MB15F73ULPFT [SPANSION]

PLL Frequency Synthesizer;
MB15F73ULPFT
型号: MB15F73ULPFT
厂家: SPANSION    SPANSION
描述:

PLL Frequency Synthesizer

信息通信管理 光电二极管
文件: 总29页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Spansion® Analog and Microcontroller  
Products  
The following document contains information on Spansion analog and microcontroller products. Although the  
document is marked with the name “Fujitsu”, the company that originally developed the specification, Spansion  
will continue to offer these products to new and existing customers.  
Continuity of Specifications  
There is no change to this document as a result of offering the device as a Spansion product. Any changes that  
have been made are the result of normal document improvements and are noted in the document revision  
summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a  
revision summary.  
Continuity of Ordering Part Numbers  
Spansion continues to support existing part numbers beginning with “MB”. To order these products, please use  
only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local sales office for additional information about Spansion memory, analog, and  
microcontroller products and solutions.  
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04–21368–2E  
ASSP  
Dual Serial Input  
PLL Frequency Synthesizer  
MB15F73UL  
DESCRIPTION  
The Fujitsu Semiconductor MB15F73UL is a serial input Phase Locked Loop (PLL) frequency synthesizer  
with a 2250 MHz and a 600 MHz prescalers. A 64/65 or a 128/129 for the 2250 MHz prescaler, and a 8/9  
or a 16/17 for the 600 MHz prescaler can be selected for the prescaler that enables pulse swallow operation.  
The BiCMOS process is used, as a result a supply current is typically 3.2 mA at 2.7 V. The supply voltage  
range is from 2.4 V to 3.6 V. A refined charge pump supplies well-balanced output current with 1.5 mA and  
6 mA selectable by serial date. The data format is the same as the previous one MB15F03SL, MB15F73SP.  
Fast locking is achieved for adopting the new circuit.  
FEATURES  
• High frequency operation  
: RF synthesizer : 2250 MHz Max.  
: IF synthesizer : 600 MHz Max.  
: VCC = 2.4 to 3.6 V  
• Low power supply voltage  
• Ultra low power supply current : ICC = 3.2 mA Typ.  
(VCC = Vp = 2.7 V, Ta = +25 °C, SWIF = SWRF = 0 in IF/RF locking state)  
• Direct power saving function : Power supply current in power saving mode  
Typ. 0.1 μA (VCC = Vp = 2.7 V, Ta = +25 °C)  
Max. 10 μA (VCC = Vp = 2.7 V)  
• Software selectable charge pump current : 1.5 mA/6.0 mA Typ.  
• Dual modulus prescaler : 2250 MHz prescaler (64/65 or128/129) /600 MHz prescaler (8/9 or 16/17)  
• 23 bit shift register  
• Serial input binary 14-bit programmable reference divider : R = 3 to 16,383  
• Serial input programmable divider consisting of:  
- Binary 7-bit swallow counter : 0 to 127  
- Binary 11-bit programmable counter : 3 to 2,047  
• Built-in high-speed tuning, low-noise phase comparator, current-switching type constant current circuit  
• On-chip phase control for phase comparator  
• On-chip phase comparator for fast lock and low noise  
• Built-in digital locking detector circuit to detect PLL locking and unlocking  
• Operating temperature : Ta = −40 °C to +85 °C  
Copyright©2001-2012 FUJITSU SEMICONDUCTOR LIMITED All rights reserved  
2012.5  
MB15F73UL  
PIN ASSIGNMENTS  
(TSSOP-20)  
TOP VIEW  
(QFN-20)  
TOP VIEW  
19 18 17 16  
20  
1
2
OSCIN  
GND  
finIF  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Clock  
Data  
finRF  
finIF  
XfinIF  
GNDIF  
VCCIF  
PSIF  
15  
14  
13  
12  
11  
1
2
3
4
5
3
LE  
XfinRF  
GNDRF  
4
XfinIF  
GNDIF  
VCCIF  
PSIF  
finRF  
5
XfinRF  
GNDRF  
VCCRF  
PSRF  
VpRF  
DoRF  
6
V
CCRF  
7
PSRF  
8
VpIF  
9
DoIF  
6
7
8
9
10  
10  
LD/fout  
(LCC-20P-M63)  
(FPT-20P-M06)  
2
DS04–21368–2E  
MB15F73UL  
PIN DESCRIPTION  
Pin no.  
Pin  
I/O  
Descriptions  
name  
TSSOP QFN  
The programmable reference divider input pin. TCXO should be connected  
with an AC coupling capacitor.  
1
2
3
19  
20  
1
OSCIN  
GND  
finIF  
I
I
Ground pin for OSC input buffer and the shift register circuit.  
Prescaler input pin for the IF-PLL.  
Connection to an external VCO should be AC coupling.  
Prescaler complimentary input for the IF-PLL section.  
This pin should be grounded via a capacitor.  
4
5
6
2
3
4
XfinIF  
GNDIF  
VCCIF  
I
Ground pin for the IF-PLL section.  
Power supply voltage input pin for the IF-PLL section (except for the charge  
pump circuit) , the shift register and the oscillator input buffer.  
Power saving mode control pin for the IF-PLL section. This pin must be set at  
“L” when the power supply is started up. (Open is prohibited.)  
PSIF = “H” ; Normal mode/PSIF = “L” ; Power saving mode  
7
5
PSIF  
I
8
9
6
7
VpIF  
DoIF  
Power supply voltage input pin for the IF-PLL charge pump.  
Charge pump output for the IF-PLL section.  
O
Lock detect signal output (LD) /phase comparator monitoring output (fout)  
pin. The output signal is selected by LDS bit in a serial data.  
10  
8
LD/fout  
O
LDS bit = “H” ; outputs fout signal/LDS bit = “L” ; outputs LD signal  
11  
12  
9
DoRF  
VpRF  
O
Charge pump output for the RF-PLL section.  
10  
Power supply voltage input pin for the RF-PLL charge pump.  
Power saving mode control for the RF-PLL section. This pin must be set at  
“L” when the power supply is started up. (Open is prohibited. )  
PSRF = “H” ; Normal mode/PSRF = “L” ; Power saving mode  
13  
11  
PSRF  
I
Power supply voltage input pin for the RF-PLL section (except for the charge  
pump circuit)  
14  
15  
16  
12  
13  
14  
VCCRF  
GNDRF  
XfinRF  
I
Ground pin for the RF-PLL section  
Prescaler complimentary input pin for the RF-PLL section.  
This pin should be grounded via a capacitor.  
Prescaler input pin for the RF-PLL.  
Connection to an external VCO should be via AC coupling.  
17  
18  
15  
16  
finRF  
LE  
I
I
Load enable signal input pin (with the schmitt trigger circuit)  
When LE is set “H”, data in the shift register is transferred to the correspond-  
ing latch according to the control bit in a serial data.  
Serial data input pin (with the schmitt trigger circuit)  
Data is transferred to the corresponding latch (IF-ref. counter, IF-prog.  
counter, RF-ref. counter, RF-prog. counter) according to the control bit in a  
serial data.  
19  
20  
17  
18  
Data  
I
I
Clock input pin for the 23-bit shift register (with the schmitt trigger circuit)  
One bit data is shifted into the shift register on a rising edge of the clock.  
Clock  
DS04–21368–2E  
3
MB15F73UL  
BLOCK DIAGRAM  
VpIF  
VCCIF GNDIF  
(3)  
(6)  
(4)  
6
5
8
Intermittent  
mode control  
(IF-PLL)  
3 bit latch  
PSIF 7  
7 bit latch  
Binary 7-bit  
11 bit latch  
Binary 11-bit  
(5)  
Phase  
comp.  
(IF-PLL)  
Charge  
pump  
(IF-PLL)  
9
(7)  
DoIF  
Current  
Switch  
swallow counter programmable  
(IF-PLL)  
counter (IF-PLL)  
fpIF  
finIF 3  
(1)  
XfinIF 4  
(2)  
Prescaler  
(IF-PLL)  
(8/9, 16/17)  
Lock Det.  
(IF-PLL)  
2 bit latch  
14 bit latch  
1 bit latch  
LDIF  
Binary 14-bit pro-  
grammable ref.  
counter(IF-PLL)  
C/P setting  
counter  
T1 T2  
frIF  
Fast  
lock  
Tuning  
OSCIN 1  
(19)  
Selector  
AND  
frRF  
LD  
frIF  
frRF  
fpIF  
fpRF  
Binary 14-bit pro-  
grammable ref.  
counter (RF-PLL))  
T1 T2  
C/P setting  
counter  
10  
(8) fout  
LD/  
OR  
2 bit latch  
14 bit latch  
1 bit latch  
LDRF  
(15)  
finRF 17  
Prescaler  
(RF-PLL)  
(64/65, 128/129)  
Lock Det.  
(RF-PLL)  
fpRF  
XfinRF 16  
(
14  
)
Phase  
comp.  
(RF-PLL)  
Charge  
pump  
(RF-PLL)  
Binary 11-bit  
programmable  
counter (RF-PLL)  
Binary 7-bit  
swallow counter  
(RF-PLL)  
Current  
Switch  
11  
(9)  
DoRF  
Intermittent  
mode control  
(RF-PLL)  
PSRF 13  
fpRF  
3 bit latch  
7 bit latch  
11 bit latch  
(11)  
Schmitt  
circuit  
LE 18  
(16)  
Latch selector  
(17)  
Data 19  
Schmitt  
circuit  
C
N
1
C
N
2
23-bit shift register  
Schmitt  
circuit  
Clock 20  
(18)  
2 (20)  
GND  
(12) 14  
VCCRF  
15 (13)  
GNDRF  
12(10)  
VpRF  
O : TSSOP  
( ) : QFN  
4
DS04–21368–2E  
MB15F73UL  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min  
0.5  
VCC  
Max  
VCC  
Vp  
4.0  
4.0  
V
V
Power supply voltage  
Input voltage  
VI  
0.5  
GND  
GND  
55  
VCC + 0.5  
VCC  
V
LD/fout  
Output voltage  
VO  
V
DoIF, DoRF  
VDO  
Tstg  
Vp  
V
Storage temperature  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
2.4  
Typ  
2.7  
2.7  
Max  
3.6  
VCC  
Vp  
VI  
V
V
VCCRF = VCCIF  
Power supply voltage  
VCC  
3.6  
Input voltage  
GND  
40  
VCC  
+85  
V
Operating temperature  
Ta  
°C  
Note : VCCRF, VpRF, VCCIF and VpIF must supply equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF, VpRF, VCCIF and VpIF  
to keep them equal.  
It is recommended that the non-use PLL is controlled by power saving function.  
Although this device contains an anti-static element to prevent electrostatic breakdown and the circuitry  
has been improved in electrostatic protection, observe the following precautions when handling the  
device.  
When storing and transporting the device, put it in a conductive case.  
Before handling the device, confirm the (jigs and) tools to be used have been uncharged (ground  
ed) as well as yourself. Use a conductive sheet on working bench.  
Before fitting the device into or removing it from the socket, turn the power supply off.  
When handling (such as transporting) the device mounted board, protect the leads with a  
conductive sheet.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
onthedatasheet.Usersconsideringapplicationoutsidethelistedconditionsareadvisedtocontact  
their representatives beforehand.  
DS04–21368–2E  
5
MB15F73UL  
*
ELECTRICAL CHARACTERISTICS  
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
finIF = 480 MHz  
*1  
ICCIF  
0.8  
1.2  
1.7  
mA  
mA  
VCCIF = VpIF = 2.7 V  
Power supply current  
finRF = 2000 MHz  
VCCRF = VpRF = 2.7 V  
*1  
ICCRF  
1.3  
2.0  
2.8  
IPSIF  
IPSRF  
finIF  
PSIF = PSRF = “L”  
PSIF = PSRF = “L”  
IF PLL  
0.1*2  
0.1*2  
10  
10  
μA  
Power saving current  
Operating frequency  
Input sensitivity  
μA  
*3  
finIF  
50  
600  
2250  
40  
MHz  
MHz  
MHz  
dBm  
dBm  
VPP  
*3  
finRF  
finRF  
fOSC  
RF PLL  
200  
3
OSCIN  
finIF  
PfinIF  
IF PLL, 50 Ω system  
15  
15  
0.5  
+2  
finRF  
PfinRF RF PLL, 50 Ω system  
+2  
Input available voltage OSCIN  
VOSC  
VCC  
0.7 VCC  
+ 0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
Schmitt triger input  
V
V
Data  
LE  
Clock  
0.3 VCC  
0.4  
VIL  
Schmitt triger input  
“H” level input voltage  
“L” level input voltage  
VIH  
0.7 VCC  
V
V
PSIF  
PSRF  
VIL  
0.3 VCC  
*4  
Data  
LE  
Clock  
PS  
“H” level input current  
“L” level input current  
IIH  
1.0  
1.0  
+1.0  
+1.0  
μA  
μA  
*4  
IIL  
“H” level input current  
“L” level input current  
IIH  
0
+100  
μA  
μA  
OSCIN  
*4  
IIL  
100  
0
VCC = Vp = 2.7 V,  
IOH = −1 mA  
VCC −  
“H” level output voltage  
“L” level output voltage  
“H” level output voltage  
“L” level output voltage  
VOH  
VOL  
0.4  
V
V
0.4  
LD/  
fout  
VCC = Vp = 2.7 V,  
IOL = 1 mA  
Vp 0.4  
VCC = Vp = 2.7 V, I  
DOH = −0.5 mA  
VDOH  
VDOL  
IOFF  
V
DoIF  
DoRF  
VCC = Vp = 2.7 V,  
DOL = 0.5 mA  
0.4  
2.5  
V
High impedance cutoff DoIF  
current  
VCC = Vp = 2.7 V  
VOFF = 0.5 V to Vp 0.5 V  
nA  
DoRF  
*4  
“H” level output current  
“L” level output current  
IOH  
VCC = Vp = 2.7 V  
VCC = Vp = 2.7 V  
1.0  
mA  
mA  
LD/  
fout  
IOL  
1.0  
(Continued)  
6
DS04–21368–2E  
MB15F73UL  
(Continued)  
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
VCC = Vp = 2.7 V,  
VDOH = Vp / 2,  
Ta = +25 °C  
Min  
Typ  
Max  
CS bit = “H”  
CS bit = “L”  
CS bit = “H”  
CS bit = “L”  
8.2  
6.0  
4.1  
mA  
mA  
mA  
mA  
*8  
“H” level output  
current  
DoIF  
DoRF  
*4  
IDOH  
2.2  
4.1  
1.5  
6.0  
0.8  
8.2  
VCC = Vp = 2.7 V,  
VDOL = Vp / 2,  
Ta = +25 °C  
*8  
“L” level output  
current  
DoIF  
DoRF  
IDOL  
*5  
0.8  
1.5  
2.2  
IDOL/IDOH IDOMT  
VDO = Vp / 2  
3
%
%
*6  
*7  
Charge pump  
current rate  
vs VDO  
vs Ta  
IDOVD  
0.5 V VDO Vp 0.5 V  
10  
40 °C Ta 85 °C,  
VDO = Vp / 2  
IDOTA  
5
%
*1 : Conditions ; fosc = 12.8 MHz, Ta = +25 °C, SW = “L” in locking state.  
*2 : VCCIF = VpIF = VCCRF = VpRF = 2.7 V, fosc = 12.8 MHz, Ta = +25 °C, in power saving mode.  
PSIF = PSRF = GND  
VIH = VCC, VIL = GND (at CLK, Data, LE)  
*3 : AC coupling. 1000 pF capacitor is connected under the condition of Min. operating frequency.  
*4 : The symbol “–” (minus) means the direction of current flow.  
*5 : VCC = Vp = 2.7 V, Ta = +25 °C (||I3| |I4||) / [ (|I3| + |I4|) / 2] × 100 (%)  
*6 : VCC = Vp = 2.7 V, Ta = +25 °C [ (||I2| |I1||) / 2] / [ (|I1| + |I2|) / 2] × 100 (%) (Applied to both lDOL and lDOH)  
*7 : VCC = Vp = 2.7 V, [||IDO (+85 °C) | |IDO (–40 °C) || / 2] / [|IDO (+85 °C) | + |IDO (–40 °C) | / 2] × 100 (%) (Applied to  
both IDOL and IDOH)  
*8 : When Charge pump current is measured, set LDS = “L” , T1 = “L” and T2 = “H”.  
I
I
3
4
I
I
1
2
I
I
2
1
IDOL  
IDOH  
0.5  
Vp/2  
Vp 0.5  
Vp  
Charge pump output voltage (V)  
DS04–21368–2E  
7
MB15F73UL  
FUNCTIONAL DESCRIPTION  
1. Pulse swallow function  
fVCO = [ (P × N) + A] × fOSC ÷ R  
fVCO : Output frequency of external voltage controlled oscillator (VCO)  
P
N
A
: Preset divide ratio of dual modulus prescaler (8 or 16 for IF-PLL, 64or 128 for RF-PLL)  
: Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)  
: Preset divide ratio of binary 7-bit swallow counter (0 A 127, A < N)  
fOSC : Reference oscillation frequency (OSCIN input frequency)  
: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)  
R
2. Serial Data Input  
The serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/  
RF-PLL sections, programmable reference dividers of IF/RF-PLL sections are controlled individually.  
The serial data of binary data is entered through Data pin.  
On rising edge of Clock, one bit of the serial data is transferred into the shift register. On a rising edge of  
load enable signal, the data stored in the shift register is transferred to one of latches depending upon the  
control bit data setting.  
The programmable The programmable  
The programmable  
The programmable  
reference counter reference counter counterandtheswallow counter and the swallow  
for the IF-PLL  
for the RF-PLL  
counter for the IF-PLL  
counter for the RF-PLL  
CN1  
CN2  
0
0
1
0
0
1
1
1
(1) Shift Register Configuration  
Programmable Reference Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CN1 CN2 T1 T2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 CS X  
X
X
X
CS  
: Charge pump current select bit  
R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)  
T1, 2  
CN1, 2  
X
: LD/fout output setting bit  
: Control bit  
: Dummy bits (Set “0” or “1”)  
Note : Data input with MSB first.  
8
DS04–21368–2E  
MB15F73UL  
• Programmable Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11  
A1 A2 A3 A4 A5 A6 A7  
SWIF/RF FCIF/RF  
CN1 CN2 LDS  
A1 to A7  
: Divide ratio setting bits for the swallow counter (0 to 127)  
: Divide ratio setting bits for the programmable counter (3 to 2,047)  
: LD/fout signal select bit  
N1 to N11  
LDS  
SWIF/RF  
FCIF/RF  
CN1, 2  
: Divide ratio setting bit for the prescaler (IF : SWIF, RF : SWRF)  
: Phase control bit for the phase detector (IF : FCIF, RF : FCRF)  
: Control bit  
Note : Data input with MSB first.  
(2) Data setting  
Binary 14-bit Programmable Reference Counter Data Setting  
Divide ratio R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1  
3
0
0
0
0
0
0
0
0
0
0
0
0
1
1
4
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
16383  
Note : Divide ratio less than 3 is prohibited.  
Binary 11-bit Programmable Counter Data Setting  
Divide ratio N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1  
3
0
0
0
0
0
0
0
0
0
1
1
4
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
2047  
Note : Divide ratio less than 3 is prohibited  
Binary 7-bit Swallow Counter Data Setting  
Divide ratio A7 A6 A5 A4 A3 A2 A1  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
127  
DS04–21368–2E  
9
MB15F73UL  
Prescaler Data Setting  
Divide ratio  
SW = “H”  
8/9  
SW = “L”  
16/17  
Prescaler divide ratio IF-PLL  
Prescaler divide ratio RF-PLL  
64/65  
128/129  
• Charge Pump Current Setting  
Current value  
6.0 mA  
CS  
1
1.5 mA  
0
LD/fout output Selectable Bit Setting  
LD/fout pin state  
LD output  
frIF  
LDS  
T1  
T2  
0
0
0
1
1
0
1
0
1
0
0
0
1
1
0
frRF  
fpIF  
1
0
fout  
output  
1
1
fpRF  
1
1
Phase Comparator Phase Switching Data Setting  
FCIF, RF = “H”  
Phase comparator input  
DoIF, RF  
FCIF, RF = “L”  
DoIF, RF  
fr > fp  
fr < fp  
H
L
L
H
Z
fr = fp  
Z
Z : High-impedance  
Depending upon the VCO and LPF polarity, FC bit should be set.  
High  
(1)  
(1) VCO polarity FC = “H”  
(2) VCO polarity FC = “L”  
VCO Output  
Frequency  
(2)  
Max.  
LPF Output voltage  
Note : Give attention to the polarity for using active type LPF.  
10  
DS04–21368–2E  
MB15F73UL  
3. Power Saving Mode (Intermittent Mode Control Circuit)  
Status  
PS pin  
H
L
Normal mode  
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption.  
See the Electrical Characteristics chart for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.  
Setting the PS pin high, releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal  
operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredict-  
able. This is because of the unknown relationship between the comparison frequency (fp) and the reference  
frequency (fr) which can cause a major change in the comparaor output, resulting in a VCO frequency jump  
and an increase in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the  
error signal from the phase detector when it returns to normal operation.  
Notes : When power (VCC) is first applied, the device must be in standby mode, PS = Low, for at least 1 μs.  
PS pin must be set “L” at Power-ON.  
OFF  
ON  
VCC  
tV 1 μs  
Clock  
Data  
LE  
PS  
tPS 100 ns  
(1)  
(2)  
(3)  
(1) PS = L (power saving mode) at Power-ON  
(2) Set serial data at least 1 μs after the power supply becomes stable (VCC 2.2 V) .  
(3) Release power saving mode (PSIF, PSRF : “L” “H”) at least 100 ns later after setting serial data.  
DS04–21368–2E  
11  
MB15F73UL  
4. Serial Data Data Input Timing  
Divide ratio is performed through a serial interface using the Data pin, Clock pin, and LE pin.  
Setting data is read into the shift register at the rise of the Clock signal, and transferred to a latch at the rise  
of the LE signal. The following diagram shows the data input timing.  
1st data  
2nd data  
Invalid data  
Control bit  
Data  
MSB  
LSB  
Clock  
LE  
t1  
t2  
t3  
t6  
t7  
t4  
t5  
Parameter Min.  
Typ.  
Max.  
Unit  
Parameter  
Min. Typ. Max.  
Unit  
ns  
t1  
t2  
t3  
t4  
20  
20  
30  
30  
ns  
ns  
ns  
ns  
t5  
t6  
t7  
100  
20  
ns  
100  
ns  
Note : LE should be “L” when the data is transferred into the shift register.  
12  
DS04–21368–2E  
MB15F73UL  
PHASE COMPARATOR OUTPUT WAVEFORM  
frIF/RF  
fpIF/RF  
tWU  
tWL  
LD  
(FC bit = High)  
H
DoIF/RF  
Z
L
(FC bit = Low)  
H
DoIF/RF  
Z
L
• LD Output Logic  
IF-PLL section  
RF-PLL section  
Locking state/Power saving state  
Unlocking state  
LD output  
Locking state/Power saving state  
Locking state/Power saving state  
Unlocking state  
H
L
L
L
Locking state/Power saving state  
Unlocking state  
Unlocking state  
Notes : Phase error detection range = −2π to +2π  
Pulses on DoIF/RF signals during locking state are output to prevent dead zone.  
LD output becomes low when phase error is tWU or more.  
LD output becomes high when phase error is tWL or less and continues to be so for three cycles or more.  
tWU and tWL depend on OSCIN input frequency as follows.  
tWU 2/fosc : e.g. tWU 156.3 ns when fosc = 12.8 MHz  
tWU 4/fosc : e.g. tWL 312.5 ns when fosc = 12.8 MHz  
DS04–21368–2E  
13  
MB15F73UL  
TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
fout  
Oscilloscope  
1000 pF  
VpIF  
VCCIF  
1000 pF  
S.G.  
50 Ω  
0.1 μF  
0.1 μF  
1000 pF  
S.G.  
50 Ω  
LD/fout  
10  
DoIF  
9
VpIF  
PSIF  
VCCIF  
GNDIF  
XfinIF  
4
finIF  
3
GND  
2
OSCIN  
1
8
7
6
5
11  
12  
13  
14  
15  
16  
17  
18  
LE  
19  
20  
DoRF  
VpRF  
PSRF  
VCCRF GNDRF XfinRF  
finRF  
Data  
Clock  
1000 pF  
Controller  
(divide ratio setting)  
1000 pF  
VpRF  
VCCRF  
S.G.  
50 Ω  
0.1 μF  
0.1 μF  
Note : The terminal number shows that of TSSOP-20.  
14  
DS04–21368–2E  
MB15F73UL  
TYPICAL CHARACTERISTICS  
1. fin input sensitivity  
RF-PLL input sensitivity vs. Input frequency  
10  
0
SPEC  
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
400  
800  
1200  
1600  
2000  
2400  
2800  
3200  
3600  
4000  
finRF (MHz)  
IF-PLL input sensitivity vs. Input frequency  
10  
0
SPEC  
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
1200  
finIF (MHz)  
DS04–21368–2E  
15  
MB15F73UL  
2. OSCIN input sensitivity  
Input sensitivity vs. Input frequency  
10  
SPEC  
0
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
60  
0
50  
100  
150  
200  
250  
300  
Input frequency fOSC (MHz)  
16  
DS04–21368–2E  
MB15F73UL  
3. RF-PLL Do output current  
• 1.5 mA mode  
IDO VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
0.0  
2.0  
3.0  
1.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
DS04–21368–2E  
17  
MB15F73UL  
4. IF-PLL Do output current  
• 1.5 mA mode  
IDO VDO  
10.0  
V
CC = Vp = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
18  
DS04–21368–2E  
MB15F73UL  
5. fin input impedance  
finIF input impedance  
4 : 17.586 Ω  
152.84 Ω  
1.7356 pF  
600.000 000 MHz  
1 : 942.56 Ω  
1.0998 kΩ  
50 MHz  
2 : 102.27 Ω  
453.08 Ω  
200 MHz  
3 : 30.813 Ω  
231.69 Ω  
400 MHz  
1
2
4
3
START 50.000 000 MHz  
STOP 600.000 000 MHz  
finRF input impedance  
4 : 9.8589 Ω  
12.918 Ω  
5.4757 pF  
2 250.000 000 MHz  
1 : 110.8  
Ω
450.61 Ω  
200 MHz  
2 : 10.215 Ω  
85.023 Ω  
1 GHz  
3 : 8.248  
Ω
46.791 Ω  
1.5 GHz  
4
1
2
3
START 200.000 000 MHz  
STOP 2 250.000 000 MHz  
DS04–21368–2E  
19  
MB15F73UL  
6. OSCIN input impedance  
OSCIN input impedance  
4 : 25.625 Ω  
708.63 Ω  
2.246 pF  
100.000 000 MHz  
1 :12.925 kΩ  
13.855 kΩ  
3 MHz  
2 : 453.87 Ω  
3.5288 kΩ  
20 MHz  
3 : 112.38 Ω  
1.7836 kΩ  
40 MHz  
4
1
2
3
START 3.000 000 MHz  
STOP 100.000 000 MHz  
20  
DS04–21368–2E  
MB15F73UL  
REFERENCE INFORMATION  
(for Lock-up Time, Phase Noise and Reference Leakage)  
f
VCO = 1607 MHz VCC = 3.0 V  
K
V
= 30 MHz/V  
V
VCO = 2.3 V  
Ta = + 25 °C  
OSC = 14.4 MHz CP : 6 mA mode  
LPF  
Test Circuit  
OSCIN  
fr = 25 kHz  
f
S.G.  
Do  
LPF  
VCO : FUJITSU MEDIA DEVICES  
(VC-2R3A50-1619)  
fin  
20 k Ω  
3.6 k Ω  
To VCO  
Spectrum  
Analyzer  
VCO  
4700 pF  
68 pF  
0.039 μF  
• PLL Reference Leakage  
ATTEN 10 dB  
RL 5.0 dBm  
VAVG 0  
10 dB/  
ΔMKR 71.34 dB  
25.0 kHz  
ΔMKR  
25.0 kHz  
71.34 dB  
CENTER 1.6070000 GHz  
SPAN 200.0 kHz  
SWP 500 ms  
RBW 1.0 kHz  
VBW 1.0 kHz  
• PLL Phase Noise  
ATTEN 10 dB  
RL 5.0 dBm  
VAVG 38  
10 dB/  
ΔMKR 47.16 dB  
4.67 kHz  
ΔMKR  
4.67 kHz  
47.16 dB  
D
S
CENTER 1.60700000 GHz  
SPAN 20.00 kHz  
SWP 1.60 s  
RBW 100 Hz  
VBW 100 Hz  
(Continued)  
DS04–21368–2E  
21  
MB15F73UL  
(Continued)  
PLL Lock Up time  
PLL Lock Up time  
1607 MHz1631 MHz within 1 kHz  
1631 MHz1607 MHz within 1 kHz  
L chH ch  
1.09 ms  
H chL ch  
1.28 ms  
1.631004000 GHz  
1.631000000 GHz  
1.607004000 GHz  
1.607000000 GHz  
1.630996000 GHz  
0.00 s  
1.606996000 GHz  
0.00 s  
2.500 ms  
5.000 ms  
2.500 ms  
5.000 ms  
500.0 μs/div  
500.0 μs/div  
22  
DS04–21368–2E  
MB15F73UL  
APPLICATION EXAMPLE  
OUTPUT  
VCO  
2.7 V  
LPF  
2.7 V  
from controller  
1000 pF  
1000 pF  
0.1 μF 0.1 μF  
Clock DATA  
LE  
18  
finRF  
17  
XfinRF GNDRF  
VCCRF  
PSRF  
VpRF  
DoRF  
20  
19  
16  
15  
14  
13  
12  
11  
MB 15F73UL  
1
2
3
4
5
6
7
8
9
10  
OSCIN  
GND  
finIF  
XfinIF  
GNDIF  
VCCIF  
PSIF  
VpIF  
DoIF  
LD/fout  
Lock Det.  
2.7 V  
2.7 V  
1000 pF  
1000 pF  
1000 pF  
0.1 μF  
0.1 μF  
TCXO  
OUTPUT  
VCO  
LPF  
Notes : Clock, Data, LE : The schmitt trigger circuit is provided (insert a pull-down or pull-up register  
to prevent oscillation when open-circuit in the input) .  
The terminal number shows that of TSSOP-20.  
DS04–21368–2E  
23  
MB15F73UL  
USAGE PRECAUTIONS  
(1) VCCRF, VpRF, VCCIF and VpIF must be equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF, VpRF, VCCIF and VpIF to keep  
them equal. It is recommended that the non-use PLL is controlled by power saving function.  
(2) To protect against damage by electrostatic discharge, note the following handling precautions :  
-Store and transport devices in conductive containers.  
-Use properly grounded workstations, tools, and equipment.  
-Turn off power before inserting or removing this device into or from a socket.  
-Protect leads with conductive sheet, when transporting a board mounted device  
24  
DS04–21368–2E  
MB15F73UL  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
20-pin plastic TSSOP  
(FPT-20P-M06)  
MB15F73ULPFT  
MB15F73ULWQN  
20-pin, Plastic QFN  
(LCC-20P-M63)  
DS04–21368–2E  
25  
MB15F73UL  
PACKAGE DIMENSIONS  
20-pin plastic TSSOP  
Lead pitch  
0.65 mm  
4.40 × 6.50 mm  
Gullwing  
Package width  
package length  
×
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.10 mm MAX  
0.08g  
Code  
(Reference)  
P-TSSOP20-4.4×6.5-0.65  
(FPT-20P-M06)  
20-pin plastic TSSOP  
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
(FPT-20P-M06)  
1 6.50±0.10(.256±.004)  
*
0.17±0.05  
(.007±.002)  
20  
11  
24.40±0.10 6.40±0.20  
(.173±.004) (.252±.008)  
*
INDEX  
Details of "A" part  
1.05±0.05  
(Mounting height)  
(.041±.002)  
1
10  
LEAD No.  
"A"  
0.65(.026)  
0.24±0.08  
(.009±.003)  
0~8°  
M
0.13(.005)  
0.07 +00..0073 .003 +..000031  
(0.50(.020))  
(Stand off)  
0.25(.010)  
0.60±0.15  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003-2010 FUJITSU SEMICONDUCTOR LIMITED F20026S-c-3-5  
(Continued)  
26  
DS04–21368–2E  
MB15F73UL  
(Continued)  
20-pin plastic QFN  
Lead pitch  
0.50 mm  
4.00 mm × 4.00 mm  
Plastic mold  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
0.80 mm MAX  
0.04 g  
(LCC-20P-M63)  
20-pin plastic QFN  
(LCC-20P-M63)  
2.00±0.10  
4.00±0.10  
(.0.79±.004)  
(.157±.004)  
0.25 +00..0075  
2.00±0.10  
(.0.79±.004)  
4.00±0.10  
(.157±.004)  
+.002  
(.010  
)
–.003  
INDEX AREA  
1PIN ID  
(C0.35(C.014))  
0.40±0.05  
(.016±.002)  
0.50(.020)  
(TYP)  
0.75±0.05  
(.030±.002)  
0.02 +00..0023  
(.001  
0.20(.008)  
+.001  
–.001  
)
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2012 FUJITSU SEMICONDUCTOR LIMITED HMbC20-63Sc-1-1  
DS04–21368–2E  
27  
MB15F73UL  
FUJITSU SEMICONDUCTOR LIMITED  
Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,  
Kohoku-ku Yokohama Kanagawa 222-0033, Japan  
Tel: +81-45-415-5858  
http://jp.fujitsu.com/fsl/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU SEMICONDUCTOR AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://us.fujitsu.com/micro/  
FUJITSU SEMICONDUCTOR ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://sg.fujitsu.com/semiconductor/  
Europe  
FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.  
30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District,  
Shanghai 201204, China  
Tel : +86-21-6146-3688 Fax : +86-21-6146-3660  
http://cn.fujitsu.com/fss/  
FUJITSU SEMICONDUCTOR EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/semiconductor/  
Korea  
FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fsp/  
FUJITSU SEMICONDUCTOR KOREA LTD.  
902 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fsk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does  
not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any  
third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right  
by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or  
other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages aris-  
ing in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-  
current levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations  
of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB15F73ULPV

PLL Frequency Synthesizer, BICMOS, PBCC20, PLASTIC, BCC-20
CYPRESS

MB15F73ULPVA

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULWQN

PLL Frequency Synthesizer
SPANSION

MB15F73UL_01

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73UV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73UVPVB

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F74UL

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F74ULPVA

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F74UV

ASSP Dual Serial Input PLL Frequency Synthesizer(Small Package)
FUJITSU

MB15F74UVPVB

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F74UV_04

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F76UL

ASSP Dual Serial Input PLL Frequency Synthesizer
FUJITSU