MB3769APF-XXXE1 [SPANSION]

Switching Controller;
MB3769APF-XXXE1
型号: MB3769APF-XXXE1
厂家: SPANSION    SPANSION
描述:

Switching Controller

开关 光电二极管
文件: 总33页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Spansion® Analog and Microcontroller  
Products  
The following document contains information on Spansion analog and microcontroller products. Although the  
document is marked with the name “Fujitsu”, the company that originally developed the specification, Spansion  
will continue to offer these products to new and existing customers.  
Continuity of Specifications  
There is no change to this document as a result of offering the device as a Spansion product. Any changes that  
have been made are the result of normal document improvements and are noted in the document revision  
summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a  
revision summary.  
Continuity of Ordering Part Numbers  
Spansion continues to support existing part numbers beginning with “MB”. To order these products, please use  
only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local sales office for additional information about Spansion memory, analog, and  
microcontroller products and solutions.  
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27202-6Ea  
ASSP  
BIPOLAR  
SWITCHING REGULATOR  
CONTROLLER  
MB3769A  
DESCRIPTION  
The Fujitsu Microelectronics MB3769A is a pulse-width-modulation controller which is applied to fixed frequency  
pulse modulation technique. The MB3769A contains wide band width Op-Amp and high speed comparator to  
construct very high speed switching regulator system up to 700 kHz. Output is suitable for power MOS FET drive  
owing to adoption of totem pole output.  
The MB3769A provides stand-by mode at low voltage power supply when it is applied in primary control system.  
FEATURES  
• High frequency oscillator (f = 1 kHz to 700 kHz)  
• On-chip wide band frequency operation amplifier (BW = 8 MHz Typ)  
• On-chip high speed comparator (td = 120 ns Typ)  
• Internal reference voltage generator provides a stable reference supply (5 V ± 2%)  
• Low power dissipation (1.5 mA Typ at standby mode, 8 mA Typ at operating mode)  
• Output current ± 100 mA (± 600 mA at peak)  
High speed switching operation (tr = 60 ns, tf = 30 ns, CL = 1000 pF Typ)  
• Adjustable Dead-time  
• On-chip soft start and quick shut down functions  
• Internal circuitry prohibits double pulse at dynamic current limit operation  
• Under voltage lock out function (OFF to ON: 10 V Typ, ON to OFF: 8 V Typ)  
• On-chip output shut down circuit with latch function at over voltage  
• On-chip Zener diode (15 V)  
• One type of package (SOP-16pin : 1 type)  
APPLICATIONS  
• Power supply module  
• Industrial Equipment  
• AC/DC Converter  
etc.  
Copyright©1994-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2006.5  
MB3769A  
PIN ASSIGNMENT  
(TOP VIEW)  
+IN (OP)  
-IN (OP)  
1
2
3
+IN (C)  
-IN (C)  
VREF  
OVP  
16  
15  
14  
FB  
DTC  
4
5
6
7
8
13  
12  
11  
10  
9
VCC  
CT  
RT  
VZ  
GND  
VL  
VH  
OUT  
(FPT-16P-M06)  
2
MB3769A  
BLOCK DIAGRAM  
Fig. 1 - MB3769A Block Diagram  
Over Current Detection Comparator  
-IN (C)  
+IN (C)  
15  
16  
-
S
R
Q
+
-
10  
9
VH  
+
+
+
+
+
1.85 V  
PWM  
Comp.  
+
OUT  
VREF  
1.8 V  
-
DTC  
4
8
STB  
VL  
STB  
FB  
3
1
+IN (OP)  
+
Error  
Amp  
-IN (OP)  
OVP  
-
2
Over Voltage Detector  
13  
+
-
S
R
Q
Power  
off  
2.5 V  
1.5 V to 3.5 V  
C T  
5
6
Triangle Wave  
+
-
R T  
Oscillator  
(2.5 V)  
8/10 V  
STB  
V CC  
12  
15.4 V  
5.0 + 0.1 V  
-
Reference  
Regulator  
V Z  
11  
7
14  
VREF  
+
30 kΩ  
GND  
3
MB3769A  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min  
Max  
20  
Power Supply Voltage  
Output Current  
VCC  
IOUT  
V
mA  
V
120 (660*1)  
Operation Amp Input Voltage  
Power Dissipation : SOP  
Storage Temperature  
Vin (OP)  
PD  
VCC + 0.3 (20)  
620*2  
mW  
°C  
TSTG  
-55  
+125  
*1 : Duty 5%  
*2 : Ta = + 25 °C, SOP package is mounted on the epoxy board. (4 cm x 4 cm x 0.15 cm)  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
4
MB3769A  
RECOMMENDED OPERATING CONDITIONS  
SOP package  
Parameter  
Symbol  
Unit  
Max  
Min  
12  
-100  
-600  
-0.2  
-
Typ  
Power Supply Voltage  
VCC  
IOUT  
15  
18  
+100  
+600  
VCC-3  
0.3  
V
mA  
mA  
V
Output Current (DC)  
Output Current (Peak)  
Operation Amp Input voltage  
FB Sink Current  
-
IOUT PEAK  
VINOP  
-
0 to VREF  
ISINK  
-
-
mA  
mA  
V
FB Source Current  
ISOURCE  
-
2
+
VINC  
-0.3  
-0.3  
-
0 to 3  
0 to 2  
2
VCC  
2.5  
Comparator Input Voltage  
-
VINC  
V
Reference Section Output Current  
Timing Resistor  
IREF  
RT  
10  
mA  
kΩ  
pF  
kHz  
mA  
°C  
9
18  
50  
Timing Capacitor  
CT  
100  
1
680  
100  
-
106  
Oscillator Frequency  
fOSC  
IZ  
700  
5
Zener Current  
-
Operating Ambient Temperature: SOP  
Ta  
-30  
+25  
+75  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
representatives beforehand.  
5
MB3769A  
ELECTRICAL CHARACTERISTICS  
(VCC=15V, Ta=+25°C)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
5.0  
2
Max  
5.1  
15  
Output Voltage  
VREF  
VRIN  
VRLD  
VRTEMP  
ISC  
IREF = 1 mA  
12 V VCC 18 V  
1 mA IREF 10 mA  
-30 °C Ta +85 °C  
VREF = 0 V  
4.9  
V
mV  
Input Regulation  
Load Regulation  
Temp. Stability  
-
-
Reference  
Section  
-1  
-15  
±750  
-
mV  
-
±200  
40  
µV/ °C  
mA  
Short Circuit Output Current  
15  
RT = 18 kΩ  
CT = 680 pF  
Oscillator Frequency  
fOSC  
90  
100  
110  
kHz  
Oscillator  
Section  
Voltage Stability  
Temp. Stability  
Input Bias Current  
Max. Duty Cycle  
Duty Cycle Set  
0% Duty  
fOSCIN  
fOSC /T  
ID  
12 V VCC 18 V  
-30 °C Ta +85 °C  
-
-
-
±0.03  
±2  
-
%
%
-
-
2
10  
85  
55  
µA  
%
Dmax  
Dset  
Vd = 1.5 V  
75  
45  
80  
Vd = 0.5 VREF  
50  
%
Dead -time  
Control  
Section  
VDO  
VDM  
VDH  
-
-
-
3.5  
1.85  
-
3.8  
V
V
V
Input  
Cycle  
Threshold  
Voltage  
Max. Duty  
Cycle  
1.55  
4.5  
-
-
VCC = 7 V,  
IDTC = -0.3 mA  
Discharge Voltage  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VIO (OP)  
IIO (OP)  
IIR (OP)  
VCM (OP)  
Av (OP)  
BW  
V3 = 2.5 V  
V3 = 2.5 V  
-
-
±2  
±30  
-0.3  
-
±10  
mV  
nA  
µA  
V
±300  
V3 = 2.5 V  
-1  
-0.2  
70  
-
-
Common-Mode Input Voltage  
Voltage Gain  
12 V VCC 18 V  
0.5 V V3 4 V  
Av = 0 dB  
VCC -3  
Error  
Amplifier  
Section  
90  
8
-
dB  
MHz  
V/µs  
dB  
V
Band Width  
-
-
Slew Rate  
SR  
RL = 10 k, Av = 0 dB  
VIN = 0 V to 10 V  
I3 = -2 mA  
-
6
Common-Mode Rejection Rate  
“H” Level Output Voltage  
LLevel Output Voltage  
CMR  
VOH  
65  
4.0  
-
80  
4.6  
0.1  
-
-
VOL  
I3 = 0.3 mA  
0.5  
V
(Continued)  
6
MB3769A  
(Continued)  
(VCC=15V, Ta=+25°C)  
Value  
Typ  
±5  
Parameter  
Symbol  
Condition  
Unit  
Max  
Min  
-
Input Offset Voltage  
Input Bias Current  
Common-Mode Input  
VIO (C)  
IIB (C)  
VIN = 1 V  
VIN = 1 V  
±15  
-
mV  
-5  
-1  
µA  
Current  
VCM (C)  
-
0
-
2.5  
V
Comparator Voltage  
Voltage Gain  
AV (C)  
td  
-
-
200  
120  
3.5  
-
250  
3.8  
-
V/V  
ns  
V
Response Time  
50 mV over drive  
-
-
PWM  
Comparator  
Section  
0% Duty Cycle  
VOPO  
VOPM  
VH  
RT = 18 kΩ  
CT = 680 pF  
Max Duty Cycle  
1.55  
12.5  
-
1.85  
13.5  
1.1  
V
“H” Level Output Voltage  
“L” Level Output Voltage  
-
V
IOUT = -100 mA  
IOUT = 100 mA  
1.3  
V
VL  
Output  
Section  
CL = 1000 pF,  
Rise Time  
Fall Time  
tr  
tf  
-
-
60  
30  
120  
80  
ns  
ns  
RL = ∞  
CL = 1000 pF,  
RL = ∞  
Threshold Voltage  
Input Current  
VCC Reset  
2.4  
-1.0  
2.0  
9.2  
7.2  
2.5  
-0.2  
3.0  
2.6  
-
V
µA  
V
VOVP  
IIOVP  
-
Over  
Voltage  
Detector  
VIN = 0 V  
4.5  
10.8  
8.8  
VCC RST  
VTHH  
-
-
-
Under  
Voltage  
Out Stop  
Off to On  
10.0  
8.0  
V
On to Off  
V
VTHL  
RT = 18 kΩ  
4 pin Open  
Standby *  
-
1.5  
2.0  
mA  
ISTB  
Supply  
Current  
Operating  
ICC  
VZ  
IZ  
RT = 18 kΩ  
IZ = 1 mA  
V11-7 = 1 V  
-
-
-
8.0  
12.0  
mA  
V
Zener Voltage  
Zener Current  
15.4  
0.03  
-
-
mA  
* : VCC = 8V  
7
MB3769A  
Fig. 2 - MB3769A Test Circuit  
1.0 V  
15.0 V  
OUTPUT  
10 kΩ  
16  
15  
14  
13  
12  
11  
VZ  
10  
9
+IN (C)  
-IN (C)  
VREF  
OVP  
VCC  
VH  
OUT  
COMP  
in  
MB3769A  
1000 pF  
+IN (OP)  
1
-IN (OP)  
2
FB  
3
DTC  
CT  
5
RT  
6
GND  
7
VL  
8
4
680 pF  
18 kΩ  
VFB  
VDTC  
TEST INPUT  
<tr, tf, td>  
3.5 V Typ  
Voltage at CT  
1.5 V Typ  
1.05 V  
1.0 V  
tr of COMP-in should  
be within 20 ns.  
COMP in  
0.95 V  
90%  
50%  
OUTPUT  
10%  
tr  
tf  
td  
8
MB3769A  
Fig. 3 - MB3769A Operating Timing  
Quick Shutdown Operation  
Soft Start Operation  
Dead-Time  
Input Voltage  
3.5 V  
1.85V  
Triangle Wave  
Form  
1.5 V  
Error Amp  
Output  
PWM Comparator  
Output  
Output Wave  
Form  
Comp. Current  
-in Wave Form  
Comp. Current  
+in Wave Form  
(1 V)  
Comp. Current  
Latch Output  
2.5 V  
Voltage at OVP  
OVP Latch  
(15 V)  
10 V (Typ)  
Power Supply  
Voltage  
8 V  
(Typ)  
3 V  
0 V  
Over Current Over Voltage  
Detector Detector  
Standby  
Mode  
Standby Mode  
Over Voltage Detector  
Latch OFF  
9
MB3769A  
FUNCTIONS  
1. Error Amplifier  
The error amplifier detects the output voltage of the switching regulator.  
The error amplifier uses a high-speed operational amplifier with an 8 MHz bandwidth (typical) and 6 V/µs slew rate (typical).  
For ease of use, the common mode input voltage ranges from -0.2 V to VCC-3 V. Figure 4 shows the equivalent circuit.  
Fig. 4 - MB3769A Equivalent Circuit Differential Amp  
VCC  
VREF  
To PWM  
Comp.  
-IN (OP)  
150 Ω  
+IN (OP)  
700 µA  
GND  
Protection element  
2. Overcurrent Detection Comparator  
There are two methods for protection of the output transistor of this device from overcurrents; one restricts the transistor’s on-  
time if an overcurrent that flows through the output transistor is detected from an average output current, and the other detects  
an overcurrent in the external transistor (FET) and shuts the output down instantaneously. Using average output currents, the  
peak current of the external transistor (FET) cannot be detected, so an output transistor with a large safe operation area (SOA)  
margin is required.  
For the method of detecting overcurrents in the external transistor (FET), the output transistor can be protected against a shorted  
filter capacitor or power-on surge current.  
The MB3769A uses dynamic current limiting to detect overcurrents in the output transistor (FET). A high-speed comparator  
and flip-flop are built-in.  
To detect overcurrents, compare the voltage at +IN(C) of current detection resistor connected the source of the output transistor  
(FET), with the reference voltage (connected to -IN(C)) using a comparator. To prevent output oscillation during overcurrent, flip-  
flop circuit protects against double pulses occurring within a cycle.  
Theoutput ofovercurrent detector isORedwithothersignalsatthePWMcomparator. See the exampleApplicationExample”  
for details on use.  
Figure 5 shows the equivalent circuit of the over-current detection comparator.  
10  
MB3769A  
Fig. 5 - MB3769A Equivalent Circuit Over Current Detection Comparator  
VREF  
To PWM  
Comp.  
-IN (C)  
+IN (C)  
Protection element  
3. DTC: Dead Time Control (Soft-Start and Quick Shutdown)  
The dead time control terminal and the error amplifier output are connected to the PWM comparator.  
The maximum duty cycle for VDTC (voltage applied to pin 4) is obtained from the following formula (approximate value at low  
frequency):  
Duty Cycle = (3.5 - VDTC) x 50 (%) [0% duty cycle DMAX (80%)]  
The dead time control terminal is used to provide soft start.  
In Figure 6, the DTC terminal is connected to the VREF terminal through R and C. Because capacitor C does not charge  
instantaneously when the power is turned on, the output transistor is kept turned off. The DTC input voltage and the output pulse  
width increase gradually according to the RC time constant so that the control system operates safely.  
Fig. 6 - MB3769A Soft Start Function  
VREF  
VREF  
C
R
C
R1  
R2  
DTC  
DTC  
Soft Start  
Soft Start + DTC  
The quick shutdown function prevents soft start malfunction when the power is turned off and on quickly. After the power is shut  
down, soft start is disabled because the DTC terminal has low electric potential from the beginning if the power is turned on  
again before the capacitor is discharged. The MB3769A prevents this by turning on the discharge transistor to quickly discharge  
the capacitor in the stand-by mode.  
11  
MB3769A  
4. Triangular Wave Oscillator  
The oscillation frequency is expressed by the following formula:  
1
CT  
RT  
:µF  
:kΩ  
fOSC ~  
[kHz]  
0.8 x CT x RT + 0.0002 ms  
For master/slave synchronized operation of several MB3769As, the CT and RT terminals of the master MB3769A are connected  
in the usual way and the CT terminals of the master and slave device (s) are connected together. The slave MB3769A’s RT  
terminal is connected to it’s VREF terminal to disable the slave’s oscillator. In this case, set 50/n k(n is the number of master  
and slave ICs) to the upper limit of RT so that internal bias currents do not stop the master oscillation.  
Fig. 7 - MB3769A Synchronized Operation  
master  
slave  
RT  
RT  
CT  
VREF  
CT  
5. Overvoltage Detector  
The overvoltage detection circuit shuts the system power down if the switching regulator’s output voltage is abnormal or if  
abnormal voltage is appeared. The reference voltage is 2.5 V (VREF /2). The system power is shut down if the voltage at pin 13  
rises above 2.5 V. The output is kept shut down by the latching circuit until the power supply is turned off (see Figure 3).  
6. Stand-by Mode and Under-Voltage Lockout (UVLO)  
Generally, VGS > 6 to 8 V is required to use power MOSFET for switching. UVLO is set so that output is on at VCC 10 V  
(standard) when the power is turned on and is off at VCC 8 V (standard) when the power is turned off.  
In the stand-by mode, the power supply current is limited to 2 mA or less when the output is inhibited by the UVLO circuit. When  
the MB3769A is operated from the 100 VAC line, the power supply current is supplied through resistor R (Figure 8). That is, the  
IC power supply current is supplied by the AC line through resistor R until operation starts. Current is then supplied from the  
transformer tertiary winding, eliminating the need for a second power supply.  
Two volts (typical) of hysteresis are provided for return from operation mode to stand-by mode not to return to stand-by mode  
until output power is turned on or to avoid malfunction due to noise.  
12  
MB3769A  
Fig. 8 - MB3769A Primary Control  
R
C
MB3769A  
7. Output Section  
Because the OUT terminal (pin 9) carries a large current, the collector and emitter of the output transistor are brought out to the  
VH and VL terminals. In principle, VH is connected to VCC and VL is connected to GND, but VH can be supplied from another  
power supply (4 V to 18 V). Note that VL and GND should be connected as close to the IC package as possible. A capacitor of  
0.1 µF or more is inserted between VH and VL (see Figure 9).  
Fig. 9 - MB3769A Typical Connection Circuit Of Output  
12  
10  
9
7
8
0.1 µF  
13  
MB3769A  
APPLICATION EXAMPLE  
Fig. 10 - MB3769A DC - DC Convertor  
12 to 18 V  
5 V  
1 A  
3.6 kΩ  
2.4 kΩ  
3.3kΩ  
+IN (C) 16  
IN (C) 15  
VREF 14  
OVP 13  
1+IN (OP)  
0.1 µF  
10 kΩ  
330 pF  
2-IN (OP)  
3FB  
20 kΩ  
100 kΩ  
4DTC  
5CT  
MB3769A  
VCC 12  
VZ 11  
6RT  
VH 10  
7GND  
8VL  
OUT 9  
R
S
220 pF  
C
10 kΩ  
1 Ω  
51 kΩ  
18 kΩ  
5.1kΩ  
Overcurrent Protection Circuit  
The waveform at the output FET source terminal is shown in Figure 11. The RC time constant must be chosen so that the voltage  
glitch in the waveform does not cause erroneous overcurrent detection. This time constant is should be from 5 ns to 100 ns. A  
detection current value depends on R or C because a waveform is weakened. To keep this glitch as small as possible, the  
rectifiers on the transformer secondary winding must be the fast-recovery type.  
Fig. 11 - MB3769A Output FET Source Point  
Glitch  
Point S waveform  
14  
MB3769A  
Fig. 12 -Primary Control  
100 VAC  
R
-
+
-
+
+IN(OP) +IN(C)  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
47 kΩ  
-IN(OP) -IN(C)  
FB  
VREF  
22  
kΩ  
4.7 µF  
DTC  
OVP  
CT  
VCC  
VZ  
RT  
*: The resistance (22 )  
as an output current  
limiter at pin 9 is  
required when driving  
the FET which is more  
than 1000 pF (CGS).  
GND  
VH  
*
22  
VL  
OUT  
22  
kΩ  
15  
kΩ  
18  
680  
10 kΩ  
kΩ  
pF  
Fig. 13 -Secondly Control  
15 V  
0 V  
Secondly power supply  
5.1 kΩ  
12 V  
39  
kΩ  
43  
kΩ  
1
2
3
4
5
6
7
8
+IN(C)  
+IN(OP)  
-IN(OP)  
FB  
16  
15  
14  
13  
12  
11  
1000  
pF  
10  
27  
kkΩ  
-IN(C)  
VREF  
51  
kΩ  
OVP  
DTC  
VCC  
VZ  
CT  
RT  
VH 10  
GND  
9
OUT  
VL  
680  
pF  
10  
kΩ  
18  
kΩ  
15  
MB3769A  
SHORT PROTECTION CIRCUIT  
The system power can be shut down to protect the output against intermittent short-circuits or continuous  
overloads. This protection circuit can be configured using the OVP input as shown in Figure 14.  
Fig. 14 -Case I. (Over Protection Input)  
Primary Mode  
V0  
(5V output)  
15 kΩ  
IN-B  
PC1  
OUT-B  
8
PC2  
3
4
8.2 kΩ  
IN-A  
500 Ω  
HYS-A  
MB3761  
1
6
9
14  
13  
5
500 Ω  
6.8 kΩ  
MB3769A  
20 kΩ  
PC2  
7
1 µF  
10 kΩ  
100 kΩ  
PC1  
Fig. 15 -Case II. (Over Protection Input)  
Secondly Mode  
V0 (5V output)  
14  
VREF  
MB3769A  
20 kΩ  
15 kΩ  
8
13  
IN-B  
IN-A  
OUT-B  
HYS-A  
6
OVP  
3
1
MB3761  
8.2 kΩ  
6.8 kΩ  
2
1 µF  
5
200 kΩ  
16  
MB3769A  
HOW TO SYNCHRONIZE WITH OUTSIDE CLOCK  
The MB3769A oscillator circuit is shown in Figure 16. CT charge and discharge currents are expressed by the following formula:  
5 V  
ICT = ±2 x I1 = ±  
RT  
Fig. 16 -Oscillator Circuit  
VREF  
500  
500 Ω  
1 kΩ  
+
-
I1  
S
R
3.5 V  
2 x I1  
2 x I1  
Q
-
+
ICT  
CT  
RT  
-
6
5
1.5 V  
+
(4 x I1)  
2.5 V  
300  
150Ω  
This circuit shows that if the voltage at the CT terminal is set to 1.5 V or less, one oscillation cycle ends and the next cycle starts.  
An example of an external synchronous clock circuit is shown in Figure 17.  
Fig. 17 -Typical Connection of Synchronized Outside Clock Circuit  
tcycle  
ex. MB74HC04  
5
VP  
VP  
tP  
MB3769A  
R(5.1 k )  
6
tcycle = 2.5 µs (fEXT = 400 kHz)  
clamp circuit  
(VL)  
CT  
tP  
= 0.5 µs  
RT  
RT = 11 k Ω  
The Figure 18 shows the CT terminal waveform.  
Fig. 18 -Voltage Waveform at CT  
VTH may be near 2.5 V. In this case, the maximum duty cycle is restricted  
as shown in the formula below if tP’ = 0.  
3.5 V  
VTH  
.
( 2.5 V)  
.
1.85 V  
VCT  
(3.5 - 1.85) + (3.5 - VTH)  
(3.5 - VL) + (3.5 - VTH)  
Dmax=  
59% (VL = 0 V: No clamp circuit)  
VL  
tP’  
When VTH = 2.5 V, CT can be provided by followings.  
1
(3.5 - VL) + (3.5 - VTH)  
fOSC(3.5 - 1.5) x 2  
tcycle - tP =  
x
fOSC  
17  
MB3769A  
1
fOSC ~  
CT ~  
0.8 x CT x RT  
1
x
4
(tcycle - tP) [pF] (RT: k, tcycle, tP: ns)  
0.8 x RT  
4.5 - VL  
Make VL high for a large duty cycle for the clamp circuit. The circuits below can be used because the clamp voltage must be  
much lower than 1.5 V.  
Fig. 19 -Clamp Circuit  
VREF  
VREF  
R1 (4.7 k)  
8
MB3761  
5
(1.2 V)  
3
4
(1.2 V)  
820 Ω  
0.1 µF  
R2 (1.2 k)  
0.1 µF  
A
B
In circuit A, R1 and R2 must be determined considering the effects of tP, R, or RT.  
The transistor saturation voltage must be very small (<0.15 V) for any clamp circuit, so a transistor with a very small VCE (sat)  
should be used.  
18  
MB3769A  
SYNCHRONIZED OUTSIDE CLOCK CIRCUIT  
Fig. 20  
1.No Clamp Circuit (Connect with GND)  
1 V  
5 V  
CT = 150 pF + Prove Capacitor (~ 15 pF)  
RT = 11 kΩ  
VP (5 V/div)  
5 pin  
MB74HC04  
CT  
CT (1 V/div)  
VP  
150 pF  
5.1 kΩ  
GND Level (CT)  
OUT (10 V/div)  
500 ns  
10 V  
Fig. 21  
2.Clamp Circuit A (Dividing Resistor)  
5 V  
1 V  
VP (5 V/div)  
CT (1 V/div)  
CT = 220 pF + Prove capacitor (~ 15 pF)  
RT = 11 kΩ  
5 pin  
MB74HC04  
CT  
220 pF  
VP  
5.1 kΩ  
GND Level (CT)  
OUT (10 V/div)  
VREF  
4.7 kΩ  
0.1  
µF  
1.2 kΩ  
10 V  
500 ns  
Fig. 22  
3.Clamp Circuit B (Apply MB3761)  
5 V  
1 V  
CT = 220 pF + Prove capacitor (~ 15 pF)  
RT = 11 kΩ  
VP (5 V/div)  
CT (1 V/div)  
5 pin  
MB74HC04  
CT  
220 pF  
VP  
5.1 kΩ  
VREF  
GND Level (CT)  
OUT (10 V/div)  
820 Ω  
0.1 µF  
8
3
MB3761  
4
10 V  
500 ns  
5
19  
MB3769A  
Fig. 23 -Test Circuit  
15 V (VCC)  
12  
10  
1
14  
15  
16  
2.4 kΩ  
2.4 kΩ  
2
3
4
5
MB3769A  
2.5 V  
9
OUT  
6
7
8 13  
11 kΩ  
20  
MB3769A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Fig. 25 -Standby Current vs.  
Operating Ambient Temperature  
Fig. 24 -Power Supply Voltage vs.  
Power Supply Current  
2
1
VCC = 8 V  
(Low Voltage stop of VCC)  
OVP  
operating  
V13 = 5 V  
10.0  
8.0  
Normal  
operating  
V13 = 0 V  
OVP  
operating  
6.0  
4.0  
2.0  
0.0  
0.0  
4.0  
8.0  
12.0 16.0  
20.0  
0
3
-30  
+ 85  
+ 0  
+ 25  
+ 50  
Power Supply Voltage VCC (V)  
Operating Ambient Temperature Ta (°C)  
Fig. 26 -Reference Voltage  
Fig. 27 -“L” level Output Voltage vs.  
“L” level Output Current  
5.1  
5.0  
VCC = 15 V  
IREF = 1 mA  
VCC = 15 V  
Ta = +25 °C  
±750 µV/C  
2
1
0
0.2  
0.4  
0.6  
0.8  
4.9  
0
Llevel Output Current IOL (mA)  
-30  
0
+ 25  
+ 50  
+ 85  
Operating Ambient Temperature Ta (°C)  
Fig. 28 -“H” level Output Voltage vs.  
“H” level Output Current  
5
4
VCC = 15 V  
Ta = +25 °C  
3
2
1
0
2
4
6
8
10  
“H” level Output Current IOH (mA)  
(Continued)  
21  
MB3769A  
Fig. 30 -“H”, “L” level Output Voltage vs.  
Oscillator Frequency  
4
Fig. 29 -Oscillator Frequency vs. RT, CT  
700  
VH  
500  
400  
VCC = 15 V  
Ta = +25 °C  
VH  
VL  
3
2
CT = 100 pF  
300  
200  
VL  
1
0
CT = 680 pF  
CT = 220 pF  
20 k  
50 k 100 k 200 k  
Frequency fOSC (Hz)  
500 k 1 M  
100  
90  
80  
CT = 1000 pF  
70  
60  
Fig. 32 -Oscillator Frequency vs.  
Operating Ambient Temperature  
VCC = 15 V  
100 kHz  
50  
40  
4
2
30  
20  
CT = 2200 pF  
7 8 9 10 20  
RT (k), CT (pF)  
300 kHz  
500 kHz  
0
30 40 50  
70  
60  
-2  
Target  
fOSC = 100 kHz  
±2 % typ  
-4  
-30  
0
+ 25  
+ 50  
+ 85  
Fig. 31 -Duty Cycle vs. Dead Time Control  
Voltage  
Operating Ambient Temperature Ta (°C)  
100  
VCC = 15 V  
CT = 1000 pF  
Ta = +25 °C  
Fig. 33 -Dead Time Control Voltage vs.  
Current(Standby Mode)  
fOSC = 200 kHz  
fOSC = 500 kHz  
80  
60  
40  
20  
5.0  
VCC = 7 V  
Ta = +25 °C  
4.0  
3.0  
2.0  
1.0  
0
0
1
2
3
4
5
0
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2  
Dead Time Control Current IDTC (mA)  
Dead Time Control Voltage VDTC (V)  
(Continued)  
22  
MB3769A  
Fig. 34 -Gain/Phase vs. Frequency  
(Set Gv = 60 dB)  
Fig. 35 -Duty vs.  
Operating Ambient Temperature  
60  
40  
20  
0
-180  
-240  
-300  
-360  
55  
VCC = 15 V  
Ta = +25 °C  
VCC = 15 V  
CL = 1000 pF  
VDTC = 2.5 V  
Phase  
Gain  
fOSC = 200 kHz  
fOSC = 500 kHz  
50  
10 k  
100 k  
1 M  
10 M  
45  
0
Frequency f (Hz)  
-30  
0
+ 25  
+ 50  
+ 85  
Operating Ambient Temperature Ta (°C)  
Fig. 36 -“L” level Output Voltage vs.  
“L” level Output Current  
VCC = 15 V  
Ta = +25 °C  
1.5  
1.0  
Fig. 38 -tr/tf of Output and td of Comparator  
vs. Operating Ambient Temperature  
160  
VCC = 15 V  
CL = 1000 pF  
140  
0.5  
0
td  
120  
100  
200  
300  
400  
500  
600  
0
100  
Llevel Output Current IOL (mA)  
80  
Fig. 37 -“H” level Output Voltage vs.  
“H” level Output Current  
tr  
14.0  
13.5  
13.0  
60  
40  
VCC = 15 V  
Ta = +25 °C  
tf  
20  
0
0
+ 25  
+ 50  
+ 85  
-30  
12.5  
0
Operating Ambient Temperature Ta (°C)  
0
100  
200 300  
400  
500  
600  
“H” level Output Current IOH (mA)  
(Continued)  
23  
MB3769A  
(Continued)  
Fig. 39 -OVP Latch Standby Power Supply Current  
Fig. 40 -OVP Supply Voltage Reset vs.  
Operating Ambient Temperature  
vs. Operating Ambient Temperature  
5
4
3
2
6
VCC = 8 V  
4 pin open  
13 pin = 3 V  
5
4
3
1
0
2
0
+ 20 + 40 + 60 + 80 + 100  
-40 -20  
0
+ 20 + 40 + 60 + 80 + 100  
-40 -20  
0
Operating Ambient Temperature Ta (°C)  
Operating Ambient Temperature Ta (°C)  
24  
MB3769A  
NOTES ON USE  
Take account of common impedance when designing the earth line on a printed wiring board.  
Take measures against static electricity.  
- For semiconductors, use antistatic or conductive containers.  
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.  
- The work table, tools and measuring instruments must be grounded.  
- The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
• Do not apply a negative voltage  
- Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in  
malfunction.  
ORDERING INFORMATION  
Part number  
MB3769APF-■■  
MB3769APF-■■E1  
Package  
Remarks  
16-pin plastic SOP  
(FPT-16P-M06)  
Conventional version  
16-pin plastic SOP  
(FPT-16P-M06)  
Lead Free version  
RoHS Compliance Information of Lead (Pb) Free version  
The LSI products of Fujitsu Microelectronics with “E1” are compliant with RoHS Directive , and has observed  
the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB) , and polybro-  
minated diphenyl ethers (PBDE) .  
The product that conforms to this standard is added “E1” at the end of the part number.  
MARKING FORMAT (Lead Free version)  
MB3769A  
XXXX XXX  
SOP-16  
E1  
INDEX  
Lead Free version  
25  
MB3769A  
LABELING SAMPLE (Lead free version)  
Lead free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
Lead Free version  
26  
MB3769A  
MB3769APF-■■E1 RECOMMENDEDCONDITIONSOFMOISTURE SENSITIVITY LEVEL  
Item  
Condition  
IR (infrared reflow) , Manual soldering (partial heating method)  
2 times  
Mounting Method  
Mounting times  
Please use it within two years after  
Before opening  
Manufacture.  
From opening to the 2nd  
Less than 8 days  
reflow  
Storage period  
When the storage period after  
opening was exceeded  
Please processes within 8 days  
after baking (125 °C, 24H)  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Temperature Profile for FJ Standard IR Reflow]  
(1) IR (infrared reflow)  
H rank : 260 °C Max  
260 °C  
255 °C  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s  
(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(d) Actual heating  
(d’)  
: Temperature 260 °C Max; 255 °C or more, 10s or less  
: Temperature 230 °C or more, 40s or less  
or  
Temperature 225 °C or more, 60s or less  
or  
Temperature 220 °C or more, 80s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
(2) Manual soldering (partial heating method)  
Conditions : Temperature 400 °C Max  
Times  
: 5 s max/pin  
27  
MB3769A  
PACKAGE DIMENSION  
16-pin plastic SOP  
Lead pitch  
1.27 mm  
5.3 × 10.15 mm  
Gullwing  
Package width  
package length  
×
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
2.25 mm MAX  
0.20 g  
Code  
(Reference)  
P-SOP16-5.3×10.15-1.27  
(FPT-16P-M06)  
16-pin plastic SOP  
(FPT-16P-M06)  
Note 1) *1 : These dimensions include resin protrusion.  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
0.17 +00..0043  
*110.15 +00..2205 .400 +..000180  
.007 +..000021  
16  
9
2 5.30±0.30 7.80±0.40  
(.209±.012) (.307±.016)  
*
INDEX  
Details of "A" part  
2.00 +00..1255  
(Mounting height)  
.079 +..000160  
0.25(.010)  
"A"  
1
8
1.27(.050)  
0~8˚  
0.47±0.08  
(.019±.003)  
M
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10 +00..0150  
.004 +..000024  
0.60±0.15  
(Stand off)  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2002 FUJITSU LIMITED F16015S-c-4-7  
28  
MB3769A  
MEMO  
29  
MB3769A  
MEMO  
30  
MB3769A  
MEMO  
31  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0722, Japan  
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE LTD.  
151 Lorong Chuan, #05-08 New Tech Park,  
Singapore 556741  
Tel: +65-6281-0770 Fax: +65-6281-0220  
http://www.fujitsu.com/sg/services/micro/semiconductor/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm.3102, Bund Center, No.222 Yan An Road(E),  
Shanghai 200002, China  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen,  
Germany  
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road  
Tsimshatsui, Kowloon  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Hong Kong  
Tel: +852-2377-0226 Fax: +852-2376-3269  
http://cn.fujitsu.com/fmc/tw  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://www.fmk.fujitsu.com/  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporat-  
ing the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited Strategic Business Development Dept.  

相关型号:

MB3769APFE1

Switching Regulator/Controller
FUJITSU

MB3769A_06

SWITCHING REGULATOR CONTROLLER
FUJITSU

MB3770P

Analog Circuit,
FUJITSU

MB3770PF

Analog Circuit,
FUJITSU

MB3771

Power Supply Monitor
FUJITSU

MB3771-P

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDIP8, PLASTIC, DIP-8
CYPRESS

MB3771-PF

Power Supply Support Circuit, Adjustable, 1 Channel, BIPolar, PDSO8, PLASTIC, SOP-8
CYPRESS

MB3771-PS

Power Supply Support Circuit, Adjustable, 1 Channel, BIPolar, PSIP8, PLASTIC, SIP-8
CYPRESS

MB3771P

Power Supply Monitor
FUJITSU

MB3771P

Power Supply Support Circuit, Adjustable, 2 Channel, BIPolar, PDIP8, PLASTIC, DIP-8
CYPRESS

MB3771PF

Power Supply Monitor
FUJITSU

MB3771PF-EF

暂无描述
FUJITSU