MB9AF132LB [SPANSION]

The MB9A130LB Series are highly integrated;
MB9AF132LB
型号: MB9AF132LB
厂家: SPANSION    SPANSION
描述:

The MB9A130LB Series are highly integrated

文件: 总89页 (文件大小:2925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products. Although the document is marked  
with the name “Spansion”, the company that originally developed the specification, Cypress will  
continue to offer these products to new and existing customers.  
Continuity of Specifications  
There is no change to this document as a result of offering the device as a Cypress product. Any  
changes that have been made are the result of normal document improvements and are noted in the  
document history page, where supported. Future revisions will occur when appropriate, and changes  
will be noted in a document history page.  
Continuity of Ordering Part Numbers  
Cypress continues to support existing part numbers. To order these products, please use only the  
Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local sales office for additional information about Cypress products and solutions.  
About Cypress  
Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today’s most  
advanced embedded systems, from automotive, industrial and networking platforms to highly  
interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes  
NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry’s only PSoC®  
programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense®  
capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity  
solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-  
in-class support and exceptional system value.  
MB9A130LB Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9AF131KB/LB, MB9AF132KB/LB  
Data Sheet (Full Production)  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may occur.  
Publication Number MB9A130LB-DS706-00066  
Revision 2.0  
Issue Date June 9, 2015  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers  
of product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to  
verify that they have the latest information before finalizing their design. The following descriptions of  
Spansion data sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue.  
Spansion Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion  
Inc. The information is intended to help you evaluate this product. Do not design in this product  
without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on  
this proposed product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the product life  
cycle, including product qualification, initial production, and the subsequent phases in the manufacturing  
process that occur before full production is achieved. Changes to the technical specifications presented  
in a Preliminary document should be expected while keeping these aspects of production under  
consideration. Spansion places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification  
has been completed, and that initial production has begun. Due to the phases of the  
manufacturing process that require maintaining efficiency and quality, this document may be  
revised by subsequent versions or modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their  
designations wherever necessary, typically on the first page, the ordering information page, and pages  
with the DC Characteristics table and the AC Erase and Program table (in the table notes). The  
disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes  
may include those affecting the number of ordering part numbers available, such as the addition or  
deletion of a speed option, temperature range, package type, or VIO range. Changes may also include  
those needed to clarify a description or to correct a typographical error or incorrect specification.  
Spansion Inc. applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may  
occur.”  
Questions regarding these document designations may be directed to your local sales office.  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
MB9A130LB Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9AF131KB/LB, MB9AF132KB/LB  
Data Sheet (Full Production)  
Description  
The MB9A130LB Series are highly integrated 32-bit microcontrollers that dedicated for embedded  
controllers with low-power consumption mode and competitive cost.  
The MB9A130LB Series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and  
SRAM, and has peripheral functions such as Motor Control Timers, ADCs and Communication Interfaces  
(UART, CSIO, I2C).  
The products which are described in this data sheet are placed into TYPE3 product categories in FM3  
Family Peripheral Manual.  
Note: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
Publication Number MB9A130LB-DS706-00066  
Revision 2.0  
Issue Date June 9, 2015  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient  
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the  
valid combinations offered may occur.  
D a t a S h e e t  
Features  
32-bit ARM Cortex-M3 Core  
Processor version: r2p1  
Up to 20MHz Operation Frequency  
Integrated Nested Vectored Interrupt Controller (NVIC): 1 channel NMI (non-maskable interrupt) and  
32 channels' peripheral interrupts and 8 priority levels  
24-bit System timer (Sys Tick): System timer for OS task management  
On-chip Memories  
[Flash memory]  
Up to 128 Kbytes  
Read cycle: 0 wait-cycle  
Security function for code protection  
[SRAM]  
This series contains 8 Kbyte on-chip SRAM that is connected to System bus of Cortex-M3 core.  
SRAM1: 8 Kbytes  
Multi-function Serial Interface (Max 8channels)  
Operation mode is selectable from the followings for each channel.  
UART  
CSIO  
I2C  
[UART]  
Full-duplex double buffer  
Selection with or without parity supported  
Built-in dedicated baud rate generator  
External clock available as a serial clock  
Various error detection functions available (parity errors, framing errors, and overrun errors)  
[CSIO]  
Full-duplex double buffer  
Built-in dedicated baud rate generator  
Overrun error detection function available  
[I2C]  
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported  
A/D Converter (Max 8channels)  
[12-bit A/D Converter]  
Successive Approximation type  
Conversion time: Min. 1.0 μs  
Priority conversion available (priority at 2 levels)  
Scanning conversion mode  
Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion:  
4 steps)  
2
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Base Timer (Max 8channels)  
Operation mode is selectable from the followings for each channel.  
16-bit PWM timer  
16-bit PPG timer  
16-/32-bit reload timer  
16-/32-bit PWC timer  
General Purpose I/O Port  
This series can use its pins as general purpose I/O ports when they are not used for peripherals. Moreover,  
the port relocate function is built in. It can set which I/O port the peripheral function can be allocated.  
Capable of pull-up control per pin  
Capable of reading pin level directly  
Built-in the port relocate function  
Up to 52 fast general purpose I/O Ports@64 pin Package  
Some pins are 5V tolerant I/O  
See List of Pin Functions and I/O Circuit Type to confirm the corresponding pins.  
Multi-function Timer  
The Multi-function timer is composed of the following blocks.  
16-bit free-run timer × 3ch.  
Input capture × 4ch.  
Output compare × 6ch.  
A/D activation compare × 1ch.  
Waveform generator × 3ch.  
16-bit PPG timer × 3ch.  
The following function can be used to achieve the motor control.  
PWM signal output function  
DC chopper waveform output function  
Dead time function  
Input capture function  
A/D convertor activate function  
DTIF (Motor emergency stop) interrupt function  
Real-time clock (RTC)  
The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.  
Interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the  
week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.  
Timer interrupt function after set time or each set time.  
Capable of rewriting the time with continuing the time count.  
Leap year automatic count is available.  
External Interrupt Controller Unit  
Up to 8 external interrupt input pins  
Include one non-maskable interrupt (NMI) input pin  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
3
D a t a S h e e t  
Watchdog Timer (2channels)  
A watchdog timer can generate interrupts or a reset when a time-out value is reached.  
This series consists of two different watchdogs, a Hardware watchdog and a Software watchdog.  
Hardware watchdog timer is clocked by built-in Low-speed CR oscillator. Therefore, Hardware watchdog is  
active in any low power consumption mode except RTC and Stop and Deep Standby RTC and Deep  
Standby Stop modes.  
Clock and Reset  
[Clocks]  
Five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL) that are dynamically  
selectable.  
Main Clock:  
Sub Clock:  
4 MHz to 20 MHz  
32.768 kHz  
Built-in High-speed CR Clock: 4 MHz  
Built-in Low-speed CR Clock: 100 kHz  
Main PLL Clock  
[Resets]  
Reset requests from INITX pin  
Power on reset  
Software reset  
Watchdog timers reset  
Low voltage detector reset  
Clock supervisor reset  
Clock Super Visor (CSV)  
Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.  
If external clock failure (clock stop) is detected, reset is asserted.  
If external frequency anomaly is detected, interrupt or reset is asserted.  
Low Voltage Detector (LVD)  
This Series include 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage has  
been set, Low Voltage Detector generates an interrupt or reset.  
LVD1: error reporting via interrupt  
LVD2: auto-reset operation  
Low Power Consumption Mode  
Six low power consumption modes supported.  
Sleep  
Timer  
RTC  
Stop  
Deep Standby RTC  
Deep Standby Stop  
Back up register is 16 bytes.  
4
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Debug  
Serial Wire JTAG Debug Port (SWJ-DP)  
Power Supply  
Wide range voltage : VCC = 1.8 V to 5.5 V  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
5
D a t a S h e e t  
Product Lineup  
Memory size  
Product name  
On-chip Flash  
MB9AF131KB/LB  
MB9AF132KB/LB  
128 Kbytes  
64 Kbytes  
On-chip SRAM  
SRAM1  
8 Kbytes  
8 Kbytes  
Function  
MB9AF131KB  
MB9AF132KB  
48  
MB9AF131LB  
MB9AF132LB  
64  
Product name  
Pin count  
CPU  
Cortex-M3  
20 MHz  
Freq.  
Power supply voltage range  
MF Serial Interface  
1.8 V to 5.5 V  
4ch. (Max)  
8ch. (Max)  
(UART/CSIO/I2C)  
(CSIO and I2C is Max 3ch.)  
Base Timer  
(PWC/ Reload timer/PWM/PPG)  
8ch. (Max)  
A/D activation  
compare  
1ch.  
Input capture  
Free-run timer  
Output compare 6ch.  
Waveform  
generator  
4ch.  
3ch.  
MF-  
Timer  
1 unit (Max)  
1 unit  
3ch.  
PPG  
3ch.  
Real-time clock  
Watchdog timer  
1ch. (SW) + 1ch. (HW)  
External Interrupts  
general purpose I/O ports  
12-bit A/D converter  
CSV (Clock Super Visor)  
6 pins (Max) + NMI × 1  
8 pins (Max) + NMI × 1  
52 pins (Max)  
37 pins (Max)  
6ch. (1 unit)  
8ch. (1 unit)  
Yes  
LVD (Low Voltage Detector)  
2ch.  
High-speed  
Low-speed  
4 MHz  
100 kHz  
SWJ-DP  
Built-in CR  
Debug Function  
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.  
It is necessary to use the port relocate function of the I/O port according to your function use.  
See Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics for  
accuracy of built-in CR.  
6
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Packages  
Product name  
MB9AF131KB  
MB9AF132KB  
MB9AF131LB  
MB9AF132LB  
Package  
LQFP: FPT-48P-M49 (0.5mm pitch)  
QFN: LCC-48P-M73  
-
-
-
LQFP: FPT-64P-M38 (0.5mm pitch)  
LQFP: FPT-64P-M39 (0.65mm pitch)  
-
  
  
QFN:  
LCC-64P-M24  
-
: Supported  
Note : See Package Dimensions for detailed information on each package.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
7
D a t a S h e e t  
Pin Assignment  
FPT-48P-M49  
(TOP VIEW)  
VCC  
P50 / SIN3_1 / INT00_0  
P51 / SOT3_1 / INT01_0  
P52 / SCK3_1 / INT02_0  
1
2
3
4
5
6
7
8
9
36 P21 / SIN0_0 / INT06_1 / WKUP2  
35 P22 / SOT0_0 / TIOB7_1  
34 P23 / SCK0_0 / TIOA7_1  
33 AVSS  
P39 / DTTI0X_0 / ADTG_2  
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2  
P3B / TIOA1_1 / RTO01_0  
32 AVRH  
31 AVCC  
LQFP - 48  
30 P15 / AN05 / IC03_2  
P3C / TIOA2_1 / RTO02_0  
29 P14 / AN04 / INT03_1 / IC02_2  
28 P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1  
27 P12 / AN02 / SOT1_1 / IC00_2  
26 P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1  
25 P10 / AN00  
P3D / TIOA3_1 / RTO03_0  
P3E / TIOA4_1 / RTO04_0 10  
P3F / TIOA5_1 / RTO05_0 11  
VSS 12  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
8
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
LCC-48P-M73  
(TOP VIEW)  
VCC  
P50 / SIN3_1 / INT00_0  
P51 / SOT3_1 / INT01_0  
P52 / SCK3_1 / INT02_0  
P39 / DTTI0X_0 / ADTG_2  
1
2
3
4
5
6
7
8
9
36 P21 / SIN0_0 / INT06_1 / WKUP2  
35 P22 / SOT0_0 / TIOB7_1  
34 P23 / SCK0_0 / TIOA7_1  
33 AVSS  
32 AVRH  
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2  
P3B / TIOA1_1 / RTO01_0  
31 AVCC  
QFN - 48  
30 P15 / AN05 / IC03_2  
P3C / TIOA2_1 / RTO02_0  
29 P14 / AN04 / INT03_1 / IC02_2  
28 P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1  
27 P12 / AN02 / SOT1_1 / IC00_2  
26 P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1  
25 P10 / AN00  
P3D / TIOA3_1 / RTO03_0  
P3E / TIOA4_1 / RTO04_0 10  
P3F / TIOA5_1 / RTO05_0 11  
VSS 12  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
9
D a t a S h e e t  
FPT-64P-M38/M39  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
48 P21 / SIN0_0 / INT06_1 / WKUP2  
P50 / SIN3_1 / INT00_0  
P51 / SOT3_1 / INT01_0  
47 P22 / SOT0_0 / TIOB7_1  
46 P23 / SCK0_0 / TIOA7_1  
45 P19 / SCK2_2  
P52 / SCK3_1 / INT02_0  
P30 / TIOB0_1 / INT03_2  
44 P18 / AN08 / SOT2_2  
43 AVSS  
P31 / SCK6_1 / TIOB1_1 / INT04_2  
P32 / SOT6_1 / TIOB2_1 / INT05_2  
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6  
P39 / DTTI0X_0 / ADTG_2  
42 AVRH  
41 AVCC  
LQFP - 64  
40 P17 / AN07 / SIN2_2 / INT04_1  
39 P15 / AN05 / IC03_2  
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2 10  
P3B / TIOA1_1 / RTO01_0 11  
P3C / TIOA2_1 / RTO02_0 12  
P3D / TIOA3_1 / RTO03_0 13  
P3E / TIOA4_1 / RTO04_0 14  
P3F / TIOA5_1 / RTO05_0 15  
VSS 16  
38 P14 / AN04 / INT03_1 / IC02_2  
37 P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1  
36 P12 / AN02 / SOT1_1 / IC00_2  
35 P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1  
34 P10 / AN00  
33 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
10  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
LCC-64P-M24  
(TOP VIEW)  
VCC  
P50 / SIN3_1 / INT00_0  
P51 / SOT3_1 / INT01_0  
P52 / SCK3_1 / INT02_0  
P30 / TIOB0_1 / INT03_2  
1
2
3
4
5
6
7
8
9
48 P21 / SIN0_0 / INT06_1 / WKUP2  
47 P22 / SOT0_0 / TIOB7_1  
46 P23 / SCK0_0 / TIOA7_1  
45 P19 / SCK2_2  
44 P18 / AN08 / SOT2_2  
43 AVSS  
P31 / SCK6_1 / TIOB1_1 / INT04_2  
P32 / SOT6_1 / TIOB2_1 / INT05_2  
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6  
P39 / DTTI0X_0 / ADTG_2  
42 AVRH  
41 AVCC  
QFN - 64  
40 P17 / AN07 / SIN2_2 / INT04_1  
39 P15 / AN05 / IC03_2  
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2 10  
P3B / TIOA1_1 / RTO01_0 11  
P3C / TIOA2_1 / RTO02_0 12  
P3D / TIOA3_1 / RTO03_0 13  
P3E / TIOA4_1 / RTO04_0 14  
P3F / TIOA5_1 / RTO05_0 15  
VSS 16  
38 P14 / AN04 / INT03_1 / IC02_2  
37 P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1  
36 P12 / AN02 / SOT1_1 / IC00_2  
35 P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1  
34 P10 / AN00  
33 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
11  
D a t a S h e e t  
List of Pin Functions  
List of pin numbers  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port  
number. For these pins, there are multiple pins that provide the same function for the same channel. Use the  
extended port function register (EPFR) to select the pin.  
Pin No  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-64  
QFN-64  
LQFP-48  
QFN-48  
1
1
VCC  
P50  
-
2
2
INT00_0  
SIN3_1  
P51  
G
G
F
F
INT01_0  
3
3
SOT3_1  
(SDA3_1)  
P52  
INT02_0  
4
5
4
-
G
E
F
F
SCK3_1  
(SCL3_1)  
P30  
TIOB0_1  
INT03_2  
P31  
TIOB1_1  
6
7
-
-
E
E
F
F
SCK6_1  
(SCL6_1)  
INT04_2  
P32  
TIOB2_1  
SOT6_1  
(SDA6_1)  
INT05_2  
P33  
INT04_0  
TIOB3_1  
SIN6_1  
ADTG_6  
P39  
8
9
-
E
E
F
5
DTTI0X_0  
ADTG_2  
P3A  
H
RTO00_0  
(PPG00_0)  
10  
6
E
H
TIOA0_1  
RTCCO_2  
SUBOUT_2  
12  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Pin No  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-64  
QFN-64  
LQFP-48  
QFN-48  
P3B  
RTO01_0  
(PPG00_0)  
11  
12  
13  
14  
15  
7
E
E
E
E
E
H
H
H
H
H
TIOA1_1  
P3C  
RTO02_0  
(PPG02_0)  
8
9
TIOA2_1  
P3D  
RTO03_0  
(PPG02_0)  
TIOA3_1  
P3E  
RTO04_0  
(PPG04_0)  
10  
11  
TIOA4_1  
P3F  
RTO05_0  
(PPG04_0)  
TIOA5_1  
VSS  
16  
17  
18  
12  
13  
14  
-
-
-
C
VCC  
P46  
19  
15  
D
M
X0A  
P47  
20  
21  
22  
16  
17  
18  
D
B
E
N
C
H
X1A  
INITX  
P49  
TIOB0_0  
P4A  
23  
24  
19  
-
E
E
H
H
TIOB1_0  
P4B  
TIOB2_0  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
13  
D a t a S h e e t  
Pin No  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-64  
QFN-64  
LQFP-48  
QFN-48  
P4C  
TIOB3_0  
25  
26  
27  
-
-
-
E
E
E
H
H
F
SCK7_1  
(SCL7_1)  
P4D  
TIOB4_0  
SOT7_1  
(SDA7_1)  
P4E  
TIOB5_0  
INT06_2  
SIN7_1  
PE0  
28  
29  
30  
20  
21  
22  
C
H
A
P
D
A
MD1  
MD0  
PE2  
X0  
PE3  
31  
23  
A
B
X1  
32  
33  
24  
-
VSS  
-
-
VCC  
P10  
34  
35  
25  
26  
F
J
AN00  
P11  
AN01  
SIN1_1  
INT02_1  
FRCK0_2  
IC02_0  
WKUP1  
P12  
F
F
F
L
AN02  
36  
37  
27  
28  
J
SOT1_1  
(SDA1_1)  
IC00_2  
P13  
AN03  
SCK1_1  
(SCL1_1)  
J
IC01_2  
RTCCO_1  
SUBOUT_1  
14  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Pin No  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-64  
QFN-64  
LQFP-48  
QFN-48  
P14  
AN04  
INT03_1  
IC02_2  
P15  
38  
39  
40  
29  
F
F
F
K
J
30  
-
AN05  
IC03_2  
P17  
AN07  
SIN2_2  
INT04_1  
AVCC  
AVRH  
AVSS  
P18  
K
41  
42  
43  
31  
32  
33  
-
-
-
AN08  
44  
45  
46  
-
-
F
E
G
J
SOT2_2  
(SDA2_2)  
P19  
H
H
SCK2_2  
(SCL2_2)  
P23  
SCK0_0  
(SCL0_0)  
34  
TIOA7_1  
P22  
SOT0_0  
(SDA0_0)  
47  
48  
35  
36  
G
G
H
G
TIOB7_1  
P21  
SIN0_0  
INT06_1  
WKUP2  
P00  
49  
50  
51  
37  
38  
39  
E
E
E
E
E
E
TRSTX  
P01  
TCK  
SWCLK  
P02  
TDI  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
15  
D a t a S h e e t  
Pin No  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-64  
QFN-64  
LQFP-48  
QFN-48  
P03  
TMS  
52  
53  
54  
40  
41  
-
E
E
E
E
E
F
SWDIO  
P04  
TDO  
SWO  
P0A  
SIN4_0  
INT00_2  
P0B  
SOT4_0  
(SDA4_0)  
55  
56  
-
-
E
E
H
H
TIOB6_1  
P0C  
SCK4_0  
(SCL4_0)  
TIOA6_1  
P0F  
NMIX  
CROUT_1  
RTCCO_0  
SUBOUT_0  
WKUP0  
P62  
57  
42  
E
I
SCK5_0  
(SCL5_0)  
58  
59  
-
I
I
H
H
ADTG_3  
P61  
SOT5_0  
(SDA5_0)  
43  
TIOB2_2  
DTTI0X_2  
P60  
SIN5_0  
TIOA2_2  
INT15_1  
IC00_0  
WKUP3  
P80  
60  
44  
I
G
61  
62  
63  
64  
45  
46  
47  
48  
G
G
G
O
O
O
P81  
P82  
VSS  
-
16  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
List of pin functions  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port  
number. For these pins, there are multiple pins that provide the same function for the same channel. Use the  
extended port function register (EPFR) to select the pin.  
Pin No  
Pin function Pin name  
Function description  
LQFP-64  
QFN-64  
9
LQFP-48  
QFN-48  
ADC  
ADTG_2  
5
-
-
25  
26  
27  
28  
29  
30  
-
ADTG_3 A/D converter external trigger input pin  
ADTG_6  
AN00  
AN01  
AN02  
AN03  
AN04  
AN05  
AN07  
AN08  
58  
8
34  
35  
36  
37  
38  
39  
40  
44  
10  
22  
5
A/D converter analog input pin.  
ANxx describes ADC ch.xx.  
-
6
18  
-
Base Timer  
0
TIOA0_1 Base timer ch.0 TIOA pin  
TIOB0_0  
Base timer ch.0 TIOB pin  
TIOB0_1  
Base Timer  
1
TIOA1_1 Base timer ch.1 TIOA pin  
11  
23  
6
7
19  
-
TIOB1_0  
Base timer ch.1 TIOB pin  
TIOB1_1  
Base Timer  
2
TIOA2_1  
12  
60  
24  
7
59  
13  
25  
8
8
44  
-
-
43  
9
Base timer ch.2 TIOA pin  
TIOA2_2  
TIOB2_0  
TIOB2_1 Base timer ch.2 TIOB pin  
TIOB2_2  
TIOA3_1 Base timer ch.3 TIOA pin  
Base Timer  
3
TIOB3_0  
-
-
Base timer ch.3 TIOB pin  
TIOB3_1  
Base Timer  
TIOA4_1 Base timer ch.4 TIOA pin  
TIOB4_0 Base timer ch.4 TIOB pin  
TIOA5_1 Base timer ch.5 TIOA pin  
TIOB5_0 Base timer ch.5 TIOB pin  
TIOA6_1 Base timer ch.6 TIOA pin  
TIOB6_1 Base timer ch.6 TIOB pin  
TIOA7_1 Base timer ch.7 TIOA pin  
TIOB7_1 Base timer ch.7 TIOB pin  
14  
26  
15  
27  
56  
55  
46  
47  
50  
52  
53  
49  
50  
51  
52  
53  
10  
-
11  
-
-
-
34  
35  
38  
40  
41  
37  
38  
39  
40  
41  
4
Base Timer  
5
Base Timer  
6
Base Timer  
7
Debugger  
SWCLK  
SWDIO  
SWO  
TRSTX  
TCK  
Serial wire debug interface clock input pin  
Serial wire debug interface data input / output pin  
Serial wire viewer output pin  
J-TAG reset Input pin  
J-TAG test clock input pin  
TDI  
J-TAG test data input pin  
TMS  
TDO  
J-TAG test mode state input/output pin  
J-TAG debug data output pin  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
17  
D a t a S h e e t  
Pin No  
Pin function Pin name  
Function description  
LQFP-64  
LQFP-48  
QFN-64  
QFN-48  
External  
Interrupt  
INT00_0  
INT00_2  
2
54  
3
2
-
3
External interrupt request 00 input pin  
INT01_0 External interrupt request 01 input pin  
INT02_0  
4
4
External interrupt request 02 input pin  
INT02_1  
35  
38  
5
26  
29  
-
INT03_1  
External interrupt request 03 input pin  
INT03_2  
INT04_0  
8
-
INT04_1 External interrupt request 04 input pin  
INT04_2  
40  
6
-
-
INT05_2 External interrupt request 05 input pin  
7
-
INT06_1  
48  
27  
60  
57  
49  
50  
51  
52  
53  
54  
55  
56  
57  
34  
35  
36  
37  
38  
39  
40  
44  
45  
48  
47  
46  
36  
-
External interrupt request 06 input pin  
INT06_2  
INIT15_1 External interrupt request 15 input pin  
44  
42  
37  
38  
39  
40  
41  
-
NMIX  
P00  
P01  
P02  
P03  
P04  
P0A  
P0B  
P0C  
P0F  
P10  
P11  
P12  
P13  
P14  
P15  
P17  
P18  
P19  
P21  
P22  
P23  
Non-Maskable Interrupt input pin  
GPIO  
General-purpose I/O port 0  
-
-
42  
25  
26  
27  
28  
29  
30  
-
-
-
36  
35  
34  
General-purpose I/O port 1  
General-purpose I/O port 2  
18  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Pin No  
Pin function Pin name  
Function description  
LQFP-64  
LQFP-48  
QFN-64  
QFN-48  
GPIO  
P30  
P31  
P32  
P33  
P39  
P3A  
P3B  
P3C  
P3D  
P3E  
P3F  
P46  
P47  
P49  
P4A  
P4B  
P4C  
P4D  
P4E  
P50  
P51  
P52  
P60  
P61  
P62  
P80  
P81  
P82  
PE0  
PE2  
PE3  
5
6
7
8
-
-
-
-
5
6
7
8
9
10  
11  
15  
16  
18  
19  
-
-
-
-
2
9
General-purpose I/O port 3  
10  
11  
12  
13  
14  
15  
19  
20  
22  
23  
24  
25  
26  
27  
2
General-purpose I/O port 4  
General-purpose I/O port 5  
General-purpose I/O port 6  
General-purpose I/O port 8  
General-purpose I/O port E  
3
4
3
4
60  
59  
58  
61  
62  
63  
28  
30  
31  
44  
43  
-
45  
46  
47  
20  
22  
23  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
19  
D a t a S h e e t  
Pin No  
Pin function Pin name  
Function description  
LQFP-64  
LQFP-48  
QFN-48  
QFN-64  
Multi-  
SIN0_0  
function  
Multi-function serial interface ch.0 input pin  
48  
36  
Serial  
0
Multi-function serial interface ch.0 output pin.  
This pin operates as SOT0 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA0 when it is used in an I2C (operation mode  
4).  
SOT0_0  
(SDA0_0)  
47  
35  
Multi-function serial interface ch.0 clock I/O pin.  
This pin operates as SCK0 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL0 when it is used in an I2C (operation mode  
4).  
SCK0_0  
(SCL0_0)  
46  
35  
36  
34  
26  
27  
Multi-  
function  
Serial  
1
SIN1_1  
Multi-function serial interface ch.1 input pin  
Multi-function serial interface ch.1 output pin.  
This pin operates as SOT1 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA1 when it is used in an I2C (operation mode  
4).  
SOT1_1  
(SDA1_1)  
Multi-function serial interface ch.1 clock I/O pin.  
This pin operates as SCK1 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL1 when it is used in an I2C (operation mode  
4).  
SCK1_1  
(SCL1_1)  
37  
40  
44  
28  
-
Multi-  
function  
Serial  
2
SIN2_2  
Multi-function serial interface ch.2 input pin  
Multi-function serial interface ch.2 output pin.  
This pin operates as SOT2 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA2 when it is used in an I2C (operation mode  
4).  
SOT2_2  
(SDA2_2)  
-
Multi-function serial interface ch.2 clock I/O pin.  
This pin operates as SCK2 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL2 when it is used in an I2C (operation mode  
4).  
SCK2_2  
(SCL2_2)  
45  
-
20  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Pin No  
LQFP-64  
Pin function Pin name  
Function description  
LQFP-48  
QFN-48  
2
QFN-64  
Multi-  
function  
Serial  
3
SIN3_1  
Multi-function serial interface ch.3 input pin  
2
Multi-function serial interface ch.3 output pin.  
This pin operates as SOT3 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA3 when it is used in an I2C (operation mode  
4).  
SOT3_1  
(SDA3_1)  
3
3
Multi-function serial interface ch.3 clock I/O pin.  
This pin operates as SCK3 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL3 when it is used in an I2C (operation mode  
4).  
SCK3_1  
(SCL3_1)  
4
4
-
Multi-  
function  
Serial  
4
SIN4_0  
Multi-function serial interface ch.4 input pin  
54  
55  
Multi-function serial interface ch.4 output pin.  
This pin operates as SOT4 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA4 when it is used in an I2C (operation mode  
4).  
SOT4_0  
(SDA4_0)  
-
Multi-function serial interface ch.4 clock I/O pin.  
This pin operates as SCK4 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL4 when it is used in an I2C (operation mode  
4).  
SCK4_0  
(SCL4_0)  
56  
60  
-
Multi-  
function  
Serial  
5
SIN5_0  
Multi-function serial interface ch.5 input pin  
44  
Multi-function serial interface ch.5 output pin.  
This pin operates as SOT5 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA5 when it is used in an I2C (operation mode  
4).  
SOT5_0  
(SDA5_0)  
59  
58  
43  
Multi-function serial interface ch.5 clock I/O pin.  
This pin operates as SCK5 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL5 when it is used in an I2C (operation mode  
4).  
SCK5_0  
(SCL5_0)  
-
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
21  
D a t a S h e e t  
Pin No  
LQFP-64  
Pin function Pin name  
Function description  
LQFP-48  
QFN-48  
-
QFN-64  
Multi-  
function  
Serial  
6
SIN6_1  
Multi-function serial interface ch.6 input pin  
8
Multi-function serial interface ch.6 output pin.  
This pin operates as SOT6 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA6 when it is used in an I2C (operation mode  
4).  
SOT6_1  
(SDA6_1)  
7
-
Multi-function serial interface ch.6 clock I/O pin.  
This pin operates as SCK6 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL6 when it is used in an I2C (operation mode  
4).  
SCK6_1  
(SCL6_1)  
6
-
-
-
Multi-  
function  
Serial  
7
SIN7_1  
Multi-function serial interface ch.7 input pin  
27  
26  
Multi-function serial interface ch.7 output pin.  
This pin operates as SOT7 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SDA7 when it is used in an I2C (operation mode  
4).  
SOT7_1  
(SDA7_1)  
Multi-function serial interface ch.7 clock I/O pin.  
This pin operates as SCK7 when it is used in a  
UART/CSIO (operation modes 0 to 2) and as  
SCL7 when it is used in an I2C (operation mode  
4).  
SCK7_1  
(SCL7_1)  
25  
-
22  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Pin No  
LQFP-64  
Pin function Pin name  
Function description  
LQFP-48  
QFN-48  
5
QFN-64  
Multi-  
function  
Timer  
0
DTTI0X_0 Input signal of waveform generator to control  
9
outputs RTO00 to RTO05 of Multi-function  
timer 0  
DTTI0X_2  
59  
35  
43  
26  
16-bit free-run timer ch.0 external clock input  
FRCK0_2  
pin  
IC00_0  
IC00_2  
60  
36  
37  
35  
38  
39  
44  
27  
28  
26  
29  
30  
16-bit input capture input pin of  
IC01_2  
Multi-function timer 0.  
IC02_0  
ICxx describes a channel number.  
IC02_2  
IC03_2  
Waveform generator output pin of  
RTO00_0  
Multi-function timer 0.  
10  
11  
12  
13  
14  
15  
6
7
(PPG00_0) This pin operates as PPG00 when it is used in  
PPG0 output modes.  
Waveform generator output pin of  
Multi-function timer 0.  
RTO01_0  
(PPG00_0) This pin operates as PPG00 when it is used in  
PPG0 output modes.  
Waveform generator output pin of  
Multi-function timer 0.  
RTO02_0  
8
(PPG02_0) This pin operates as PPG02 when it is used in  
PPG0 output modes.  
Waveform generator output pin of  
Multi-function timer 0.  
RTO03_0  
9
(PPG02_0) This pin operates as PPG02 when it is used in  
PPG0 output modes.  
Waveform generator output pin of  
Multi-function timer 0.  
RTO04_0  
10  
11  
(PPG04_0) This pin operates as PPG04 when it is used in  
PPG0 output modes.  
Waveform generator output pin of  
Multi-function timer 0.  
RTO05_0  
(PPG04_0) This pin operates as PPG04 when it is used in  
PPG0 output modes.  
Real-time  
clock  
RTCCO_0  
RTCCO_1  
RTCCO_2  
SUBOUT_0  
SUBOUT_1 Sub clock output pin  
SUBOUT_2  
WKUP0  
WKUP1  
WKUP2  
WKUP3  
57  
37  
10  
57  
37  
10  
57  
35  
48  
60  
42  
28  
6
42  
28  
6
42  
26  
36  
44  
0.5 seconds pulse output pin of Real-time  
clock  
Low Power  
Consumption  
Mode  
Deep stand-by mode return signal input pin 0  
Deep stand-by mode return signal input pin 1  
Deep stand-by mode return signal input pin 2  
Deep stand-by mode return signal input pin 3  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
23  
D a t a S h e e t  
Pin No  
Pin function Pin name  
Function description  
LQFP-64  
LQFP-48  
QFN-48  
QFN-64  
Reset  
External Reset Input pin.  
A reset is valid when INITX = L.  
Mode 0 pin.  
INITX  
21  
17  
Mode  
During normal operation, MD0 = L must be  
input During serial programming to flash  
memory, MD0 = H must be input.  
Mode 1 pin.  
During normal operation, input is not needed  
During serial programming to flash memory,  
MD1 = L must be input.  
MD0  
29  
28  
21  
MD1  
20  
Power  
VCC  
1
1
14  
-
Power supply pin  
GND pin  
18  
33  
16  
32  
64  
30  
19  
31  
20  
57  
41  
GND  
VSS  
12  
24  
48  
22  
15  
23  
16  
42  
31  
Clock  
X0  
X0A  
X1  
Main clock (oscillation) input pin  
Sub clock (oscillation) input pin  
Main clock (oscillation) I/O pin  
Sub clock (oscillation) I/O pin  
X1A  
CROUT_1 Built-in High-speed CR-osc clock output port  
ADC  
AVCC  
A/D converter analog power pin  
Power  
A/D converter analog reference voltage input  
pin  
AVRH  
42  
32  
ADC  
GND  
C pin  
AVSS  
C
A/D converter GND pin  
43  
17  
33  
13  
Power stabilization capacity pin  
24  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
I/O Circuit Type  
Type  
Circuit  
Remarks  
A
It is possible to select the main  
oscillation / GPIO function.  
Pull-up  
resistor  
When the main oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 1 MΩ  
With Standby control  
Digital output  
Digital output  
P-ch  
P-ch  
X1  
When the GPIO is selected.  
CMOS level output.  
CMOS level hysteresis input  
With pull-up resistor control  
With standby control  
Pull-up resistor  
N-ch  
R
: Approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
Pull-up resistor control  
Digital input  
Standby mode Control  
Clock input  
Feedback  
resistor  
Standby mode Control  
Digital input  
Standby mode Control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0  
Digital output  
Pull-up resistor control  
B
CMOS level hysteresis input  
Pull-up resistor  
: Approximately 50 kΩ  
Pull-up resistor  
Digital input  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
25  
D a t a S h e e t  
Type  
Circuit  
Remarks  
C
Open drain output  
CMOS level hysteresis input  
Digital input  
Digital output  
N-ch  
D
It is possible to select the sub  
oscillation / GPIO function  
Pull-up  
resistor  
When the sub oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 5 MΩ  
With Standby control  
P-ch  
P-ch  
Digital output  
Digital output  
X1A  
When the GPIO is selected.  
CMOS level output.  
N-ch  
CMOS level hysteresis input  
With pull-up resistor control  
With standby control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
R
Pull-up resistor control  
Digital input  
Standby mode Control  
Clock input  
Feedback  
resistor  
Standby mode Control  
Digital input  
Standby mode Control  
Pull-up  
resistor  
R
Digital output  
P-ch  
P-ch  
N-ch  
X0A  
Digital output  
Pull-up resistor control  
26  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
E
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby control  
Pull-up resistor  
P-ch  
P-ch  
: Approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
When this pin is used as an  
I2C pin, the digital output P-  
ch transistor is always off  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode Control  
F
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog input  
With pull-up resistor control  
With standby control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
When this pin is used as an  
I2C pin, the digital output P-  
ch transistor is always off  
Digital output  
Digital output  
P-ch  
P-ch  
N-ch  
Pull-up resistor control  
Digital input  
R
Standby mode Control  
Analog input  
Input control  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
27  
D a t a S h e e t  
Type  
Circuit  
Remarks  
G
CMOS level output  
CMOS level hysteresis input  
With standby control  
5 V tolerant input  
IOH = -4 mA, IOL = 4 mA  
Available to control of PZR  
registers. Only P22, P23, P51,  
P52  
When this pin is used as an  
I2C pin, the digital output P-  
ch transistor is always off  
Digital output  
Digital output  
P-ch  
N-ch  
R
Digital input  
Standby mode control  
H
CMOS level hysteresis input  
Mode input  
I
CMOS level output  
CMOS level hysteresis input  
With standby control  
IOH = -4 mA, IOL = 4 mA  
When this pin is used as an  
I2C pin, the digital output P-  
ch transistor is always off  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
Standby mode control  
28  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Handling Precautions  
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly  
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This  
page describes precautions that must be observed to minimize the chance of failure and to obtain higher  
reliability from your Spansion semiconductor devices.  
1. Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device's electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these  
ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data  
sheet. Users considering application outside the listed conditions are advised to contact their sales  
representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins which connect semiconductor devices to power  
supply and input/output functions.  
(1) Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause  
deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to  
prevent such overvoltage or over-current conditions at the design stage.  
(2) Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can  
cause large current flows. Such conditions if present for extended periods of time can damage the  
device.  
Therefore, avoid this type of connection.  
(3) Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation.  
Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.  
Latch-up  
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When  
subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may  
be formed, causing large current levels in excess of several hundred mA to flow continuously at the power  
supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but  
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the  
following:  
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should  
include attention to abnormal noise, surge levels, etc.  
(2) Be sure that abnormal current flows do not occur during the power-on sequence.  
Code: DS00-00004-3E  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
29  
D a t a S h e e t  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from  
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards  
in the design of products.  
Fail-Safe Design  
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,  
damage or loss from such failures by incorporating safety design measures into your facility and equipment  
such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions.  
Precautions Related to Usage of Devices  
Spansion semiconductor devices are intended for use in standard applications (computers, office automation  
and other office equipment, industrial, communications, and measurement equipment, personal or  
household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or  
abnormal operation may directly affect human lives or cause physical injury or property damage, or where  
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea  
floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult  
with sales representatives before such use. The company will not be responsible for damages arising from  
such use without prior approval.  
2. Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance  
during soldering, you should only mount under Spansion's recommended conditions. For detailed  
information about mount conditions, contact your sales representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct  
soldering on the board, or mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the  
board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the  
soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for  
storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can  
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment  
of socket contacts and IC leads be verified before mounting.  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are  
more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in  
increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has  
established a ranking of mounting conditions for each product. Users are advised to mount packages in  
accordance with Spansion ranking of recommended conditions.  
30  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic  
soldering, junction strength may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions  
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed  
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent,  
do the following:  
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product.  
Store products in locations where temperature changes are slight.  
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at  
temperatures between 5°C and 30°C.  
When you open Dry Package that recommends humidity 40% to 70% relative humidity.  
(3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum  
laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags  
for storage.  
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion  
recommended conditions for baking.  
Condition: 125°C/24 h  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take  
the following precautions:  
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus  
for ion generation may be needed to remove electricity.  
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.  
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high  
resistance (on the level of 1 MΩ).  
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to  
minimize shock loads is recommended.  
(4) Ground all fixtures and instruments, or protect with anti-static measures.  
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board  
assemblies.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
31  
D a t a S h e e t  
3. Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described  
above.  
For reliable performance, do the following:  
(1) Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high  
humidity levels are anticipated, consider anti-humidity processing.  
(2) Discharge of Static Electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal  
operation. In such cases, use anti-static measures or processing to prevent discharges.  
(3) Corrosive Gases, Dust, or Oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will  
adversely affect the device. If you use devices in such conditions, consider ways to prevent such  
exposure or to protect the devices.  
(4) Radiation, Including Cosmic Radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.  
Users should provide shielding as appropriate.  
(5) Smoke, Flame  
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible  
substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Spansion products in other special environmental conditions should  
consult with sales representatives.  
Please check the latest handling precautions at the following URL.  
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf  
32  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Handling Devices  
Power supply pins  
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected  
within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be  
connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels,  
to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the  
total output current rating.  
Moreover, connect the current supply source with each Power supply pins and GND pins of this device at  
low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a  
bypass capacitor between each Power supply pins and GND pins, between AVCC pin and AVSS pin near  
this device.  
Stabilizing power supply voltage  
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is  
within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage  
stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at  
the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended  
operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary  
fluctuation on switching the power supply.  
Crystal oscillator circuit  
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit  
board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as  
close to the device as possible.  
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins  
are surrounded by ground plane as this is expected to produce stable operation.  
Evaluate oscillation of your using crystal oscillator by your mount board.  
Using an external clock  
To use the external clock, set general-purpose I/O ports to input the clock to X0/PE2 and X0A/P46 pins.  
Example of Using an External Clock  
Device  
X0/PE2 (X0A/P46)  
Set as  
general-purpose  
I/O ports.  
Can be used as  
general-purpose  
I/O ports.  
X1/PE3 (X1A/P47)  
Handling when using Multi-function serial pin as I2C pin  
If it is using the Multi-function serial pin as I2C pins, P-ch transistor of digital output is always disable.  
However, I2C pins need to keep the electrical characteristic like other pins and not to connect to external I2C  
bus system with power OFF.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
33  
D a t a S h e e t  
C Pin  
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between  
the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency  
characteristics as a smoothing capacitor.  
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to  
thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the  
specifications in the operating conditions to use by evaluating the temperature characteristics of a  
capacitor.  
A smoothing capacitor of about 4.7uF would be recommended for this series.  
C
Device  
CS  
VSS  
GND  
Mode pins (MD0, MD1)  
Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that  
the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS  
pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as  
for switching the pin level and rewriting the Flash memory data. It is because of preventing the device  
erroneously switching to test mode due to noise.  
Notes on power-on  
Turn power on/off in the following order or at the same time.  
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.  
Turning on : VCC AV CC AVRH  
Turning off : AVRH AVCC VCC  
Serial Communication  
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.  
Therefore, design a printed circuit board so as to avoid noise.  
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a  
checksum of data at the end. If an error is detected, retransmit the data.  
Differences in features among the products with different memory sizes and between  
Flash memory products and MASK products  
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and  
oscillation characteristics among the products with different memory sizes and between Flash memory  
products and MASK products are different because chip layout and memory structures are different.  
If you are switching to use a different product of the same series, please make sure to evaluate the electric  
characteristics.  
34  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Block Diagram  
MB9AF131/132  
TRSTX,TCK,  
TDI,TMS  
ROM  
Table  
SWJ-DP  
TDO  
On-Chip  
Flash  
64/128Kbytes  
Cortex-M3Core  
@20MHz(Max)  
Flash I/F  
Security  
I
D
NVIC  
Sys  
SRAM1  
8Kbytes  
Watchdog Timer  
(Software)  
Clock Reset  
Generator  
INITX  
Watchdog Timer  
(Hardware)  
CSV  
CLK  
X0  
Main  
Source Clock  
PLL  
Osc  
Sub  
Osc  
X1  
CR  
4MHz  
CR  
100kHz  
X0A  
X1A  
CROUT  
Deep Standby Ctrl  
WKUPx  
AVCC,  
AVSS,AVRH  
12-bit A/D Converter  
Unit 0  
ANxx  
ADTG_x  
Power On  
Reset  
TIOAx  
TIOBx  
Base Timer  
16-bit 8ch. /  
32-bit 4ch.  
LVD  
LVD Ctrl  
C
Regulator  
IRQ-Monitor  
RTCCO  
SUBOUT  
A/D Activation  
Compare  
1ch.  
Real-Time Clock  
External Interrupt  
Controller  
8-pin + NMI  
INTxx  
IC0x  
16-bit Input Capture  
4ch.  
NMIX  
16-bit FreeRun Timer  
3ch.  
FRCK0  
MD1,  
MD0  
MODE-Ctrl  
GPIO  
16-bit Output  
Compare  
6ch.  
P0x,  
P1x,  
.
PIN-Function-Ctrl  
DTTI0X  
RTO0x  
.
Waveform Generator  
3ch.  
Pxx  
SCKx  
SINx  
Multi-Function Serial  
16-bit PPG  
3ch.  
SOTx  
I/F  
8ch.  
Multi-Function Timer ×1  
Memory Size  
See Memory size in Product Lineup to confirm the memory size.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
35  
D a t a S h e e t  
Memory Map  
Memory Map (1)  
Peripherals Area  
0x41FF_FFFF  
0xFFFF_FFFF  
0xE010_0000  
0xE000_0000  
Reserved  
Cortex-M3 Private  
Peripherals  
Reserved  
Reserved  
0x4003_C000  
0x4003_B000  
RTC  
Reserved  
MFS  
0x4003_9000  
0x4003_8000  
0x4400_0000  
0x4200_0000  
0x4000_0000  
Reserved  
32Mbytes  
Bit band alias  
0x4003_6000  
0x4003_5000  
0x4003_4000  
0x4003_3000  
0x4003_2000  
0x4003_1000  
0x4003_0000  
0x4002_F000  
0x4002_E000  
LVD/DS mode  
Reserved  
GPIO  
Reserved  
Int-Req.Read  
EXTI  
Peripherals  
Reserved  
0x2400_0000  
0x2200_0000  
32Mbytes  
Bit band alias  
Reserved  
CR Trim  
Reserved  
Reserved  
0x4002_8000  
0x4002_7000  
0x4002_6000  
0x4002_5000  
0x4002_4000  
0x2008_0000  
0x2000_0000  
A/DC  
Reserved  
Base Timer  
PPG  
SRAM1  
Reserved  
0x0010_0008  
0x0010_0000  
See "Memory map(2)"  
for the memory size  
details.  
Reserved  
MFT unit0  
Security/CR Trim  
0x4002_1000  
0x4002_0000  
Flash  
Reserved  
0x0000_0000  
0x4001_3000  
0x4001_2000  
0x4001_1000  
0x4001_0000  
SW WDT  
HW WDT  
Clock/Reset  
Reserved  
Flash I/F  
0x4000_1000  
0x4000_0000  
36  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Memory Map (2)  
MB9AF132KB/LB  
MB9AF131KB/LB  
0x2008_0000  
0x2008_0000  
Reserved  
Reserved  
0x2000_2000  
0x2000_0000  
0x2000_2000  
0x2000_0000  
SRAM1  
8 Kbytes  
SRAM1  
8 Kbytes  
Reserved  
Reserved  
0x0010_0008  
0x0010_0004  
0x0010_0000  
0x0010_0008  
0x0010_0004  
0x0010_0000  
CR trimming  
Security  
CR trimming  
Security  
Reserved  
Reserved  
0x0002_0000  
0x0000_0000  
SA3 (64 KB)  
0x0001_0000  
0x0000_0000  
SA2 (60 KB)  
SA1 (4 KB)  
SA2 (60 KB)  
SA1 (4 KB)  
*: See MB9AAA0N/1A0N/A30N/130N/130L Series Flash Programming Manual to confirm the detail of Flash  
memory.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
37  
D a t a S h e e t  
Peripheral Address Map  
Start address  
End address  
Bus  
Peripherals  
0x4000_0000  
0x4000_1000  
0x4001_0000  
0x4001_1000  
0x4001_2000  
0x4001_3000  
0x4001_5000  
0x4001_6000  
0x4002_0000  
0x4002_1000  
0x4002_2000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
0x4002_7000  
0x4002_8000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_3000  
0x4003_4000  
0x4003_5000  
0x4003_5100  
0x4003_6000  
0x4003_7000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_C000  
0x4004_0000  
0x4005_0000  
0x4006_0000  
0x4006_1000  
0x4006_2000  
0x4006_3000  
0x4006_4000  
0x4000_0FFF  
0x4000_FFFF  
0x4001_0FFF  
0x4001_1FFF  
0x4001_2FFF  
0x4001_4FFF  
0x4001_5FFF  
0x4001_FFFF  
0x4002_0FFF  
0x4002_1FFF  
0x4002_3FFF  
0x4002_4FFF  
0x4002_5FFF  
0x4002_6FFF  
0x4002_7FFF  
0x4002_DFFF  
0x4002_EFFF  
0x4002_FFFF  
0x4003_0FFF  
0x4003_1FFF  
0x4003_2FFF  
0x4003_3FFF  
0x4003_4FFF  
0x4003_50FF  
0x4003_5FFF  
0x4003_6FFF  
0x4003_7FFF  
0x4003_8FFF  
0x4003_9FFF  
0x4003_AFFF  
0x4003_BFFF  
0x4003_FFFF  
0x4004_FFFF  
0x4005_FFFF  
0x4006_0FFF  
0x4006_1FFF  
0x4006_2FFF  
0x4006_3FFF  
0x41FF_FFFF  
Flash I/F register  
Reserved  
AHB  
Clock/Reset Control  
Hardware Watchdog timer  
Software Watchdog timer  
Reserved  
APB0  
Reserved  
Reserved  
Multi-function timer unit0  
Reserved  
Reserved  
PPG  
Base Timer  
APB1  
Reserved  
A/D Converter  
Reserved  
Built-in CR trimming  
Reserved  
External Interrupt Controller  
Interrupt Source Check Register  
Reserved  
GPIO  
Reserved  
Low Voltage Detector  
Deep stand-by mode Controller  
Reserved  
APB2  
Reserved  
Multi-function serial Interface  
Reserved  
Reserved  
Real-time clock  
Reserved  
Reserved  
Reserved  
Reserved  
AHB  
Reserved  
Reserved  
Reserved  
Reserved  
38  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Pin Status in Each CPU State  
The terms used for pin status have the following meanings.  
INITX = 0  
This is the period when the INITX pin is the L level.  
INITX = 1  
This is the period when the INITX pin is the H level.  
SPL = 0  
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is  
set to 0.  
SPL = 1  
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is  
set to 1.  
Input enabled  
Indicates that the input function can be used.  
Internal input fixed at 0  
This is the status that the input function cannot be used. Internal input is fixed at L.  
Hi-Z  
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  
Setting disabled  
Indicates that the setting is disabled.  
Maintain previous state  
Maintains the state that was immediately prior to entering the current mode.  
If a built-in peripheral function is operating, the output follows the peripheral function.  
If the pin is being used as a port, that output is maintained.  
Analog input is enabled  
Indicates that the analog input is enabled.  
Trace output  
Indicates that the trace function can be used.  
GPIO selected  
In Deep Standby mode, pins switch to the general-purpose I/O port.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
39  
D a t a S h e e t  
List of Pin Status  
Power-on  
reset or  
low voltage  
detection  
state  
Return  
from Deep  
Standby  
Device  
internal  
reset state mode state  
Run mode  
or Sleep  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep Standby RTC  
mode or Deep Standby  
Stop mode state  
INITX input  
state  
mode state  
Function  
group  
Power  
supply  
unstable  
-
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable  
INITX = 1  
Power supply stable  
INITX = 1  
INITX = 0 INITX = 1 INITX = 1  
-
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Main crystal  
oscillator  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
input pin  
Maintain  
previous  
state /  
Hi-Z /  
Input  
When  
Output  
maintain  
previous  
state /  
enabled /  
When  
oscillation  
stop*1,  
output  
External  
main clock  
input  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
oscillation  
stop*1,  
Hi-Z /  
GPIO  
disabled  
disabled  
disabled  
selected  
maintain  
previous  
state /  
Internal  
input fixed  
at 0  
selected  
A
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
Output  
maintain  
previous  
state /  
Output  
maintain  
previous  
state /  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
selected  
disabled  
disabled  
disabled  
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
When  
When  
When  
When  
When  
When  
Main crystal  
oscillator  
Internal  
Internal  
Internal  
oscillation oscillation oscillation oscillation oscillation oscillation  
stop*1, Hi-Z stop*1, Hi-Z stop*1, Hi-Z stop*1, Hi-Z stop*1, Hi-Z stop*1, Hi-Z  
input fixed input fixed input fixed  
output pin  
at 0  
at 0  
at 0  
output /  
output /  
output /  
output /  
output /  
output /  
B
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed  
at 0  
at 0  
at 0  
Hi-Z /  
at 0  
at 0  
Hi-Z /  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
selected  
disabled  
disabled  
disabled  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
INITX  
C
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
40  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Power-on  
reset or  
low voltage  
detection  
state  
Power  
supply  
unstable  
-
Return  
from Deep  
Standby  
Device  
internal  
reset state mode state  
Run mode  
or Sleep  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep Standby RTC  
mode or Deep Standby  
Stop mode state  
INITX input  
state  
mode state  
Function  
group  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable  
INITX = 1  
Power supply stable  
INITX = 1  
INITX = 0 INITX = 1 INITX = 1  
-
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Mode  
Input  
Input  
enabled  
Input  
enabled  
Input  
Input  
Input  
Input  
Input  
Input  
D
E
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Pull-up /  
Input  
Pull-up /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
JTAG  
Hi-Z  
selected  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
GPIO  
Setting  
Setting  
Setting  
selected  
disabled  
disabled  
disabled  
External  
interrupt  
enabled  
selected  
Resource  
other than  
above  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
GPIO  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
F
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Input  
Hi-Z /  
Input  
selected  
Hi-Z  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
WKUP  
input  
WKUP  
input  
WKUP  
enabled  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
enabled  
enabled  
External  
interrupt  
enabled  
selected  
Resource  
other than  
above  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
G
GPIO  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Input  
Hi-Z /  
Input  
selected  
Hi-Z  
Hi-Z  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Resource  
selected  
GPIO  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Maintain  
previous  
state  
selected  
Maintain  
previous  
state  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
H
GPIO  
enabled  
enabled  
selected  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
41  
D a t a S h e e t  
Power-on  
reset or  
low voltage  
detection  
state  
Power  
supply  
unstable  
-
Return  
from Deep  
Standby  
Device  
internal  
reset state mode state  
Run mode  
or Sleep  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep Standby RTC  
mode or Deep Standby  
Stop mode state  
INITX input  
state  
mode state  
Function  
group  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable  
INITX = 1  
Power supply stable  
INITX = 1  
INITX = 0 INITX = 1 INITX = 1  
-
-
-
-
SPL = 0  
SPL = 1  
Maintain  
previous  
state  
SPL = 0  
SPL = 1  
NMIX  
Setting  
Setting  
Setting  
selected  
disabled  
disabled  
disabled  
GPIO  
Resource  
other than  
above  
Hi-Z /  
WKUP  
input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
WKUP  
input  
I
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Input  
Hi-Z /  
Input  
enabled  
selected  
enabled  
Hi-Z  
enabled  
enabled  
Maintain  
previous  
state  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Analog  
input  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
J
Resource  
other than  
above  
GPIO  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
selected  
disabled  
disabled  
disabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Analog  
input  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
External  
interrupt  
enabled  
selected  
Resource  
other than  
above  
Maintain  
previous  
state  
K
GPIO  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
42  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Power-on  
reset or  
low voltage  
detection  
state  
Power  
supply  
unstable  
-
Return  
from Deep  
Standby  
Device  
internal  
reset state mode state  
Run mode  
or Sleep  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep Standby RTC  
mode or Deep Standby  
Stop mode state  
INITX input  
state  
mode state  
Function  
group  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable  
INITX = 1  
Power supply stable  
INITX = 1  
INITX = 0 INITX = 1 INITX = 1  
-
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
Internal  
Hi-Z /  
Internal  
Hi-Z /  
Internal  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Analog  
input  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
Hi-Z /  
enabled  
enabled  
Hi-Z /  
WKUP  
input  
enabled  
WKUP  
input  
WKUP  
enabled  
Internal  
input fixed  
at 0  
enabled  
enabled  
L
External  
interrupt  
enabled  
selected  
Resource  
other than  
above  
Maintain  
previous  
state  
GPIO  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Sub crystal  
oscillator  
input pin  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Hi-Z / Input  
enabled /  
When  
Hi-Z / Input  
enabled /  
When  
When  
When  
oscillation  
stop*2,  
output  
oscillation  
stop*2,  
output  
When  
External sub  
clock input  
selected  
Maintain  
previous  
state  
oscillation  
stop*2,  
oscillation  
stop*2,  
Setting  
Setting  
Setting  
Return from  
Deep  
disabled  
disabled  
disabled  
maintain  
previous  
state /  
Hi-Z /  
maintain  
previous  
state /  
Hi-Z /  
Stand-by  
STOP mode,  
GPIO  
M
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
selected  
Output  
maintain  
previous  
state /  
Output  
maintain  
previous  
state /  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
selected  
disabled  
disabled  
disabled  
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
43  
D a t a S h e e t  
Power-on  
reset or  
low voltage  
detection  
state  
Power  
supply  
unstable  
-
Return  
from Deep  
Standby  
Device  
internal  
reset state mode state  
Run mode  
or Sleep  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep Standby RTC  
mode or Deep Standby  
Stop mode state  
INITX input  
state  
mode state  
Function  
group  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable  
INITX = 1  
Power supply stable  
INITX = 1  
INITX = 0 INITX = 1 INITX = 1  
-
-
-
-
SPL = 0  
Maintain  
previous  
state /  
SPL = 1  
Maintain  
previous  
state /  
SPL = 0  
Maintain  
previous  
state /  
SPL = 1  
Maintain  
previous  
state /  
Maintain  
previous  
state /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
When  
When  
When  
When  
When  
Sub crystal  
oscillator  
output pin  
Maintain  
previous  
state  
Internal  
Internal  
Internal  
oscillation oscillation oscillation oscillation oscillation  
stops*2,  
Hi-Z /  
stops*2,  
Hi-Z /  
stops*2,  
Hi-Z /  
stops*2,  
Hi-Z /  
stops*2,  
Hi-Z /  
input fixed input fixed input fixed  
at 0  
at 0  
at 0  
N
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed  
at 0  
at 0  
Hi-Z /  
at 0  
at 0  
Hi-Z /  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
Internal  
input fixed  
at 0  
Internal  
input fixed  
at 0  
selected  
disabled  
disabled  
disabled  
Hi-Z /  
GPIO/  
Hi-Z /  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Internal  
Internal  
Internal  
O
P
GPIO  
Hi-Z  
input fixed input fixed input fixed  
enabled  
enabled  
at 0  
at 0  
at 0  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z /  
Input  
Maintain  
previous  
state  
Hi-Z /  
Input  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
selected  
disabled  
disabled  
disabled  
enabled  
enabled  
*1: Oscillation is stopped at Sub run mode, Low-speed CR Run mode, Sub Sleep mode, Low-speed CR Sleep  
mode, Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and  
Deep Standby Stop mode.  
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.  
44  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Electrical Characteristics  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Power supply voltage*1,*2  
VCC  
AVCC  
AVRH  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
VCC + 0.5  
(6.5 V)  
VSS + 6.5  
AVCC + 0.5  
(6.5 V)  
VCC + 0.5  
(6.5 V)  
10  
V
V
V
Analog power supply voltage*1,*3  
Analog reference voltage*1,*3  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
V
V
V
Input voltage*1  
VI  
5V tolerant  
Analog pin input voltage*1  
Output voltage*1  
VIA  
VO  
VSS - 0.5  
V
L level maximum output current*4  
L level average output current*5  
L level total maximum output current  
L level total average output current*6  
H level maximum output current*4  
H level average output current*5  
H level total maximum output current  
H level total average output current*6  
Power consumption  
IOL  
IOLAV  
IOL  
IOLAV  
IOH  
IOHAV  
IOH  
IOHAV  
PD  
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
4
60  
30  
-10  
- 4  
-60  
-30  
400  
Storage temperature  
TSTG  
- 55  
+ 150  
*1: These parameters are based on the condition that VSS = AVSS = 0.0 V.  
*2: VCC must not drop below VSS - 0.5 V.  
*3: Be careful not to exceed VCC + 0.5 V, for example, when the power is turned on.  
*4: The maximum output current is defined as the value of the peak current flowing through any one of the  
corresponding pins.  
*5: The average output current is defined as the average current value flowing through any one of the  
corresponding pins for a 100 ms period.  
*6: The total average output current is defined as the average current value flowing through all of  
corresponding pins for a 100 ms.  
<WARNING>  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
45  
D a t a S h e e t  
2. Recommended Operating Conditions  
(VSS = AVSS = 0.0V)  
Value  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
1.8  
1.8  
Max  
5.5  
5.5  
Power supply voltage  
Analog power supply voltage  
VCC  
AVCC  
-
-
V
V
V
AVCC = VCC  
AVCC 2.7 V  
AVCC < 2.7 V  
For built-in  
2.7  
AVCC  
AVCC  
Analog reference voltage  
AVRH  
CS  
-
-
AVCC  
Smoothing capacitor  
FPT-48P-M49,  
1
10  
μF  
Regulator *  
LCC-48P-M73,  
FPT-64P-M38,  
FPT-64P-M39,  
Operating  
Temperature  
TA  
-
- 40  
+ 85  
°C  
LCC-64P-M24  
*: See C Pin in Handling Devices for the connection of the smoothing capacitor.  
<WARNING>  
The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure. No warranty is made  
with respect to uses, operating conditions, or combinations not represented on the data sheet. Users  
considering application outside the listed conditions are advised to contact their representatives beforehand.  
46  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
3. DC Characteristics  
(1) Current Rating  
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter Symbol  
Conditions  
Unit Remarks  
Typ*3 Max*4  
CPU: 20 MHz,  
Peripheral: 20 MHz,  
Flash memory 0 Wait,  
FRWTR.RWT = 00,  
FSYNDN.SD = 000  
CPU: 20 MHz,  
20  
25  
mA *1, *5  
PLL  
Run mode  
Peripheral: clock stopped,  
NOP operation  
10  
15  
5
mA *1, *5  
mA *1  
CPU/Peripheral: 4 MHz*2  
Flash memory 0 Wait  
FRWTR.RWT = 00  
FSYNDN.SD = 000  
CPU/Peripheral: 32 kHz,  
Flash memory 0 Wait,  
High-speed  
CR  
Run mode  
ICC  
4.5  
Sub  
0.25  
0.3  
0.35 mA *1, *6  
0.45 mA *1  
Power  
supply  
current  
Run mode FRWTR.RWT = 00,  
FSYNDN.SD = 000  
VCC  
CPU/Peripheral: 100 kHz,  
Low-speed  
Flash memory 0 Wait,  
CR  
FRWTR.RWT = 00,  
Run mode  
FSYNDN.SD = 000  
PLL  
Peripheral: 20 MHz  
Sleep mode  
9
13  
2.5  
0.2  
mA *1, *5  
mA *1  
High-speed  
CR  
Sleep mode  
Sub  
Sleep mode  
Low-speed  
CR  
Peripheral: 4 MHz*2  
Peripheral: 32 kHz  
Peripheral: 100 kHz  
2
ICCS  
0.1  
0.2  
mA *1, *6  
0.35 mA *1  
Sleep mode  
*1: When all ports are fixed.  
*2: When setting it to 4 MHz by trimming.  
*3: TA=+25°C, VCC=3.3 V  
*4: TA=+85°C, VCC=5.5 V  
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
47  
D a t a S h e e t  
Value  
Pin  
name  
Parameter Symbol  
Conditions  
Unit Remarks  
mA *1, *4  
mA *1, *4  
μA *1, *5  
μA *1, *5  
μA *1, *5  
μA *1, *5  
μA *1  
Typ*2 Max*3  
TA = + 25°C,  
When LVD is off  
TA = + 85°C,  
When LVD is off  
TA = + 25°C,  
When LVD is off  
TA = + 85°C,  
When LVD is off  
TA = + 25C,  
When LVD is off  
TA = + 85C,  
When LVD is off  
TA = + 25C,  
When LVD is off  
TA = + 85C,  
When LVD is off  
TA = + 25C,  
When LVD is off  
TA = + 85C,  
When LVD is off  
TA = + 25C,  
When LVD is off  
TA = + 85C,  
1
3.6  
3.9  
70  
170  
7.5  
62  
7
Main  
Timer mode  
1.7  
8.5  
18  
1.8  
7
ICCT  
Sub  
Timer mode  
ICCR  
RTC mode  
Stop mode  
Power  
supply  
current  
VCC  
0.7  
6
ICCH  
60  
3
μA *1  
1.6  
3.6  
0.5  
2.5  
μA *1, *5  
Deep Standby  
RTC mode  
ICCRD  
14.5 μA *1, *5  
2.5 μA *1  
12.5 μA *1  
Deep Standby  
Stop mode  
ICCHD  
When LVD is off  
*1: When all ports are fixed.  
*2: VCC=3.3 V  
*3: VCC=5.5 V  
*4: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
48  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Low Voltage Detection Current  
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40C to + 85C)  
Value  
Typ* Max  
Pin  
Parameter Symbol  
name  
Conditions  
Unit Remarks  
For occurrence of reset or for  
occurrence of interrupt in normal  
mode operation  
For occurrence of reset and for  
occurrence of interrupt in normal  
mode operation  
10  
20  
μA  
When not  
detected  
μA  
Low-voltage  
detection circuit  
(LVD) power  
supply current  
ICCLVD  
VCC  
14  
30  
2
For occurrence of interrupt in  
low-power mode operation  
When not  
μA  
0.3  
detected  
*: When VCC=3.3 V  
Flash Memory Current  
(VCC = 1.8 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
Flash memory  
write/erase  
current  
ICCFLASH  
VCC  
At Write/Erase  
10.8  
11.9  
mA  
A/D Converter Current  
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
At 1unit  
operation  
1.4  
2.5  
mA  
Power supply  
current  
ICCAD  
AVCC  
AVRH  
At stop  
0.1  
0.35  
μA  
At 1unit  
operation  
AVRH=5.5 V  
0.8  
0.1  
1.5  
0.3  
mA  
Reference power  
supply current  
ICCAVRH  
At stop  
μA  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
49  
D a t a S h e e t  
(2) Pin Characteristics  
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ Max  
Parameter Symbol Pin name  
Conditions  
Unit  
Remarks  
Min  
MD0, MD1,  
PE0, PE2,  
PE3,  
P46, P47,  
INITX  
VCC  
0.8  
×
VCC  
0.3  
+
-
-
-
V
P21, P22,  
H level input  
voltage  
(hysteresis  
input)  
P23,  
P50, P51,  
P52,  
VCC×  
0.7  
VSS  
+
VIHS  
-
V
5V tolerant  
5.5  
P80, P81,  
P82  
CMOS  
hysteresis  
input pins  
other than  
the above  
MD0, MD1,  
PE0, PE2,  
PE3,  
P46, P47,  
INITX  
CMOS  
VCC  
0.7  
×
-
VCC  
0.3  
+
-
-
-
-
-
-
V
V
V
VSS  
0.3  
VCC×  
0.2  
L level input  
voltage  
(hysteresis  
input)  
VILS  
hysteresis  
input pins  
other than  
the above  
VSS  
0.3  
-
VCC×  
0.3  
VCC 4.5 V  
IOH = - 4 mA  
VCC  
0.5  
-
-
-
-
VCC  
VCC  
H level  
output voltage  
VOH  
Pxx  
Pxx  
V
V
VCC < 4.5 V  
IOH = - 1 mA  
VCC  
0.5  
VCC 4.5 V  
IOL = 4 mA  
VCC < 4.5 V  
IOL = 2 mA  
L level  
output voltage  
VOL  
VSS  
-
0.4  
Input leak  
current  
Pull-up  
resistance  
value  
IIL  
-
-
- 5  
-
+5  
μA  
kΩ  
VCC 4.5 V  
25  
40  
50  
100  
400  
RPU  
Pull-up pin  
VCC < 4.5 V  
100  
Other than  
VCC, VSS,  
AVCC, AVSS,  
AVRH  
Input  
capacitance  
CIN  
-
-
5
15  
pF  
50  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
4. AC Characteristics  
(1) Main Clock Input Characteristics  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter  
Input frequency  
Input clock cycle  
Symbol  
Conditions  
Unit  
Remarks  
Min  
4
Max  
20  
VCC 2.0 V  
VCC < 2.0 V  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
VCC < 4.5 V  
PWH/tCYLH,  
PWL/tCYLH  
MHz  
MHz  
MHz  
MHz  
ns  
When crystal oscillator  
is connected  
When using external  
clock  
When using external  
clock  
When using external  
clock  
4
4
4
4
20  
16  
250  
250  
fCH  
X0,  
X1  
50  
62.5  
tCYLH  
-
ns  
Input clock pulse  
width  
Input clock rise  
time and fall time  
45  
-
55  
5
%
ns  
tCF,  
tCR  
When using external  
clock  
-
-
-
-
-
fCM  
fCC  
fCP0  
fCP1  
-
-
-
-
-
20  
20  
20  
20  
MHz Master clock  
Base clock  
MHz  
-
(HCLK/FCLK)  
Internal operating  
clock*1  
frequency  
-
MHz APB0 bus clock*2  
MHz APB1 bus clock*2  
-
fCP2  
-
-
-
-
-
20  
-
MHz APB2 bus clock*2  
Base clock  
ns  
tCYCC  
50  
(HCLK/FCLK)  
tCYCP0  
tCYCP1  
-
-
-
-
50  
50  
-
-
ns  
ns  
APB0 bus clock*2  
APB1 bus clock*2  
Internal operating  
clock*1  
cycle time  
tCYCP2  
-
-
50  
-
ns  
APB2 bus clock*2  
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral  
Manual.  
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.  
X0  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
51  
D a t a S h e e t  
(2) Sub Clock Input Characteristics  
Pin  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
name  
Min  
Max  
When crystal  
-
-
32.768  
-
kHz oscillator is  
connected  
Input frequency  
fCL  
When using  
external clock  
When using  
external clock  
When using  
external clock  
-
-
32  
10  
45  
-
-
-
100  
31.25  
55  
kHz  
X0A,  
X1A  
Input clock cycle  
tCYLL  
-
μs  
Input clock pulse  
width  
PWH/tCYLL,  
PWL/tCYLL  
%
X0A  
(3) Built-in CR Oscillation Characteristics  
Built-in High-speed CR  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
TA = + 25°C  
3.92  
4
4.08  
When trimming*1  
When not trimming  
When trimming*1  
When not trimming  
TA =  
- 40°C to + 85°C  
TA =  
- 40°C to + 85°C  
TA = + 25°C  
TA =  
- 40°C to + 85°C  
TA =  
- 40°C to + 85°C  
VCC  
3.8  
4
4.2  
MHz  
2.2 V  
2.3  
3.4  
-
7.03  
4.6  
Clock frequency  
fCRH  
4
4
VCC  
<
3.16  
4.84  
MHz  
2.2 V  
2.3  
-
-
-
7.03  
10  
Frequency  
stabilization time  
tCRWT  
-
μs *2  
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.  
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value.  
This period is able to use High-speed CR clock as source clock.  
Built-in Low-speed CR  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Clock frequency  
fCRL  
-
50  
100  
150  
kHz  
52  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
(4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL)  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min Typ Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
200  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
fPLLI  
-
fPLLO  
fCLKPLL  
4
1
10  
-
-
-
-
-
20  
5
20  
20  
MHz  
multiplier  
MHz  
PLL macro oscillation clock frequency  
Main PLL clock frequency*2  
MHz  
*1: Time from when the PLL starts operating until the oscillation stabilizes.  
*2: For more information about Main PLL clock(CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral  
Manual.  
(4-2) Operating Conditions of Main PLL (In the case of using built-in High-speed CR clock for input  
clock of Main PLL)  
(VCC = 2.2V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min Typ Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
200  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
fPLLI  
-
fPLLO  
fCLKPLL  
3.8  
3
11.4  
-
4
-
-
4.2  
4
16.8  
16.8  
MHz  
multiplier  
MHz  
PLL macro oscillation clock frequency  
Main PLL clock frequency*2  
-
MHz  
*1: Time from when the PLL starts operating until the oscillation stabilizes.  
*2: For more information about Main PLL clock(CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral  
Manual.  
Note: Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency  
has been trimmed.  
When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account  
and prevent the master clock from exceeding the maximum frequency.  
Main PLL connection  
Main PLL  
clock  
(CLKPLL)  
PLL input  
clock  
PLL macro  
oscillation clock  
Main clock (CLKMO)  
K
M
divider  
Main  
PLL  
divider  
High-speed CR clock (CLKHC)  
N
divider  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
53  
D a t a S h e e t  
(5) Reset Input Characteristics  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
500  
-
ns  
When RTC mode  
or Stop mode  
When Deep  
1.5  
1.5  
-
-
ms  
Reset input time  
tINITX  
INITX  
-
ms  
Standby mode  
(6) Power-on Reset Timing  
Parameter  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Symbol  
Unit  
Remarks  
Min  
0.1  
Typ  
-
Max  
-
Power supply rising time  
Power supply shut down time  
Reset release voltage  
dV/dt  
tOFF  
V/ms  
ms  
V
1
-
-
VDETH  
VDETL  
1.44  
1.39  
1.60  
1.55  
1.76  
1.71  
When voltage rises  
When voltage drops  
VCC  
Reset detection voltage  
V
Time until releasing  
Power-on reset  
tPRT  
0.46  
-
-
-
11.4  
0.4  
ms  
ms  
dV/dt 0.1mV/μs  
Reset detection delay time  
tOFFD  
dV/dt -0.04mV/μs  
VDETH  
VDETL  
VCC  
dV  
dt  
0.2V  
tOFF  
0.2V  
tPRT  
tOFFD  
Reset active  
Internal reset  
Reset active  
Release  
start  
CPU Operation  
54  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
(7) Base Timer Input Timing  
Timer input timing  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
ECK,TIN)  
tTIWH  
tTIWL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTIWH  
tTIWL  
ECK  
TIN  
VIHS  
VIHS  
VILS  
VILS  
Trigger input timing  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol Pin name Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
TGIN)  
tTRGH  
tTRGL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTRGH  
tTRGL  
VIHS  
VIHS  
TGIN  
VILS  
VILS  
Note: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
55  
D a t a S h e e t  
(8) CSIO/UART Timing  
CSIO (SPI = 0, SCINV = 0)  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
2.7 V ≤  
VCC < 4.5 V  
Min Max Min Max Min Max  
VCC < 2.7 V  
VCC 4.5 V  
Pin  
name  
Parameter Symbol  
Conditions  
Unit  
Serial clock cycle  
time  
SCK ↓ → SOT  
delay time  
SIN SCK ↑  
setup time  
SCK ↑ → SIN  
hold time  
Serial clock L  
pulse width  
Serial clock H  
pulse width  
SCK ↓ → SOT  
delay time  
SIN SCK ↑  
setup time  
tSCYC  
SCKx  
4tCYCP  
-40  
75  
-
4tCYCP  
-30  
50  
-
4tCYCP  
-20  
30  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVI  
+40  
+30  
+20  
Master mode  
tIVSHI  
-
-
-
-
-
-
-
-
tSHIXI  
0
0
0
2tCYCP  
- 10  
2tCYCP  
- 10  
2tCYCP  
- 10  
tSLSH  
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
30*1  
40*2  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
-
75  
-
-
50  
-
-
Slave mode  
tIVSHE  
10  
20  
10  
20  
10  
20  
-
-
SCK ↑ → SIN  
hold time  
tSHIXE  
-
-
SCK falling time  
SCK rising time  
*1 When PZR=0.  
*2 When PZR=1.  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 50 pF.  
56  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
57  
D a t a S h e e t  
CSIO (SPI = 0, SCINV = 1)  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
2.7 V ≤  
VCC < 4.5 V  
Min Max Min Max Min Max  
VCC < 2.7 V  
VCC 4.5 V  
Pin  
name  
Parameter Symbol  
Conditions  
Unit  
Serial clock cycle  
time  
SCK ↑ → SOT  
delay time  
SIN SCK ↓  
setup time  
SCK ↓ → SIN  
hold time  
Serial clock L  
pulse width  
Serial clock H  
pulse width  
SCK ↑ → SOT  
delay time  
SIN SCK ↓  
setup time  
tSCYC  
SCKx  
4tCYCP  
-40  
75  
-
4tCYCP  
-30  
50  
-
4tCYCP  
-20  
30  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVI  
+40  
+30  
+20  
Master mode  
tIVSLI  
-
-
-
-
-
-
-
-
tSLIXI  
0
0
0
2tCYCP  
- 10  
2tCYCP  
- 10  
2tCYCP  
- 10  
tSLSH  
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
30*1  
40*2  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVE  
-
75  
-
-
50  
-
-
Slave mode  
tIVSLE  
10  
20  
10  
20  
10  
20  
-
-
SCK ↓ → SIN  
hold time  
tSLIXE  
-
-
SCK falling time  
SCK rising time  
*1 When PZR=0.  
*2 When PZR=1.  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 50 pF.  
58  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
59  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 0)  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
2.7 V ≤  
VCC < 4.5 V  
Min Max Min Max Min Max  
VCC < 2.7 V  
VCC 4.5 V  
Pin  
name  
Parameter Symbol  
Conditions  
Unit  
Serial clock cycle  
time  
SCK ↑ → SOT  
delay time  
SIN SCK ↓  
setup time  
SCK ↓ → SIN  
hold time  
SOT SCK ↓  
delay time  
Serial clock L  
pulse width  
Serial clock H  
pulse width  
SCK ↑ → SOT  
delay time  
tSCYC  
SCKx  
4tCYCP  
-40  
75  
-
4tCYCP  
-30  
50  
-
4tCYCP  
-20  
30  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVI  
+40  
+30  
+20  
tIVSLI  
Master mode  
-
-
-
-
-
-
-
-
-
tSLIXI  
0
0
0
SCKx,  
SOTx  
2tCYCP  
- 30  
2tCYCP  
- 10  
2tCYCP  
- 30  
2tCYCP  
- 10  
2tCYCP  
- 30  
2tCYCP  
- 10  
tSOVLI  
-
-
tSLSH  
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
30*1  
40*2  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVE  
-
75  
-
-
50  
-
-
Slave mode  
SIN SCK ↓  
setup time  
SCK ↓ → SIN  
hold time  
tIVSLE  
10  
20  
10  
20  
10  
20  
-
-
tSLIXE  
-
-
SCK falling time  
SCK rising time  
*1 When PZR=0.  
*2 When PZR=1.  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 50 pF.  
60  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
VIH  
tF  
VIH  
VIH  
SCK  
SOT  
SIN  
VIL  
VIL  
tR  
tSHOVE  
VOH  
VOL  
*
VOH  
VOL  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
*: Changes when writing to TDR register  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
61  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 1)  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
2.7 V ≤  
VCC < 4.5 V  
Min Max Min Max Min Max  
VCC < 2.7 V  
VCC 4.5 V  
Pin  
name  
Parameter Symbol  
Conditions  
Unit  
Serial clock cycle  
time  
tSCYC  
SCKx  
4tCYCP  
-40  
-
4tCYCP  
-30  
-
4tCYCP  
-20  
-
ns  
ns  
SCK ↓ → SOT  
tSLOVI  
SCKx,  
SOTx  
+40  
+30  
+20  
delay time  
SIN SCK ↑  
tIVSHI  
SCKx,  
SINx  
SCKx,  
SINx  
SCKx,  
SOTx  
Master mode  
75  
0
-
-
50  
0
-
-
30  
0
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
setup time  
SCK ↑ → SIN  
hold time  
tSHIXI  
SOT SCK ↑  
delay time  
2tCYCP  
- 30  
2tCYCP  
- 10  
tCYCP  
10  
2tCYCP  
- 30  
2tCYCP  
- 10  
tCYCP  
10  
2tCYCP  
- 30  
2tCYCP  
- 10  
tCYCP  
10  
tSOVHI  
-
-
Serial clock L  
pulse width  
tSLSH  
SCKx  
SCKx  
-
-
Serial clock H  
pulse width  
+
+
+
tSHSL  
-
-
30*1  
40*2  
SCK ↓ → SOT  
delay time  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
-
75  
-
-
50  
-
-
Slave mode  
SIN SCK ↑  
setup time  
tIVSHE  
10  
20  
10  
20  
10  
20  
-
-
SCK ↑ → SIN  
hold time  
tSHIXE  
-
-
SCK falling time  
SCK rising time  
*1 When PZR=0.  
*2 When PZR=1.  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 50 pF.  
62  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
tSCYC  
VOL  
VOH  
VOH  
SCK  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tR  
tF  
tSHSL  
tSLSH  
VIH  
VIH  
SCK  
VIL  
VIL  
VIL  
tSLOVE  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
UART external clock input (EXT = 1)  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol Conditions  
Unit Remarks  
Min  
Max  
Serial clock L pulse width  
Serial clock H pulse width  
SCK falling time  
tSLSH  
tSHSL  
tF  
tCYCP + 10  
tCYCP + 10  
-
-
5
5
ns  
ns  
ns  
ns  
CL = 50 pF  
-
-
SCK rising time  
tR  
tF  
tR  
t
t
SLSH  
SHSL  
SCK  
V
V
V
IH  
IH  
IH  
VIL  
VIL  
V
IL  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
63  
D a t a S h e e t  
(9) External Input Timing  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Min  
Parameter Symbol Pin name Conditions  
Unit  
Remarks  
Max  
A/D converter  
trigger input  
ns Free-run timer input  
clock  
ADTG  
1
-
2tCYCP  
*
-
FRCKx  
ICxx  
DTTIxX  
INTxx,  
NMIX  
Input capture  
ns Waveform generator  
tINH  
tINL  
,
Input pulse width  
1
-
*2  
*3  
2tCYCP  
*
-
-
-
2tCYCP + 100*1  
500  
ns  
ns  
External interrupt  
NMI  
Deep Standby wake  
up  
WKUPx  
*4  
500  
-
ns  
*1: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which A/D converter, Multi-function Timer, External interrupt, Deep Standby  
mode Controller is connected to, see Block Diagram in this data sheet.  
*2: When in Run mode, in Sleep mode.  
*3: When in Timer mode, in RTC mode, in Stop mode.  
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.  
64  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
(10) I2C Timing  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Standard-mode Fast-mode  
Parameter  
Symbol Conditions  
Unit Remarks  
Min  
Max  
Min Max  
SCL clock frequency  
(Repeated) START condition  
hold time  
fSCL  
0
100  
0
400 kHz  
tHDSTA  
4.0  
-
0.6  
-
μs  
SDA ↓ → SCL ↓  
SCL clock L width  
SCL clock H width  
(Repeated) START condition  
setup time  
SCL ↑ → SDA ↓  
Data hold time  
SCL ↓ → SDA ↓ ↑  
Data setup time  
SDA ↓ ↑ → SCL ↑  
STOP condition setup time  
SCL ↑ → SDA ↑  
tLOW  
tHIGH  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
μs  
tSUSTA  
4.7  
-
0.6  
-
μs  
CL = 50 pF,  
R =  
(VP/IOL)*1  
tHDDAT  
tSUDAT  
tSUSTO  
0
3.45*2  
0
0.9*3 μs  
250  
4.0  
-
-
100  
0.6  
-
-
ns  
μs  
Bus free time between  
STOP condition and  
START condition  
Noise filter  
tBUF  
tSP  
4.7  
-
-
1.3  
-
-
μs  
4
4
-
2 tCYCP  
*
2 tCYCP  
*
ns  
*1: R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.  
VP indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.  
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.  
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies  
the requirement of tSUDAT ≥ 250 ns.  
*4: tCYCP is the APB bus clock cycle time.  
About the APB bus number which I2C is connected to, see Block Diagram in this data sheet.  
To use Standard-mode, set the APB bus clock at 2 MHz or more.  
To use Fast-mode, set the APB bus clock at 8 MHz or more.  
SDA  
SCL  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
65  
D a t a S h e e t  
(11) JTAG Timing  
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter Symbol Pin name  
Conditions  
Unit  
ns  
Remarks  
Min  
Max  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
TMS,TDI setup  
time  
TCK,  
TMS,TDI  
tJTAGS  
tJTAGH  
15  
-
TMS,TDI hold  
time  
TCK,  
TMS,TDI  
15  
-
-
ns  
30  
TCK,  
TDO  
TDO delay time  
tJTAGD  
ns  
2.7 V VCC < 4.5 V  
-
-
45  
60  
VCC < 2.7 V  
Note: When the external load capacitance CL = 50 pF.  
TCK  
TMS/TDI  
TDO  
66  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
5. 12-bit A/D Converter  
Electrical characteristics for the A/D converter  
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ  
Pin  
name  
-
Parameter  
Symbol  
Unit  
Remarks  
Min  
-
-
-
-
-
-
-
Max  
12  
Resolution  
-
-
-
-
-
-
-
-
bit  
± 3.0  
± 5.0  
± 1.9  
± 2.9  
± 20  
LSB AVCC 2.7 V  
LSB AVCC < 2.7 V  
LSB AVCC 2.7 V  
LSB AVCC < 2.7 V  
mV  
Integral Nonlinearity  
INL  
-
-
Differential Nonlinearity  
DNL  
Zero transition voltage  
Full-scale transition voltage  
VZT  
VFST  
ANxx  
ANxx  
AVRH ± 20 mV  
1.0  
4.0  
0.3  
1.2  
50  
200  
AVCC 2.7 V  
AVCC < 2.7 V  
AVCC 2.7 V  
AVCC < 2.7 V  
AVCC 2.7 V  
AVCC < 2.7 V  
Conversion time*1  
-
-
-
-
-
-
-
-
10  
μs  
μs  
ns  
Sampling time*2  
tS  
Compare clock cycle*3  
tCCK  
1000  
1
Period of operation enable  
state transitions  
Analog input capacity  
tSTT  
-
-
-
-
-
-
μs  
CAIN  
15  
0.9  
1.6  
4.0  
4
pF  
AVCC 4.5 V  
kΩ 2.7 V ≤ AVCC < 4.5 V  
AVCC < 2.7 V  
Analog input resistor  
RAIN  
-
-
-
Interchannel disparity  
Analog port input leak  
current  
-
-
-
-
-
-
-
-
-
-
-
LSB  
ANxx  
ANxx  
AVRH  
0.3  
μA  
Analog input voltage  
AVSS  
2.7  
AVCC  
AVRH  
AVCC  
V
AVCC 2.7 V  
AVCC < 2.7 V  
Reference voltage  
V
*1: The conversion time is the value of sampling time (tS) + compare time (tC).  
The condition of the minimum conversion time is the following.  
AVCC 2.7 V, HCLK=20 MHz sampling time: 0.3 μs, compare time: 0.7 μs  
AVCC < 2.7 V, HCLK=20 MHz sampling time: 1.2 μs, compare time: 2.8 μs  
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).  
For setting*4 of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family  
Peripheral Manual Analog Macro Part.  
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock  
timing.  
For the number of the APB bus to which the A/D Converter is connected, see Block Diagram.  
The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.  
*2: A necessary sampling time changes by external impedance.  
Ensure to set the sampling time to satisfy (Equation 1).  
*3: The compare time (tC) is the value of (Equation 2).  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
67  
D a t a S h e e t  
ANxx  
Analog input pin  
Comparator  
RAIN  
Rext  
Analog  
signal source  
CAIN  
(Equation 1) tS ( RAIN + REXT ) × CAIN × 9  
tS:  
Sampling time  
RAIN  
:
Input resistor of A/D = 0.9 kΩ at 4.5 V AVCC 5.5 V  
Input resistor of A/D = 1.6 kΩ at 2.7 V AVCC < 4.5 V  
Input resistor of A/D = 4.0 kΩ at 1.8 V AVCC < 2.7 V  
Input capacity of A/D = 15 pF at 1.8 V AVCC 5.5 V  
Output impedance of external circuit  
CAIN  
REXT  
:
:
(Equation 2) tC = tCCK × 14  
tC:  
tCCK  
Compare time  
Compare clock cycle  
:
68  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Definition of 12-bit A/D Converter Terms  
Analog variation that is recognized by an A/D converter.  
Deviation of the line between the zero-transition point  
(0b000000000000←→0b000000000001) and the full-scale transition point  
(0b111111111110←→0b111111111111) from the actual conversion  
characteristics.  
Resolution:  
Integral Nonlinearity:  
Deviation from the ideal value of the input voltage that is required to change  
the output code by 1 LSB.  
Differential Nonlinearity:  
Integral Nonlinearity  
Differential Nonlinearity  
0xFFF  
Actual conversion  
Actual conversion  
characteristics  
characteristics  
0xFFE  
0x(N+1)  
0xN  
{1 LSB(N-1) + VZT}  
0xFFD  
VFST  
Ideal characteristics  
(Actually-  
measured  
value)  
VNT  
0x004  
(Actually-measured  
value)  
V(N+1)T  
(Actually-measured  
value)  
0x(N-1)  
0x(N-2)  
0x003  
0x002  
Actual conversion  
characteristics  
VNT  
(Actually-measured  
value)  
Ideal characteristics  
0x001  
(Actually-measured value)  
VZT  
Actual conversion characteristics  
AVSS  
AVRH  
AVSS  
AVRH  
Analog input  
Analog input  
VNT - {1LSB × (N - 1) + VZT}  
1LSB  
Integral Nonlinearity of digital output N =  
Differential Nonlinearity of digital output N =  
[LSB]  
V(N + 1) T - VNT  
- 1 [LSB]  
1LSB  
VFST - VZT  
1LSB =  
4094  
N:  
A/D converter digital output value.  
VZT: Voltage at which the digital output changes from 0x000 to 0x001.  
VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF.  
VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
69  
D a t a S h e e t  
6. Low-Voltage Detection Characteristics  
(1) Low-Voltage Detection Reset  
(TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Conditions  
SVHR = 0001  
SVHR = 0100  
Unit  
Remarks  
Min  
1.43  
1.53  
1.80  
1.90  
Typ  
1.53  
1.63  
1.93  
2.03  
Max  
1.63  
1.73  
2.06  
2.16  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDLR  
VDHR  
VDLR  
VDHR  
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
LVD stabilization  
wait time  
633 ×  
tLVDRW  
-
-
-
-
-
μs  
μs  
tCYCP  
*
Detection delay time tLVDRD  
dV/dt -4mV/µs  
60  
*: tCYCP indicates the APB2 bus clock cycle time.  
70  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
(2) Interrupt of Low-voltage Detection  
Normal mode  
(TA = - 40°C to + 85°C)  
Value  
Typ  
2.00  
2.10  
2.10  
2.20  
2.20  
2.30  
2.30  
2.40  
2.40  
2.50  
2.50  
2.60  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.60  
3.70  
3.70  
3.80  
4.00  
4.10  
4.10  
4.20  
4.20  
4.30  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
1.87  
1.97  
1.96  
2.06  
2.05  
2.15  
2.15  
2.25  
2.24  
2.34  
2.33  
2.43  
2.43  
2.53  
2.61  
2.71  
2.80  
2.90  
2.99  
3.09  
3.36  
3.46  
3.45  
3.55  
3.73  
3.83  
3.83  
3.93  
3.92  
4.02  
Max  
2.13  
2.23  
2.24  
2.34  
2.35  
2.45  
2.45  
2.55  
2.56  
2.66  
2.67  
2.77  
2.77  
2.87  
2.99  
3.09  
3.20  
3.30  
3.41  
3.51  
3.84  
3.94  
3.95  
4.05  
4.27  
4.37  
4.37  
4.47  
4.48  
4.58  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
VDLI  
VDHI  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
SVHI = 0000  
SVHI = 0001  
SVHI = 0010  
SVHI = 0011  
SVHI = 0100  
SVHI = 0101  
SVHI = 0110  
SVHI = 0111  
SVHI = 1000  
SVHI = 1001  
SVHI = 1010  
SVHI = 1011  
SVHI = 1100  
SVHI = 1101  
SVHI = 1110  
LVD stabilization  
wait time  
633 ×  
tLVDIW  
-
-
-
-
-
μs  
μs  
tCYCP  
*
Detection delay  
time  
dV/dt ≥  
-4mV/µs  
tLVDID  
60  
*: tCYCP indicates the APB2 bus clock cycle time.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
71  
D a t a S h e e t  
Low power mode  
(TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
Typ  
2.00  
2.10  
2.10  
2.20  
2.20  
2.30  
2.30  
2.40  
2.40  
2.50  
2.50  
2.60  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.60  
3.70  
3.70  
3.80  
4.00  
4.10  
4.10  
4.20  
4.20  
4.30  
Max  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDLIL  
VDHIL  
1.80  
1.90  
1.89  
1.99  
1.98  
2.08  
2.07  
2.17  
2.16  
2.26  
2.25  
2.35  
2.34  
2.44  
2.52  
2.62  
2.70  
2.80  
2.88  
2.98  
3.24  
3.34  
3.33  
3.43  
3.60  
3.70  
3.69  
3.79  
3.78  
3.88  
2.20  
2.30  
2.31  
2.41  
2.42  
2.52  
2.53  
2.63  
2.64  
2.74  
2.75  
2.85  
2.86  
2.96  
3.08  
3.18  
3.30  
3.40  
3.52  
3.62  
3.96  
4.06  
4.07  
4.17  
4.40  
4.50  
4.51  
4.61  
4.62  
4.72  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
SVHI = 0000  
VDLIL  
SVHI = 0001  
VDHIL  
VDLIL  
SVHI = 0010  
VDHIL  
VDLIL  
SVHI = 0011  
VDHIL  
VDLIL  
SVHI = 0100  
VDHIL  
VDLIL  
SVHI = 0101  
VDHIL  
VDLIL  
SVHI = 0110  
VDHIL  
VDLIL  
SVHI = 0111  
VDHIL  
VDLIL  
SVHI = 1000  
VDHIL  
VDLIL  
SVHI = 1001  
VDHIL  
VDLIL  
SVHI = 1010  
VDHIL  
VDLIL  
SVHI = 1011  
VDHIL  
VDLIL  
SVHI = 1100  
VDHIL  
VDLIL  
SVHI = 1101  
VDHIL  
VDLIL  
SVHI = 1110  
VDHIL  
LVD stabilization  
wait time  
8039 ×  
tLVDILW  
-
-
-
-
-
μs  
μs  
tCYCP  
*
Detection delay  
time  
dV/dt ≥  
-0.4mV/μs  
tLVDILD  
800  
*: tCYCP indicates the APB2 bus clock cycle time.  
72  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
7. Flash Memory Write/Erase Characteristics  
(1) Write / Erase time  
(VCC = 2.0V to 5.5V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Unit  
Remarks  
Typ*  
1.6  
0.4  
Max*  
7.5  
2.1  
Large Sector  
Small Sector  
Sector erase  
time  
Includes write time prior to internal  
erase  
s
μs  
s
Half word (16-bit)  
write time  
Not including system-level overhead  
25  
4
400  
time.  
Includes write time prior to internal  
erase  
Chip erase time  
19.2  
*: The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle  
of erase/write.  
(2) Write cycles and data hold time  
Erase/write cycles (cycle)  
Data hold time (year)  
Remarks  
1,000  
10,000  
100,000  
20*  
10*  
5*  
*: At average + 85C  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
73  
D a t a S h e e t  
8. Return Time from Low-Power Consumption Mode  
(1) Return Factor: Interrupt/WKUP  
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the  
return factor to starting the program operation.  
Return Count Time  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
tCYCC  
Sleep mode  
μs  
High-speed CR Timer mode,  
Main Timer mode,  
40  
80  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
Sub Timer mode  
630  
630  
1260  
1260  
μs  
μs  
tICNT  
RTC mode,  
Stop mode  
Deep Standby RTC mode  
Deep Standby Stop mode  
1083  
1099  
2100  
2127  
μs  
μs  
*: The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by external interrupt*)  
External  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: External interrupt is set to detecting fall edge.  
74  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)  
Internal  
resource  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.  
Notes: The return factor is different in each Low-Power consumption modes.  
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family  
Peripheral Manual.  
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the  
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3  
Family Peripheral Manual.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
75  
D a t a S h e e t  
(2) Return Factor: Reset  
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to  
starting the program operation.  
Return Count Time  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
Sleep mode  
359  
647  
μs  
High-speed CR Timer mode,  
Main Timer mode,  
359  
647  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
Sub Timer mode  
929  
929  
1787  
1787  
2127  
μs  
μs  
μs  
tRCNT  
RTC/Stop mode  
1099  
Deep Standby RTC mode  
Deep Standby Stop mode  
1099  
2127  
μs  
*: The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by INITX)  
INITX  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
76  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Operation example of return from low power consumption mode (by internal resource reset*)  
Internal  
resource  
reset  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.  
Notes: The return factor is different in each Low-Power consumption modes.  
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family  
Peripheral Manual.  
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the  
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3  
Family Peripheral Manual.  
The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on  
Reset Timing in 4. AC Characteristics in Electrical Characteristics for the detail on the time  
during the power-on reset/low-voltage detection reset.  
When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the  
main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait  
time or the Main PLL clock stabilization wait time.  
The internal resource reset means the watchdog reset and the CSV reset.  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
77  
D a t a S h e e t  
Ordering Information  
On-chip  
Flash  
memory  
On-chip  
SRAM  
Part number  
Package  
Packing  
Plastic LQFP  
(0.5mm pitch), 48-pin  
(FPT-48P-M49)  
MB9AF131KBPMC-G-SNE2  
MB9AF132KBPMC-G-SNE2  
MB9AF131KBQN-G-AVE2  
MB9AF132KBQN-G-AVE2  
MB9AF131LBPMC1-G-SNE2  
MB9AF132LBPMC1-G-SNE2  
MB9AF131LBPMC-G-SNE2  
MB9AF132LBPMC-G-SNE2  
MB9AF131LBQN-G-AVE2  
MB9AF132LBQN-G-AVE2  
64 Kbyte  
128 Kbyte  
64 Kbyte  
128 Kbyte  
64 Kbyte  
128 Kbyte  
64 Kbyte  
128 Kbyte  
64 Kbyte  
128 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
8 Kbyte  
Plastic QFN  
(0.5mm pitch), 48-pin  
(LCC-48P-M73)  
Plastic LQFP  
Tray  
(0.5mm pitch), 64-pin  
(FPT-64P-M38)  
Plastic LQFP  
(0.65mm pitch), 64-pin  
(FPT-64P-M39)  
Plastic QFN  
(0.5mm pitch), 64-pin  
(LCC-64P-M24)  
78  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
Package Dimensions  
48-pin plastic LQFP  
Lead pitch  
0.50 mm  
7.00 mm × 7.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.17 g  
Sealing method  
Mounting height  
Weight  
(FPT-48P-M49)  
48-pin plastic LQFP  
(FPT-48P-M49)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
9.00± 0.20(.354 ± .008)SQ  
*7.00± 0.10(.276 ± .004)SQ  
0.145± 0.055  
(.006± .002)  
36  
25  
37  
24  
Details of "A" part  
0.08(.003)  
1.50+00..2100  
(Mounting height)  
.059+..000048  
INDEX  
48  
13  
0.10± 0.10  
(.004± .004)  
(Stand off)  
"A"  
0°~8°  
1
12  
0.50(.020)  
0.25(.010)  
0.22± 0.05  
(.008± .002)  
M
0.08(.003)  
0.60± 0.15  
(.024± .006)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2010 FUJITSU SEMICONDUCTOR LIMITED HMbF48-49Sc-1-2  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
79  
D a t a S h e e t  
48-pin plastic QFN  
Lead pitch  
0.5 mm  
7.00 mm × 7.00 mm  
Plastic mold  
0.90 mm MAX  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-48P-M73)  
48-pin plastic QFN  
(LCC-48P-M73)  
7.00±0.10  
5.50±0.10  
(.276±.004)  
(.217±.004)  
0.25±0.05  
(.010±.002)  
7.00±0.10  
(.276±.004)  
5.50±0.10  
(.217±.004)  
INDEX AREA  
0.45 (.018)  
1PIN ID  
(0.20R (.008R))  
0.85±0.05  
(.033±.002)  
0.50 (.020)  
(TYP)  
0.40±0.05  
(.016±.002)  
0.05 (.002) MAX  
(0.20(.008))  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2011 FUJITSU SEMICONDUCTOR LIMITED HMbC48-73Sc-2-1  
80  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
64-pin plastic LQFP  
Lead pitch  
0.50 mm  
10.00 mm × 10.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.32 g  
Sealing method  
Mounting height  
Weight  
(FPT-64P-M38)  
64-pin plastic LQFP  
(FPT-64P-M38)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
12.00±0.20(.472±.008)SQ  
*10.00±0.10(.394±.004)SQ  
0.145 ± 0.055  
(.006 ± .002)  
48  
33  
Details of "A" part  
49  
32  
1.50+00..1200  
0.08(.003)  
(Mounting height)  
.059+..000084  
0.25(.010)  
0~8°  
INDEX  
0.50±0.20  
(.020±.008)  
0.60 ± 0.15  
(.024±.006)  
0.10 ± 0.10  
(.004±.004)  
(Stand off)  
64  
17  
"A"  
1
16  
0.50(.020)  
0.22±0.05  
M
0.08(.003)  
(.009±.002)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2010 FUJITSU SEMICONDUCTOR LIMITED F64038S-c-1-2  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
81  
D a t a S h e e t  
Lead pitch  
64-pin plastic LQFP  
0.65 mm  
12.00 mm × 12.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.70 mm MAX  
0.47 g  
(FPT-64P-M39)  
64-pin plastic LQFP  
(FPT-64P-M39)  
Note 1) Pins width and pins thickness include plating thickness.  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
48  
33  
Details of "A" part  
49  
32  
1.50+00..1200  
.059+..000048  
0~8˚  
0.10(.004)  
0.10±0.10  
(.004±.004)  
INDEX  
0.50±0.20  
(.020±.008)  
0.60±0.15  
(.024±.006)  
0.25(.010)BSC  
64  
17  
1
16  
"A"  
0.65(.026)  
0.32±0.05  
(.013±.002)  
M
0.13(.005)  
C
Dimensions in mm (inches).  
2010-2011 FUJITSU SEMICONDUCTOR LIMITED HMbF64-39Sc-2-2  
Note: The values in parentheses are referencevalues.  
82  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
64-pin plastic QFN  
Lead pitch  
0.50 mm  
9.00 mm × 9.00 mm  
Plastic mold  
0.90 mm MAX  
-
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-64P-M24)  
64-pin plastic QFN  
(LCC-64P-M24)  
9.00 ± 0.10  
(.354 ±. 004)  
6.00 ± 0.10  
(.236 ±. 004)  
0.25 ± 0.05  
(.010 ±. 002)  
6.00 ± 0.10  
(.236 ±. 004)  
9.00 ± 0.10  
(.354 ±. 004)  
INDEX AREA  
0.45 (.018)  
1PIN ID  
(0.20R (.008R))  
0.50 (.020)  
(TYP)  
0.40 ± 0.05  
(.016 ±. 002)  
0.85 ± 0.05  
(.033 ±. 002)  
0.05 (.002) MAX  
(0.20 (.008))  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2011 FUJITSU SEMICONDUCTOR LIMITED HMbC64-24Sc-2-1  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
83  
D a t a S h e e t  
Major Changes  
Page  
Section  
Change Results  
Revision 1.0  
-
-
Initial release  
Revision 2.0  
Features  
2
Changed the description of on-chip SRAM  
· On-chip Memories  
Handling Devices  
Handling Devices  
Crystal oscillator circuit  
Memory Map  
33  
33  
Added "· Stabilizing power supply voltage"  
Added the following description  
"Evaluate oscillation of your using crystal oscillator by your mount board."  
37  
Added the summary of Flash memory sector  
· Memory map(2)  
· Changed the table format  
Electrical Characteristics  
3. DC Characteristics  
(1) Current rating  
· Added Timer mode current  
· Added Flash Memory Current  
· Moved A/D Converter Current  
47 - 49  
Electrical Characteristics  
4. AC Characteristics  
(4-1) Operating Conditions of Main PLL  
(4-2) Operating Conditions of Main PLL  
Electrical Characteristics  
4. AC Characteristics  
53  
· Added the figure of Main PLL connection  
· Changed the figure of timing  
· Changed from Reset release delay time(tOND) to Time until releasing  
54  
(6) Power-on Reset Timing  
Electrical Characteristics  
4. AC Characteristics  
Power-on reset(tPRT)  
· Modified from UART Timing to CSIO/UART Timing  
· Changed from Internal shift clock operation to Master mode  
· Changed from External shift clock operation to Slave mode  
· Added the typical value of Integral Nonlinearity, Differential Nonlinearity,  
Zero transition voltage and Full-scale transition voltage  
· Added Conversion time at AVCC < 2.7 V  
56 - 63  
(8) CSIO/UART Timing  
Electrical Characteristics  
5. 12bit A/D Converter  
67  
70  
73  
Electrical Characteristics  
7. Low-voltage Detection Characteristics  
Electrical Characteristics  
8. Flash Memory Write/Erase  
Characteristics  
Deleted the figure  
Change to the erase time of include write time prior to internal erase  
Electrical Characteristics  
9. Return Time from Low-Power  
Consumption Mode  
74 - 77  
78  
Added Return Time from Low-Power Consumption Mode  
Changed notation of part number  
Ordering Information  
84  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  
D a t a S h e e t  
June 9, 2015, MB9A130LB_DS706-00066-2v0-E  
85  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use,  
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not  
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless  
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,  
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use  
where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not  
be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the  
products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss  
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire  
protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in  
this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and  
Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a  
Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any  
product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to  
its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party  
rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind  
arising out of the use of the information in this document.  
Copyright © 2014-2015 Cypress All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM  
ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of  
,
Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be  
trademarks of their respective owners.  
86  
MB9A130LB_DS706-00066-2v0-E, June 9, 2015  

相关型号:

MB9AF132LBPMC-G-SNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF132LBPMC1-G-SNE2

RISC Microcontroller, CMOS,
CYPRESS

MB9AF132LBQN-G-AVE2

RISC Microcontroller, CMOS,
CYPRESS

MB9AF141LB

The MB9A140NB Series are highly integrated
SPANSION

MB9AF141LBPMC-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF141LBPMC1-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF141LBQN-G-AVE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF141MB

The MB9A140NB Series are highly integrated
SPANSION

MB9AF141MBBGL-GE1

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF141MBPMC-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF141MBPMC1-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF141NB

The MB9A140NB Series are highly integrated
SPANSION