programming equipment.  
The device can be organized in both top and bottom sector  
configurations. The banks are organized as follows:  
Bank  
Sectors  
The Erase Suspend/Erase Resume feature enables the  
user to put erase on hold for any period of time to read data  
from, or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved. If a  
read is needed from the SecSi Sector area (One Time Pro-  
gram area) after an erase suspend, then the user must use  
the proper command sequence to enter and exit this region.  
A
B
C
D
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
48 Mbit (32 Kw x 96)  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Page Mode Features  
The page size is 8 words. After initial page access is accom-  
plished, the page mode operation provides fast read access  
speed of random locations within that page.  
The device offers two power-saving features. When ad-  
dresses have been stable for a specified amount of time, the  
device enters the automatic sleep mode. The system can  
also place the device into the standby mode. Power con-  
sumption is greatly reduced in both these modes.  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V  
to 3.3 V) for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the program  
and erase operations.  
AMD’s Flash technology combined years of Flash memory  
manufacturing experience to produce the highest levels of  
quality, reliability and cost effectiveness. The device electri-  
cally erases all bits within a sector simultaneously via  
Fowler-Nordheim tunneling. The data is programmed using  
hot electron injection.  
The device is entirely command set compatible with the  
JEDEC 42.4 single-power-supply Flash standard. Com-  
mands are written to the command register using standard  
4
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
TABLE OF CONTENTS  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 7  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 7  
Connection Diagram–PDL129 . . . . . . . . . . . . . . . . 8  
Special Package Handling Instructions .................................... 8  
Connection Diagram–PDL127 . . . . . . . . . . . . . . . . 9  
Special Package Handling Instructions .................................... 9  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . 11  
MCP Device Bus Operations . . . . . . . . . . . . . . . .11  
Requirements for Reading Array Data ................................... 12  
Random Read (Non-Page Read) ........................................ 13  
Page Mode Read ................................................................ 13  
Table 2. Page Select .......................................................................13  
Simultaneous Operation ......................................................... 13  
Table 3. Bank Select (PDL129H) ....................................................13  
Table 4. Bank Select (PDL127H) ....................................................13  
Writing Commands/Command Sequences ............................ 13  
Accelerated Program Operation .......................................... 14  
Autoselect Functions ........................................................... 14  
Standby Mode ........................................................................ 14  
Write Pulse “Glitch” Protection ............................................ 40  
Logical Inhibit ....................................................................... 40  
Power-Up Write Inhibit ......................................................... 40  
Common Flash Memory Interface (CFI) . . . . . . . 40  
Command Definitions . . . . . . . . . . . . . . . . . . . . . 43  
Reading Array Data ................................................................ 43  
Reset Command ..................................................................... 43  
Autoselect Command Sequence ............................................ 43  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence .............................................................. 44  
Word Program Command Sequence ...................................... 44  
Unlock Bypass Command Sequence .................................. 44  
Figure 4. Program Operation ......................................................... 45  
Chip Erase Command Sequence ........................................... 45  
Sector Erase Command Sequence ........................................ 45  
Figure 5. Erase Operation.............................................................. 46  
Erase Suspend/Erase Resume Commands ........................... 46  
Password Program Command ................................................ 46  
Password Verify Command .................................................... 47  
Password Protection Mode Locking Bit Program Command .. 47  
Persistent Sector Protection Mode Locking Bit Program Com-  
mand ....................................................................................... 47  
SecSi Sector Protection Bit Program Command .................... 47  
PPB Lock Bit Set Command ................................................... 47  
DYB Write Command ............................................................. 47  
Password Unlock Command .................................................. 48  
PPB Program Command ........................................................ 48  
All PPB Erase Command ........................................................ 48  
DYB Write Command ............................................................. 48  
PPB Lock Bit Set Command ................................................... 48  
PPB Status Command ............................................................ 48  
PPB Lock Bit Status Command .............................................. 48  
Automatic Sleep Mode ........................................................... 14  
RESET#: Hardware Reset Pin ............................................... 14  
Output Disable Mode .............................................................. 14  
TM  
Table 5. SecSi Sector Addresses ..............................................15  
Table 6. Am29PDL127H Sector Architecture ..................................15  
Table 7. Am29PDL129H Sector Architecture ..................................23  
Table 8. Am29PDL127H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection ........................................................................31  
Table 9. Am29PDL129H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection  
CE#f1 Control ..................................................................................32  
Table 10. Am29PDL129H Boot Sector/Sector Block Addresses for  
Protection/Unprotection  
CE#f2 Control ..................................................................................32  
Sector Protection. . . . . . . . . . . . . . . . . . . . . . . . . 33  
Sector Protection Status Command ....................................... 48  
Command Definitions Tables .................................................. 49  
Table 16. Memory Array Command Definitions ............................. 49  
Table 17. Sector Protection Command Definitions ........................ 50  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 51  
DQ7: Data# Polling ................................................................. 51  
Figure 6. Data# Polling Algorithm .................................................. 51  
RY/BY#: Ready/Busy# ............................................................ 52  
DQ6: Toggle Bit I .................................................................... 52  
Figure 7. Toggle Bit Algorithm........................................................ 52  
DQ2: Toggle Bit II ................................................................... 53  
Reading Toggle Bits DQ6/DQ2 ............................................... 53  
Persistent Sector Protection ................................................... 33  
Persistent Protection Bit (PPB) ............................................ 33  
Persistent Protection Bit Lock (PPB Lock) .......................... 33  
Dynamic Protection Bit (DYB) ............................................. 34  
Table 11. Sector Protection Schemes .............................................34  
Persistent Sector Protection Mode Locking Bit ................... 35  
Password Protection Mode ..................................................... 35  
Password and Password Mode Locking Bit ........................ 35  
64-bit Password ................................................................... 35  
Write Protect (WP#) ................................................................ 35  
Persistent Protection Bit Lock .............................................. 36  
DQ5: Exceeded Timing Limits ................................................ 53  
DQ3: Sector Erase Timer ....................................................... 53  
Table 18. Write Operation Status ................................................... 54  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 55  
Figure 8. Maximum Negative Overshoot Waveform ...................... 55  
Figure 9. Maximum Positive Overshoot Waveform........................ 55  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 56  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 10. Test Setup, VIO = 2.7 – 3.3 V...................................... 58  
Figure 11. Input Waveforms and Measurement Levels ................. 58  
pSRAM AC Characteristics . . . . . . . . . . . . . . . . . 59  
CE#1ps Timing ....................................................................... 59  
Figure 12. Timing Diagram for Alternating  
High Voltage Sector Protection .............................................. 36  
Figure 1. In-System Sector Protection/  
Sector Unprotection Algorithms ...................................................... 37  
Temporary Sector Unprotect .................................................. 38  
Figure 2. Temporary Sector Unprotect Operation........................... 38  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region ............................................................ 38  
Factory-Locked Area (64 words) ......................................... 38  
Customer-Lockable Area (64 words) ................................... 38  
Figure 3. SecSi Sector Protection Algorithm................................... 39  
SecSi Sector Protection Bits ................................................ 40  
Hardware Data Protection ...................................................... 40  
Low VCC Write Inhibit ......................................................... 40  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
5
A D V A N C E I N F O R M A T I O N  
Between Pseudo SRAM and Flash................................................. 59  
Flash AC Characteristics . . . . . . . . . . . . . . . . . . . 60  
Read-Only Operations – Am29PDL127H ............................... 60  
Figure 25. Flash Alternate CE#f1 Controlled Write (Erase/Program)  
Operation Timings.......................................................................... 71  
Pseudo SRAM AC Characteristics . . . . . . . . . . . 72  
Power Up Time ....................................................................... 72  
Read Cycle ............................................................................. 72  
Figure 26. Pseudo SRAM Read Cycle—Address Controlled......... 72  
Figure 27. Pseudo SRAM Read Cycle........................................... 73  
Write Cycle ............................................................................. 74  
Figure 28. Pseudo SRAM Write Cycle—WE# Control ................... 74  
Figure 29. Pseudo SRAM Write Cycle—CE1#s Control................ 75  
Figure 30. Pseudo SRAM Write Cycle—  
Read-Only Operations – Am29PDL129H ............................... 60  
Figure 13. Read Operation Timings................................................ 61  
Figure 14. Page Read Operation Timings....................................... 61  
Hardware Reset (RESET#) .................................................... 62  
Figure 15. Reset Timings................................................................ 62  
Erase and Program Operations .............................................. 63  
Figure 16. Program Operation Timings........................................... 64  
Figure 17. Accelerated Program Timing Diagram........................... 64  
Figure 18. Chip/Sector Erase Operation Timings ........................... 65  
Figure 19. Back-to-back Read/Write Cycle Timings ....................... 66  
Figure 20. Data# Polling Timings (During Embedded Algorithms).. 66  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)....... 67  
Figure 22. DQ2 vs. DQ6.................................................................. 67  
Temporary Sector Unprotect .................................................. 68  
Figure 23. Temporary Sector Unprotect Timing Diagram ............... 68  
Figure 24. Sector/Sector Block Protect and  
UB#s and LB#s Control.................................................................. 76  
Erase And Programming Performance . . . . . . . 77  
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 77  
Package Pin Capacitance. . . . . . . . . . . . . . . . . . . 77  
Flash Data Retention . . . . . . . . . . . . . . . . . . . . . . 77  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 78  
TLA073—73-Ball Fine-Pitch Grid Array 8 x 11.6 mm ............. 78  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 79  
Unprotect Timing Diagram .............................................................. 69  
Alternate CE#f1 Controlled Erase and Program Operations .. 70  
6
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PRODUCT SELECTOR GUIDE  
Part Number  
Am29PDL127AH/Am49PDL129AH  
Flash Memory Pseudo SRAM  
61  
Standard Voltage Range:  
= 2.7–3.3 V  
Speed Option  
V
CC  
61  
65  
25  
65  
25  
70  
70  
30  
70  
30  
70  
70  
Max Access Time, ns  
Page Access Time, ns  
CE#f1 Access, ns  
OE# Access, ns  
55  
55  
30  
70  
35  
MCP BLOCK DIAGRAM  
(A22) A21 to A0  
A21 to A0  
(A22 PDL127 only)  
RY/BY#  
128 MBit  
Flash Memory  
WP#/ACC  
RESET#  
CE#f1  
DQ15 to DQ0  
CE#f2  
DQ15 to DQ0  
(PDL129 only)  
VCC  
s
VSS  
A19 to A0  
16 MBit  
Pseudo  
SRAM  
LB#s  
DQ15 to DQ0  
UB#s  
WE#  
OE#  
CE1#ps  
CE2ps  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
7
A D V A N C E I N F O R M A T I O N  
CONNECTION DIAGRAM–PDL129  
73-Ball FBGA  
Top View  
A1  
A10  
NC  
NC  
Pseudo  
SRAM Only  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Flash Only  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
UB# RESET# CE2ps  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
A21  
F9  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
CE#f2  
NC  
G2  
A0  
G3  
G9 G10  
V
A16  
H9  
NC  
J9  
NC  
SS  
H2  
CE#f1  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
f
V ps  
CC  
CE#1ps DQ0  
DQ10  
K4  
V
CC  
SS  
K3  
K5  
DQ11  
L5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
exposed to temperatures above 150°C for prolonged  
periods of time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (BGA). The package and/or data  
integrity may be compromised if the package body is  
8
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
CONNECTION DIAGRAM–PDL127  
73-Ball FBGA  
Top View  
A1  
A10  
NC  
NC  
Pseudo  
SRAM Only  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Flash Only  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
UB# RESET# CE2ps  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
A22  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f1  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
CC  
ps  
CE#1ps DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
DQ11  
L5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
integrity may be compromised if the package body is  
exposed to temperatures above 150°C for prolonged  
periods of time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (BGA). The package and/or data  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
9
A D V A N C E I N F O R M A T I O N  
LOOK AHEAD PINOUT  
A10  
A9  
NC  
B9  
NC  
C9  
A2  
NC  
B2  
NC  
A1  
NC  
B1  
NC  
NC  
B10  
NC  
C5  
C3  
C4  
C6  
C7  
C8  
C2  
ADV#  
D2  
WP#  
E2  
VSSds CLK  
CE#f2 VCCds RST#ds CLK#ds  
RY/BY#ds  
Pseudo  
SRAM Only  
D3  
A7  
D4  
D5  
D6  
D7  
A8  
D8  
D9  
LB# WP/ACC WE#  
A11 CE#1ds  
Flash Only  
Shared  
E5  
E3  
A6  
E4  
E6  
E7  
A19  
F7  
A9  
E8  
A12  
F8  
E9  
A15  
F9  
A22  
G9  
A16  
H9  
NC  
A3  
UB#s RST#f CE2s1  
F5  
F6  
F2  
F3  
A5  
F4  
A18  
G4  
DQ1  
H4  
RY/BY# A20  
A2  
A14  
G8  
NC  
G5  
G6  
G2  
A0  
G3  
G7  
DQ6  
H7  
V
f
V
ps  
CC  
V
SS  
CC  
H5  
DQ3  
J5  
H2  
CE#f1  
J2  
H3  
OE#  
J3  
H6  
DQ4  
J6  
H8  
DQ9  
J4  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
J9  
V
CC  
f
V
CC  
ps  
CE#1ps DQ0  
DQ10  
K4  
V
SS  
K2  
K3  
K5  
DQ11  
L5  
K6  
NC  
L6  
NC  
M6  
NC  
K9  
CE#1ps  
L9  
CE#1ps DQ8  
DQ2  
L4  
DQ5  
L7  
DQ14  
L8  
L2  
L3  
CE#1ps DQ8  
DQ2  
M4  
DQ2  
DQ11  
M5  
DQ5  
M7  
DQ5  
DQ14  
M8  
CE#1ps  
M9  
M2  
M3  
CE#1ps DQ8  
DQ11  
DQ14  
CE#1ps  
N9  
N10  
NC  
N2  
NC  
P2  
NC  
N1  
NC  
P1  
NC  
NC  
P10  
NC  
P9  
NC  
In order to provide customers with a migration path to  
higher densities, as well as the option to stack more  
die in a package, FASL has perpared a standard pi-  
nout that supports:  
tual package outline may vary. However, any pinout in  
any MCP will be a subset of the pinout above.  
In some cases, there may be outrigger balls in loca-  
tions outside the grid shown above. In such cases, the  
user is recommended to treat these as RFU’s , and not  
connect them to any other signal.  
NOR Flash and SRAM densities up to 4 Gigabits  
NOR Flash and pSRAM densities up to 4 Gigabits  
NOR Flash and pSRAM and DATA STORAGE desities up to  
In case of any further inquiries about the above look-  
ahead pinout, please refer to the application note on  
this subject, or contact the appropriate AMD or Fujitsu  
sales office.  
4 Gigabits.  
The signal locations of the resultant MCP device are  
shown above. Note that for different densities, the ac-  
10  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PPB is programmed. When WP/  
PIN DESCRIPTION  
ACC#= 12V, program and erase op-  
erations are accelerated.  
A19–A0  
A21-A20  
A22  
= 20 Address Inputs (Common)  
=
=
2 Address Inputs (Flash)  
VCC  
f
= Flash 3.0 volt-only single power sup-  
ply (see Product Selector Guide for  
speed options and voltage supply  
tolerances)  
Address Input (PDL127 only)  
(Flash)  
DQ15–DQ0  
CE#f1  
= 16 Data Inputs/Outputs (Common)  
VCC  
VSS  
NC  
s
= pSRAM Power Supply  
= Chip Enable 1 (Flash) (PDL 127  
only)  
= Device Ground (Common)  
= Pin Not Connected Internally  
CE#f1, CE#f2 = Chip Enable Inputs. CE#f1 controls  
the 64 Mb in Banks 1A and 1B.  
CE#f2 controls the 64 Mb in Banks  
2A and 2B.  
LOGIC SYMBOL  
20  
CE#1ps  
= Chip Enable 1 (pSRAM) (PDL129  
only)  
A19–A0  
A21-A20  
CE2ps  
OE#  
= Chip Enable 2 (pSRAM)  
= Output Enable (Common)  
= Write Enable (Common)  
A22 (PDL127 Only)  
CE#f1  
16  
WE#  
DQ15–DQ0  
CE#f2 (PDL129 Only)  
CE#1ps  
RY/BY#  
= Ready/Busy Output and open drain.  
When RY/BY# = VIH, the device is  
ready to accept read operations and  
CE2ps  
commands. When RY/BY# = VOL  
,
RY/BY#  
the device is either executing an em-  
bedded algorithm or the device is  
executing a hardware reset opera-  
tion.  
OE#  
WE#  
WP#/ACC  
UB#s  
= Upper Byte Control (pSRAM)  
= Lower Byte Control (pSRAM)  
= Hardware Reset Pin, Active Low  
RESET#  
UB#s  
LB#s  
RESET#  
WP#/ACC  
LB#s  
= Write Protect/Acceleration Input.  
When WP/ACC#= VIL, the highest  
and lowest two 4K-word sectors are  
write protected regardless of other  
sector protection configurations.  
When WP/ACC#= VIH, these sector  
are unprotected unless the DYB or  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
11  
A D V A N C E I N F O R M A T I O N  
ORDERING INFORMATION  
The order number (Valid Combination) is formed by the following:  
Am49PDL12 61  
7
A
H
I
T
TAPE AND REEL  
T
S
=
=
7 inches  
13 inches  
TEMPERATURE RANGE  
Industrial (–40°C to +85°C)  
I
=
SPEED OPTION  
See “Product Selector Guide” on page 5.  
PROCESS TECHNOLOGY  
H
=
0.13 µm  
PSEUDO SRAM DEVICE DENSITY  
16 Mbits  
A
=
CONTROL PINS  
7
9
=
=
1 CE Flash  
2 CE Flash  
AMD DEVICE NUMBER/DESCRIPTION  
Am49PDL127AH/Am49PDL129AH  
Stacked Multi-Chip Package (MCP) Flash Memory and pSRAM  
128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 16  
Mbit (1 M x 16-Bit) Pseudo Static RAM  
MCP DEVICE BUS OPERATIONS  
Valid Combinations  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Tables 1-2 lists the device bus operations, the  
inputs and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult the local AMD sales office to confirm  
availability of specific valid combinations and to check on newly re-  
leased combinations.  
Valid Combinations  
Order Number  
Am49PDL127AH61I  
Package Marking  
M49000002I  
M49000002J  
M4900000K  
T, S  
T, S  
T, S  
T, S  
Am49PDL127AH70I  
Am49PDL129AH61I  
Am49PDL129AH70I  
M4900000L  
12  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 1. Device Bus Operations  
CE#f2  
LB#s UB#s  
(Note (Note RESET#  
WP#/  
ACC  
(Note 4)  
Operation  
(Notes 1, 2)  
CE#f1  
Active  
DQ7– DQ15–  
(PDL129 CE#1ps CE2ps OE# WE#  
only)  
Addr.  
DQ0  
DQ8  
3)  
3)  
(Note 7)  
(Note 8)  
(Note 7)  
(Note 8)  
H
H
H
H
H
L
Read from  
Active Flash  
AIN  
AIN  
DOUT  
DOUT  
L (H)  
L (H)  
H (L)  
H (L)  
L
H
L
X
X
H
H
L/H  
H
L
Write to Active  
Flash  
DIN  
DIN  
H
X
X
(Note 4)  
VCC  
VCC 0.3 V  
VCC 0.3 V  
Standby  
H
H
L
H
L
X
X
X
X
X
X
X
X
X
X
H
H
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
0.3 V  
VCC  
Deep Power-down  
Standby  
0.3 V  
H
H
H
H
X
X
X
X
X
X
Output Disable (Note 9)  
L (H)  
H (L)  
H
H
L
L/H  
(Note 7)  
H
H
H
H
L
Flash Hardware  
Reset  
X
X
X
X
X
X
L/H  
L/H  
High-Z High-Z  
(Note 8)  
(Note 7)  
H
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Protect  
(Notes 6, 10)  
VID  
DIN  
L (H)  
L (H)  
H (L)  
H (L)  
H
L
X
X
X
(Note 9)  
(Note 7)  
(Note 8)  
H
H
H
L
H
L
SADD,  
A6 = H,  
A1 = H,  
A0 = L  
Sector  
Unprotect  
(Notes 5, 9)  
VID  
DIN  
H
X
L
X
X
X
X
(Note 6)  
(Note 6)  
X
Temporary  
Sector  
Unprotect  
(Note 7)  
(Note 8)  
H
H
H
L
VID  
DIN  
X
X
X
High-Z  
DOUT  
DOUT  
DOUT  
L
H
L
L
L
AIN  
Read from pSRAM  
Write to pSRAM  
H
H
H
H
L
L
H
H
L
H
L
H
H
X
X
High-Z  
DOUT  
DIN  
H
L
High-Z  
DIN  
L
AIN  
DIN  
X
H
L
L
High-Z  
DIN  
H
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 0.5 V, X = Don’t Care, SADD = Flash Sector Address, AIN  
=
Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Other operations except for those indicated in this column are  
Requirements for Reading Array Data  
inhibited.  
To read array data from the outputs, the system must  
drive the OE# and appropriate CE#f1/CE#f2 (PDL129  
only) pins to VIL. CE#f1 and CE#f2 are the power con-  
trol and for PDL129 select the lower (CE#f1) or upper  
(CE#f2) halves of the device. OE# is the output control  
and gates array data to the output pins. WE# should  
remain at VIH.  
2. Do not apply CE#f1 or 2 = VIL, CE#1ps = VIL and CE2ps = VIH at  
the same time.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL, the boot sectors will be protected. If WP#/ACC  
= VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by  
40%.  
5. The sector protect and sector unprotect functions may also be  
implemented via programming equipment. See the “Sector/Sector  
Block Protection and Unprotection” section.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid  
data on the device data outputs. Each bank remains  
enabled for read access until the command register  
contents are altered.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain  
protected. If WP#/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or  
unprotected using the method described in “Sector/Sector Block  
Protection and Unprotection”. If WP#/ACC = VHH, all sectors will  
be unprotected.  
7. Data will be retained in pSRAM.  
8. Data will be lost in pSRAM.  
9. Both CE#f1 inputs may be held low for this operation.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
13  
A D V A N C E I N F O R M A T I O N  
Refer to the Flash AC Characteristics table for timing  
Simultaneous Operation  
specifications and to Figure 13 for the timing diagram.  
ICC1 in the DC Characteristics table represents the ac-  
tive current specification for reading array data.  
In addition to the conventional features (read, pro-  
gram, erase-suspend read, and erase-suspend pro-  
gram), the device is capable of reading data from one  
bank of memory while a program or erase operation is  
in progress in another bank of memory (simultaneous  
operation), The bank can be selected by bank ad-  
dresses (A22–A20) (A21–A20 for PDL129) with zero  
latency.  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from  
stable addresses to valid output data. The chip enable  
access time (tCE) is the delay from the stable ad-  
dresses and stable CE#f1 to valid data at the output  
inputs. The output enable access time is the delay  
from the falling edge of the OE# to valid data at the  
output inputs (assuming the addresses have been sta-  
ble for at least tACC–tOE time).  
The simultaneous operation can execute multi-func-  
tion mode in the same bank.  
Table 3. Bank Select (PDL129H)  
Bank  
CE#f1  
CE#f2  
A21–A20  
00, 01, 10  
11  
Page Mode Read  
Bank 1A  
Bank 1B  
Bank 2A  
Bank 2B  
0
0
1
1
1
1
0
0
The device is capable of fast page mode read and is  
compatible with the page mode Mask ROM read oper-  
ation. This mode provides faster read access speed  
for random locations within a page. Address bits A22–  
A3 (A21–A3 for PDL129) select an 8-word page, and  
address bits A2–A0 select a specific word within that  
page. This is an asynchronous operation with the mi-  
croprocessor supplying the specific word location.  
00  
01, 10, 11  
Table 4. Bank Select (PDL127H)  
Bank  
A22–A20  
000  
The random or initial page access is tACC or tCE and  
subsequent page read accesses (as long as the loca-  
tions specified by the microprocessor fall within that  
page) are tPACC. When CE#f1 and CE#f2 (PDL129  
only) are deasserted (CE#f1=CE#f2=VIH), the reas-  
sertion of CE#f1 or CE#f2 (PDL129 only) for subse-  
quent access has access time of tACC or tCE. Here  
again, CE#f1/CE#f2 (PDL129 only) selects the device  
and OE# is the output control and should be used to  
gate data to the output inputs if the device is selected.  
Fast page mode accesses are obtained by keeping  
A22–A3 (A21–A3 for PDL129) constant and changing  
A2 to A0 to select the specific word within that page.  
Bank A  
Bank B  
Bank C  
Bank D  
001, 010, 011  
100, 101, 110  
111  
Writing Commands/Command Sequences  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE#f1 or CE#f2 (PDL 129 only) to VIL, and OE# to  
VIH.  
The device features an Unlock Bypass mode to facili-  
tate faster programming. Once a bank enters the Un-  
lock Bypass mode, only two write cycles are required  
to program a word, instead of four. The “Word Pro-  
gram Command Sequence” section has details on  
programming data to the device using both standard  
and Unlock Bypass command sequences.  
Table 2. Page Select  
Word  
A2  
0
A1  
0
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
0
0
1
0
1
0
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Table 4 indicates the address  
space that each sector occupies. A “bank address” is  
the address bits required to uniquely select a bank.  
Similarly, a sector address” refers to the address bits  
required to uniquely select a sector. The “Command  
Definitions” section has details on erasing a sector or  
the entire chip, or suspending/resuming the erase op-  
eration.  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The Flash  
14  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
AC Characteristics section contains timing specifica-  
tion tables and timing diagrams for write operations.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
Accelerated Program Operation  
this mode when addresses remain stable for tACC  
+
The device offers accelerated program operations  
through the ACC function. This function is primarily in-  
tended to allow faster manufacturing throughput at the  
factory.  
150 ns. The automatic sleep mode is independent of  
the CE#f1/CE#f2 (PDL129 only), WE#, and OE# con-  
trol signals. Standard address access timings provide  
new data when addresses are changed. While in  
sleep mode, output data is latched and always avail-  
able to the system. Note that during automatic sleep  
mode, OE# must be at VIH before the device reduces  
current to the stated sleep mode specification. ICC5 in  
the DC Characteristics table represents the automatic  
sleep mode current specification.  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
mal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated pro-  
gramming, or device damage may result. In addition,  
the WP#/ACC pin should be raised to VCC when not in  
use. That is, the WP#/ACC pin should not be left float-  
ing or unconnected; inconsistent behavior of the de-  
vice may result.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all read/  
write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to  
reading array data. The operation that was interrupted  
should be reinitiated once the device is ready to ac-  
cept another command sequence, to ensure data in-  
tegrity.  
Autoselect Functions  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ15–DQ0. Standard read cycle timings apply in  
this mode. Refer to the Autoselect Command Se-  
quence sections for more information.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS 0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is  
held at VIL but not within VSS 0.3 V, the standby cur-  
rent will be greater.  
Standby Mode  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a  
time of tREADY (during Embedded Algorithms). The  
system can thus monitor RY/BY# to determine  
whether the reset operation is complete. If RESET# is  
asserted when a program or erase operation is not ex-  
ecuting (RY/BY# pin is “1”), the reset operation is com-  
pleted within a time of tREADY (not during Embedded  
Algorithms). The system can read data tRH after the  
RESET# pin returns to VIH.  
The device enters the CMOS standby mode when the  
CE#f1, CE#f2 (PDL129 only) and RESET# pins are all  
held at VIO 0.3 V. (Note that this is a more restricted  
voltage range than VIH.) If CE#f1, CE#f2 (PDL129  
only), and RESET# are held at VIH, but not within VCC  
0.3 V, the device will be in the standby mode, but the  
standby current will be greater. The device requires  
standard access time (tCE) for read access when the  
device is in either of these standby modes, before it is  
ready to read data.  
Refer to the pSRAM AC Characteristics tables for RE-  
SET# parameters and to Figure 15 for the timing dia-  
gram.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is  
disabled. The output pins (except for RY/BY#) are  
placed in the highest Impedance state  
ICC3 in the DC Characteristics table represents the  
CMOS standby current specification.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
15  
A D V A N C E I N F O R M A T I O N  
Table 5. SecSiTM Sector Addresses  
Sector Size  
64 words  
Address Range  
000000h-00003Fh  
000040h-00007Fh  
Factory-Locked Area  
Sector Size  
Address Range  
Customer-Lockable Area  
64 words  
Am29PDL127H/  
Am29PDL129H  
128 words  
000000h–00007Fh  
Table 6. Am29PDL127H Sector Architecture  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
16  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA0  
SA1  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
17  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
18  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA79  
SA80  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
01101001XXX  
01101010XXX  
01101011XXX  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
19  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
20  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
21  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
11001100XXX  
11001101XXX  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
22  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
11100000XXX  
11100001XXX  
11100010XXX  
11100011XXX  
11100100XXX  
11100101XXX  
11100110XXX  
11100111XXX  
11101000XXX  
11101001XXX  
11101010XXX  
11101011XXX  
11101100XXX  
11101101XXX  
11101110XXX  
11101111XXX  
11110000XXX  
11110001XXX  
11110010XXX  
11110011XXX  
11110100XXX  
11110101XXX  
11110110XXX  
11110111XXX  
11111000XXX  
11111001XXX  
11111010XXX  
11111011XXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
7F8000h–7F8FFFh  
7F9000h–7F9FFFh  
7FA000h–7FAFFFh  
7FB000h–7FBFFFh  
7FC000h–7FCFFFh  
7FD000h–7FDFFFh  
7FE000h–7FEFFFh  
7FF000h–7FFFFFh  
4
4
4
4
4
4
4
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
23  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-0  
SA1-1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0000000XXX  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
SA1-2  
SA1-3  
SA1-4  
SA1-5  
SA1-6  
SA1-7  
SA1-8  
SA1-9  
SA1-10  
SA1-11  
SA1-12  
SA1-13  
SA1-14  
SA1-15  
SA1-16  
SA1-17  
SA1-18  
SA1-19  
SA1-20  
SA1-21  
SA1-22  
SA1-23  
SA1-24  
SA1-25  
SA1-26  
SA1-27  
SA1-28  
SA1-29  
SA1-30  
SA1-31  
SA1-32  
SA1-33  
SA1-34  
SA1-35  
SA1-36  
SA1-37  
24  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
25  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA1-38  
SA1-39  
SA1-40  
SA1-41  
SA1-42  
SA1-43  
SA1-44  
SA1-45  
SA1-46  
SA1-47  
SA1-48  
SA1-49  
SA1-50  
SA1-51  
SA1-52  
SA1-53  
SA1-54  
SA1-55  
SA1-56  
SA1-57  
SA1-58  
SA1-59  
SA1-60  
SA1-61  
SA1-62  
SA1-63  
SA1-64  
SA1-65  
SA1-66  
SA1-67  
SA1-68  
SA1-69  
SA1-70  
SA1-71  
SA1-72  
SA1-73  
SA1-74  
SA1-75  
SA1-76  
SA1-77  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
26  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA1-78  
SA1-79  
SA1-80  
SA1-81  
SA1-82  
SA1-83  
SA1-84  
SA1-85  
SA1-86  
SA1-87  
SA1-88  
SA1-89  
SA1-90  
SA1-91  
SA1-92  
SA1-93  
SA1-94  
SA1-95  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
27  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA1-96  
SA1-97  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA1-98  
SA1-99  
SA1-100  
SA1-101  
SA1-102  
SA1-103  
SA1-104  
SA1-105  
SA1-106  
SA1-107  
SA1-108  
SA1-109  
SA1-110  
SA1-111  
SA1-112  
SA1-113  
SA1-114  
SA1-115  
SA1-116  
SA1-117  
SA1-118  
SA1-119  
SA1-120  
SA1-121  
SA1-122  
SA1-123  
SA1-124  
SA1-125  
SA1-126  
SA1-127  
SA1-128  
SA1-129  
SA1-130  
SA1-131  
SA1-132  
SA1-133  
SA1-134  
4
4
4
4
4
4
4
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
28  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA2-0  
SA2-1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA2-2  
4
SA2-3  
4
SA2-4  
4
SA2-5  
4
SA2-6  
4
SA2-7  
4
SA2-8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA2-9  
SA2-10  
SA2-11  
SA2-12  
SA2-13  
SA2-14  
SA2-15  
SA2-16  
SA2-17  
SA2-18  
SA2-19  
SA2-20  
SA2-21  
SA2-22  
SA2-23  
SA2-24  
SA2-25  
SA2-26  
SA2-27  
SA2-28  
SA2-29  
SA2-30  
SA2-31  
SA2-32  
SA2-33  
SA2-34  
SA2-35  
SA2-36  
SA2-37  
SA2-38  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
29  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA2-39  
SA2-40  
SA2-41  
SA2-42  
SA2-43  
SA2-44  
SA2-45  
SA2-46  
SA2-47  
SA2-48  
SA2-49  
SA2-50  
SA2-51  
SA2-52  
SA2-53  
SA2-54  
SA2-55  
SA2-56  
SA2-57  
SA2-58  
SA2-59  
SA2-60  
SA2-61  
SA2-62  
SA2-63  
SA2-64  
SA2-65  
SA2-66  
SA2-67  
SA2-68  
SA2-69  
SA2-70  
SA2-71  
SA2-72  
SA2-73  
SA2-74  
SA2-75  
SA2-76  
SA2-77  
SA2-78  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
30  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA2-79  
SA2-80  
SA2-81  
SA2-82  
SA2-83  
SA2-84  
SA2-85  
SA2-86  
SA2-87  
SA2-88  
SA2-89  
SA2-90  
SA2-91  
SA2-92  
SA2-93  
SA2-94  
SA2-95  
SA2-96  
SA2-97  
SA2-98  
SA2-99  
SA2-100  
SA2-101  
SA2-102  
SA2-103  
SA2-104  
SA2-105  
SA2-106  
SA2-107  
SA2-108  
SA2-109  
SA2-110  
SA2-111  
SA2-112  
SA2-113  
SA2-114  
SA2-115  
SA2-116  
SA2-117  
SA2-118  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
31  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
SA2-119  
SA2-120  
SA2-121  
SA2-122  
SA2-123  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111XXX  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
Table 8. Am29PDL127H Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
SA83-SA86  
SA87-SA90  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA91-SA94  
Sector/  
Sector Block Size  
Sector  
A22-A12  
SA95-SA98  
SA0  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
4 Kwords  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
Sector/  
Sector Block Size  
Sector  
A22-A12  
SA10  
32 Kwords  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
SA1-92–SA1-95  
SA1-96–SA1-99  
SA1-100–SA1-103  
SA1-104–SA1-107  
SA1-108–SA1-111  
SA1-112–SA1-115  
SA1-116–SA1-119  
SA1-120–SA1-123  
SA1-124  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1-125  
32 Kwords  
SA1-126  
32 Kwords  
SA1-127  
4 Kwords  
SA1-128  
4 Kwords  
SA1-129  
4 Kwords  
SA1-130  
4 Kwords  
SA260  
32 Kwords  
SA1-131  
4 Kwords  
SA261  
32 Kwords  
SA1-132  
4 Kwords  
SA262  
4 Kwords  
SA1-133  
4 Kwords  
SA263  
4 Kwords  
SA1-134  
4 Kwords  
SA264  
4 Kwords  
Table 10. Am29PDL129H Boot Sector/Sector  
Block Addresses for Protection/Unprotection  
CE#f2 Control  
SA265  
4 Kwords  
SA266  
4 Kwords  
SA267  
4 Kwords  
Sector  
Group  
Sector/Sector  
Block Size  
SA268  
4 Kwords  
A21-12  
SA269  
4 Kwords  
Table 9. Am29PDL129H Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
CE#f1 Control  
SA2-0  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
4 Kwords  
4 Kwords  
SA2-1  
SA2-2  
4 Kwords  
SA2-3  
4 Kwords  
Sector  
Group  
A21-12  
Sector/Sector  
Block Size  
SA2-4  
4 Kwords  
SA2-5  
4 Kwords  
SA1-0–SA1-3  
00000XXXXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA2-6  
4 Kwords  
SA1-4–SA1-7  
SA2-7  
4 Kwords  
SA1-8–SA1-11  
SA1-12–SA1-15  
SA1-16–SA1-19  
SA1-20–SA1-23  
SA1-24–SA1-27  
SA1-28–SA1-31  
SA1-32–SA1-35  
SA1-36–SA1-39  
SA1-40–SA1-43  
SA1-44–SA1-47  
SA1-48–SA1-51  
SA1-52–SA1-55  
SA1-56–SA1-59  
SA1-60–SA1-63  
SA1-64–SA1-67  
SA1-68–SA1-71  
SA1-72–SA1-75  
SA1-76–SA1-79  
SA1-80–SA1-83  
SA1-84–SA1-87  
SA1-88–SA1-91  
SA2-8  
32 Kwords  
SA2-9  
32 Kwords  
SA2-10  
32 Kwords  
SA2-11 - SA2-14  
SA2-15 - SA2-18  
SA2-19 - SA2-22  
SA2-23 - SA2-26  
SA2-27 - SA2-30  
SA2-31 - SA2-34  
SA2-35 - SA2-38  
SA2-39 - SA2-42  
SA2-43 - SA2-46  
SA2-47 - SA2-50  
SA2-51 - SA2-54  
SA2-55 - SA2-58  
SA2-59 - SA2-62  
SA2-63 - SA2-66  
SA2-67 - SA2-70  
SA2-71 - SA2-74  
SA2-75 - SA2-78  
SA2-79 - SA2-82  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
33  
A D V A N C E I N F O R M A T I O N  
SA2-83 - SA2-86  
SA2-87 - SA2-90  
SA2-91 - SA2-94  
SA2-95 - SA2-98  
SA2-99 - SA2-102  
SA2-103 - SA2-106  
SA2-107 - SA2-110  
SA2-111 - SA2-114  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA2-115 - SA2-118  
SA2-119 - SA2-122  
SA2-123 - SA2-126  
SA2-127 - SA2-130  
SA2-131 - SA2-134  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
11111XXXXX  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SECTOR PROTECTION  
The Am29PDL127H/Am29PDL129H features several  
levels of sector protection, which can disable both the  
program and erase operations in certain sectors or  
sector groups:  
It is possible to determine whether a sector is pro-  
tected or unprotected. See Autoselect Command Se-  
quence for details.  
Persistent Sector Protection  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the  
12 V controlled protection method in previous AMD  
flash devices. This new method provides three differ-  
ent sector protection states:  
A command sector protection method that replaces  
the old 12 V controlled protection method.  
Password Sector Protection  
A highly sophisticated protection method that requires  
a password before changes to certain sectors or sec-  
tor groups are permitted.  
Persistently Locked—The sector is protected and  
cannot be changed.  
Dynamically Locked—The sector is protected and  
WP# Hardware Protection  
can be changed by a simple command.  
A write protect pin that can prevent program or erase  
operations in sectors 0, 1, 268, and 269 in PDL 127 or  
in SA1-133, SA1-134, SA2-0, SA2-1 in PDL 129. The  
WP# Hardware Protection feature is always available,  
regardless of which of the other two methods are cho-  
sen.  
Unlocked—The sector is unprotected and can be  
changed by a simple command.  
To achieve these states, three types of “bits” are used:  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is as-  
signed to a maximum four sectors (see the sector ad-  
dress tables for specific sector protection groupings).  
All 4 Kword boot-block sectors have individual sector  
Persistent Protection Bits (PPBs) for greater flexibility.  
Each PPB is individually modifiable through the PPB  
Write Command.  
Selecting a Sector Protection Mode  
The device defaults to the Persistent Sector Protection  
mode. However, to prevents a program or virus from  
later setting the Password Mode Locking Bit, which  
would cause an unexpected shift from the default Per-  
sistent Sector Protection Mode into the Password Pro-  
tection Mode, it is recommended that either of two  
one-time programmable non-volatile bits that perma-  
nently define which sector protection method be set  
before the device is first programmed. The Persis-  
tent Sector Protection Mode Locking Bit perma-  
nently sets the device to the Persistent Sector  
Protection mode. The Password Mode Locking Bit  
permanently sets the device to the Password Sector  
Protection mode. It is not possible to switch between  
the two protection modes once a locking bit has been  
set.  
The device erases all PPBs in parallel. If any PPB re-  
quires erasure, the device must be instructed to pre-  
program all of the sector PPBs prior to PPB erasure.  
Otherwise, a previously erased sector PPBs can po-  
tentially be over-erased. The flash device does not  
have a built-in means of preventing sector PPBs  
over-erasure.  
Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a glo-  
bal volatile bit. When set to “1”, the PPBs cannot be  
changed. When cleared (“0”), the PPBs are change-  
able. There is only one PPB Lock bit per device. The  
PPB Lock is cleared after power-up or hardware reset.  
There is no command sequence to unlock the PPB  
Lock.  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at the factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
34  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
It is possible to have sectors that have been persis-  
Dynamic Protection Bit (DYB)  
tently locked, and sectors that are left in the dynamic  
state. The sectors in the dynamic state are all unpro-  
tected. If there is a need to protect some of them, a  
simple DYB Write command sequence is all that is  
necessary. The DYB write command for the dynamic  
sectors switch the DYBs to signify protected and un-  
protected, respectively. If there is a need to change the  
status of the persistently locked sectors, a few more  
steps are required. First, the PPB Lock bit must be dis-  
abled by either putting the device through a power-cy-  
cle, or hardware reset. The PPBs can then be  
changed to reflect the desired settings. Setting the  
PPB lock bit once again will lock the PPBs, and the de-  
vice operates normally again.  
A volatile protection bit is assigned for each sector.  
After power-up or hardware reset, the contents of all  
DYBs is “0”. Each DYB is individually modifiable  
through the DYB Write Command.  
When the parts are first shipped, the PPBs are  
cleared, the DYBs are cleared, and PPB Lock is de-  
faulted to power up in the cleared state – meaning the  
PPBs are changeable.  
When the device is first powered on the DYBs power  
up cleared (sectors not protected). The Protection  
State for each sector is determined by the logical OR  
of the PPB and the DYB related to that sector. For the  
sectors that have the PPBs cleared, the DYBs control  
whether or not the sector is protected or unprotected.  
By issuing the DYB Write command sequences, the  
DYBs will be set or cleared, thus placing each sector in  
the protected or unprotected state. These are the so-  
called Dynamic Locked or Unlocked states. They  
are called dynamic states because it is very easy to  
switch back and forth between the protected and un-  
protected conditions. This allows software to easily  
protect sectors against inadvertent changes yet does  
not prevent the easy removal of protection when  
changes are needed. The DYBs maybe set or cleared  
as often as needed.  
The best protection is achieved by executing the PPB  
lock bit set command early in the boot code, and pro-  
tect the boot code by holding WP#/ACC = VIL.  
Table 11. Sector Protection Schemes  
PPB  
DYB  
PPB  
Lock  
Sector State  
Unprotected—PPB and DYB are  
changeable  
0
0
0
Unprotected—PPB not  
changeable, DYB is changeable  
0
0
1
The PPBs allow for a more static, and difficult to  
change, level of protection. The PPBs retain their state  
across power cycles because they are non-volatile. In-  
dividual PPBs are set with a command but must all be  
cleared as a group through a complex sequence of  
program and erasing commands. The PPBs are also  
limited to 100 erase cycles.  
0
1
1
0
1
1
1
0
1
1
0
1
0
0
0
1
1
1
Protected—PPB and DYB are  
changeable  
Protected—PPB not  
changeable, DYB is changeable  
The PPB Lock bit adds an additional level of protec-  
tion. Once all PPBs are programmed to the desired  
settings, the PPB Lock may be set to “1”. Setting the  
PPB Lock disables all program and erase commands  
to the non-volatile PPBs. In effect, the PPB Lock Bit  
locks the PPBs into their current state. The only way to  
clear the PPB Lock is to go through a power cycle.  
System boot code can determine if any changes to the  
PPB are needed; for example, to allow new system  
code to be downloaded. If no changes are needed  
then the boot code can set the PPB Lock to disable  
any further changes to the PPBs during system opera-  
tion.  
Table 11 contains all possible combinations of the  
DYB, PPB, and PPB lock relating to the status of the  
sector.  
In summary, if the PPB is set, and the PPB lock is set,  
the sector is protected and the protection can not be  
removed until the next power cycle clears the PPB  
lock. If the PPB is cleared, the sector can be dynami-  
cally locked or unlocked. The DYB then controls  
whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected  
sector, the device ignores the command and returns to  
read mode. A program command to a protected sector  
enables status polling for approximately 1 µs before  
the device returns to read mode without having modi-  
fied the contents of the protected sector. An erase  
command to a protected sector enables status polling  
for approximately 50 µs after which the device returns  
to read mode without having erased the protected sec-  
tor.  
The WP#/ACC write protect pin adds a final level of  
hardware protection to sectors 0, 1, 268, and 269 in  
PDL 127 or in SA1-133, SA1-134, SA2-0, SA2-1 in  
PDL 129. When this pin is low it is not possible to  
change the contents of these sectors. These sectors  
generally hold system boot code. The WP#/ACC pin  
can prevent any changes to the boot code that could  
override the choices made while setting up sector pro-  
tection during system initialization.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
35  
A D V A N C E I N F O R M A T I O N  
The programming of the DYB, PPB, and PPB lock for a  
given sector can be verified by writing a DYB/PPB/  
PPB lock verify command to the device.  
1. Permanently sets the device to operate using the  
Password Protection Mode. It is not possible to re-  
verse this function.  
2. Disables all further commands to the password re-  
gion. All program, and read operations are ignored.  
Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sec-  
tor Protection mode locking bit exists to guarantee that  
the device remain in software sector protection. Once  
set, the Persistent Sector Protection locking bit pre-  
vents programming of the password protection mode  
locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
Both of these objectives are important, and if not care-  
fully considered, may lead to unrecoverable errors.  
The user must be sure that the Password Protection  
method is desired when setting the Password Mode  
Locking Bit. More importantly, the user must be sure  
that the password is correct when the Password Mode  
Locking Bit is set. Due to the fact that read operations  
are disabled, there is no means to verify what the  
password is afterwards. If the password is lost after  
setting the Password Mode Locking Bit, there will be  
no way to clear the PPB Lock bit.  
Password Protection Mode  
The Password Sector Protection Mode method allows  
an even higher level of security than the Persistent  
Sector Protection Mode. There are two main differ-  
ences between the Persistent Sector Protection and  
the Password Sector Protection Mode:  
The Password Mode Locking Bit, once set, prevents  
reading the 64-bit password on the DQ bus and further  
password programming. The Password Mode Locking  
Bit is not erasable. Once Password Mode Locking Bit  
is programmed, the Persistent Sector Protection Lock-  
ing Bit is disabled from programming, guaranteeing  
that no changes to the protection scheme are allowed.  
When the device is first powered on, or comes out  
of a reset cycle, the PPB Lock bit set to the locked  
state, rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writ-  
ing a unique 64-bit Password to the device.  
64-bit Password  
The Password Sector Protection method is otherwise  
identical to the Persistent Sector Protection method.  
The 64-bit Password is located in its own memory  
space and is accessible through the use of the Pass-  
word Program and Verify commands (see “Password  
Verify Command”). The password function works in  
conjunction with the Password Mode Locking Bit,  
which when set, prevents the Password Verify com-  
mand from reading the contents of the password on  
the pins of the device.  
A 64-bit password is the only additional tool utilized in  
this method.  
Once the Password Mode Locking Bit is set, the pass-  
word is permanently set with no means to read, pro-  
gram, or erase it. The password is used to clear the  
PPB Lock bit. The Password Unlock command must  
be written to the flash, along with a password. The  
flash device internally compares the given password  
with the pre-programmed password. If they match, the  
PPB Lock bit is cleared, and the PPBs can be altered.  
If they do not match, the flash device does nothing.  
There is a built-in 2 µs delay for each “password  
check.This delay is intended to thwart any efforts to  
run a program that tries all possible combinations in  
order to crack the password.  
Write Protect (WP#)  
The Write Protect feature provides a hardware method  
of protecting sectors 0, 1, 268, and 269 in PDL 127 or  
in SA1-133, SA1-134, SA2-0, SA2-1 in PDL 129 with-  
out using VID. This function is provided by the WP# pin  
and overrides the previously discussed High Voltage  
Sector Protection method.  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in the two  
outermost 4 Kword sectors on both ends of the flash  
array independent of whether it was previously pro-  
tected or unprotected.  
Password and Password Mode Locking Bit  
In order to select the Password sector protection  
scheme, the customer must first program the pass-  
word. The password may be correlated to the unique  
Electronic Serial Number (ESN) of the particular flash  
device. Each ESN is different for every flash device;  
therefore each password should be different for every  
flash device. While programming in the password re-  
gion, the customer may perform Password Verify oper-  
ations.  
If the system asserts VIH on the WP#/ACC pin, the de-  
vice reverts to whether sectors 0, 1, 268, and 269 in  
PDL 127 or in SA1-133, SA1-134, SA2-0, SA2-1 in  
PDL 129 were last set to be protected or unprotected.  
That is, sector protection or unprotection for these sec-  
tors depends on whether they were last protected or  
unprotected using the method described in High Volt-  
age Sector Protection.  
Once the desired password is programmed in, the  
customer must then set the Password Mode Locking  
Bit. This operation achieves two objectives:  
36  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Note that the WP#/ACC pin must not be left floating or  
If the Password Mode Locking Bit is not set, including  
Persistent Protection Mode, the PPB Lock Bit is  
cleared after power-up or hardware reset. The PPB  
Lock Bit is set by issuing the PPB Lock Bit Set com-  
mand. Once set the only means for clearing the PPB  
Lock Bit is by issuing a hardware or power-up reset.  
The Password Unlock command is ignored in Persis-  
tent Protection Mode.  
unconnected; inconsistent behavior of the device may  
result.  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile  
bit that reflects the state of the Password Mode Lock-  
ing Bit after power-up reset. If the Password Mode  
Lock Bit is also set after a hardware reset (RESET#  
asserted) or a power-up reset, the ONLY means for  
clearing the PPB Lock Bit in Password Protection  
Mode is to issue the Password Unlock command. Suc-  
cessful execution of the Password Unlock command  
clears the PPB Lock Bit, allowing for sector PPBs  
modifications. Asserting RESET#, taking the device  
through a power-on reset, or issuing the PPB Lock Bit  
Set command sets the PPB Lock Bit to a “1” when the  
Password Mode Lock Bit is not set.  
High Voltage Sector Protection  
Sector protection and unprotection may also be imple-  
mented using programming equipment. The proce-  
dure requires high voltage (VID) to be placed on the  
RESET# pin. Refer to Figure 1 for details on this pro-  
cedure. Note that for sector unprotect, all unprotected  
sectors must first be protected prior to the first sector  
write cycle.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
37  
A D V A N C E I N F O R M A T I O N  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
RESET# = VID  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 1. In-System Sector Protection/  
Sector Unprotection Algorithms  
38  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
addresses 000000h-00007Fh in both Persistent Pro-  
Temporary Sector Unprotect  
tection mode and Password Protection mode. It uses  
indicator bits (DQ6, DQ7) to indicate the factory-  
locked and customer-locked status of the part.  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID. During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
sector addresses. Once VID is removed from the RE-  
SET# pin, all the previously protected sectors are  
protected again. Figure 2 shows the algorithm, and  
Figure 23 shows the timing diagrams, for this feature.  
While PPB lock is set, the device cannot enter the  
Temporary Sector Unprotection Mode.  
The system accesses the SecSi Sector through a  
command sequence (see “Enter SecSi™ Sector/Exit  
SecSi Sector Command Sequence”). After the system  
has written the Enter SecSi Sector command se-  
quence, it may read the SecSi Sector by using the ad-  
dresses normally occupied by the boot sectors. This  
mode of operation continues until the system issues  
the Exit SecSi Sector command sequence, or until  
power is removed from the device. On power-up, or  
following a hardware reset, the device reverts to send-  
ing commands to the normal address space.  
Factory-Locked Area (64 words)  
START  
The factory-locked area of the SecSi Sector (000000h-  
00003Fh) is locked when the part is shipped, whether  
or not the area was programmed at the factory. The  
SecSi Sector Factory-locked Indicator Bit (DQ7) is per-  
manently set to a “1”. AMD offers the ExpressFlash  
service to program the factory-locked area with a ran-  
dom ESN, a customer-defined code, or any combina-  
tion of the two. Because only AMD can program and  
protect the factory-locked area, this method ensures  
the security of the ESN once the product is shipped to  
the field. Contact an AMD representative for details on  
using AMD’s ExpressFlash service. Note that the ACC  
function and unlock bypass modes are not available  
when the SecSi Sector is enabled.  
RESET# = V  
(Note 1)  
ID  
Perform Erase or  
Program Operations  
RESET# = V  
IH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Customer-Lockable Area (64 words)  
The customer-lockable area of the SecSi Sector  
(000040h-00007Fh) is shipped unprotected, which al-  
lows the customer to program and optionally lock the  
area as appropriate for the application. The SecSi  
Sector Customer-locked Indicator Bit (DQ6) is shipped  
as “0” and can be permanently locked to “1” by issuing  
the SecSi Protection Bit Program Command. The  
SecSi Sector can be read any number of times, but  
can be programmed and locked only once. Note that  
the accelerated programming (ACC) and unlock by-  
pass functions are not available when programming  
the SecSi Sector.  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = V ,  
IL  
sectors 0, 1, 268, 269 in PDL 127 or in SA1-133, SA1-  
134, SA2-0, SA2-1 in PDL 129.will remain protected).  
2. All previously protected sectors are protected once  
again.  
Figure 2. Temporary Sector Unprotect Operation  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region  
The Customer-lockable SecSi Sector area can be pro-  
tected using one of the following procedures:  
The SecSi (Secured Silicon) Sector feature provides a  
Flash memory region that enables permanent part  
identification through an Electronic Serial Number  
(ESN) The 128-word SecSi sector is divided into 64  
factory-lockable words that can be programmed and  
locked by the customer. The SecSi sector is located at  
Follow the SecSi Sector Protection Algorithm as  
shown in Figure 3. This allows in-system protection  
of the SecSi Sector without raising any device pin to  
a high voltage. Note that this method is only appli-  
cable to the SecSi Sector.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
39  
A D V A N C E I N F O R M A T I O N  
START  
SecSiTM Sector Entry  
Write AAh to address 555h  
Write 55h to address 2AAh  
Write 88h to address 555h  
SecSi Sector Entry  
SecSi Sector  
Protection Entry  
Write AAh to address 555h  
Write 55h to address 2AAh  
Write 60h to address 555h  
PLSCNT = 1  
Protect SecSi Sector:  
write 68h to sector address  
with A7–A0 = 00011010  
Time out 256 µs  
SecSi Sector Protection  
Verify SecSi Sector:  
write 48h to sector address  
with A7–A0 = 00011010  
Increment PLSCNT  
Read from sector address  
with A7–A0 = 00011010  
No  
No  
PLSCNT = 25?  
Data = 01h?  
Yes  
Yes  
SecSi Sector  
Protection Completed  
Device Failed  
SecSi Sector Exit  
Write 555h/AAh  
Write 2AAh/55h  
Write SA0+555h/90h  
Write XXXh/00h  
SecSi Sector Exit  
Figure 3. SecSi Sector Protection Algorithm  
Am49PDL127AH/Am49PDL129AH  
40  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Once the SecSi Sector is locked and verified, the sys-  
write cycle, CE#f1/CE#f2 and WE# must be a logical  
zero while OE# is a logical one.  
tem must write the Exit SecSi Sector Region com-  
mand sequence to return to reading and writing the  
remainder of the array.  
Power-Up Write Inhibit  
If WE# = CE#f1 = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to the read mode on power-up.  
The SecSi Sector lock must be used with caution  
since, once locked, there is no procedure available for  
unlocking the SecSi Sector area and none of the bits  
in the SecSi Sector memory space can be modified in  
any way.  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
SecSi Sector Protection Bits  
The SecSi Sector Protection Bits prevent program-  
ming of the SecSi Sector memory area. Once set, the  
SecSi Sector memory area contents are non-modifi-  
able.  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes. In addition, the following  
hardware data protection measures prevent accidental  
erasure or programming, which might otherwise be  
caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system  
noise.  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses  
given in Tables 12–15. To terminate reading CFI data,  
the system must write the reset command. The CFI  
Query mode is not accessible when the device is exe-  
cuting an Embedded Program or embedded Erase al-  
gorithm.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control  
pins to prevent unintentional writes when VCC is  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 12–15. The  
system must write the reset command to return the  
device to reading array data.  
greater than VLKO  
.
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the World  
Wide Web at http://www.amd.com/flash/cfi. Alterna-  
tively, contact an AMD representative for copies of  
these documents.  
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#,  
CE#f1, CE#f2 or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE#f1 =CE#f2 = VIH or WE# = VIH. To initiate a  
Table 12. CFI Query Identification String  
Description  
Addresses  
Data  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
41  
A D V A N C E I N F O R M A T I O N  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
Table 13. System Interface String  
Description  
Addresses  
Data  
V
Min. (write/erase)  
CC  
1Bh  
0027h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
1Ch  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0004h  
0000h  
0009h  
0000h  
0005h  
0000h  
0004h  
0000h  
V
V
Min. voltage (00h = no V pin present)  
PP  
PP  
PP  
Max. voltage (00h = no V pin present)  
PP  
N
Typical timeout per single byte/word write 2 µs  
N
Typical timeout for Min. size buffer write 2 µs (00h = not supported)  
N
Typical timeout per individual block erase 2 ms  
N
Typical timeout for full chip erase 2 ms (00h = not supported)  
N
Max. timeout for byte/word write 2 times typical  
N
Max. timeout for buffer write 2 times typical  
N
Max. timeout per individual block erase 2 times typical  
N
Max. timeout for full chip erase 2 times typical (00h = not supported)  
Table 14. Device Geometry Definition  
Description  
Addresses  
Data  
N
27h  
0018h  
Device Size = 2 byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
N
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
00FDh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
42  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 15. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
000Ch  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
0002h  
0001h  
0001h  
0007h  
00E7h  
0000h  
0002h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
01 =29F040 mode, 02 = 29F016 mode, 03 = 29F400, 04 = 29LV800 mode  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
0085h  
0095h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
4Fh  
0001h  
00h = Uniform device, 02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Both  
Top and Bottom  
Program Suspend  
50h  
57h  
58h  
59h  
5Ah  
5Bh  
0001h  
0004h  
0027h  
0060h  
0060h  
0027h  
0 = Not supported, 1 = Supported  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
43  
A D V A N C E I N F O R M A T I O N  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Table 16 defines the valid register command  
sequences. Writing incorrect address and data val-  
ues or writing them in the improper sequence may  
place the device in an unknown state. A reset com-  
mand is then required to return the device to reading  
array data.  
erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure be-  
gins, however, the device ignores reset commands  
until the operation is complete.  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the bank to  
which the system was writing to the read mode. If the  
program command sequence is written to a bank that  
is in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-suspend-  
read mode. Once programming begins, however, the  
device ignores reset commands until the operation is  
complete.  
All addresses are latched on the falling edge of WE#  
or CE#f1/CE#f2 (PDL129H only), whichever happens  
later. All data is latched on the rising edge of WE# or  
CE#f1/CE#f2 (PDL129H only), whichever happens  
first. Refer to the Flash AC Characteristics section for  
timing diagrams.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Sus-  
pend mode, writing the reset command returns that  
bank to the erase-suspend-read mode.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
After the device accepts an Erase Suspend command,  
the corresponding bank enters the erase-suspend-  
read mode, after which the system can read data from  
any non-erase-suspended sector within the same  
bank. The system can read array data using the stan-  
dard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs  
status data. After completing a programming operation  
in the Erase Suspend mode, the system may once  
again read array data with the same exception. See  
the Erase Suspend/Erase Resume Commands sec-  
tion for more information.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the banks to the  
read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and device codes,  
and determine whether or not a sector is protected.  
The autoselect command sequence may be written to  
an address within a bank that is either in the read or  
erase-suspend-read mode. The autoselect command  
may not be written while the device is actively pro-  
gramming or erasing in the other bank.  
The system must issue the reset command to return a  
bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the  
next section, Reset Command, for more information.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autose-  
lect mode. The system may read any number of  
autoselect codes without reinitiating the command se-  
quence.  
See also Requirements for Reading Array Data in the  
MCP Device Bus Operations section for more informa-  
tion. The Read-Only Operations – Am29PDL127H and  
Read-Only Operations – Am29PDL127H tables pro-  
vide the read parameters, and Figure 13 shows the  
timing diagram.  
Table 16 shows the address and data requirements.  
To determine sector protection information, the system  
must write to the appropriate bank address (BA) and  
sector address (SA). Table 4 shows the address range  
and bank number associated with each sector.  
Reset Command  
Writing the reset command resets the banks to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
The system must write the reset command to return to  
the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
44  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Programming is allowed in any sequence and across  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence  
sector boundaries. A bit cannot be programmed  
from “0” back to a “1.Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and  
DQ6 status bits to indicate the operation was success-  
ful. However, a succeeding read will show that the  
data is still “0.Only erase operations can convert a “0”  
to a “1.”  
The SecSi Sector region provides a secured data area  
containing a random, eight word electronic serial num-  
ber (ESN). The system can access the SecSi Sector  
region by issuing the three-cycle Enter SecSi Sector  
command sequence. The device continues to access  
the SecSi Sector region until the system issues the  
four-cycle Exit SecSi Sector command sequence. The  
Exit SecSi Sector command sequence returns the de-  
vice to normal operation. The SecSi Sector is not ac-  
cessible when the device is executing an Embedded  
Program or embedded Erase algorithm. Table 16  
shows the address and data requirements for both  
command sequences. See also “SecSi™ (Secured Sili-  
con) Sector Flash Memory Region” for further informa-  
tion. Note that the ACC function and unlock bypass  
modes are not available when the SecSi Sector is en-  
abled.  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram data to a bank faster than using the standard  
program command sequence. The unlock bypass  
command sequence is initiated by first writing two un-  
lock cycles. This is followed by a third write cycle con-  
taining the unlock bypass command, 20h. That bank  
then enters the unlock bypass mode. A two-cycle un-  
lock bypass program command sequence is all that is  
required to program in this mode. The first cycle in this  
sequence contains the unlock bypass program com-  
mand, A0h; the second cycle contains the program  
address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial  
two unlock cycles required in the standard program  
command sequence, resulting in faster total program-  
ming time. Table 16 shows the requirements for the  
command sequence.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The pro-  
gram command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up  
command. The program address and data are written  
next, which in turn initiate the Embedded Program al-  
gorithm. The system is not required to provide further  
controls or timings. The device automatically provides  
internally generated program pulses and verifies the  
programmed cell margin. Table 16 shows the address  
and data requirements for the program command se-  
quence.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence.  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
VHH on the WP#/ACC pin, the device automatically  
enters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH any operation  
other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not  
be left floating or unconnected; inconsistent behavior  
of the device may result.  
When the Embedded Program algorithm is complete,  
that bank then returns to the read mode and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. Refer to the Write Operation  
Status section for information on these status bits.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. Note that the SecSi sector, autoselect, and  
CFI functions are unavailable when the SecSi Sector  
is enabled. The program command sequence should  
be reinitiated once that bank has returned to the read  
mode, to ensure data integrity.  
Figure 4 illustrates the algorithm for the program oper-  
ation. Refer to the Erase and Program Operations  
table in the AC Characteristics section for parameters,  
and Figures 16 and 17 for timing diagrams.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
45  
A D V A N C E I N F O R M A T I O N  
the SecSi sector, autoselect, and CFI functions are un-  
available when the SecSi Sector is enabled. If that oc-  
curs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
START  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 18 for timing diagrams.  
Write Program  
Command Sequence  
Sector Erase Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command.Table 16 shows the ad-  
dress and data requirements for the sector erase com-  
mand sequence.  
Verify Data?  
Yes  
No  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
After the command sequence is written, a sector erase  
time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than 50  
µs, otherwise erasure may begin. Any sector erase ad-  
dress and command following the exceeded time-out  
may or may not be accepted. It is recommended that  
processor interrupts be disabled during this time to en-  
sure all commands are accepted. The interrupts can  
be re-enabled after the last Sector Erase command is  
written. Any command other than Sector Erase or  
Erase Suspend during the time-out period resets  
that bank to the read mode. Note that the SecSi sec-  
tor, autoselect, and CFI functions are unavailable  
when the SecSi Sector is enabled. The system must  
rewrite the command sequence and any additional ad-  
dresses and commands.  
Note: See Table 16 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 16  
shows the address and data requirements for the chip  
erase command sequence.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out (See the section on DQ3:  
Sector Erase Timer). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete,  
that bank returns to the read mode and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2,  
or RY/BY#. Refer to the Write Operation Status sec-  
tion for information on these status bits.  
When the Embedded Erase algorithm is complete, the  
bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read  
data from the non-erasing bank. The system can de-  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. Note that  
46  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
termine the status of the erase operation by reading  
period during the sector erase command sequence.  
The Erase Suspend command is ignored if written dur-  
ing the chip erase operation or Embedded Program  
algorithm.  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer  
to the Write Operation Status section for information  
on these status bits.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once that bank has returned to  
reading array data, to ensure data integrity.  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a max-  
imum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written  
during the sector erase time-out, the device immedi-  
ately terminates the time-out period and suspends the  
erase operation. Addresses are “don’t-cares” when  
writing the Erase suspend command.  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 18 section for timing diagrams.  
After the erase operation has been suspended, the  
bank enters the erase-suspend-read mode. The sys-  
tem can read data from or program data to any sector  
not selected for erasure. (The device “erase sus-  
pends” all sectors selected for erasure.) Reading at  
any address within erase-suspended sectors pro-  
duces status information on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
After an erase-suspended program operation is com-  
plete, the bank returns to the erase-suspend-read  
mode. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard Word Program operation.  
Refer to the Write Operation Status section for more  
information.  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. The device  
allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored  
in the memory array. When the device exits the au-  
toselect mode, the device reverts to the Erase Sus-  
pend mode, and is ready for another valid operation.  
Refer to the Autoselect Command Sequence sections  
for details.  
No  
Data = FFh?  
Yes  
Erasure Completed  
To resume the sector erase operation, the system  
must write the Erase Resume command (address bits  
are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command.  
Further writes of the Resume command are ignored.  
Another Erase Suspend command can be written after  
the chip has resumed erasing.  
Notes:  
1. See Table 16 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume  
Commands  
Password Program Command  
The Password Program Command permits program-  
ming the password that is used as part of the hard-  
ware protection scheme. The actual password is 64-  
bits long. Four Password Program commands are re-  
quired to program the password. The system must  
enter the unlock cycle, password program command  
(38h) and the program address/data for each portion  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing  
this command. This command is valid only during the  
sector erase operation, including the 80 µs time-out  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
47  
A D V A N C E I N F O R M A T I O N  
of the password when programming. There are no pro-  
Persistent Sector Protection Mode  
Locking Bit Program Command  
visions for entering the 2-cycle unlock cycle, the pass-  
word program command, and all the password data.  
There is no special addressing order required for pro-  
gramming the password. Also, when the password is  
undergoing programming, Simultaneous Operation is  
disabled. Read operations to any memory location will  
return the programming status. Once programming is  
complete, the user must issue a Read/Reset com-  
mand to return the device to normal operation. Once  
the Password is written and verified, the Password  
Mode Locking Bit must be set in order to prevent verifi-  
cation. The Password Program Command is only ca-  
pable of programming “0”s. Programming a “1” after a  
cell is programmed as a “0” results in a time-out by the  
Embedded Program Algorithm™ with the cell remain-  
ing as a “0”. The password is all ones when shipped  
from the factory. All 64-bit password combinations are  
valid as a password.  
The Persistent Sector Protection Mode Locking Bit  
Program Command programs the Persistent Sector  
Protection Mode Locking Bit, which prevents the Pass-  
word Mode Locking Bit from ever being programmed.  
If the Persistent Sector Protection Mode Locking Bit is  
verified as programmed without margin, the Persistent  
Sector Protection Mode Locking Bit Program Com-  
mand should be reissued to improve program margin.  
By disabling the program circuitry of the Password  
Mode Locking Bit, the device is forced to remain in the  
Persistent Sector Protection mode of operation, once  
this bit is set. Exiting the Persistent Protection Mode  
Locking Bit Program command is accomplished by  
writing the Read/Reset command.  
SecSi Sector Protection Bit Program  
Command  
Password Verify Command  
The SecSi Sector Protection Bit Program Command  
programs the SecSi Sector Protection Bit, which pre-  
vents the SecSi sector memory from being cleared. If  
the SecSi Sector Protection Bit is verified as pro-  
grammed without margin, the SecSi Sector Protection  
Bit Program Command should be reissued to improve  
program margin. Exiting the VCC-level SecSi Sector  
Protection Bit Program Command is accomplished by  
writing the Read/Reset command.  
The Password Verify Command is used to verify the  
Password. The Password is verifiable only when the  
Password Mode Locking Bit is not programmed. If the  
Password Mode Locking Bit is programmed and the  
user attempts to verify the Password, the device will al-  
ways drive all F’s onto the DQ data bus.  
The Password Verify command is permitted if the  
SecSi sector is enabled. Also, the device will not oper-  
ate in Simultaneous Operation when the Password  
Verify command is executed. Only the password is re-  
turned regardless of the bank address. The lower two  
address bits (A1-A0) are valid during the Password  
Verify. Writing the Read/Reset command returns the  
device back to normal operation.  
PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the  
PPB Lock bit if it is cleared either at reset or if the  
Password Unlock command was successfully exe-  
cuted. There is no PPB Lock Bit Clear command.  
Once the PPB Lock Bit is set, it cannot be cleared un-  
less the device is taken through a power-on clear or  
the Password Unlock command is executed. Upon set-  
ting the PPB Lock Bit, the PPBs are latched into the  
DYBs. If the Password Mode Locking Bit is set, the  
PPB Lock Bit status is reflected as set, even after a  
power-on reset cycle. Exiting the PPB Lock Bit Set  
command is accomplished by writing the Read/Reset  
command (only in the Persistent Protection Mode).  
Password Protection Mode Locking Bit  
Program Command  
The Password Protection Mode Locking Bit Program  
Command programs the Password Protection Mode  
Locking Bit, which prevents further verifies or updates  
to the Password. Once programmed, the Password  
Protection Mode Locking Bit cannot be erased! If the  
Password Protection Mode Locking Bit is verified as  
program without margin, the Password Protection  
Mode Locking Bit Program command can be executed  
to improve the program margin. Once the Password  
Protection Mode Locking Bit is programmed, the Per-  
sistent Sector Protection Locking Bit program circuitry  
is disabled, thereby forcing the device to remain in the  
Password Protection mode. Exiting the Mode Locking  
Bit Program command is accomplished by writing the  
Read/Reset command.  
DYB Write Command  
The DYB Write command is used to set or clear a DYB  
for a given sector. The high order address bits A22-  
A12 for PDL127 and (A21–A12) for PDL129H are is-  
sued at the same time as the code 01h or 00h on  
DQ7-DQ0. All other DQ data bus pins are ignored dur-  
ing the data write cycle. The DYBs are modifiable at  
any time, regardless of the state of the PPB or PPB  
Lock Bit. The DYBs are cleared at power-up or hard-  
ware reset. Exiting the DYB Write command is accom-  
plished by writing the Read/Reset command.  
48  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
determine whether the PPB has been erased with  
Password Unlock Command  
margin. If the PPBs has been erased without margin,  
the erase command should be reissued to improve the  
program margin.  
The Password Unlock command is used to clear the  
PPB Lock Bit so that the PPBs can be unlocked for  
modification, thereby allowing the PPBs to become ac-  
cessible for modification. The exact password must be  
entered in order for the unlocking function to occur.  
This command cannot be issued any faster than 2 µs  
at a time to prevent a hacker from running through all  
64-bit combinations in an attempt to correctly match a  
password. If the command is issued before the 2 µs  
execution window for each portion of the unlock, the  
command will be ignored.  
It is the responsibility of the user to preprogram all  
PPBs prior to issuing the All PPB Erase command. If  
the user attempts to erase a cleared PPB, over-era-  
sure may occur making it difficult to program the PPB  
at a later time. Also note that the total number of PPB  
program/erase cycles is limited to 100 cycles. Cycling  
the PPBs beyond 100 cycles is not guaranteed.  
DYB Write Command  
Once the Password Unlock command is entered, the  
RY/BY# indicates that the device is busy. Approxi-  
mately 1 µs is required for each portion of the unlock.  
Once the first portion of the password unlock com-  
pletes (RY/BY# is not low or DQ6 does not toggle  
when read), the next part of the password is written.  
The system must thus monitor RY/BY# or the status  
bits to confirm when to write the next portion of the  
password. Seven cycles are required to successfully  
clear the PPB Lock Bit.  
The DYB Write command is used for setting the DYB,  
which is a volatile bit that is cleared at reset. There is  
one DYB per sector. If the PPB is set, the sector is pro-  
tected regardless of the value of the DYB. If the PPB is  
cleared, setting the DYB to a 1 protects the sector from  
programs or erases. Since this is a volatile bit, remov-  
ing power or resetting the device will clear the DYBs.  
The bank address is latched when the command is  
written.  
PPB Lock Bit Set Command  
PPB Program Command  
The PPB Lock Bit set command is used for setting the  
DYB, which is a volatile bit that is cleared at reset.  
There is one DYB per sector. If the PPB is set, the sec-  
tor is protected regardless of the value of the DYB. If  
the PPB is cleared, setting the DYB to a 1 protects the  
sector from programs or erases. Since this is a volatile  
bit, removing power or resetting the device will clear  
the DYBs. The bank address is latched when the com-  
mand is written.  
The PPB Program command is used to program, or  
set, a given PPB. Each PPB is individually pro-  
grammed (but is bulk erased with the other PPBs).  
The specific sector address (A21–A12) are written at  
the same time as the program command 60h with A6  
= 0. If the PPB Lock Bit is set and the corresponding  
PPB is set for the sector, the PPB Program command  
will not execute and the command will time-out without  
programming the PPB.  
After programming a PPB, two additional cycles are  
needed to determine whether the PPB has been pro-  
grammed with margin. If the PPB has been pro-  
grammed without margin, the program command  
should be reissued to improve the program margin.  
Also note that the total number of PPB program/erase  
cycles is limited to 100 cycles. Cycling the PPBs be-  
yond 100 cycles is not guaranteed.  
PPB Status Command  
The programming of the PPB for a given sector can be  
verified by writing a PPB status verify command to the  
device.  
PPB Lock Bit Status Command  
The programming of the PPB Lock Bit for a given sec-  
tor can be verified by writing a PPB Lock Bit status ver-  
ify command to the device.  
The PPB Program command does not follow the Em-  
bedded Program algorithm.  
Sector Protection Status Command  
The programming of either the PPB or DYB for a given  
sector or sector group can be verified by writing a Sec-  
tor Protection Status command to the device.  
All PPB Erase Command  
The All PPB Erase command is used to erase all  
PPBs in bulk. There is no means for individually eras-  
ing a specific PPB. Unlike the PPB program, no spe-  
cific sector address is required. However, when the  
PPB erase command is written all Sector PPBs are  
erased in parallel. If the PPB Lock Bit is set the ALL  
PPB Erase command will not execute and the com-  
mand will time-out without erasing the PPBs. After  
erasing the PPBs, two additional cycles are needed to  
Note that there is no single command to independently  
verify the programming of a DYB for a given sector  
group.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
49  
A D V A N C E I N F O R M A T I O N  
Command Definitions Tables  
Table 16. Memory Array Command Definitions  
Bus Cycles (Notes 1–4)  
Command (Notes)  
Addr Data Addr Data Addr Data  
RA RD  
XXX F0  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Read (5)  
Reset (6)  
1
1
4
6
Manufacturer ID  
555  
555  
AA 2AA  
55  
55  
555  
555  
90 (BA)X00  
90 (BA)X01  
01  
7E  
Device ID (10)  
AA 2AA  
(BA)X0E (Note 10) (BA)X0F  
00  
Autoselect  
(Note 7)  
SecSi Sector Factory  
Protect (8)  
(see  
note 8)  
4
4
555  
AA 2AA  
55  
55  
555  
555  
90  
X03  
Sector Group Protect  
Verify (9)  
XX00/  
XX01  
555 AAA 2AA  
90 (SA)X02  
Program  
4
6
6
1
1
1
2
3
2
2
1
2
555  
555  
555  
BA  
BA  
55  
AA 2AA  
AA 2AA  
AA 2AA  
B0  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
555  
555  
PD  
AA  
AA  
Chip Erase  
Sector Erase  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Program/Erase Suspend (11)  
Program/Erase Resume (12)  
CFI Query (13)  
30  
98  
Accelerated Program (15)  
Unlock Bypass Entry (15)  
Unlock Bypass Program (15)  
Unlock Bypass Erase (15)  
Unlock Bypass CFI (13, 15)  
Unlock Bypass Reset (15)  
XX  
555  
XX  
XX  
XX  
A0  
PA  
PD  
55  
AA 2AA  
555  
20  
A0  
80  
98  
PA  
PD  
10  
XX  
XXX 90 XXX 00  
Legend:  
BA = Address of bank switching to autoselect mode, bypass mode, or  
erase operation. Determined by A22:A20, (A21:A20 for PDL129) see  
Tables 4 and 5 for more detail.  
PA = Program Address (A22:A0) (A21:A0 for PDL129). Addresses  
latch on falling edge of WE# or CE#f1/CE#f2 (PDL129 only) pulse,  
whichever happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data latches  
on rising edge of WE# or CE#f1/CE#f2 (PDL129 only) pulse,  
whichever happens first.  
RA = Read Address (A22:A0) (A21:A0 for PDL129).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (A22:A12) (A21:A12 for PDL129) for verifying (in  
autoselect mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for specific  
write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes:  
1. See Table 1 for description of bus operations.  
8. The data is C0h for factory or customer locked and 80h for factory  
locked.  
2. All values are in hexadecimal.  
9. The data is 00h for an unprotected sector group and 01h for a  
protected sector group.  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
10. Device ID must be read across cycles 4, 5, and 6. 20 for  
Am29PDL127H and 21 for Am29PDL129H.  
4. During unlock and command cycles, when lower address bits are  
555 or 2AAh as shown in table, address bits higher than A11  
(except where BA is required) and data bits higher than DQ7 are  
don’t cares.  
11. System may read and program in non-erasing sectors, or enter  
autoselect mode, when in Program/Erase Suspend mode.  
Program/Erase Suspend command is valid only during a sector  
erase operation, and requires bank address.  
5. No unlock or command cycles required when bank is reading  
array data.  
12. Program/Erase Resume command is valid only during Erase  
Suspend mode, and requires bank address.  
6. The Reset command is required to return to reading array (or to  
erase-suspend-read mode if previously in Erase Suspend) when  
bank is in autoselect mode, or if DQ5 goes high (while bank is  
providing status information).  
13. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
7. Fourth cycle of autoselect command sequence is a read cycle.  
System must provide bank address to obtain manufacturer ID or  
device ID information. See Autoselect Command Sequence  
section for more information.  
14. WP#/ACC must be at VID during the entire operation of  
command.  
15. Unlock Bypass Entry command is required prior to any Unlock  
Bypass operation. Unlock Bypass Reset command is required to  
return to the reading array.  
50  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 17. Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command  
(Notes)  
Addr Data Addr Data Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Reset  
1
3
4
XXX  
555  
555  
F0  
SecSi Sector Entry  
SecSi Sector Exit  
AA 2AA  
AA 2AA  
55  
55  
555  
555  
88  
90  
XX  
00  
68  
SecSi Protection  
Bit Program (5, 6)  
6
5
4
4
7
555  
555  
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
60  
60  
38  
C8  
28  
OW  
OW  
OW  
48  
OW  
RD(0)  
SecSi Protection  
Bit Status  
OW  
48  
RD(0)  
PasswordProgram  
(5, 7, 8)  
XX[0-3]  
PWA[0-3]  
PWA[0]  
PD[0-3]  
PWD[0-3]  
PWD[0]  
Password Verify (6,  
8, 9)  
Password Unlock  
(7, 10, 11)  
PWA[1]  
PWD[1]  
PWA[2]  
(SA)WP  
PWD[2]  
RD(0)  
PWA[3]  
PWD[3]  
PPBProgram (5, 6,  
12, 17)  
6
5
6
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
555  
555  
555  
60  
60  
60  
(SA)WP  
(SA)WP  
WP  
68  
48  
60  
(SA)WP  
(SA)WP  
(SA)  
48  
RD (0)  
40  
PPB Status  
All PPB Erase (5,  
6, 13, 14)  
(SA)WP  
RD(0)  
PPB Lock Bit Set  
(17)  
3
4
555  
555  
AA 2AA  
AA 2AA  
55  
55  
555  
555  
78  
58  
PPB Lock Bit  
Status (15)  
SA  
RD(1)  
DYB Write (7)  
4
4
4
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
555  
555  
555  
48  
48  
58  
SA  
SA  
SA  
X1  
X0  
DYB Erase (7)  
DYB Status (6, 18)  
RD(0)  
PPMLB Program  
(5, 6, 12)  
6
5
6
5
555  
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
55  
555  
555  
555  
555  
60  
60  
60  
60  
PL  
PL  
SL  
SL  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD(0)  
RD(0)  
PPMLB Status (5)  
RD(0)  
48  
SPMLB Program  
(5, 6, 12)  
SPMLB Status (5)  
RD(0)  
Legend:  
DYB = Dynamic Protection Bit  
RD(1) = Read Data DQ1 for PPB Lock status.  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
SA = Sector Address where security command applies. Address bits  
A21:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is (00010010)  
WP = PPB Address (A7:A0) is (00000010) (NoteTable.16  
30535a1.fm)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
PL = Password Protection Mode Lock Address (A7:A0) is (00001010)  
RD(0) = Read Data DQ0 for protection indicator bit.  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
10. The password is written over four consecutive cycles, at  
addresses 0-3.  
11. A 2 µs timeout is required between any two portions of password.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
4. During unlock and command cycles, when lower address bits are  
555 or 2AAh as shown in table, address bits higher than A11  
(except where BA is required) and data bits higher than DQ7 are  
don’t cares.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have been  
fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6, erase command  
must be issued and verified again. Before issuing erase  
command, all PPBs should be programmed to prevent PPB  
overerasure.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6  
validate bit has been fully programmed when DQ0 = 1. If DQ0 = 0  
in cycle 6, program command must be issued and verified again.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
16. For PDL128G and PDL640G, the WP address is 0111010. The  
EP address (PPB Erase Address) is 1111010.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion of  
password.  
17. Following the final cycle of the command sequence, the user must  
write the first three cycles of the Autoselect command and then  
write a Reset command.  
9. Command sequence returns FFh if PPMLB is set.  
18. If checking the DYB status of sectors in multiple banks, the user  
must follow Note 17 before crossing a bank boundary.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
51  
A D V A N C E I N F O R M A T I O N  
WRITE OPERATION STATUS  
The device provides several bits to determine the status of a  
program or erase operation: DQ2, DQ3, DQ5, DQ6, and  
DQ7. Table 18 and the following subsections describe the  
function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is com-  
plete or in progress. The device also provides a hardware-  
based output signal, RY/BY#, to determine whether an Em-  
bedded Program or Erase operation is in progress or has  
been completed.  
program or erase operation and DQ7 has valid data,  
the data outputs on DQ15–DQ0 may be still invalid.  
Valid data on DQ15–DQ0 will appear on successive  
read cycles.  
Table 18 shows the outputs for Data# Polling on DQ7.  
Figure 6 shows the Data# Polling algorithm. Figure 6  
in the Flash AC Characteristics section shows the  
Data# Polling timing diagram.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system  
whether an Embedded Program or Erase algorithm is in  
progress or completed, or whether a bank is in Erase Sus-  
pend. Data# Polling is valid after the rising edge of the final  
WE# pulse in the command sequence.  
START  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Program algorithm, the device out-  
puts on DQ7 the complement of the datum programmed to  
DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to  
DQ7. The system must provide the program address to  
read valid status information on DQ7. If a program address  
falls within a protected sector, Data# Polling on DQ7 is ac-  
tive for approximately 1 µs, then that bank returns to the  
read mode.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Yes  
Read DQ7–DQ0  
Addr = VA  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 400 µs, then the  
bank returns to the read mode. If not all selected sec-  
tors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected. However, if the sys-  
tem reads DQ7 at an address within a protected  
sector, the status may not be valid.  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
When the system detects DQ7 has changed from the  
complement to true data, it can read valid data at  
DQ15–DQ0 on the following read cycles. Just prior to  
the completion of an Embedded Program or Erase op-  
eration, DQ7 may change asynchronously with DQ15–  
DQ0 while Output Enable (OE#) is asserted low. That  
is, the device may change from providing status infor-  
mation to valid data on DQ7. Depending on when the  
system samples the DQ7 output, it may read the sta-  
tus or valid data. Even if the device has completed the  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
52  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 18 shows the outputs for Toggle Bit I on DQ6.  
RY/BY#: Ready/Busy#  
Figure 7 shows the toggle bit algorithm. Figure 21 in  
the “Flash AC Characteristics” section shows the tog-  
gle bit timing diagrams. Figure 22 shows the differ-  
ences between DQ2 and DQ6 in graphical form. See  
also the subsection on DQ2: Toggle Bit II.  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the standby  
mode, or one of the banks is in the erase-suspend-  
read mode.  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Table 18 shows the outputs for RY/BY#.  
Read Byte  
(DQ7–DQ0)  
Address =VA  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE#f1 to control the read cycles. When the operation  
is complete, DQ6 stops toggling.  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 400 µs, then returns to reading  
array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are pro-  
tected.  
Toggle Bit  
= Toggle?  
No  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that  
is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend  
mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing  
or erase-suspended. Alternatively, the system can use  
DQ7 (see the subsection on DQ7: Data# Polling).  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5  
= “1” because the toggle bit may stop toggling as DQ5  
changes to “1.See the subsections on DQ6 and DQ2 for  
more information.  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
Figure 7. Toggle Bit Algorithm  
DQ6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
53  
A D V A N C E I N F O R M A T I O N  
The remaining scenario is that the system initially de-  
DQ2: Toggle Bit II  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the previ-  
ous paragraph. Alternatively, it may choose to perform  
other system tasks. In this case, the system must start  
at the beginning of the algorithm when it returns to de-  
termine the status of the operation (top of Figure 7).  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE#f1 to  
control the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 18 to compare out-  
puts for DQ2 and DQ6.  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under these  
conditions DQ5 produces a “1,indicating that the program  
or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries  
to program a “1” to a location that was previously pro-  
grammed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the  
device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a “1.”  
Figure 7 shows the toggle bit algorithm in flowchart  
form, and the section “DQ2: Toggle Bit II” explains the  
algorithm. See also the DQ6: Toggle Bit I subsection.  
Figure 21 shows the toggle bit timing diagram. Figure  
22 shows the differences between DQ2 and DQ6 in  
graphical form.  
Under both these conditions, the system must write  
the reset command to return to the read mode (or to  
the erase-suspend-read mode if a bank was previ-  
ously in the erase-suspend-program mode).  
Reading Toggle Bits DQ6/DQ2  
DQ3: Sector Erase Timer  
Refer to Figure 7 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically,  
the system would note and store the value of the tog-  
gle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the fol-  
lowing read cycle.  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
mand. When the time-out period is complete, DQ3  
switches from a “0” to a “1.See also the Sector Erase  
Command Sequence section.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is  
“1,the Embedded Erase algorithm has begun; all fur-  
ther commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the  
device will accept additional sector erase commands.  
To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to  
and following each subsequent sector erase com-  
mand. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not completed the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
Table 18 shows the status of DQ3 relative to the other  
status bits.  
54  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
Table 18. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
Erase-Suspend-  
Read  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm  
is in progress. The device outputs array data if the system addresses a non-busy bank.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
55  
A D V A N C E I N F O R M A T I O N  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . –55°C to +125°C  
20 ns  
20 ns  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . . –40°C to +85°C  
+0.8 V  
Voltage with Respect to Ground  
–0.5 V  
–2.0 V  
V
CCf, VCCs (Note 1) . . . . . . . . . . .–0.5 V to +4.0 V  
RESET# (Note 2) . . . . . . . . . . . .–0.5 V to +12.5 V  
WP#/ACC . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . –0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
20 ns  
Figure 8. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot V  
to –2.0 V for periods of up to 20 ns.  
SS  
Maximum DC voltage on input or I/O pins is V  
See Figure 8. During voltage transitions, input or I/O pins  
+0.5 V.  
CC  
20 ns  
may overshoot to V  
See Figure 9.  
+2.0 V for periods up to 20 ns.  
V
CC  
CC  
+2.0 V  
V
CC  
2. Minimum DC input voltage on pins RESET#, and WP#/  
ACC is –0.5 V. During voltage transitions, WP#/ACC, and  
+0.5 V  
RESET# may overshoot V to –2.0 V for periods of up  
SS  
2.0 V  
to 20 ns. See Figure 8. Maximum DC input voltage on pin  
RESET# is +12.5 V which may overshoot to +14.0 V for  
periods up to 20 ns. Maximum DC input voltage on WP#/  
ACC is +9.5 V which may overshoot to +12.0 V for  
periods up to 20 ns.  
20 ns  
20 ns  
Figure 9. Maximum Positive  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
OPERATING RANGES  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C  
VCCf/VCCs Supply Voltages  
VCCf/VCCs for standard voltage range . .2.7 V to 3.3 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
56  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
VCC = VCC max  
,
ILI  
Input Load Current  
1.0  
µA  
ILIT  
ILR  
A9, OE#, RESET# Input Load Current  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
ILO  
Output Leakage Current  
1.0  
µA  
mA  
mA  
5 MHz  
20  
45  
30  
55  
VCC Active Read Current (Notes Table.1  
30535a1.fm, 2, 3)  
OE# = VIH, VCC = VCC max  
(Note 1)  
ICC1  
10 MHz  
VCC Active Write Current (Notes Table.1  
30535a1.fm, 3, 4)  
ICC2  
OE# = VIH, WE# = VIL  
15  
25  
CE#f1, CE#f2 (PDL129 only),  
RESET#, WP/ACC# = VIO 0.3 V  
ICC3  
ICC4  
ICC5  
VCC Standby Current (Note 3)  
VCC Reset Current (Note 3)  
1
1
1
5
5
5
µA  
µA  
µA  
RESET# = VSS 0.3 V, CE# = VSS  
VIH = VIO 0.3 V;  
VIL = VSS 0.3 V, CE# = VSS  
Automatic Sleep Mode (Notes 3, 5)  
VCC Active Read-While-Program Current  
(Notes 1, 2, 3)  
ICC6  
ICC7  
ICC8  
OE# = VIH  
OE# = VIH  
OE# = VIH  
Word  
Word  
21  
21  
17  
45  
45  
25  
mA  
mA  
mA  
VCC Active Read-While-Erase Current  
(Notes 1, 2, 3)  
VCC Active Program-While-Erase-  
Suspended Current (Notes 1, 3, 6)  
VIL  
VIH  
Input Low Voltage  
VIO = 2.7–3.6 V  
VIO = 2.7–3.6 V  
VCC = 3.0 V 10%  
–0.5  
2.0  
0.8  
V
V
V
VCC+0.3  
Input High Voltage  
VHH  
Voltage for ACC Program Acceleration  
8.5  
9.5  
12.5  
0.4  
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VCC = 3.0 V 10%  
11.5  
V
VOL  
VOH  
VLKO  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
V
V
V
Output High Voltage  
2.4  
2.3  
Low VCC Lock-Out Voltage (Note 6)  
2.5  
Notes:  
1. Valid CE#f1/CE#f2 conditions (PDL129 only): (CE#f1= V , CE#f2=  
4. ICC active while Embedded Erase or Embedded Program is in  
progress.  
IL  
V
) or (CE#f1= V , CE#f2= V )  
IH  
IH IL  
2. The ICC current listed is typically less than 5 mA/MHz, with OE# at  
VIH  
3. Maximum ICC specifications are tested with VCC = VCCmax  
5. Automatic sleep mode enables the low power mode when  
addresses remain stable for tACC + 150 ns. Typical sleep mode  
current is 1 µA.  
.
.
6. Not 100% tested.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
57  
A D V A N C E I N F O R M A T I O N  
pSRAM DC & OPERATING CHARACTERISTICS  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
= V to V  
Min  
Typ  
Max  
Unit  
I
Input Leakage Current  
Output Leakage Current  
V
0.5  
0.5  
µA  
µA  
LI  
IN  
SS  
CC  
I
OE# = V or Chip Disabled  
IH  
LO  
V
= V  
, V = V /V  
CC  
CC Max  
IN  
IH IL  
I
s
Operating Current  
Chip Enabled, I  
= 0  
25  
mA  
CC1  
OUT  
t
= Min  
RC  
V
Output Low Voltage  
Output High Voltage  
I
= –2.0 mA  
0.2  
V
V
OL  
OL  
V
0.2  
CC  
V
I
= 0.2 mA  
OH  
OH  
V
= V or 0 V  
CC  
IN  
I
Standby Current (CMOS)  
Chip Disabled  
= 85C, V = 3.0 V  
80  
µA  
SB  
t
A
CC  
V
Input Low Voltage  
Input High Voltage  
–0.3  
2.2  
0.6  
V
V
IL  
V
+
CC  
V
IH  
0.3  
58  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
TEST CONDITIONS  
Table 19. Test Specifications  
3.3 V  
Test Condition  
Output Load  
66, 70  
Unit  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, C  
(including jig capacitance)  
L
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.0–3.0  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 10. Test Setup, VIO = 2.7 – 3.3 V  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
KS000010-PAL  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 11. Input Waveforms and Measurement Levels  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
59  
A D V A N C E I N F O R M A T I O N  
pSRAM AC CHARACTERISTICS  
CE#1ps Timing  
Parameter  
Test Setup  
AllSpeeds  
Unit  
JEDEC  
Std  
Description  
t
CE#1ps Recover Time  
Min  
0
ns  
CCR  
CE#f  
tCCR  
tCCR  
CE1#s  
CE2s  
tCCR  
tCCR  
Figure 12. Timing Diagram for Alternating  
Between Pseudo SRAM and Flash  
60  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Read-Only Operations – Am29PDL127H  
Parameter  
Speed Options  
JEDEC  
Std. Description  
Test Setup  
66  
65  
65  
65  
25  
25  
70  
70  
70  
70  
30  
30  
Unit  
ns  
t
t
Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
AVAV  
RC  
t
t
t
Address to Output Delay  
CE#f1, OE# = V  
IL  
ns  
AVQV  
ELQV  
ACC  
t
Chip Enable to Output Delay  
Page Access Time  
OE# = V  
ns  
CE  
IL  
t
ns  
PACC  
t
t
t
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1, 3)  
Output Enable to Output High Z (Notes 1, 3)  
ns  
GLQV  
EHQZ  
GHQZ  
OE  
t
t
16  
16  
ns  
DF  
t
ns  
DF  
Output Hold Time From Addresses, CE#f1 or  
OE#, Whichever Occurs First (Notes 3)  
t
t
Min  
Min  
Min  
5
0
ns  
ns  
ns  
AXQX  
OH  
Read  
Output Enable Hold Time  
(Note 1)  
t
OEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
3. Measurements performed by placing a 50 ohm termination on the  
data pin with a bias of VCC/2. The time from OE# high to the data  
2. See Figure 10 and Table 19 for test specifications  
bus driven to VCC/2 is taken as tDF  
.
Read-Only Operations – Am29PDL129H  
Parameter  
Speed Options  
JEDEC  
Std. Description  
Test Setup  
66  
65  
65  
65  
25  
25  
70  
70  
70  
70  
70  
30  
Unit  
ns  
t
t
Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
AVAV  
RC  
t
t
Address to Output Delay (Note 3)  
Chip Enable to Output Delay (Note 4)  
Page Access Time  
CE#f1, OE# = V  
IL  
ns  
AVQV  
ELQV  
ACC  
t
t
OE# = V  
ns  
CE  
IL  
t
ns  
PACC  
t
t
t
Output Enable to Output Delay  
Chip Enable to Output High Z (Notes 1, 5, 6)  
Output Enable to Output High Z (Notes 1, 5)  
ns  
GLQV  
EHQZ  
GHQZ  
OE  
t
16  
16  
ns  
DF  
DF  
t
t
ns  
Output Hold Time From Addresses, CE#f1/CE#f2  
or OE#, Whichever Occurs First (Notes 5, 6)  
t
t
Min  
Min  
Min  
5
0
ns  
ns  
ns  
AXQX  
OH  
Read  
Output Enable Hold Time  
(Note 1)  
t
OEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
5. Measurements performed by placing a 50 ohm termination on the  
data pin with a bias of VCC/2. The time from OE# high to the data  
2. See Figure 10 and Table 19 for test specifications  
bus driven to VCC/2 is taken as tDF  
.
3. Valid CE#f1/CE#f2 conditions: (CE#f1= VIL, CE#f2= VIH) or  
(CE#f1= VIH, CE#f2=VIL).  
6. Valid CE#f1/CE#f2 transitions: (CE#f1= VIL, CE#f2= VIH) or  
(CE#f1= VIH, CE#f2=VIL) to (CE#f1= CE#f2= VIH).  
4. Valid CE#f1/CE#f2 transitions: (CE#f1= CE#f2= VIH) to (CE#f1=  
VIL, CE#f2=VIH) or (CE#f1= VIH, CE#f2=VIL).  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
61  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
tRC  
Addresses Stable  
Addresses  
CE#f1  
or CE#f2  
(PDL 129 only)  
tACC  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 13. Read Operation Timings  
Same Page  
Addresses  
A2-A0  
Ad  
Qd  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data  
Qa  
Qb  
Qc  
CE# f1  
or CE#f2 (PDL129 only)  
OE#  
Figure 14. Page Read Operation Timings  
Notes: During CE#f1 transitions, CE#f2= V ; During CE#f2 transitions, CE#f1= V  
IH  
IH  
62  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
t
t
Max  
Max  
20  
µs  
Ready  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
500  
ns  
Ready  
t
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RP  
t
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
RH  
t
RPD  
t
RB  
Note: Not 100% tested.  
RY/BY#  
CE#f1,  
CE#f2 (PDL129 only),  
OE#  
tRH  
RESET#  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#f1,  
CE#f2 (PDL129 only),  
OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
63  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
Speed  
JEDEC  
Std  
Description  
66  
70  
Unit  
ns  
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
65  
70  
AVAV  
WC  
t
t
0
ns  
AVWL  
AS  
t
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
35  
ns  
ASO  
t
t
ns  
WLAX  
AH  
Address Hold Time From CE#1f or OE# high  
during toggle bit polling  
t
Min  
0
ns  
AHT  
t
t
t
Data Setup Time  
Min  
Min  
Min  
30  
0
ns  
ns  
ns  
DVWH  
DS  
t
Data Hold Time  
WHDX  
DH  
t
Output Enable High during toggle bit polling  
10  
OEPH  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
Min  
0
ns  
GHWL  
GHWL  
t
t
WE# Setup Time (CE#f1 to WE#)  
CE#f1 Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
WLEL  
WS  
t
t
CS  
ELWL  
EHWH  
WHEH  
WLWH  
t
t
t
t
WE# Hold Time (CE#f1 to WE#)  
CE#f1 Hold Time  
0
WH  
t
0
CH  
t
Write Pulse Width  
40  
25  
0
WP  
t
t
Write Pulse Width High  
WHDL  
WPH  
t
Latency Between Read and Write Operations  
SR/W  
t
t
t
t
t
t
Programming Operation (Note 2)  
Word  
6
WHWH1  
WHWH1  
WHWH2  
WHWH1  
WHWH1  
WHWH2  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
Typ  
4
µs  
Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Max  
0.5  
50  
0
sec  
µs  
t
V
Setup Time (Note 1)  
CC  
VCS  
t
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
ns  
RB  
t
90  
ns  
BUSY  
Notes:  
1. Not 100% tested.  
2. See the “Flash Erase And Programming Performance” section for more information.  
64  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#f1  
or CE#f2  
(PDL129 only)  
tCH  
tGHWL  
OE#  
tWHWH1  
tWP  
WE#  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
Data  
tBUSY  
tRB  
RY/BY#  
V
CCf  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
3. For PDL129 during CE#f1 transitions the other CE#f1 pin = V  
IH.  
Figure 16. Program Operation Timings  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
Figure 17. Accelerated Program Timing Diagram  
tVHH  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
65  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
tWC  
VA  
Addresses  
2AAh  
SADD  
555h for chip erase  
tAH  
CE#f1  
or CE#f2  
(PDL129 only)  
tGHWL  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
tVCS  
V
CCf  
Notes:  
1. SADD = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Flash Write Operation Status”.  
2. For PDL129 during CE#f1 transitions the other CE#f1 pin = V .  
IH  
Figure 18. Chip/Sector Erase Operation Timings  
66  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Addresses  
tCPH  
tACC  
tCE  
CE#f1 or  
CE#f2 (PDL129 only)  
tCP  
tOE  
OE#  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE#f Controlled Write Cycles  
Figure 19. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
VA  
tACC  
tCE  
VA  
VA  
CE#f1 or  
CE#f2 (PDL129 only)  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 20. Data# Polling Timings (During Embedded Algorithms)  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
67  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#f1 or  
CE#f2 (PDL129 only)  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle.  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#f1 to  
toggle DQ2 and DQ6.  
Figure 22. DQ2 vs. DQ6  
68  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
ns  
t
V
Rise and Fall Time (See Note)  
Rise and Fall Time (See Note)  
HH  
Min  
Min  
500  
250  
VIDR  
ID  
t
V
ns  
VHH  
RESET# Setup Time for Temporary Sector  
Unprotect  
t
Min  
Min  
4
4
µs  
µs  
RSP  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
t
RRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#f1 or  
CE#f2 (PDL129 only)  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 23. Temporary Sector Unprotect Timing Diagram  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
69  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SADD,  
A6, A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector/Sector Block Protect or Unprotect  
Verify  
40h  
Data  
60h  
60h  
Sector/Sector Block Protect: 150 µs,  
Sector/Sector Block Unprotect: 15 ms  
1 µs  
CE#f1 or  
CE#f1(PDL129 only)  
WE#  
OE#  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0, SADD = Sector Address.  
2. For PDL129 during CE#f1 transitions the other CE#f1 pin = V  
.
IH  
Figure 24. Sector/Sector Block Protect and  
Unprotect Timing Diagram  
70  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
Alternate CE#f1 Controlled Erase and Program Operations  
Parameter  
Speed  
66  
66  
JEDEC  
Std  
Description  
70  
Unit  
ns  
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
70  
AVAV  
WC  
t
t
0
35  
30  
0
ns  
AVWL  
AS  
AH  
DS  
DH  
t
t
ns  
ELAX  
DVEH  
EHDX  
t
t
t
ns  
t
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
t
Min  
0
ns  
GHEL  
WLEL  
GHEL  
t
WE# Setup Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
WS  
t
t
WE# Hold Time  
EHWH  
WH  
t
t
CE#f1 Pulse Width  
CE#f1 Pulse Width High  
40  
25  
ELEH  
EHEL  
CP  
t
t
CPH  
Programming Operation  
(Note 2)  
t
t
Word  
Typ  
6
µs  
WHWH1  
WHWH1  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
t
t
t
t
Typ  
Typ  
4
µs  
WHWH1  
WHWH1  
WHWH2  
Sector Erase Operation (Note 2)  
0.4  
sec  
WHWH2  
Notes:  
1. Not 100% tested.  
2. See the “Flash Erase And Programming Performance” section for more information.  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
71  
A D V A N C E I N F O R M A T I O N  
FLASH AC CHARACTERISTICS  
555 for program  
2AA for erase  
PA for program  
SADD for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#f1 or  
CE#f2 (PDL129 only)  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
Data  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SADD = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
is the data written to the device.  
OUT  
Figure 25. Flash Alternate CE#f1 Controlled Write (Erase/Program) Operation Timings  
72  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PSEUDO SRAM AC CHARACTERISTICS  
Power Up Time  
When powering up the SRAM, maintain VCCs for 100 µs minimum with CE#1s at VIH.  
Read Cycle  
Speed  
Parameter  
Symbol  
Description  
Unit  
61  
70  
70  
70  
70  
35  
70  
t
Read Cycle Time  
Min  
Max  
Max  
Max  
Max  
55  
55  
55  
30  
55  
ns  
ns  
ns  
ns  
ns  
RC  
t
Address Access Time  
Chip Enable to Output  
Output Enable Access Time  
LB#s, UB#s to Access Time  
AA  
t
, t  
CO1 CO2  
t
OE  
t
BA  
Chip Enable (CE1#s Low and CE2s High) to Low-Z  
Output  
t
, t  
Min  
5
ns  
LZ1 LZ2  
t
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
Min  
Min  
Max  
Max  
Max  
Min  
5
ns  
ns  
ns  
ns  
ns  
ns  
BLZ  
t
5
OLZ  
t
25  
25  
25  
10  
HZ  
t
UB#s, LB#s Disable to High-Z Output  
Output Disable to High-Z Output  
Output Data Hold from Address Change  
BHZ  
OHZ  
t
t
OH  
tRC  
Address  
tAA  
tOH  
Data Valid  
Data Out  
Previous Data Valid  
Notes:  
1. CE1#s = OE# = V , CE2s = WE# = V , UB#s and/or LB#s = V  
IL  
IL  
IH  
2. Do not access device with cycle timing shorter than t for continuous periods < 10 µs.  
RC  
Figure 26. Pseudo SRAM Read Cycle—Address Controlled  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
73  
A D V A N C E I N F O R M A T I O N  
PSEUDO SRAM AC CHARACTERISTICS  
Read Cycle  
tRC  
Address  
tAA  
tCO1  
tOH  
CE#1s  
CE2s  
tCO2  
tOE  
tHZ  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
Data Out  
High-Z  
Data Valid  
Notes:  
1. WE# = V  
.
IH  
2. t and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output  
HZ  
OHZ  
voltage levels.  
3. At any given temperature and voltage condition, t (Max.) is less than t (Min.) both for a given device and from device to device  
HZ  
LZ  
interconnection.  
4. Do not access device with cycle timing shorter than t for continuous periods < 10 µs.  
RC  
Figure 27. Pseudo SRAM Read Cycle  
74  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PSEUDO SRAM AC CHARACTERISTICS  
Write Cycle  
Speed  
Parameter  
Symbol  
Description  
Unit  
61  
55  
50  
70  
70  
55  
t
Write Cycle Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
t
Chip Enable to End of Write  
Address Setup Time  
Cw  
t
0
AS  
AW  
BW  
WP  
WR  
t
t
t
Address Valid to End of Write  
UB#s, LB#s to End of Write  
Write Pulse Time  
50  
50  
50  
55  
55  
55  
t
Write Recovery Time  
0
25  
25  
0
t
Write to Output High-Z  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
WHZ  
t
DW  
t
DH  
t
5
OW  
tWC  
Address  
tWR  
tCW  
(See Note 1)  
CE1#s  
CE2s  
tAW  
tCW  
(See Note 1)  
tWP  
(See Note 4)  
WE#  
tAS  
(See Note 3)  
tDH  
tDW  
Data In  
Data Out  
High-Z  
Data Valid  
High-Z  
tWHZ  
tOW  
Data Undefined  
Notes:  
1. WE# controlled.  
2. t  
3. t  
is measured from CE1#s going low to the end of write.  
is measured from the end of write to the address change. t  
CW  
WR  
applied in case a write ends as CE1#s or WE# going high.  
WR  
4. t is measured from the address valid to the beginning of write.  
AS  
5. A write occurs during the overlap (t ) of low CE#1s and low WE#. A write begins when CE1#s goes low and WE# goes low  
WP  
when asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation.  
A write ends at the earliest transition when CE1#s goes high and WE# goes high. The t  
write to the end of write.  
is measured from the beginning of  
WP  
Figure 28. Pseudo SRAM Write Cycle—WE# Control  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
75  
A D V A N C E I N F O R M A T I O N  
PSEUDO SRAM AC CHARACTERISTICS  
tWC  
Address  
tAS (See Note 2 )  
tCW  
tWR (See Note 4)  
(See Note 3)  
CE1#s  
tAW  
CE2s  
tBW  
UB#s, LB#s  
tWP  
(See Note 5)  
WE#  
tDW  
tDH  
Data Valid  
Data In  
Data Out  
High-Z  
High-Z  
Notes:  
1. CE1#s controlled.  
2. t  
3. t  
is measured from CE1#s going low to the end of write.  
is measured from the end of write to the address change. t  
CW  
applied in case a write ends as CE1#s or WE# going high.  
WR  
WR  
4. t is measured from the address valid to the beginning of write.  
AS  
5. A write occurs during the overlap (t ) of low CE1#s and low WE#. A write begins when CE1#s goes low and WE# goes low  
WP  
when asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation.  
A write ends at the earliest transition when CE1#s goes high and WE# goes high. The t  
write to the end of write.  
is measured from the beginning of  
WP  
Figure 29. Pseudo SRAM Write Cycle—CE1#s Control  
76  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PSEUDO SRAM AC CHARACTERISTICS  
tWC  
Address  
CE1#s  
tCW  
(See Note 2)  
tWR (See Note 3)  
tAW  
tCW (See Note 2)  
CE2s  
tBW  
UB#s, LB#s  
tAS  
tWP  
(See Note 4)  
(See Note 5)  
WE#  
tDW  
tDH  
Data In  
Data Out  
Data Valid  
High-Z  
High-Z  
Notes:  
1. UB#s and LB#s controlled.  
2. t  
3. t  
is measured from CE1#s going low to the end of write.  
is measured from the end of write to the address change. t  
CW  
applied in case a write ends as CE1#s or WE# going high.  
WR  
WR  
4. t is measured from the address valid to the beginning of write.  
AS  
5. A write occurs during the overlap (t ) of low CE#1s and low WE#. A write begins when CE1#s goes low and WE# goes low  
WP  
when asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation.  
A write ends at the earliest transition when CE1#s goes high and WE# goes high. The t  
write to the end of write.  
is measured from the beginning of  
WP  
Figure 30. Pseudo SRAM Write Cycle—  
UB#s and LB#s Control  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
77  
A D V A N C E I N F O R M A T I O N  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1) Max (Note 2)  
Unit  
sec  
sec  
Comments  
Sector Erase Time  
Chip Erase Time  
0.4  
5
Excludes 00h programming  
prior to erasure (Note 4)  
108  
Excludes system level  
overhead (Note 5)  
Word Program Time  
6
210  
µs  
Accelerated Word Program Time  
Chip Program Time (Note 3)  
Notes:  
4
120  
200  
µs  
50  
sec  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 1,000,000 cycles. Additionally,  
CC  
programming typicals assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90°C, V = 2.7 V, 1,000,000 cycles. All values are subject to change.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Tables  
Table 16 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to V on all pins except I/O pins  
(including A9, OE#, and RESET#)  
SS  
–1.0 V  
12.5 V  
Input voltage with respect to V on all I/O pins  
–1.0 V  
V
+ 1.0 V  
CC  
SS  
V
Current  
–100 mA  
+100 mA  
CC  
Note: Includes all pins except V . Test conditions: V = 3.0 V, one pin at a time.  
CC  
CC  
PACKAGE PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
= 0  
Typ  
11  
Max  
14  
Unit  
pF  
C
V
IN  
IN  
C
Output Capacitance  
V
= 0  
12  
16  
pF  
OUT  
OUT  
C
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
V
= 0  
14  
16  
pF  
IN2  
IN3  
IN  
IN  
C
V
= 0  
17  
20  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
FLASH DATA RETENTION  
Parameter Description  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
78  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  
A D V A N C E I N F O R M A T I O N  
PHYSICAL DIMENSIONS  
TLA073—73-Ball Fine-Pitch Grid Array 8 x 11.6 mm  
A
D
D1  
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
PIN A1  
CORNER  
10  
PIN A1  
CORNER  
7
INDEX MARK  
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
6
73X  
b
0.15  
M
C
C
A B  
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
TLA 073  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
11.60 mm X 8.00 mm PACKAGE  
NOTE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
SYMBOL  
A
MIN.  
---  
NOM.  
---  
MAX.  
1.20  
---  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
4. e REPRESENTS THE SOLDER BALL GRID PITCH.  
5. SYMBOL "MD" IS THE BALL MATRIX IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX IN THE "E" DIRECTION.  
PROFILE  
BALL HEIGHT  
A1  
0.20  
0.81  
---  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC  
8.00 BSC  
8.80 BSC  
7.20 BSC  
12  
n IS THE NUMBER OF POPULATED SOLDER BALL  
POSITIONS FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
7. SD AND SE ARE MEASURED WITH RESPECT TO  
DATUMS A AND B AND DEFINE THE POSITION OF THE  
CENTER SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
73  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS  
IN THE OUTER ROW SD OR SE = 0.000.  
Ob  
eE  
0.33  
---  
0.43  
BALL DIAMETER  
0.80 BSC  
0.80 BSC  
0.40 BSC  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS  
IN THE OUTER ROW, SD OR SE = E/2  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF  
DEPOPULATED BALLS.  
SD/SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B2,B3,B4,B7,B8,B9  
DEPOPULATED SOLDER BALLS  
9. NOT USED.  
C2,C9,C10,D1,D10,E1,E10  
F5,F6,G5,G6,H1,H10,J1,J10  
K1,K2,K9,K10,L2,L3,L4,L7,L8,L9  
M2,M3,M4,M5,M6,M7,M8,M9  
10. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER  
OR INK MARK, METALLIZED MARK INDENTATION OR  
OTHER MEANS.  
w053003-163814c  
December 18, 2003  
Am49PDL127AH/Am49PDL129AH  
79  
A D V A N C E I N F O R M A T I O N  
REVISION SUMMARY  
Revision A (August 7, 2003)  
Initial release.  
Revision A+1 (December 18, 2003)  
SecSiTM (Secured Silicon) Sector Flash Memory  
Region  
Customer-Lockable Area: Added sector protection fig-  
ure and changed figure reference in this section from  
Figure 1 to Figure 3.  
Table 16. Sector Protection Command Definitions  
Corrected number of cycles for SecSi Protection Bit  
Status, PPMLB Status, and SPMLB Status from 4 to 5  
cycles. For these command sequences, inserted a  
cycle before the final read cycle (RD0).  
DC Characteristics  
Changed the Test Condition IOL of VOL to IOL = 2.0  
mA.  
Trademarks  
Copyright © 2003 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
80  
Am49PDL127AH/Am49PDL129AH  
December 18, 2003  

相关型号:

AM49PDL127AH61FT

Memory Circuit, 8MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION

AM49PDL127AH61IS

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 16 Mbit (1 M x 16-Bit) CMOS Pseudo Static RAM
SPANSION

AM49PDL127AH61IT

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 16 Mbit (1 M x 16-Bit) CMOS Pseudo Static RAM
SPANSION

AM49PDL127AH70FS

Memory Circuit, 8MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION

AM49PDL127AH70FT

Memory Circuit, 8MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION

AM49PDL127AH70IS

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 16 Mbit (1 M x 16-Bit) CMOS Pseudo Static RAM
SPANSION

AM49PDL127AH70IT

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 16 Mbit (1 M x 16-Bit) CMOS Pseudo Static RAM
SPANSION

AM49PDL127BH

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2 M x 16-Bit) CMOS
SPANSION

AM49PDL127BH66IS

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2 M x 16-Bit) CMOS
SPANSION

AM49PDL127BH66IT

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2 M x 16-Bit) CMOS
SPANSION

AM49PDL127BH85IS

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2 M x 16-Bit) CMOS
SPANSION

AM49PDL127BH85IT

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2 M x 16-Bit) CMOS
SPANSION