MB95F128NBPFV [SPANSION]

Microcontroller, 8-Bit, FLASH, 16.25MHz, CMOS, PQFP100, 14 X 14 MM, 1.70 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-100;
MB95F128NBPFV
型号: MB95F128NBPFV
厂家: SPANSION    SPANSION
描述:

Microcontroller, 8-Bit, FLASH, 16.25MHz, CMOS, PQFP100, 14 X 14 MM, 1.70 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-100

时钟 微控制器 外围集成电路
文件: 总69页 (文件大小:1001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12610-1E  
8-bit Proprietary Microcontrollers  
CMOS  
F2MC-8FX MB95120MB series  
MB95F124MB/F124NB/F126MB/F126NB/F128MB/F128NB/  
MB95FV100D-103  
DESCRIPTION  
The MB95120MB series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set,  
the microcontrollers contain a variety of peripheral functions.  
Note : F2MC is the abbreviation of FUJITSU Flexible Microcontroller.  
FEATURE  
F2MC-8FX CPU core  
Instruction set optimized for controllers  
• Multiplication and division instructions  
• 16-bit arithmetic operations  
• Bit test branch instruction  
• Bit manipulation instructions etc.  
Clock  
• Main clock  
• Main PLL clock  
• Sub clock  
• Sub PLL clock  
(Continued)  
Be sure to refer to the “Check Sheet” for the latest cautions on development.  
“Check Sheet” is seen at the following support page  
URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html  
“Check Sheet” lists the minimal requirement items to be checked to prevent problems beforehand in system  
development.  
Copyright©2006 FUJITSU LIMITED All rights reserved  
MB95120MB Series  
(Continued)  
Timer  
• 8/16-bit compound timer × 2 channels  
• 16-bit reload timer  
• 8/16-bit PPG × 2 channels  
• 16-bit PPG × 2 channels  
• Timebase timer  
• Watch prescaler  
LIN-UART  
• Full duplex double buffer  
• Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable  
UART/SIO  
• Full duplex double buffer  
• Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable  
I2C*  
• Built-in wake-up function  
External interrupt  
• Interrupt by edge detection (rising, falling, or both edges can be selected)  
• Can be used to recover from low-power consumption (standby) modes.  
8/10-bit A/D converter  
• 8-bit or 10-bit resolution can be selected  
LCD controller (LCDC)  
• 40 SEG × 4 COM (Max 160 pixels)  
• With blinking function  
Low-power consumption (standby) mode  
• Stop mode  
• Sleep mode  
• Watch mode  
• Timebase timer mode  
I/O port  
• The number of maximum ports : Max 87  
• Port configuration  
General-purpose I/O ports (N-ch open drain) : 2 ports  
General-purpose I/O ports (CMOS)  
: 85 ports  
Programmable input voltage levels of port  
Automotive input level / CMOS input level / hysteresis input level  
Flash memory security function  
Protects the content of Flash memory (Flash memory device only)  
* : Purchase of Fujitsu I2C components conveys a license under the Philips I2C Patent Rights to use, these  
components in an I2C system provided that the system conforms to the I2C Standard Specification as defined  
by Philips.  
2
MB95120MB Series  
PRODUCT LINEUP  
Part number*1  
MB95F124MB/  
MB95F126MB/  
MB95F128MB  
MB95F124NB/  
MB95F126NB/  
MB95F128NB  
Parameter  
Type  
Flash memory product  
ROM capacity*2  
RAM capacity*2  
Reset output  
Clock system  
60 Kbytes (Max)  
2 Kbytes (Max)  
Yes  
Dual clock  
Low voltage  
detection reset  
No  
Yes  
Number of basic instructions  
Instruction bit length  
Instruction length  
: 136  
: 8 bits  
: 1 to 3 bytes  
: 1, 8, and 16 bits  
CPU functions  
Data bit length  
Minimum instruction execution time : 61.5 ns (at machine clock frequency 16.25 MHz)  
Interrupt processing time : 0.6 µs (at machine clock frequency 16.25 MHz)  
General-purpose I/O port (N-ch open drain)  
General-purpose I/O port (CMOS)  
Programmable input voltage levels of port :  
: 2 ports  
: 85 ports  
Ports (Max 87 ports)  
Automotive input level / CMOS input level / hysteresis input level  
Interrupt cycle : 0.5 ms, 2.1 ms, 8.2 ms, 32.8 ms (at main oscillation clock 4 MHz)  
Reset generated cycle  
Timebase timer  
Watchdog timer  
Wild register  
At main oscillation clock 10 MHz  
At sub oscillation clock 32.768 kHz  
: Min 105 ms  
: Min 250 ms  
Capable of replacing 3 bytes of ROM data  
Master/slave sending and receiving  
Bus error function and arbitration function  
Detecting transmitting direction function  
I2C  
Start condition repeated generation and detection functions  
Built-in wake-up function  
Data transfer capable in UART/SIO  
Full duplex double buffer  
Variable data length (5/6/7/8-bit), built-in baud rate generator  
NRZ type transfer format, error detected function  
LSB-first or MSB-first can be selected.  
UART/SIO  
LIN-UART  
Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable  
Dedicated reload timer allowing a wide range of communication speeds to be set.  
Full duplex double buffer.  
Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable  
LIN functions available as the LIN master or LIN slave.  
8/10-bit A/D converter  
(12 channels)  
8-bit or 10-bit resolution can be selected.  
(Continued)  
3
MB95120MB Series  
(Continued)  
Part number*1  
MB95F124MB/  
MB95F126MB/  
MB95F128MB  
MB95F124NB/  
MB95F126NB/  
MB95F128NB  
Parameter  
COM output  
SEG output  
LCD drive power supply (bias) pin  
40 SEG × 4 COM  
Duty LCD mode  
: 4 (Max)  
: 40 (Max)  
: 4 (Max)  
LCD controller  
(LCDC)  
: 160 pixels can be displayed.  
With blinking function  
Built-in division resistance for LCD drive  
Two clock modes and two counter operating modes can be selected.  
Square waveform output  
Count clock : 7 internal clocks and external clock can be selected.  
Counter operating mode : reload mode or one-shot mode can be selected.  
16-bit reload timer  
Each channel of the timer can be used as “8-bit timer × 2 channels” or “16-bit timer × 1  
channel”.  
Built-in timer function, PWC function, PWM function, capture function and square  
waveform output  
8/16-bitcompound  
timer (2 channels)  
Count clock : 7 internal clocks and external clock can be selected.  
PWM mode or one-shot mode can be selected.  
Counter operating clock : Eight selectable clock sources  
Support for external trigger start  
16-bit PPG  
(2 channels)  
Each channel of the PPG can be used as 8-bit PPG × 2 channelsor 16-bit PPG × 1  
channel.  
Counter operating clock : Eight selectable clock sources  
8/16-bit PPG  
(2 channels)  
Count clock : Four selectable clock sources (125 ms, 250 ms, 500 ms, or 1 s)  
Counter value can be set from 0 to 63. (Capable of counting for 1 minute when selecting  
clock source 1 second and setting counter value to 60)  
Watch counter  
Watch prescaler  
4 selectable interval times (125 ms, 250 ms, 500 ms, or 1 s)  
External interrupt Interrupt by edge detection (rising, falling, or both edges can be selected.)  
(12 channels)  
Flash memory  
Standby mode  
Can be used to recover from standby modes.  
Supports automatic programming, Embedded AlgorithmTM  
Write/Erase/Erase-Suspend/Resume commands  
A flag indicating completion of the algorithm  
Number of write/erase cycles (Minimum) : 10000 times  
Data retention time : 20 years  
Erase can be performed on each block  
Block protection with external programming voltage  
Flash Security Feature for protecting the content of the Flash  
*
4
Sleep, stop, watch, and timebase timer  
*1 : MASK ROM products are currently under consideration.  
*2 : For ROM capacitance and RAM capacitance, refer to “1. Memory space” in “CPU CORE”.  
*3 : For details of option, refer to “MASK OPTION”.  
*4 : Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.  
Note : Part number of evaluation device in MB95120MB series is MB95FV100D-103. When using it, the MCU board  
(MB2146-303A) is required.  
4
MB95120MB Series  
OSCILLATION STABILIZATION WAIT TIME  
The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum  
value is shown as follows.  
Oscillation stabilization wait time  
Remarks  
(2142) /FCH  
Approx. 4.10 ms (at main oscillation clock 4 MHz)  
PACKAGES AND CORRESPONDING PRODUCTS  
MB95F124MB/F124NB/  
Part number  
MB95F126MB/F126NB/  
MB95FV100D-103  
MB95F128MB/F128NB  
Package  
FPT-100P-M05  
FPT-100P-M06  
BGA-224P-M08  
: Available  
: Unavailable  
5
MB95120MB Series  
DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS  
Notes on Using Evaluation Products  
The Evaluation product has not only the functions of the MB95120MB series but also those of other products  
to support software development for multiple series and models of the F2MC-8FX family. The I/O addresses for  
peripheral resources not used by the MB95120MB series are therefore access-barred. Read/write access to  
these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting  
in unexpected malfunctions of hardware or software.  
Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are  
used, the address may be read or written unexpectedly).  
Note that the values read from barred addresses are different between the Evaluation product and the Flash  
memory product. Therefore, the data must not be used for software processing.  
The Evaluation product do not support the functions of some bits in single-byte registers. Read/write access to  
these bits does not cause hardware malfunctions. The Evaluation, and Flash memory product are designed to  
behave completely the same way in terms of hardware and software.  
Difference of Memory Spaces  
If the amount of memory on the Evaluation product is different from that of the Flash memory product, carefully  
check the difference in the amount of memory from the model to be actually used when developing software.  
For details of memory space, refer to “CPU CORE”.  
Current Consumption  
For details of current consumption, refer to “ELECTRICAL CHARACTERISTICS”.  
Package  
For details of information on each package, refer to PACKAGES AND CORRESPONDING PRODUCTS”  
and “PACKAGE DIMENSIONS”.  
Operating voltage  
The operating voltage are different between the Evaluation and Flash memory products.  
For details of operating voltage, refer to ELECTRICAL CHARACTERISTICS”.  
6
MB95120MB Series  
PIN ASSIGNMENT  
(TOP VIEW)  
100999897969594939291908988878685848382818079787776  
VSS  
C
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PC5/SEG13  
PC6/SEG14  
PC7/SEG15  
PD0/SEG16  
PD1/SEG17  
PD2/SEG18  
PD3/SEG19  
PD4/SEG20  
PD5/SEG21  
PD6/SEG22  
PD7/SEG23  
PE0/SEG24  
PE1/SEG25  
PE2/SEG26  
PE3/SEG27  
PE4/SEG28/INT10  
PE5/SEG29/INT11  
PE6/SEG30/INT12  
PE7/SEG31/INT13  
P60/SEG32/PPG10  
P61/SEG33/PPG11  
MOD  
P00/INT00  
P01/INT01  
P02/INT02  
P03/INT03  
P04/INT04  
P05/INT05  
P06/INT06  
P07/INT07  
P10/UI0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P11/UO0  
P12/UCK0  
P13/TRG0/ADTG  
P14/PPG0  
P20/PPG00  
P21/PPG01  
P22/TO00  
P23/TO01  
P24/EC0  
P50/SCL0  
P51/SDA0  
P52/PPG1  
AVR  
X0  
X1  
VSS  
AVCC  
26272829303132333435363738394041424344454647484950  
(FPT-100P-M05)  
(Continued)  
7
MB95120MB Series  
(Continued)  
(TOP VIEW)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
P91/V2  
P90/V3  
PC4/SEG12  
VCC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VCC  
VSS  
C
PC5/SEG13  
PC6/SEG14  
PC7/SEG15  
PD0/SEG16  
PD1/SEG17  
PD2/SEG18  
PD3/SEG19  
PD4/SEG20  
PD5/SEG21  
PD6/SEG22  
PD7/SEG23  
PE0/SEG24  
PE1/SEG25  
PE2/SEG26  
PE3/SEG27  
PE4/SEG28/INT10  
PE5/SEG29/INT11  
PE6/SEG30/INT12  
PE7/SEG31/INT13  
P60/SEG32/PPG10  
P61/SEG33/PPG11  
MOD  
P00/INT00  
P01/INT01  
P02/INT02  
P03/INT03  
P04/INT04  
P05/INT05  
P06/INT06  
P07/INT07  
P10/UI0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P11/UO0  
P12/UCK0  
P13/TRG0/ADTG  
P14/PPG0  
P20/PPG00  
P21/PPG01  
P22/TO00  
P23/TO01  
P24/EC0  
P50/SCL0  
P51/SDA0  
P52/PPG1  
AVR  
X0  
X1  
VSS  
X1A  
X0A  
RST  
AVCC  
AVSS  
P30/AN00  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
(FPT-100P-M06)  
8
MB95120MB Series  
PIN DESCRIPTION  
Pin no.  
I/O  
Pin name  
circuit  
Function  
LQFP *1  
QFP *2  
type*3  
1
2
4
5
VSS  
Power supply pin (GND)  
C
Capacitor connection pin  
3
6
P00/INT00  
P01/INT01  
P02/INT02  
P03/INT03  
P04/INT04  
P05/INT05  
P06/INT06  
P07/INT07  
4
7
5
8
General-purpose I/O port  
6
9
C
The pins are shared with external interrupt input. Large  
current port.  
7
10  
11  
12  
13  
8
9
10  
General-purpose I/O port  
The pin is shared with UART/SIO ch.0 data input.  
11  
12  
13  
14  
15  
16  
P10/UI0  
P11/UO0  
P12/UCK0  
G
H
General-purpose I/O port  
The pin is shared with UART/SIO ch.0 data output.  
General-purpose I/O port  
The pin is shared with UART/SIO ch.0 clock I/O.  
General-purpose I/O port  
The pin is shared with 16-bit PPG ch.0 trigger input (TRG0)  
and A/D trigger input (ADTG).  
P13/TRG0/  
ADTG  
14  
17  
General-purpose I/O port  
The pin is shared with 16-bit PPG ch.0 output.  
15  
18  
P14/PPG0  
16  
17  
18  
19  
20  
21  
P20/PPG00  
P21/PPG01  
P22/TO00  
General-purpose I/O port  
The pins are shared with 8/16-bit PPG ch.0 output.  
General-purpose I/O port  
The pins are shared with 8/16-bit compound timer ch.0 out-  
put.  
H
19  
22  
P23/TO01  
General-purpose I/O port  
20  
23  
P24/EC0  
The pin is shared with 8/16-bit compound timer ch.0 clock  
input.  
General-purpose I/O port  
21  
22  
23  
24  
25  
26  
P50/SCL0  
P51/SDA0  
P52/PPG1  
The pin is shared with I2C ch.0 clock I/O.  
I
General-purpose I/O port  
The pin is shared with I2C ch.0 data I/O.  
General-purpose I/O port  
The pin is shared with 16-bit PPG ch.1 output.  
H
24  
25  
27  
28  
AVR  
AVCC  
A/D converter reference input pin  
A/D converter power supply pin  
(Continued)  
9
MB95120MB Series  
Pin no.  
I/O  
Pin name  
circuit  
Function  
LQFP *1  
QFP *2  
type*3  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
AVSS  
A/D converter power supply pin (GND)  
P30/AN00  
P31/AN01  
P32/AN02  
P33/AN03  
P34/AN04  
P35/AN05  
P36/AN06  
P37/AN07  
P40/AN08  
P41/AN09  
P42/AN10  
P43/AN11  
General-purpose I/O port  
The pins are shared with A/D converter analog input.  
J
General-purpose I/O port  
The pins are shared with A/D converter analog input.  
J
General-purpose I/O port  
The pin is shared with 16 - bit PPG ch.1 trigger input.  
39  
40  
41  
42  
43  
44  
P53/TRG1  
P70/TO0  
P71/TI0  
H
H
General-purpose I/O port  
The pin is shared with 16 - bit reload timer ch.0 output.  
General-purpose I/O port  
The pin is shared with 16 - bit reload timer ch.0 input.  
General-purpose I/O port  
The pin is shared with LIN-UART data input (SIN) and LCDC  
SEG output (SEG39) .  
P67/SEG39/  
SIN  
42  
43  
44  
45  
45  
46  
47  
48  
N
General-purpose I/O port  
The pin is shared with LIN-UART data output (SOT) and  
LCDC SEG output (SEG38) .  
P66/SEG38/  
SOT  
General-purpose I/O port  
The pins are shared with LIN-UART clock I/O (SCK) and  
LCDC SEG output (SEG37) .  
P65/SEG37/  
SCK  
M
General-purpose I/O port  
The pins are shared with 8/16-bit compound timer ch.1 clock  
input (EC1) and LCDC SEG output (SEG36) .  
P64/SEG36/  
EC1  
P63/SEG35/  
TO11  
46  
47  
49  
50  
General-purpose I/O port  
The pins are shared with 8/16-bit compound timer ch.1 out-  
put (TO10, TO11) and LCDC SEG output (SEG34, SEG35) .  
P62/SEG34/  
TO10  
48  
49  
50  
51  
51  
52  
53  
54  
RST  
X0A  
X1A  
VSS  
B'  
A
Reset pin  
Sub clock oscillation pin (32 kHz)  
Power supply pin (GND)  
(Continued)  
10  
MB95120MB Series  
Pin no.  
I/O  
circuit  
Pin name  
Function  
LQFP *1  
QFP *2  
type*3  
52  
53  
54  
55  
56  
57  
X1  
X0  
A
B
Main clock oscillation pin  
MOD  
An operating mode designation pin  
P61/SEG33/  
PPG11  
55  
56  
57  
58  
59  
60  
58  
59  
60  
61  
62  
63  
General-purpose I/O port  
The pins are shared with 8/16-bit PPG ch.1 output (PPG10,  
PPG11) and LCDC SEG output (SEG32, SEG33) .  
M
P60/SEG32/  
PPG10  
PE7/SEG31/  
INIT13  
PE6/SEG30/  
INIT12  
General-purpose I/O port  
The pins are shared with external interrupt input (INIT10 to  
INIT13) and LCDC SEG output (SEG28 to SEG31) .  
Q
PE5/SEG29/  
INIT11  
PE4/SEG28/  
INIT10  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
PE3/SEG27  
PE2/SEG26  
PE1/SEG25  
PE0/SEG24  
PD7/SEG23  
PD6/SEG22  
PD5/SEG21  
PD4/SEG20  
PD3/SEG19  
PD2/SEG18  
PD1/SEG17  
PD0/SEG16  
PC7/SEG15  
PC6/SEG14  
PC5/SEG13  
VCC  
General-purpose I/O port  
The pins are shared with LCDC SEG output.  
M
General-purpose I/O port  
The pins are shared with LCDC SEG output.  
M
General-purpose I/O port  
The pins are shared with LCDC SEG output.  
M
Power supply pin  
(Continued)  
11  
MB95120MB Series  
(Continued)  
Pin no.  
I/O  
Pin name  
circuit  
Function  
LQFP *1  
QFP *2  
type*3  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
PC4/SEG12  
PC3/SEG11  
PC2/SEG10  
PC1/SEG09  
PC0/SEG08  
PB7/SEG07  
PB6/SEG06  
PB5/SEG05  
PB4/SEG04  
PB3/SEG03  
PB2/SEG02  
PB1/SEG01  
PB0/SEG00  
PA3/COM3  
PA2/COM2  
PA1/COM1  
PA0/COM0  
P95  
General-purpose I/O port  
The pins are shared with LCDC SEG output.  
M
General-purpose I/O port  
The pins are shared with LCDC SEG output.  
M
General-purpose I/O port  
The pins are shared with LCDC COM output.  
M
M
General-purpose I/O port  
P94  
P93/V0  
General-purpose I/O port  
The pins are shared with power supply pins for LCDC  
drive.  
P92/V1  
R
P91/V2  
2
P90/V3  
3
VCC  
Power supply pin  
*1 : FPT-100P-M05  
*2 : FPT-100P-M06  
*3 : For the I/O circuit type, refer to “I/O CIRCUIT TYPE”.  
12  
MB95120MB Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
• Oscillation circuit  
• High-speed side  
Feedback resistance : approx. 1 M  
• Low-speed side  
X1 (X1A)  
Clock input  
N-ch  
A
X0 (X0A)  
Feedback resistance : approx. 10 MΩ  
Standby control  
• Only for input  
• Hysteresis input  
B
Mode input  
Reset input  
• Reset output  
• Hysteresis input  
B’  
Reset output  
N-ch  
• CMOS output  
• Hysteresis input  
• Automotive input  
P-ch  
Digital output  
Digital output  
N-ch  
C
Hysteresis input  
Automotive input  
Standby control  
External interrupt  
enable  
• CMOS output  
• CMOS input  
R
P-ch  
Pull-up control  
• Hysteresis input  
• With pull-up control  
• Automotive input  
P-ch  
Digital output  
Digital output  
G
N-ch  
CMOS input  
Hysteresis input  
Automotive input  
Standby control  
(Continued)  
13  
MB95120MB Series  
Type  
Circuit  
Remarks  
• CMOS output  
• Hysteresis input  
• With pull-up control  
• Automotive input  
R
P-ch  
Pull-up control  
Digital output  
P-ch  
H
Digital output  
N-ch  
Hysteresis input  
Automotive input  
Standby control  
• N-ch open drain output  
• CMOS input  
• Hysteresis input  
• Automotive input  
Digital output  
CMOS input  
N-ch  
I
Hysteresis input  
Automotive input  
Standby control  
• CMOS output  
• Hysteresis input  
• Analog input  
R
P-ch  
Pull-up control  
• With pull-up control  
• Automotive input  
P-ch  
Digital output  
Digital output  
N-ch  
J
Analog input  
Hysteresis input  
Automotive input  
A/D control  
Standby control  
• CMOS output  
• LCD output  
• Hysteresis input  
• Automotive input  
P-ch  
Digital output  
Digital output  
N-ch  
M
LCD output  
Hysteresis input  
Automotive input  
LCD control  
Standby control  
(Continued)  
14  
MB95120MB Series  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS output  
• LCD output  
• CMOS input  
• Hysteresis input  
• Automotive input  
P-ch  
Digital output  
Digital output  
N-ch  
N
LCD output  
CMOS input  
Hysteresis input  
Automotive input  
LCD control  
Standby control  
• CMOS output  
• LCD output  
• Hysteresis input  
• Automotive input  
P-ch  
N-ch  
Digital output  
Digital output  
Q
LCD output  
Hysteresis input  
Automotive input  
LCD control  
Standby control  
External  
interrupt control  
• CMOS output  
• LCD power supply  
• Hysteresis input  
• Automotive input  
P-ch  
N-ch  
Digital output  
Digital output  
LCD built-in division  
resistance I/O  
R
Hysteresis input  
Automotive input  
LCD control  
Standby control  
15  
MB95120MB Series  
HANDLING DEVICES  
Preventing Latch-up  
Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.  
Latch-up may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between VCC  
pin and VSS pin.  
When latch-up occurs, power supply current increases rapidly and might thermally damage elements.  
Also, take care to prevent the analog power supply voltage (AVCC , AVR) and analog input voltage from exceeding  
the digital power supply voltage (VCC) when the analog system power supply is turned on or off.  
Stable Supply Voltage  
Supply voltage should be stabilized.  
A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range  
of the VCC power-supply voltage.  
For stabilization, in principle, keep the variation in VCC ripple (p-p value) in a commercial frequency range  
(50/60 Hz) not to exceed 10% of the standard VCC value and suppress the voltage variation so that the transient  
variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.  
Precautions for Use of External Clock  
Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up  
from sub clock mode or stop mode.  
PIN CONNECTION  
Treatment of Unused Pin  
Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent  
damage.  
Unused input pins should always be pulled up or down through resistance of at least 2 k. Any unused input/  
output pins may be set to output mode and left open, or set to input mode and treated the same as unused input  
pins. If there is unused output pin, make it open.  
Treatment of Power Supply Pins on A/D Converter  
Connect to be AVCC = VCC and AVSS = AVR = VSS even if the A/D converter is not in use.  
Noise riding on the AVCC pin may cause accuracy degradation. So, connect approx. 0.1 µF ceramic capacitor  
as a bypass capacitor between AVCC and AVSS pins in the vicinity of this device.  
Power Supply Pins  
In products with multiple VCC or VSS pins, the pins of the same potential are internally connected in the device  
to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply  
and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals  
caused by the rise in the ground level, and to conform to the total output current rating.  
Moreover, connect the current supply source with the VCC and VSS pins of this device at the low impedance.  
It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 µF between VCC and VSS near  
this device.  
16  
MB95120MB Series  
Mode Pin (MOD)  
Connect the mode pin directly to VCC or VSS pins.  
To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to  
minimize the distance from the mode pins to VCC or VSS pins and to provide a low-impedance connection.  
Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of VCC pin  
must have a capacitance value higher than CS. For connection of smoothing capacitor CS, refer to the diagram  
below.  
• C pin connection diagram  
C
CS  
Analog Power Supply  
Always set the same potential to AVCC and VCC pins. When VCC > AVCC, the current may flow through the AN00  
to AN11 pins.  
17  
MB95120MB Series  
PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL  
PROGRAMMER  
Supported Parallel Programmers and Adapters  
The following table lists supported parallel programmers and adapters.  
Package  
Applicable adapter model  
Parallel programmers  
AF9708 (Ver 02.35G or more)  
AF9709/B (Ver 02.35G or more)  
AF9723+AF9834 (Ver 02.08E or more)  
FPT-100P-M05  
TEF110-95F128HSPFV  
FPT-100P-M06  
TEF110-95F128HSPF  
Note : For information on applicable adapter models and parallel programmers, contact the following:  
Flash Support Group, Inc. TEL: +81-53-428-8380  
Sector Configuration  
The individual sectors of Flash memory correspond to addresses used for CPU access and programming by  
the parallel programmer as follows:  
MB95F128MB/F128NB (60 Kbytes)  
Flash memory  
CPU address  
Programmer address*  
71000H  
1000H  
SA1 (4 Kbytes)  
1FFFH  
2000H  
71FFFH  
72000H  
SA2 (4 Kbytes)  
SA3 (4 Kbytes)  
SA4 (16 Kbytes)  
SA5 (16 Kbytes)  
SA6 (4 Kbytes)  
SA7 (4 Kbytes)  
SA8 (4 Kbytes)  
SA9 (4 Kbytes)  
2FFFH  
3000H  
72FFFH  
73000H  
3FFFH  
4000H  
73FFFH  
74000H  
7FFFH  
8000H  
77FFFH  
78000H  
BFFFH  
C000H  
7BFFFH  
7C000H  
CFFFH  
D000H  
7CFFFH  
7D000H  
DFFFH  
E000H  
7DFFFH  
7E000H  
EFFFH  
F000H  
7EFFFH  
7F000H  
FFFFH  
7FFFFH  
*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer  
programs data into Flash memory.  
These programmer addresses are used for the parallel programmer to program or erase data in Flash  
memory.  
18  
MB95120MB Series  
MB95F126MB/F126NB (32 Kbytes)  
Flash memory  
CPU address  
Programmer address*  
78000H  
8000H  
SA5 (16 Kbytes)  
BFFFH  
C000H  
7BFFFH  
7C000H  
SA6 (4 Kbytes)  
SA7 (4 Kbytes)  
SA8 (4 Kbytes)  
SA9 (4 Kbytes)  
CFFFH  
D000H  
7CFFFH  
7D000H  
DFFFH  
E000H  
7DFFFH  
7E000H  
EFFFH  
F000H  
7EFFFH  
7F000H  
FFFFH  
7FFFFH  
*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer  
programs data into Flash memory.  
These programmer addresses are used for the parallel programmer to program or erase data in Flash  
memory.  
MB95F124MB/F124NB (16 Kbytes)  
Flash memory  
CPU address  
Programmer address*  
7C000H  
C000H  
SA6 (4 Kbytes)  
CFFFH  
D000H  
7CFFFH  
7D000H  
SA7 (4 Kbytes)  
SA8 (4 Kbytes)  
SA9 (4 Kbytes)  
DFFFH  
E000H  
7DFFFH  
7E000H  
EFFFH  
F000H  
7EFFFH  
7F000H  
FFFFH  
7FFFFH  
*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer  
programs data into Flash memory.  
These programmer addresses are used for the parallel programmer to program or erase data in Flash  
memory.  
Programming Method  
1) Set the type code of the parallel programmer to 17222.  
2) Load program data to programmer addresses 71000H to 7FFFFH.  
3) Programmed by parallel programmer  
19  
MB95120MB Series  
BLOCK DIAGRAM  
F2 MC-8FX CPU  
RST  
ROM  
RAM  
Reset control  
X0,X1  
Clock control  
X0A/X1A  
Interrupt control  
Wild register  
Watch prescaler  
Watch counter  
P60/SEG32/PPG10  
P61/SEG33/PPG11  
P00/INT00 to P07/INT07  
External interrupt ch.0 to ch.7  
8/16-bit PPG ch.1  
P10/UI0  
P11/UO0  
P12/UCK0  
P62/SEG34/TO10  
P63/SEG35/TO11  
P64/SEG36/EC1  
UART/SIO  
8/16-bit compound  
timer ch.1  
P13/TRG0/ADTG  
P14/PPG0  
16-bit PPG ch.0  
P65/SEG37/SCK  
P66/SEG38/SOT  
P67/SEG39/SIN  
LIN-UART  
P20/PPG00  
P21/PPG01  
8/16-bit PPG ch.0  
P70/TO0  
P71/TI0  
16-bit reload timer  
P22/TO00  
P23/TO01  
P24/EC0  
8/16-bit compound  
timer ch.0  
P90/V3 to P93/V0  
P94, P95  
P30/AN00 to P37/AN07  
PA0/COM0 to PA3/COM3  
PB0/SEG00 to PB7/SEG07  
PC0/SEG08 to PC7/SEG15  
PD0/SEG16 to PD7/SEG23  
PE0/SEG24 to PE3/SEG27  
PE4/SEG28/INT10  
P40/AN08 to P43/AN11  
8/10-bit A/D  
converter  
AVCC  
AVSS  
AVR  
LCDC  
P50/SCL0  
P51/SDA0  
I 2C  
PE5/SEG29/INT11  
PE6/SEG30/INT12  
P52/PPG1  
P53/TRG1  
External interrupt ch.8 to ch.11  
PE7/SEG31/INT13  
16-bit PPG ch.1  
Port  
Port  
Other pins  
MOD, VCC, C  
20  
MB95120MB Series  
CPU CORE  
1. Memory space  
Memory space of the MB95120MB series is 64 Kbytes and consists of I/O area, data area, and program area.  
The memory space includes special - purpose areas such as the general - purpose registers and vector table.  
Memory map of the MB95120MB series is shown below.  
• Memory Map  
MB95F124MB/F124NB  
MB95F126MB/F126NB  
MB95F128MB/F128NB  
MB95FV100D-103  
I/O  
0000H  
0000H  
I/O  
0080H  
0100H  
0200H  
0080H  
0100H  
0200H  
RAM 2 Kbytes  
Register  
RAM 3.75 Kbytes  
Register  
Address #1  
0F80H  
Access  
prohibited  
0F80H  
1000H  
Extended I/O  
Extended I/O  
Address #2  
Flash memory  
Flash memory  
60 Kbytes  
FFFFH  
FFFFH  
Flash memory  
RAM  
Address #1  
Address #2  
MB95F124MB  
MB95F124NB  
MB95F126MB  
MB95F126NB  
MB95F128MB  
MB95F128NB  
16 Kbytes  
512 bytes  
1 Kbyte  
0280H  
0480H  
0880H  
C000H  
32 Kbytes  
60 Kbytes  
8000H  
1000H  
2 Kbytes  
21  
MB95120MB Series  
2. Register  
The MB95120MB series has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The dedicated registers are as follows:  
Program counter (PC)  
: A 16-bit register to indicate locations where instructions are stored.  
Accumulator (A)  
: A 16-bit register for temporary storage of arithmetic operations. In the case of  
an 8-bit data processing instruction, the lower 1 byte is used.  
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator.  
In the case of an 8-bit data processing instruction, the lower 1 byte is used.  
Index register (IX)  
Extra pointer (EP)  
Stack pointer (SP)  
Program status (PS)  
: A 16-bit register for index modification  
: A 16-bit pointer to point to a memory address.  
: A 16-bit register to indicate a stack area.  
: A 16-bit register for storing a register bank pointer, a direct bank pointer, and  
a condition code register  
Initial Value  
16-bit  
FFFDH  
0000H  
0000H  
0000H  
0000H  
0000H  
0030H  
: Program counter  
: Accumulator  
PC  
A
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer  
(DP) and the lower 8 bits for use as a condition code register (CCR) . (Refer to the diagram below.)  
Structure of the program status  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
R4  
R3  
R2  
R1  
R0 DP2 DP1 DP0  
H
I
IL1  
IL0  
N
Z
PS  
C
V
RP  
DP  
CCR  
22  
MB95120MB Series  
The RP indicates the address of the register bank currently being used. The relationship between the content  
of RP and the real address conforms to the conversion rule illustrated below:  
Rule for Conversion of Actual Addresses in the General-purpose Register Area  
RP upper  
OP code lower  
"0" "0" "0" "0" "0" "0" "0" "1"  
R4 R3 R2 R1 R0 b2  
b1  
b0  
Generated address  
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct  
addresses to 0080H to 00FFH.  
Direct bank pointer (DP2 to DP0)  
Specified address area  
Mapping area  
0000H to 007FH (without mapping)  
0080H to 00FFH (without mapping)  
0100H to 017FH  
XXXB (no effect to mapping)  
0000H to 007FH  
000B (initial value)  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
0180H to 01FFH  
0200H to 027FH  
0080H to 00FFH  
0280H to 02FFH  
0300H to 037FH  
0380H to 03FFH  
0400H to 047FH  
The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that  
control CPU operations at interrupt.  
H flag  
I flag  
Set to “1” when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to “0” otherwise. This flag is for decimal adjustment instructions.  
:
:
:
Interrupt is enabled when this flag is set to “1”. Interrupt is disabled when this flag is set to “0”.  
The flag is cleared to “0” when reset.  
IL1, IL0  
Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level  
is higher than the value indicated by these bits.  
IL1  
0
IL0  
0
Interrupt level  
Priority  
0
1
2
3
High  
0
1
1
0
Low = no interruption  
1
1
N flag  
Set to “1” if the MSB is set to “1” as the result of an arithmetic operation. Cleared to “0” when the  
bit is set to “0”.  
:
:
:
Z flag  
V flag  
Set to “1” when an arithmetic operation results in “0”. Cleared to “0” otherwise.  
Set to “1” if the complement on 2 overflows as a result of an arithmetic operation. Cleared to “0”  
otherwise.  
C flag  
Set to “1” when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared  
to “0” otherwise. Set to the shift-out value in the case of a shift instruction.  
:
23  
MB95120MB Series  
The following general-purpose registers are provided:  
General-purpose registers: 8-bit data storage registers  
The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8-  
registers. Up to a total of 32 banks can be used on the MB95120MB series. The bank currently in use is indicated  
by the register bank pointer (RP).8-register. Up to a total of 32 banks can be used on the MB95120MB series.  
The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates  
the general-purpose register 0 (R0) to general-purpose register 7 (R7).  
• Register Bank Configuration  
8-bit  
1F8H  
This address = 0100H + 8 × (RP)  
Address 100H  
R0  
R1  
R0  
R1  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R2  
R3  
R4  
R5  
R6  
R7  
R2  
R3  
R4  
R5  
R6  
R7  
1FFH  
Bank 31  
107H  
32 banks  
32 banks (RAM area)  
The number of banks is  
limited by the usable RAM  
capacitance.  
Bank 0  
Memory area  
24  
MB95120MB Series  
I/O MAP  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0000H  
0001H  
0002H  
0003H  
0004H  
0005H  
0006H  
0007H  
0008H  
0009H  
000AH  
000BH  
000CH  
000DH  
000EH  
000FH  
0010H  
0011H  
0012H  
0013H  
0014H  
0015H  
0016H  
0017H  
0018H  
0019H  
PDR0  
DDR0  
PDR1  
DDR1  
Port 0 data register  
Port 0 direction register  
Port 1 data register  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
Port 1 direction register  
(Disabled)  
WATR  
PLLC  
SYCC  
STBC  
RSRR  
TBTC  
WPCR  
WDTC  
Oscillation stabilization wait time setting register  
PLL control register  
R/W  
R/W  
R/W  
R/W  
R
11111111B  
00000000B  
1010X011B  
00000000B  
XXXXXXXXB  
00000000B  
00000000B  
00000000B  
System clock control register  
Standby control register  
Reset source register  
Timebase timer control register  
Watch prescaler control register  
Watchdog timer control register  
(Disabled)  
R/W  
R/W  
R/W  
PDR2  
DDR2  
PDR3  
DDR3  
PDR4  
DDR4  
PDR5  
DDR5  
PDR6  
DDR6  
PDR7  
DDR7  
Port 2 data register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
Port 2 direction register  
Port 3 data register  
Port 3 direction register  
Port 4 data register  
Port 4 direction register  
Port 5 data register  
Port 5 direction register  
Port 6 data register  
Port 6 direction register  
Port 7 data register  
Port 7 direction register  
001AH,  
001BH  
(Disabled)  
001CH  
001DH  
001EH  
001FH  
0020H  
0021H  
0022H  
PDR9  
DDR9  
PDRA  
DDRA  
PDRB  
DDRB  
PDRC  
Port 9 data register  
Port 9 direction register  
Port A data register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
(Continued)  
Port A direction register  
Port B data register  
Port B direction register  
Port C data register  
25  
MB95120MB Series  
Register  
Address  
Register name  
R/W  
Initial value  
abbreviation  
0023H  
0024H  
0025H  
0026H  
0027H  
DDRC  
PDRD  
DDRD  
PDRE  
DDRE  
Port C direction register  
Port D data register  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
Port D direction register  
Port E data register  
Port E direction register  
0028H  
to  
002CH  
(Disabled)  
002DH  
002EH  
002FH  
0030H  
0031H  
0032H  
PUL1  
PUL2  
PUL3  
PUL4  
PUL5  
PUL7  
Port 1 pull-up register  
Port 2 pull-up register  
Port 3 pull-up register  
Port 4 pull-up register  
Port 5 pull-up register  
Port 7 pull-up register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
0033H  
to  
0035H  
(Disabled)  
0036H  
0037H  
0038H  
0039H  
003AH  
003BH  
003CH  
003DH  
003EH  
003FH  
T01CR1  
T00CR1  
T11CR1  
T10CR1  
PC01  
8/16-bit compound timer 01 control status register 1 ch.0  
8/16-bit compound timer 00 control status register 1 ch.0  
8/16-bit compound timer 11 control status register 1 ch.1  
8/16-bit compound timer 10 control status register 1 ch.1  
8/16-bit PPG1 control register ch.0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
PC00  
8/16-bit PPG0 control register ch.0  
PC11  
8/16-bit PPG1 control register ch.1  
PC10  
8/16-bit PPG0 control register ch.1  
TMCSRH0  
TMCSRL0  
16-bit reload timer control status register (upper byte) ch.0 R/W  
16-bit reload timer control status register (lower byte) ch.0  
R/W  
0040H,  
0041H  
(Disabled)  
0042H  
0043H  
0044H  
0045H  
PCNTH0  
PCNTL0  
PCNTH1  
PCNTL1  
16-bit PPG status control register (upper byte) ch.0  
16-bit PPG status control register (lower byte) ch.0  
16-bit PPG status control register (upper byte) ch.1  
16-bit PPG status control register (lower byte) ch.1  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
0046H,  
0047H  
(Disabled)  
0048H  
0049H  
EIC00  
EIC10  
External interrupt circuit control register ch.0/ch.1  
External interrupt circuit control register ch.2/ch.3  
R/W  
R/W  
00000000B  
00000000B  
(Continued)  
26  
MB95120MB Series  
Register  
abbreviation  
Address  
Register name  
R/W Initial value  
004AH  
004BH  
004CH  
004DH  
EIC20  
EIC30  
EIC01  
EIC11  
External interrupt circuit control register ch.4/ch.5  
External interrupt circuit control register ch.6/ch.7  
External interrupt circuit control register ch.8/ch.9  
External interrupt circuit control register ch.10/ch.11  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
004EH,  
004FH  
(Disabled)  
0050H  
0051H  
0052H  
0053H  
0054H  
0055H  
0056H  
0057H  
0058H  
0059H  
005AH  
SCR  
SMR  
LIN-UART serial control register  
LIN-UART serial mode register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
00000000B  
00000000B  
00001000B  
00000000B  
00000100B  
000000XXB  
00000000B  
00100000B  
00000001B  
00000000B  
00000000B  
SSR  
LIN-UART serial status register  
RDR/TDR  
ESCR  
ECCR  
SMC10  
SMC20  
SSR0  
LIN-UART reception/transmission data register  
LIN-UART extended status control register  
LIN-UART extended communication control register  
UART/SIO serial mode control register 1 ch.0  
UART/SIO serial mode control register 2 ch.0  
UART/SIO serial status register ch.0  
TDR0  
UART/SIO serial output data register ch.0  
UART/SIO serial input data register ch.0  
RDR0  
005BH  
to  
005FH  
(Disabled)  
0060H  
0061H  
0062H  
0063H  
0064H  
0065H  
IBCR00  
IBCR10  
IBSR0  
IDDR0  
IAAR0  
ICCR0  
I2C bus control register 0 ch.0  
I2C bus control register 1 ch.0  
I2C bus status register ch.0  
I2C data register ch.0  
R/W  
R/W  
R
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
R/W  
R/W  
R/W  
I2C address register ch.0  
I2C clock control register ch.0  
0066H  
to  
006BH  
(Disabled)  
006CH  
006DH  
006EH  
006FH  
0070H  
0071H  
0072H  
ADC1  
ADC2  
ADDH  
ADDL  
WCSR  
8/10-bit A/D converter control register 1  
8/10-bit A/D converter control register 2  
8/10-bit A/D converter data register (upper byte)  
8/10-bit A/D converter data register (lower byte)  
Watch counter status register  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
(Disabled)  
FSR  
Flash memory status register  
R/W  
000X0000B  
(Continued)  
27  
MB95120MB Series  
Register  
Address  
Register name  
R/W Initial value  
abbreviation  
0073H  
0074H  
0075H  
0076H  
0077H  
SWRE0  
SWRE1  
Flash memory sector writing control register 0  
Flash memory sector writing control register 1  
(Disabled)  
R/W  
R/W  
00000000B  
00000000B  
WREN  
WROR  
Wild register address compare enable register  
Wild register data test setting register  
R/W  
R/W  
00000000B  
00000000B  
Register bank pointer (RP) ,  
Mirror of direct bank pointer (DP)  
0078H  
0079H  
007AH  
007BH  
007CH  
007DH  
007EH  
007FH  
0F80H  
0F81H  
0F82H  
0F83H  
0F84H  
0F85H  
0F86H  
0F87H  
0F88H  
ILR0  
ILR1  
Interrupt level setting register 0  
Interrupt level setting register 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
ILR2  
Interrupt level setting register 2  
ILR3  
Interrupt level setting register 3  
ILR4  
Interrupt level setting register 4  
ILR5  
Interrupt level setting register 5  
(Disabled)  
WRARH0  
WRARL0  
WRDR0  
WRARH1  
WRARL1  
WRDR1  
WRARH2  
WRARL2  
WRDR2  
Wild register address setting register (upper byte) ch.0  
Wild register address setting register (lower byte) ch.0  
Wild register data setting register ch.0  
Wild register address setting register (upper byte) ch.1  
Wild register address setting register (lower byte) ch.1  
Wild register data setting register ch.1  
Wild register address setting register (upper byte) ch.2  
Wild register address setting register (lower byte) ch.2  
Wild register data setting register ch.2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
0F89H  
to  
0F91H  
(Disabled)  
0F92H  
0F93H  
0F94H  
0F95H  
T01CR0  
T00CR0  
T01DR  
T00DR  
8/16-bit compound timer 01 control status register 0 ch.0  
8/16-bit compound timer 00 control status register 0 ch.0  
8/16-bit compound timer 01 data register ch.0  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
8/16-bit compound timer 00 data register ch.0  
8/16-bit compound timer 00/01 timer mode control register  
ch.0  
0F96H  
TMCR0  
R/W  
00000000B  
0F97H  
0F98H  
0F99H  
0F9AH  
T11CR0  
T10CR0  
T11DR  
T10DR  
8/16-bit compound timer 11 control status register 0 ch.1  
8/16-bit compound timer 10 control status register 0 ch.1  
8/16-bit compound timer 11 data register ch.1  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
8/16-bit compound timer 10 data register ch.1  
00000000B  
(Continued)  
28  
MB95120MB Series  
Register  
abbreviation  
Address  
Register name  
R/W Initial value  
8/16-bit compound timer 10/11 timer mode control register  
ch.1  
0F9BH  
TMCR1  
R/W  
00000000B  
0F9CH  
0F9DH  
0F9EH  
0F9FH  
0FA0H  
0FA1H  
0FA2H  
0FA3H  
0FA4H  
0FA5H  
PPS01  
PPS00  
PDS01  
PDS00  
PPS11  
PPS10  
PDS11  
PDS10  
PPGS  
8/16-bit PPG1 cycle setting buffer register ch.0  
8/16-bit PPG0 cycle setting buffer register ch.0  
8/16-bit PPG1 duty setting buffer register ch.0  
8/16-bit PPG0 duty setting buffer register ch.0  
8/16-bit PPG1 cycle setting buffer register ch.1  
8/16-bit PPG0 cycle setting buffer register ch.1  
8/16-bit PPG1 duty setting buffer register ch.1  
8/16-bit PPG0 duty setting buffer register ch.1  
8/16-bit PPG start register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
00000000B  
00000000B  
REVC  
8/16-bit PPG output inversion register  
TMRH0/  
TMRLRH0  
0FA6H  
0FA7H  
16-bit reload timer timer/reload register (upper byte) ch.0  
16-bit reload timer timer/reload register (lower byte) ch.0  
(Disabled)  
R/W  
R/W  
00000000B  
00000000B  
TMRL0/  
TMRLRL0  
0FA8H,  
0FA9H  
0FAAH  
0FABH  
0FACH  
0FADH  
0FAEH  
0FAFH  
0FB0H  
0FB1H  
0FB2H  
0FB3H  
0FB4H  
0FB5H  
PDCRH0  
PDCRL0  
PCSRH0  
PCSRL0  
PDUTH0  
PDUTL0  
PDCRH1  
PDCRL1  
PCSRH1  
PCSRL1  
PDUTH1  
PDUTL1  
16-bit PPG down counter register (upper byte) ch.0  
16-bit PPG down counter register (lower byte) ch.0  
16-bit PPG cycle setting buffer register (upper byte) ch.0  
16-bit PPG cycle setting buffer register (lower byte) ch.0  
16-bit PPG duty setting buffer register (upper byte) ch.0  
16-bit PPG duty setting buffer register (lower byte) ch.0  
16-bit PPG down counter register (upper byte) ch.1  
16-bit PPG down counter register (lower byte) ch.1  
16-bit PPG cycle setting buffer register (upper byte) ch.1  
16-bit PPG cycle setting buffer register (lower byte) ch.1  
16-bit PPG duty setting buffer register (upper byte) ch.1  
16-bit PPG duty setting buffer register (lower byte) ch.1  
R
00000000B  
00000000B  
11111111B  
11111111B  
11111111B  
11111111B  
00000000B  
00000000B  
11111111B  
11111111B  
11111111B  
11111111B  
R
R/W  
R/W  
R/W  
R/W  
R
R
R/W  
R/W  
R/W  
R/W  
0FB6H  
to  
0FBBH  
(Disabled)  
0FBCH  
0FBDH  
BGR1  
BGR0  
LIN-UART baud rate generator register 1  
LIN-UART baud rate generator register 0  
R/W  
R/W  
00000000B  
00000000B  
UART/SIO dedicated baud rate generator  
prescaler select register ch.0  
0FBEH  
PSSR0  
R/W  
00000000B  
(Continued)  
29  
MB95120MB Series  
(Continued)  
Register  
Address  
Register name  
R/W Initial value  
abbreviation  
UART/SIO dedicated baud rate generator  
baud rate setting register ch.0  
0FBFH  
BRSR0  
R/W  
00000000B  
0FC0H,  
0FC1H  
(Disabled)  
0FC2H  
0FC3H  
0FC4H  
0FC5H  
0FC6H  
0FC7H  
0FC8H  
0FC9H  
0FCAH  
0FCBH  
0FCCH  
AIDRH  
AIDRL  
A/D input disable register (upper byte)  
A/D input disable register (lower byte)  
LCDC control register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00010000B  
00110000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
LCDCC  
LCDCE1  
LCDCE2  
LCDCE3  
LCDCE4  
LCDCE5  
LCDCE6  
LCDCB1  
LCDCB2  
LCDC enable register 1  
LCDC enable register 2  
LCDC enable register 3  
LCDC enable register 4  
LCDC enable register 5  
LCDC enable register 6  
LCDC blinking setting register 1  
LCDC blinking setting register 2  
0FCDH  
to  
LCDRAM  
LCDC display RAM  
R/W  
00000000B  
0FE0H  
0FE1H,  
0FE2H  
WCDR  
(Disabled)  
Watch counter data register  
(Disabled)  
R/W  
00111111B  
0FE3H  
0FE4H,  
0FE5H  
0FE6H  
0FE7H  
ILSR3  
ILSR2  
Input level select register 3  
Input level select register 2  
R/W  
R/W  
00000000B  
00000000B  
0FE8H  
to  
0FEDH  
(Disabled)  
0FEEH  
0FEFH  
ILSR  
Input level select register  
R/W  
R/W  
00000000B  
01000000B  
WICR  
Interrupt pin select circuit control register  
0FF0H  
to  
0FFFH  
(Disabled)  
30  
MB95120MB Series  
R/W access symbols  
R/W : Readable/Writable  
R
: Read only  
: Write only  
W
Initial value symbols  
0
: The initial value of this bit is “0”.  
1
: The initial value of this bit is “1”.  
X
: The initial value of this bit is undefined.  
Note : Do not write to the “ (Disabled) ”. Reading the “ (Disabled) ” returns an undefined value.  
31  
MB95120MB Series  
INTERRUPT SOURCE TABLE  
Vector table address  
Same level  
priority order  
(atsimultaneous  
occurrence)  
Interrupt  
request  
number  
Bit name of  
interrupt level  
setting register  
Interrupt source  
Upper  
FFFAH  
FFF8H  
FFF6H  
FFF4H  
Lower  
FFFBH  
FFF9H  
FFF7H  
FFF5H  
External interrupt ch.0  
High  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
L00 [1 : 0]  
L01 [1 : 0]  
L02 [1 : 0]  
L03 [1 : 0]  
External interrupt ch.4  
External interrupt ch.1  
External interrupt ch.5  
External interrupt ch.2  
External interrupt ch.6  
External interrupt ch.3  
External interrupt ch.7  
UART/SIO ch.0  
IRQ4  
IRQ5  
FFF2H  
FFF0H  
FFEEH  
FFECH  
FFEAH  
FFE8H  
FFE6H  
FFE4H  
FFE2H  
FFE0H  
FFDEH  
FFDCH  
FFDAH  
FFD8H  
FFD6H  
FFD4H  
FFD2H  
FFF3H  
FFF1H  
FFEFH  
FFEDH  
FFEBH  
FFE9H  
FFE7H  
FFE5H  
FFE3H  
FFE1H  
FFDFH  
FFDDH  
FFDBH  
FFD9H  
FFD7H  
FFD5H  
FFD3H  
L04 [1 : 0]  
L05 [1 : 0]  
L06 [1 : 0]  
L07 [1 : 0]  
L08 [1 : 0]  
L09 [1 : 0]  
L10 [1 : 0]  
L11 [1 : 0]  
L12 [1 : 0]  
L13 [1 : 0]  
L14 [1 : 0]  
L15 [1 : 0]  
L16 [1 : 0]  
L17 [1 : 0]  
L18 [1 : 0]  
L19 [1 : 0]  
L20 [1 : 0]  
8/16-bit compound timer ch.0 (Lower)  
8/16-bit compound timer ch.0 (Upper)  
LIN-UART (reception)  
LIN-UART (transmission)  
8/16-bit PPG ch.1 (Lower)  
8/16-bit PPG ch.1 (Upper)  
16-bit reload timer ch.0  
8/16-bit PPG ch.0 (Upper)  
8/16-bit PPG ch.0 (Lower)  
8/16-bit compound timer ch.1 (Upper)  
16-bit PPG ch.0  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
IRQ16  
IRQ17  
IRQ18  
IRQ19  
IRQ20  
I2C ch.0  
16-bit PPG ch.1  
8/10-bit A/D converter  
Timebase timer  
Watch timer/counter  
External interrupt ch.8  
External interrupt ch.9  
External interrupt ch.10  
External interrupt ch.11  
8/16-bit compound timer ch.1 (Lower)  
Flash memory  
IRQ21  
FFD0H  
FFD1H  
L21 [1 : 0]  
IRQ22  
IRQ23  
FFCEH  
FFCCH  
FFCFH  
FFCDH  
L22 [1 : 0]  
L23 [1 : 0]  
Low  
32  
MB95120MB Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Vcc  
AVcc  
Vss 0.3  
Vss 0.3  
VSS 0.3  
Vss + 6.0  
Vss + 6.0  
VSS + 6.0  
*2  
*2  
*3  
Power supply voltage*1  
V
V
AVR  
Powersupplyvoltagefor  
LCD  
V0 to V3  
Input voltage*1  
VI  
VO  
Vss 0.3  
Vss 0.3  
2.0  
Vss + 6.0  
Vss + 6.0  
+ 2.0  
*4  
*4  
V
V
Output voltage*1  
Maximum clamp current  
ICLAMP  
mA Applicable to pins*5  
Total maximum clamp  
current  
Σ|ICLAMP|  
20  
mA Applicable to pins*5  
IOL1  
IOL2  
15  
15  
Other than P00 to P07  
“L” level maximum  
output current  
mA  
P00 to P07  
Other than P00 to P07  
Average output current =  
operating current × operating ratio  
IOLAV1  
4
(1 pin)  
“L” level average  
current  
mA  
P00 to P07  
Average output current =  
operating current × operating ratio  
(1 pin)  
IOLAV2  
12  
“L” level total maximum  
output current  
ΣIOL  
100  
50  
mA  
Total average output current =  
mA operating current × operating ratio  
(Total of pins)  
“L” level total average  
output current  
ΣIOLAV  
IOH1  
IOH2  
15  
15  
Other than P00 to P07  
“H” level maximum  
output current  
mA  
P00 to P07  
Other than P00 to P07  
Average output current =  
operating current × operating ratio  
IOHAV1  
4  
8  
(1 pin)  
“H” level average  
current  
mA  
P00 to P07  
Average output current =  
operating current × operating ratio  
(1 pin)  
IOHAV2  
“H” level total maximum  
output current  
ΣIOH  
100  
50  
mA  
Total average output current =  
mA operating current × operating ratio  
(Total of pins)  
“H” level total average  
output current  
ΣIOHAV  
(Continued)  
33  
MB95120MB Series  
(Continued)  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
320  
Power consumption  
Operating temperature  
Storage temperature  
Pd  
TA  
mW  
°C  
40  
55  
+ 85  
+ 150  
Tstg  
°C  
*1 : The parameter is based on AVSS = VSS = 0.0 V.  
*2 : Apply equal potential to AVcc and Vcc. AVR should not exceed AVcc + 0.3 V.  
*3 : V0 to V3 should not exceed VCC + 0.3 V.  
*4 : VI and Vo should not exceed VCC + 0.3 V. VI must not exceed the rating voltage. However, if the maximum current  
to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating.  
*5 : Applicable to pins : P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53  
Use within recommended operating conditions.  
Use at DC voltage (current).  
• +B signal is an input signal that exceeds VCC voltage. The + B signal should always be applied a limiting  
resistance placed between the + B signal and the microcontroller.  
The value of the limiting resistance should be set so that when the + B signal is applied the input current  
to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.  
Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input  
potential may pass through the protective diode and increase the potential at the VCC pin, and this affects  
other devices.  
Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power  
supply is provided from the pins, so that incomplete operation may result.  
Note that if the + B input is applied during power-on, the power supply is provided from the pins and the  
resulting power supply voltage may not be sufficient to operate the power-on reset.  
Care must be taken not to leave the + B input pin open.  
Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept  
+B signal input.  
Sample recommended circuits :  
Input/Output Equivalent circuits  
Protective diode  
Vcc  
Limiting  
P-ch  
resistance  
+ B input (0 V to 16 V)  
N-ch  
R
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
34  
MB95120MB Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Con-  
dition  
Parameter Symbol  
Pin name  
Unit  
Remarks  
Min  
Max  
In normal  
operating  
2.5*1,*2  
5.5*1  
Other than  
MB95FV100D  
-103  
Hold  
condition in  
STOP mode  
2.3  
5.5  
5.5  
5.5  
Power supply  
voltage  
VCC,  
AVCC  
V
In normal  
operating  
2.7  
MB95FV100D  
-103  
Hold  
condition in  
STOP mode  
2.3  
The range of liquid crystal  
power supply: without up-  
conversion (The optimal  
value depends on liquid  
crystal display elements  
used.)  
Power supply  
voltage for  
LCD  
V0 to  
V3  
VSS  
VCC  
V
P10 (selectable at UI) ,  
P67 (selectable at SIN)  
VIH1  
VIH2  
VIHA  
0.7 VCC VCC + 0.3  
0.7 VCC VSS + 5.5  
0.8 VCC VCC + 0.3  
V
V
V
Hysteresis input  
(When selecting CMOS  
input level)  
P50, P51  
(selectable at I2C)  
Port inputs if Automotive  
input levels are selected  
P00 to P07,  
P10 to P14,  
P20 to P24,  
P30 to P37,  
P40 to P43,  
P52, P53,  
“H” level input  
voltage  
P60 to P67,  
P70, P71,  
VIHS1  
0.8 VCC VCC + 0.3  
V
Hysteresis input  
P90 to P95,  
PA0 to PA3,  
PB0 to PB7,  
PC0 to PC7,  
PD0 to PD7,  
PE0 to PE7  
VIHS2  
VIHM  
P50, P51  
0.8 VCC VSS + 5.5  
0.8 VCC VCC + 0.3  
V
V
RST, MOD  
Hysteresis input  
P10 (selectable at UI) ,  
P50, P51  
(selectable at I2C)  
P67 (selectable at SIN)  
Hysteresis input  
(When selecting CMOS  
input level)  
“L” level input  
voltage  
VIL  
VSS 0.3 0.3 VCC  
V
(Continued)  
35  
MB95120MB Series  
(Continued)  
Value  
Min Max  
Condi-  
tion  
Parameter  
Symbol Pin name  
Unit  
Remarks  
Port inputs if Automotive input  
levels are selected  
VILA  
VSS 0.3 0.5 VCC  
V
P00 to P07,  
P10 to P14,  
P20 to P24,  
P30 to P37,  
P40 to P43,  
P50 to P53,  
P60 to P67,  
P70, P71,  
“L” level input voltage  
VILS  
VSS 0.3 0.2 VCC  
V
Hysteresis input  
P90 to P95,  
PA0 to PA3,  
PB0 to PB7,  
PC0 to PC7,  
PD0 to PD7,  
PE0 to PE7  
VILM  
AVR  
CS  
RST, MOD  
VSS 0.3 0.2 VCC  
V
V
Hysteresis input  
A/D converter  
reference input voltage  
4.0  
0.1  
AVCC  
1.0  
Smoothing capacitor  
µF *3  
Other than MB95FV100D-  
103  
°C MB95FV100D-103  
40  
+ 5  
+ 85  
+ 35  
°C  
Operating temperature  
TA  
*1 : The values vary with the operating frequency, machine clock or analog guarantee range.  
*2 : The value is 2.9 V when the low voltage detection reset is used.  
*3 : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of VCC  
pin must have a capacitor value higher than CS. For connection of smoothing capacitor CS, refer to the diagram  
below.  
• C pin connection diagram  
C
CS  
36  
MB95120MB Series  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
37  
MB95120MB Series  
3. DC Characteristics  
Sym-  
(VCC = AVCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Pin name  
Conditions  
Unit  
Remarks  
bol  
Min  
Typ  
Max  
Output pin other  
than P00 to P07  
VOH1  
IOH = − 4.0 mA Vcc 0.5  
IOH = − 8.0 mA Vcc 0.5  
V
V
“H” level output  
voltage  
VOH2 P00 to P07  
Output pin other  
VOL1 thanP00toP07, IOL = 4.0 mA  
0.4  
0.4  
V
V
“L” level output  
voltage  
RST  
VOL2 P00 to P07  
IOL = 12 mA  
Open-drain  
output  
application  
voltage  
VD1 P50, P51  
VSS 0.3  
VSS + 5.5  
V
Input leakage  
current (Hi-Z  
output leakage  
current)  
Port other than  
P50, P51  
When the pull-up  
prohibition setting  
ILI  
0.0 V < VI < VCC  
5  
+ 5  
µA  
µA  
Open-drain  
output leakage ILIOD P72, P73,  
current  
P50, P51,  
0.0 V < VI <  
VSS + 5.5 V  
5
P80 to P83  
P10 to P14,  
P20 to P24,  
P30 to P37,  
P40 to P43,  
P52, P53,  
When the pull-up  
permission setting  
Pull-up resistor RPULL  
VI = 0.0 V  
25  
50  
5
100  
15  
kΩ  
P70, P71  
Other than  
AVCC, AVSS,  
AVR, VCC, VSS  
Input  
CIN  
f = 1 MHz  
pF  
capacitance  
At other than Flash  
mA memory writing and  
erasing  
FCH = 20 MHz  
FMP = 10 MHz  
Main clock  
mode  
9.5  
12.5  
35.0  
20.0  
42.5  
At Flash memory  
mA  
30.0  
15.2  
35.7  
VCC  
(divided by 2)  
writing and erasing  
Power supply  
current*  
ICC (External clock  
operation)  
At other than Flash  
mA memory writing and  
erasing  
FCH = 32 MHz  
FMP = 16 MHz  
Main clock  
mode  
At Flash memory  
mA  
(divided by 2)  
writing and erasing  
(Continued)  
38  
MB95120MB Series  
(VCC = AVCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
FCH = 20 MHz  
FMP = 10 MHz  
Main Sleep mode  
(divided by 2)  
4.5  
7.5  
mA  
ICCS  
FCH = 32 MHz  
FMP = 16 MHz  
Main Sleep mode  
(divided by 2)  
7.2  
45  
12.0  
100  
81  
mA  
µA  
FCL = 32 kHz  
FMPL = 16 kHz  
sub clock mode  
(divided by 2)  
ICCL  
ICCLS  
ICCT  
FCL = 32 kHz  
FMPL = 16 kHz  
Sub sleep mode  
(divided by 2)  
10  
µA  
FCL = 32 kHz  
Watch mode  
Main stop mode  
TA = + 25 °C  
4.6  
9.3  
14.9  
27.0  
12.5  
20.0  
µA  
VCC  
FCH = 4 MHz  
Power supply  
current*  
(External clock  
operation)  
FMP = 10 MHz  
Main PLL mode  
(multiplied by 2.5)  
mA  
mA  
ICCMPLL  
FCH = 6.4 MHz  
FMP = 16 MHz  
Main PLL mode  
(multiplied by 2.5)  
FCL = 32 kHz  
FMPL = 128 kHz  
Sub PLL mode  
(multiplied by 4) ,  
TA = + 25 °C  
ICCSPLL  
160  
400  
µA  
FCH = 10 MHz  
Timebase timer  
mode  
0.40  
1.10  
mA  
TA = + 25 °C  
ICTS  
FCH = 16 MHz  
Timebase timer  
mode  
0.64  
3.5  
1.76  
20  
mA  
TA = + 25 °C  
Sub stop mode  
TA = + 25 °C  
ICCH  
µA  
(Continued)  
39  
MB95120MB Series  
(Continued)  
(VCC = AVCC = 5.0 V, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit Remarks  
Min  
Typ  
Max  
FCH = 16 MHz  
At operating of A/D  
conversion  
IA  
2.4  
4.7  
mA  
Power supply  
current*  
AVCC  
FCH = 16 MHz  
At stopping of A/D  
conversion  
IAH  
1
5
µA  
TA = + 25 °C  
LCD internal  
division  
resistance  
RLCD  
Between V3 and VSS  
300  
5
kΩ  
kΩ  
kΩ  
µA  
COM0 to  
COM3 output  
impedance  
RVCOM  
COM0 to COM3 V1 to V3 = 3.6 V  
SEG00 to  
SEG39 output RVSEG SEG00 to SEG39  
impedance  
7
V0 to V3,  
LCD leak  
ILCDL COM0 to COM3  
current  
1  
+ 1  
SEG00 to SEG39  
* : The power-supply current is determined by the external clock. When both low voltage detection option is  
selected, the power-supply current will be a value of adding current consumption of the low voltage detection  
circuit (ILVD) to the specified value.  
Refer to “4. AC characteristics (1) Clock Timing” for FCH and FCL.  
Refer to “4. AC characteristics (2) Source Clock/Machine Clock” for FMP and FMPL.  
40  
MB95120MB Series  
4. AC Characteristics  
(1) Clock Timing  
(VCC = 2.5 V to 5.5 V, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Condi-  
tions  
Parameter  
Pin name  
Unit  
Remarks  
Min  
Typ  
Max  
When using main  
oscillation circuit  
1.00  
16.25 MHz  
1.00  
3.00  
3.00  
3.00  
32.50 MHz When using external clock  
16.25 MHz Main PLL multiplied by 1  
8.13 MHz Main PLL multiplied by 2  
6.50 MHz Main PLL multiplied by 2.5  
When using sub  
FCH  
X0, X1  
Clock frequency  
32.768  
32.768  
kHz  
kHz  
ns  
oscillation circuit  
FCL  
X0A, X1A  
X0, X1  
When using sub PLL  
VCC = 2.3 V to 3.6 V  
When using main oscilla-  
tion circuit  
61.5  
30.8  
1000  
1000  
tHCYL  
Clock cycle time  
ns When using external clock  
When using sub oscilla-  
tion circuit  
tLCYL X0A, X1A  
30.5  
µs  
tWH1  
tWL1  
X0  
61.5  
15.2  
5
ns  
When using external clock  
Duty ratio is about 30% to  
70%.  
Input clock pulse width  
tWH2  
X0A  
tWL2  
µs  
Input clock rise time and  
fall time  
tCR  
X0, X0A  
tCF  
ns When using external clock  
41  
MB95120MB Series  
tHCYL  
tWH1  
tWL1  
tCR  
tCF  
0.8 VCC 0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Figure of Main Clock Input Port External Connection  
When using a crystal or  
ceramic oscillator  
When using external clock  
Microcontroller  
Microcontroller  
X0  
X1  
X0  
X1  
Open  
FCH  
C2  
FCH  
C1  
tLCYL  
tWH2  
tWL2  
tCR  
tCF  
0.8 VCC 0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Figure of Sub clock Input Port External Connection  
When using a crystal or  
ceramic oscillator  
When using external clock  
Microcontroller  
Microcontroller  
X0A  
X1A  
X0A  
X1A  
Open  
FCL  
C2  
FCL  
C1  
42  
MB95120MB Series  
(2) Source Clock/Machine Clock  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol name  
Pin  
Parameter  
Unit  
Remarks  
Min  
Typ  
Max  
When using main clock  
Min : FCH = 16.25 MHz,  
PLL multiplied by 1  
61.5  
2000  
ns  
Source clock cycle time*1  
(Clock before setting  
division)  
Max : FCH = 1 MHz, divided by 2  
tSCLK  
When using sub clock  
Min : FCL = 32 kHz,  
PLL multiplied by 4  
7.6  
61.0  
µs  
Max : FCL = 32 kHz, divided by 2  
FSP  
0.50  
16.25 MHz When using main clock  
131.072 kHz When using sub clock  
When using main clock  
Source clock frequency  
FSPL  
16.384  
61.5  
7.6  
32000  
ns Min : FSP = 16.25 MHz, no division  
Machine clock cycle time*2  
(Minimum instruction  
execution time)  
Max : FSP = 0.5 MHz, divided by 16  
tMCLK  
When using sub clock  
µs Min : FSPL = 131 kHz, no division  
Max : FSPL = 16 kHz, divided by 16  
976.5  
FMP  
0.031  
1.024  
16.250 MHz When using main clock  
131.072 kHz When using sub clock  
Machine clock frequency  
FMPL  
*1 : Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0) . This  
source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0) , and it becomes  
the machine clock. Further, the source clock can be selected as follows.  
Main clock divided by 2  
PLL multiplication of main clock (select from 1, 2, 2.5 multiplication)  
Sub clock divided by 2  
PLL multiplication of sub clock (select from 2, 3, 4 multiplication)  
*2 : Operation clock of the microcontroller. Machine clock can be selected as follows.  
Source clock (no division)  
Source clock divided by 4  
Source clock divided by 8  
Source clock divided by 16  
Outline of clock generation block  
FCH  
Divided by 2  
(main oscillation)  
Main PLL  
× 1  
× 2  
× 2.5  
Division  
circuit  
× 1  
SCLK  
(source clock)  
MCLK  
(machine clock)  
× 1/4  
× 1/8  
FCL  
Divided by 2  
× 1/16  
(sub oscillation)  
Clock mode select bit  
(SYCC: SCS1, SCS0)  
Sub PLL  
× 2  
× 3  
× 4  
43  
MB95120MB Series  
Operating voltage - Operating frequency (TA = − 40 °C to + 85 °C)  
• MB95F124MB/F124NB/MB95F126MB/F126NB/MB95F128MB/F128NB  
Main clock mode and main PLL mode  
operation guarantee range  
Sub PLL, sub clock mode and watch  
mode operation guarantee range  
5.5  
5.5  
3.5  
2.45  
2.45  
0.5 MHz 3 MHz  
10 MHz  
16.25 MHz  
16.384 kHz  
32 kHz  
131.072 kHz  
PLL operation guarantee range  
Main clock operation guarantee range  
Source clock frequency (FSP)  
PLL operation guarantee range  
Source clock frequency (FSPL)  
Operating voltage - Operating frequency (TA = + 5 °C to + 35 °C)  
• MB95FV100D-103  
Sub PLL, sub clock mode and  
watch mode operation guarantee range  
Main clock mode and main PLL mode  
operation guarantee range  
5.5  
5.5  
3.5  
2.7  
2.7  
0.5MHz 3 MHz  
10 MHz  
16.25 MHz  
16.384 kHz  
32 kHz  
131.072 kHz  
PLL operation guarantee range  
PLL operation guarantee range  
Main clock operation guarantee range  
Source clock frequency (FSP)  
Source clock frequency (FSPL)  
44  
MB95120MB Series  
Main PLL operation frequency  
10 MHz  
9 MHz  
× 2.5  
8 MHz  
7.5 MHz  
× 2  
7 MHz  
× 1  
6 MHz  
5 MHz  
4 MHz  
3 MHz  
3 MHz 4 MHz 5 MHz 6 MHz 7 MHz 8 MHz 9 MHz 10 MHz  
Main clock frequency (FMP)  
45  
MB95120MB Series  
(3) External Reset  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
2 tMCLK*1  
ns At normal operating  
RST “L” level pulse  
width  
Oscillation time of oscillator*2  
At stop mode, sub clock mode,  
sub sleep mode, and watch mode  
tRSTL  
+ 100  
µs  
100  
At timebase timer mode  
*1 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
*2 : Oscillation start time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the  
oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between  
hundreds of µs and several ms. In the external clock, the oscillation time is 0 ms.  
At normal operating  
tRSTL  
RST  
0.2 VCC  
0.2 VCC  
At stop mode, sub clock mode, sub sleep mode, watch mode, and power-on  
tRSTL  
RST  
0.2 VCC  
0.2 VCC  
90% of  
amplitude  
X0  
Internal  
operating  
clock  
100 µs  
Oscillation stabilization wait time  
Oscillation time  
of oscillator  
Execute instruction  
Internal reset  
46  
MB95120MB Series  
(4) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
Power supply rising time  
Power supply cutoff time  
tR  
50  
ms  
ms  
Waiting time until  
power-on  
tOFF  
1
t
R
tOFF  
2.5 V  
0.2 V  
0.2 V  
0.2 V  
VCC  
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power  
supply voltages during operation, set the slope of rising within 30 mV/ms as shown below.  
VCC  
Limiting the slope of rising within  
30 mV/ms is recommended.  
2.3 V  
Hold Condition in stop mode  
VSS  
47  
MB95120MB Series  
(5) Peripheral Input Timing  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Unit Remarks  
Min  
Max  
Peripheral input “H” pulse  
width  
INT00 to INT07,  
INT10 to INT13,  
EC0, EC1, TI0, TRG0/ADTG,  
TRG1  
tILIH  
2 tMCLK*  
ns  
ns  
Peripheral input “L” pulse  
width  
tIHIL  
2 tMCLK*  
* : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
tILIH  
tIHIL  
INT00 to INT07,  
0.8 VCC 0.8 VCC  
INT10 to INT13, EC0, EC1,  
TI0, TRG0/ADTG, TRG1  
0.2 VCC  
0.2 VCC  
48  
MB95120MB Series  
(6) UART/SIO, Serial I/O Timing  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Remarks  
Parameter  
Symbol Pin name  
Conditions  
Unit  
Min  
Max  
Serial clock cycle time  
UCK ↓ → UO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
UCK0  
UCK0, UO0  
UCK0, UI0  
UCK0, UI0  
UCK0  
4 tMCLK*  
190  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock  
operationoutputpin:  
CL = 80 pF + 1TTL.  
+190  
Valid UI UCK ↑  
2 tMCLK*  
2 tMCLK*  
4 tMCLK*  
4 tMCLK*  
0
UCK ↑ → valid UI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
UCK ↓ → UO time  
UCK0  
External clock  
UCK0, UO0 operationoutputpin:  
190  
CL = 80 pF + 1TTL.  
Valid UI UCK ↑  
UCK0, UI0  
2 tMCLK*  
2 tMCLK*  
UCK ↑ → valid UI hold time  
UCK0, UI0  
* : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
• Internal shift clock mode  
tSCYC  
2.4 V  
UCK0  
0.8 V  
0.8 V  
tSLOV  
UO0  
UI0  
2.4 V  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
• External shift clock mode  
UCK0  
tSLSH  
tSHSL  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
tSLOV  
UO0  
UI0  
2.4 V  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
49  
MB95120MB Series  
(7) LIN-UART Timing  
Sampling at the rising edge of sampling clock*1 and prohibited serial clock delay*2  
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK ↓ → SOT delay time  
Valid SIN SCK ↑  
tSCYC  
SCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
tSLOVI SCK, SOT  
+95  
tIVSHI  
tSHIXI  
tSLSH  
tSHSL  
SCK, SIN  
SCK, SIN  
SCK  
tMCLK*3 + 190  
SCK ↑ → valid SIN hold time  
Serial clock “L” pulse width  
Serial clock “H” pulse width  
SCK ↓ → SOT delay time  
Valid SIN SCK ↑  
0
3 tMCLK*3 tR  
tMCLK*3 + 95  
SCK  
tSLOVE SCK, SOT  
2 tMCLK*3 + 95  
External clock  
tIVSHE SCK, SIN operationoutputpin:  
190  
10  
10  
CL = 80 pF + 1 TTL.  
SCK ↑ → valid SIN hold time  
SCK fall time  
tSHIXE SCK, SIN  
tMCLK*3 + 95  
tF  
SCK  
SCK  
SCK rise time  
tR  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the  
serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
50  
MB95120MB Series  
• Internal shift clock mode  
SCK  
t
SCYC  
2.4 V  
0.8 V  
0.8 V  
t
SLOVI  
2.4 V  
0.8 V  
SOT  
SIN  
t
IVSHI  
tSHIXI  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
• External shift clock mode  
SCK  
t
SLSH  
t
SHSL  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
SLOVE  
0.2 VCC  
t
R
t
F
t
2.4 V  
0.8 V  
SOT  
SIN  
t
SHIXE  
t
IVSHE  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
51  
MB95120MB Series  
Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2  
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Valid SIN SCK ↓  
tSCYC  
tSHOVI  
tIVSLI  
tSLIXI  
tSHSL  
tSLSH  
SCK  
SCK, SOT  
SCK, SIN  
SCK, SIN  
SCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
+95  
tMCLK*3 + 190  
SCK ↓ → valid SIN hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↑ → SOT delay time  
Valid SIN SCK ↓  
0
3 tMCLK*3 tR  
tMCLK*3 + 95  
SCK  
tSHOVE SCK, SOT  
2 tMCLK*3 + 95  
External clock  
tIVSLE  
tSLIXE  
tF  
SCK, SIN operation output pin :  
190  
10  
10  
CL = 80 pF + 1 TTL.  
SCK ↓ → valid SIN hold time  
SCK fall time  
SCK, SIN  
tMCLK*3 + 95  
SCK  
SCK  
SCK rise time  
tR  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the  
serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
52  
MB95120MB Series  
• Internal shift clock mode  
SCK  
t
SCYC  
2.4 V  
2.4 V  
0.8 V  
t
SHOVI  
2.4 V  
0.8 V  
SOT  
SIN  
t
IVSLI  
t
SLIXI  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
• External shift clock mode  
SCK  
t
SHSL  
t
SLSH  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
0.2 VCC  
t
F
t
R
t
SHOVE  
2.4 V  
0.8 V  
SOT  
SIN  
t
SLIXE  
t
IVSLE  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
53  
MB95120MB Series  
Sampling at the rising edge of sampling clock*1 and enabled serial clock delay*2  
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Valid SIN SCK ↓  
tSCYC  
tSHOVI  
tIVSLI  
SCK  
ns  
ns  
ns  
ns  
ns  
SCK, SOT  
+95  
Internal clock  
SCK, SIN operation output pin : tMCLK*3 + 190  
CL = 80 pF + 1 TTL.  
SCK ↓ → valid SIN hold time  
SOT SCK delay time  
tSLIXI  
SCK, SIN  
SCK, SOT  
0
4 tMCLK*3  
tSOVLI  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the  
serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
t
SCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
t
SHOVI  
t
SOVLI  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
SOT  
SIN  
tSLIXI  
tIVSLI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
54  
MB95120MB Series  
Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2  
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK ↓ → SOT delay time  
Valid SIN SCK ↑  
tSCYC  
tSLOVI  
tIVSHI  
tSHIXI  
tSOVHI  
SCK  
ns  
ns  
ns  
ns  
ns  
SCK, SOT  
+95  
Internal clock  
SCK, SIN operating output pin : tMCLK*3 + 190  
CL = 80 pF + 1 TTL.  
SCK ↑ → valid SIN hold time  
SOT SCK delay time  
SCK, SIN  
SCK, SOT  
0
4 tMCLK*3  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the  
serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
t
SCYC  
2.4 V  
2.4 V  
SCK  
0.8 V  
t
SOVHI  
t
SLOVI  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
SOT  
SIN  
t
IVSHI  
tSHIXI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
55  
MB95120MB Series  
(8) I2C Timing  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
Pin  
name  
Standard-  
mode  
Re-  
marks  
Parameter  
bol  
Conditions  
Fast-mode Unit  
Min  
Max  
Min  
Max  
SCL clock frequency  
fSCL  
SCL0  
0
100  
0
400 kHz  
(Repeat) Start condition hold time  
SDA ↓ → SCL ↓  
SCL0  
SDA0  
tHD;STA  
4.0  
0.6  
µs  
SCL clock “L” width  
SCL clock “H” width  
tLOW  
tHIGH  
SCL0  
SCL0  
4.7  
4.0  
1.3  
0.6  
µs  
µs  
(Repeat) Start condition setup time  
SCL ↑ → SDA ↓  
SCL0  
SDA0  
tSU;STA  
4.7  
0
3.45*2  
0.6  
0
µs  
R = 1.7 k,  
C = 50 pF*1  
SCL0  
SDA0  
Data hold time SCL ↓ → SDA ↓ ↑ tHD;DAT  
Data setup time SDA ↓ ↑ → SCL tSU;DAT  
0.9*3 µs  
SCL0  
SDA0  
0.25  
4.0  
4.7  
0.1  
0.6  
1.3  
µs  
µs  
µs  
Stop condition setup time SCL ↑ →  
SDA ↑  
SCL0  
SDA0  
tSU;STO  
Bus free time between stop  
tBUF  
SCL0  
SDA0  
condition and start condition  
*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.  
*2 : The maximum tHD;DAT have only to be met if the device dose not stretch the “L” width (tLOW) of the SCL signal.  
*3 : A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement  
tSU;DAT 250 ns must then be met.  
tWAKEUP  
SDA0  
SCL0  
tHD;STA  
t
SU;DAT  
t
HIGH  
t
BUF  
t
LOW  
tSU;STO  
t
HD;STA  
tHD;DAT  
t
SU;STA  
56  
MB95120MB Series  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value*2  
Sym- Pin  
bol name  
Condi-  
tions  
Parameter  
Unit  
Remarks  
Min  
Max  
SCL clock  
“L” width  
(2 + nm / 2) tMCLK 20  
tLOW  
tHIGH  
SCL0  
SCL0  
ns Master mode  
SCL clock  
“H” width  
(nm / 2) tMCLK 20  
(nm / 2 ) tMCLK + 20  
ns Master mode  
Master mode  
Maximum value is  
applied when m,  
ns n = 1, 8.  
Start  
condition  
hold time  
SCL0  
SDA0  
(1 + nm / 2) tMCLK 20  
(1 + nm) tMCLK + 20  
tHD;STA  
Otherwise, the  
minimum value is  
applied.  
Stop condition  
setup time  
SCL0  
SDA0  
tSU;STO  
(1 + nm / 2) tMCLK 20 (1 + nm / 2) tMCLK + 20 ns Master mode  
(1 + nm / 2) tMCLK 20 (1 + nm / 2) tMCLK + 20 ns Master mode  
Start condition  
setup time  
SCL0  
SDA0  
tSU;STA  
Bus free time  
between stop  
condition and  
start condition  
SCL0  
SDA0  
tBUF  
(2 nm + 4) tMCLK 20  
ns  
SCL0  
SDA0  
Data hold time tHD;DAT  
3 tMCLK 20  
ns Master mode  
Master mode  
R = 1.7 k,  
C = 50 pF*1  
When assuming  
that “L” of SCL is  
not extended, the  
minimum value is  
Data setup  
tSU;DAT  
SCL0  
SDA0  
(2 + nm / 2) t  
MCLK 20 (1 + nm / 2) tMCLK + 20 ns applied to first bit  
time  
of continuous  
data.  
Otherwise,  
the maximum  
value is applied.  
Minimum value is  
appliedtointerrupt  
at 9th SCL.  
Maximum value is  
appliedtointerrupt  
at 8th SCL.  
Setup time  
between  
clearing  
interrupt and  
SCL rising  
tSU;INT SCL0  
(nm / 2) tMCLK 20  
(1 + nm / 2) tMCLK + 20 ns  
SCL clock “L”  
width  
4 tMCLK 20  
4 tMCLK 20  
tLOW  
tHIGH  
SCL0  
SCL0  
ns At reception  
ns At reception  
SCL clock “H”  
width  
Undetected when  
ns 1 tMCLK is used at  
reception  
Start condition  
detection  
SCL0  
SDA0  
2 tMCLK 20  
tHD;STA  
(Continued)  
57  
MB95120MB Series  
(Continued)  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value*2  
Sym- Pin  
bol name  
Condi-  
tions  
Parameter  
Unit  
Remarks  
Min  
Max  
Undetected when 1  
ns tMCLK is used at  
reception  
Stop condition  
detection  
SCL0  
tSU;STO  
2 tMCLK 20  
SDA0  
Undetected when 1  
ns tMCLK is used at  
reception  
Restart condition  
detection condition  
SCL0  
tSU;STA  
2 tMCLK 20  
2 tMCLK 20  
SDA0  
SCL0  
tBUF  
Bus free time  
ns At reception  
SDA0  
SCL0  
tHD;DAT  
At slave transmission  
mode  
Data hold time  
Data setup time  
Data hold time  
Data setup time  
2 tMCLK 20  
ns  
SDA0  
R = 1.7 k,  
C = 50 pF*1  
SCL0  
tSU;DAT  
At slave transmission  
mode  
tLOW 3 tMCLK 20  
ns  
SDA0  
SCL0  
tHD;DAT  
0
ns At reception  
ns At reception  
SDA0  
SCL0  
tSU;DAT  
tMCLK 20  
SDA0  
Oscillation  
stabilization  
wait time +  
2 tMCLK 20  
SDA↓→SCL↑  
(at wakeup function)  
tWAKE- SCL0  
ns  
UP  
SDA0  
*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.  
*2 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
m is CS4 bit and CS3 bit (bit 4 and bit 3) of I2C clock control register (ICCR) .  
n is CS2 bit to CS0 bit (bit 2 to bit 0) of I2C clock control register (ICCR) .  
Actual timing of I2C is determined by m and n values set by the machine clock (tMCLK) and CS4 to CS0 of  
ICCR0 register.  
Standard-mode :  
m and n can be set at the range : 0.9 MHz < tMCLK (machine clock) < 10 MHz.  
Setting of m and n determines the machine clock that can be used below.  
(m, n) = (1, 8)  
: 0.9 MHz < tMCLK 1 MHz  
(m, n) = (1, 22) , (5, 4) , (6, 4) , (7, 4) , (8, 4) : 0.9 MHz < tMCLK 2 MHz  
(m, n) = (1, 38) , (5, 8) , (6, 8) , (7, 8) , (8, 8) : 0.9 MHz < tMCLK 4 MHz  
(m, n) = (1, 98)  
Fast-mode :  
: 0.9 MHz < tMCLK 10 MHz  
m and n can be set at the range : 3.3 MHz < tMCLK (machine clock) < 10 MHz.  
Setting of m and n determines the machine clock that can be used below.  
(m, n) = (1, 8)  
(m, n) = (1, 22) , (5, 4)  
(m, n) = (6, 4)  
: 3.3 MHz < tMCLK 4 MHz  
: 3.3 MHz < tMCLK 8 MHz  
: 3.3 MHz < tMCLK 10 MHz  
58  
MB95120MB Series  
(9) Low Voltage Detection  
Parameter  
(AVss = Vss = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Typ  
2.70  
2.60  
100  
Symbol  
Unit  
Remarks  
Min  
2.55  
2.45  
70  
Max  
2.85  
2.75  
Release voltage  
VDL+  
VDL-  
VHYS  
Voff  
V
V
At power-supply rise  
Detection voltage  
At power-supply fall  
Hysteresis width  
mV  
V
Power-supply start voltage  
Power-supply end voltage  
2.3  
Von  
4.9  
V
Slope of power supply that reset release  
signal generates  
0.3  
3000  
µs  
µs  
µs  
Power-supply voltage  
change time  
(at power supply rise)  
tr  
Slope of power supply that reset release  
signal generates within rating (VDL+)  
Slope of power supply that reset  
detection signal generates  
300  
Power-supply voltage  
change time  
(at power supply fall)  
tf  
Slope of power supply that reset  
300  
µs detection signal generates within rating  
(VDL-)  
Reset release delay time  
Reset detection delay time  
td1  
td2  
400  
30  
µs  
µs  
Current consumption of low voltage  
detection circuit only  
Current consumption  
ILVD  
38  
50  
µA  
VCC  
Von  
Voff  
time  
tr  
tf  
VCC  
VDL+  
VDL-  
VHYS  
Internal reset signal  
td1  
td2  
59  
MB95120MB Series  
5. A/D Converter  
(1) A/D Converter Electrical Characteristics  
(AVcc = Vcc = 4.0 V to 5.5 V, AVss = Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Typ  
Parameter  
Resolution  
Symbol  
Unit  
Remarks  
Min  
Max  
10  
bit  
LSB  
LSB  
LSB  
V
Total error  
3.0  
2.5  
1.9  
+ 3.0  
+ 2.5  
+ 1.9  
Linearity error  
Differential linear error  
Zero transition voltage  
VOT  
AVss 1.5 LSB AVss + 0.5 LSB AVss + 2.5 LSB  
Full-scale transition  
voltage  
VFST  
AVR 3.5 LSB AVR 1.5 LSB AVR + 0.5 LSB  
V
4.5 V AVcc 5.5  
0.9  
1.8  
16500  
16500  
µs  
µs  
V
Compare time  
Sampling time  
4.0 V AVcc < 4.5  
V
4.5 V AVcc 5.5  
V,  
At external imped-  
ance < 5.4 kΩ  
0.6  
1.2  
µs  
µs  
4.0 V AVcc < 4.5  
V,  
At external imped-  
ance < 2.4 kΩ  
Analog input current  
Analog input voltage  
Reference voltage  
IAIN  
VAIN  
0.3  
AVss  
+0.3  
AVR  
AVcc  
µA  
V
AVss + 4.0  
V
AVR pin  
AVR pin,  
IR  
600  
900  
5
µA During A/D  
Reference voltage  
supply current  
operation  
AVR pin,  
µA  
IRH  
At stop mode  
60  
MB95120MB Series  
(2) Notes on Using A/D Converter  
About the external impedance of analog input and its sampling time  
A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling  
time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/  
D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship  
between the external impedance and minimum sampling time and either adjust the register value and operating  
frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also,  
if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.  
Analog input equivalent circuit  
R
Analog input  
Comparator  
C
During sampling : ON  
R
C
4.5 V AVcc 5.5 V 2.0 k(Max)  
4.0 V AVcc < 4.5 V 8.2 k(Max)  
16 pF (Max)  
16 pF (Max)  
Note : The values are reference values.  
The relationship between external impedance and minimum sampling time  
(External impedance = 0 kto 20 k)  
(External impedance = 0 kto 100 k)  
100  
20  
18  
90  
AVCC 4.5 V  
80  
16  
AVCC 4.5 V  
70  
14  
60  
12  
AVCC 4.0 V  
AVCC 4.0 V  
50  
10  
40  
30  
20  
10  
0
8
6
4
2
0
8
14  
0
2
4
6
10  
12  
0
1
2
3
4
Minimum sampling time [µs]  
Minimum sampling time [µs]  
About errors  
As |AVCC AVSS| becomes smaller, values of relative errors grow larger.  
61  
MB95120MB Series  
(3) Definition of A/D Converter Terms  
• Resolution  
The level of analog variation that can be distinguished by the A/D converter.  
When the number of bits is 10, analog voltage can be divided into 210 = 1024.  
• Linearity error (unit : LSB)  
The deviation between the value along a straight line connecting the zero transition point  
(“00 0000 0000” ← → “00 0000 0001”) of a device and the full-scale transition point  
(“11 1111 1111” ← → “11 1111 1110”) compared with the actual conversion values obtained.  
• Differential linear error (Unit : LSB)  
Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.  
Total error (unit: LSB)  
Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error,  
linearity error, quantum error, and noise.  
Ideal I/O characteristics  
Total error  
V
FST  
3FF  
H
3FF  
H
3FE  
H
3FE  
H
Actual conversion  
characteristic  
1.5 LSB  
3FD  
H
3FD  
H
{1 LSB × (N 1) + 0.5 LSB}  
004  
003  
002  
001  
H
H
H
H
004  
003  
002  
001  
H
H
H
H
V
NT  
VOT  
Actual conversion  
characteristic  
1 LSB  
0.5 LSB  
Ideal characteristics  
AVSS  
AVSS  
AVR  
AVR  
Analog input  
Analog input  
Total error of  
digital output N  
AVR AVSS  
1024  
VNT {1 LSB × (N 1) + 0.5 LSB}  
=
1 LSB =  
(V)  
[LSB]  
1 LSB  
N
: A/D converter digital output value  
VNT : A voltage at which digital output transits from (N - 1) to N.  
(Continued)  
62  
MB95120MB Series  
(Continued)  
Full-scale transition error  
Zero transition error  
Ideal  
004  
H
H
H
H
characteristics  
Actual conversion  
characteristic  
3FF  
3FE  
3FD  
H
H
H
Actual conversion  
characteristic  
003  
002  
001  
Ideal  
characteristics  
VFST  
(measurement  
value)  
Actual conversion  
characteristic  
Actual conversion  
characteristic  
3FC  
H
VOT (measurement value)  
AVSS  
AVR  
AVSS  
AVR  
Analog input  
Analog input  
Linearity error  
Differential linear error  
Actual conversion  
characteristic  
Ideal characteristics  
3FF  
3FE  
3FD  
H
N+1  
N
H
Actual conversion  
characteristic  
{1 LSB × N + VOT  
}
H
V
(N+1)T  
VFST  
(measurement  
value)  
V
NT  
004  
003  
002  
001  
H
H
H
H
N-1  
N-2  
V
NT  
Actual conversion  
characteristic  
Actual conversion  
characteristic  
Ideal characteristics  
VOT (measurement value)  
AVSS  
AVR  
AVSS  
AVR  
Analog input  
Analog input  
Linear error in  
digital output N  
VNT {1 LSB × N + VOT}  
V (N + 1) T VNT  
Differential linear error  
in digital output N  
=
=
1  
1 LSB  
1 LSB  
N
: A/D Converter digital output value  
VNT : A voltage at which digital output transits from (N 1) to N.  
VOT (Ideal value) = AVSS + 0.5 LSB [V]  
VFST (Ideal value) = AVR 1.5 LSB [V]  
63  
MB95120MB Series  
6. Flash Memory Program/Erase Characteristics  
Value  
Parameter  
Unit  
Remarks  
Min  
Typ  
Max  
Sector erase time  
(4 Kbytes sector)  
0.2*1  
0.5*2  
s
s
Excludes 00H programming prior erasure.  
Excludes 00H programming prior erasure.  
Sector erase time  
(16 Kbytes sector)  
0.5*1  
7.5*2  
Byte programming time  
Program/erase cycle  
32  
3600  
µs Excludes system-level overhead.  
cycle  
10000  
Power supply voltage at  
program/erase  
4.5  
5.5  
V
Flash memory data retention  
time  
20*3  
year Average TA = +85 °C  
*1 : TA = + 25 °C, VCC = 5.0 V, 10000 cycles  
*2 : TA = + 85 °C, VCC = 4.5 V, 10000 cycles  
*3 : This value comes from the technology qualification (using Arrhenius equation to translate high temperature  
measurements into normalized value at +85 °C) .  
64  
MB95120MB Series  
MASK OPTION  
MB95F124MB/F124NB/  
MB95F126MB/F126NB/  
MB95F128MB/F128NB  
Part number  
MB95FV100D-103  
Setting disabled  
No.  
Specifying procedure  
Clock mode select  
Single-system clock mode  
Dual-system clock mode  
Setting disabled  
Changing by the switch on  
MCU board  
1
2
3
Dual-system clock mode  
Low voltage detection reset*  
With low voltage detection reset  
Without low voltage detection reset  
Changing by the switch on  
MCU board  
Specified by part number  
Fixed to oscillation  
stabilization wait time of  
(2142) /FCH  
Oscillation stabilization  
wait time  
Fixed to oscillation stabilization wait  
time of (2142) /FCH  
* : Refer to table below about clock mode select, low voltage detection reset, and reset output.  
Part number  
MB95F124MB  
Clock mode select  
Low voltage detection reset  
No  
Yes  
No  
MB95F124NB  
MB95F126MB  
MB95F126NB  
MB95F128MB  
MB95F128NB  
Dual-system  
Yes  
No  
Yes  
No  
Single-system  
Dual-system  
Yes  
No  
MB95FV100D-103  
Yes  
65  
MB95120MB Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB95F124MBPFV/  
MB95F124NBPFV/  
MB95F126MBPFV/  
MB95F126NBPFV/  
MB95F128MBPFV/  
MB95F128NBPFV  
100-pin plastic LQFP  
(FPT-100P-M05)  
MB95F124MBPF/  
MB95F124NBPF/  
MB95F126MBPF/  
MB95F126NBPF/  
MB95F128MBPF/  
MB95F128NBPF  
100-pin plastic QFP  
(FPT-100P-M06)  
MCU board  
224-pin plastic PFBGA  
(BGA-224P-M08)  
MB2146-303A  
(MB95FV100D-103PBT)  
(
)
66  
MB95120MB Series  
PACKAGE DIMENSIONS  
100-pin plastic LQFP  
Lead pitch  
0.50 mm  
14.0 × 14.0 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.70 mm MAX  
0.65g  
Code  
(Reference)  
(FPT-100P-M05)  
P-LFQFP100-14×14-0.50  
100-pin plastic LQFP  
(FPT-100P-M05)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
16.00 0.20(.630 .008)SQ  
*
14.00 0.10(.551 .004)SQ  
75  
51  
76  
50  
0.08(.003)  
Details of "A" part  
1.50 +00..1200 .059 +..000048  
(Mounting height)  
INDEX  
0.10 0.10  
(.004 .004)  
(Stand off)  
100  
26  
0˚~8˚  
"A"  
0.50 0.20  
(.020 .008)  
0.25(.010)  
1
25  
0.60 0.15  
(.024 .006)  
0.50(.020)  
0.20 0.05  
(.008 .002)  
0.145 0.055  
(.0057 .0022)  
M
0.08(.003)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003 FUJITSU LIMITED F100007S-c-4-6  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html  
(Continued)  
67  
MB95120MB Series  
(Continued)  
100-pin plastic QFP  
Lead pitch  
0.65 mm  
14.00 × 20.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Plastic mold  
3.35 mm MAX  
P-QFP100-14×20-0.65  
Code  
(Reference)  
(FPT-100P-M06)  
100-pin plastic QFP  
(FPT-100P-M06)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
23.90 0.40(.941 .016)  
*
20.00 0.20(.787 .008)  
80  
51  
81  
50  
0.10(.004)  
17.90 0.40  
(.705 .016)  
*
14.00 0.20  
(.551 .008)  
INDEX  
Details of "A" part  
100  
31  
0.25(.010)  
3.00 +00..2305  
.118 +..000184  
(Mounting height)  
0~8  
˚
1
30  
0.65(.026)  
0.32 0.05  
(.013 .002)  
0.17 0.06  
(.007 .002)  
M
0.13(.005)  
0.25 0.20  
(.010 .008)  
(Stand off)  
0.80 0.20  
(.031 .008)  
"A"  
0.88 0.15  
(.035 .006)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2002 FUJITSU LIMITED F100008S-c-5-5  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html  
68  
MB95120MB Series  
The information for microcontroller supports is shown in the following homepage.  
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
Edited  
Business Promotion Dept.  
F0608  

相关型号:

MB95F128NBPMC

8-bit Microcontrollers
FUJITSU

MB95F133JBS

8-bit Microcontrollers
FUJITSU

MB95F133JBSPF

8-bit Microcontrollers
FUJITSU

MB95F133JBSPF

Microcontroller, 8-Bit, FLASH, 32.5MHz, CMOS, PDSO28, 8.60 X 17.75 MM, 2.80 MM HEIGHT, 1.27 MM PITCH, PLASTIC, SOP-28
SPANSION

MB95F133JBSPFV

8-bit Microcontrollers
FUJITSU

MB95F133JBSPFV

Microcontroller, 8-Bit, FLASH, 32.5MHz, CMOS, PDSO30, 5.60 X 9.70 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, PLASTIC, SSOP-30
SPANSION

MB95F133JBW

8-bit Microcontrollers
FUJITSU

MB95F133JBWPF

8-bit Microcontrollers
FUJITSU

MB95F133JBWPFV

8-bit Microcontrollers
FUJITSU

MB95F133JBWPFV

Microcontroller, 8-Bit, FLASH, 32.5MHz, CMOS, PDSO30, 5.60 X 9.70 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, PLASTIC, SSOP-30
SPANSION

MB95F133JS

8-bit Proprietary Microcontrollers
FUJITSU

MB95F133JW

8-bit Proprietary Microcontrollers
FUJITSU