MB9BF122L [SPANSION]

The MB9B120M Series are highly integrated;
MB9BF122L
型号: MB9BF122L
厂家: SPANSION    SPANSION
描述:

The MB9B120M Series are highly integrated

文件: 总109页 (文件大小:3136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products.  
MB9B120M Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9BF124K/L/M, MB9BF122K/L/M,  
MB9BF121K/L/M  
Data Sheet (Full Production)  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may occur.  
Publication Number MB9B120M_DS706-00050  
Revision 3.0  
Issue Date March 18, 2015  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers  
of product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to  
verify that they have the latest information before finalizing their design. The following descriptions of  
Spansion data sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue.  
Spansion Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion  
Inc. The information is intended to help you evaluate this product. Do not design in this product  
without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on  
this proposed product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the product life  
cycle, including product qualification, initial production, and the subsequent phases in the manufacturing  
process that occur before full production is achieved. Changes to the technical specifications presented  
in a Preliminary document should be expected while keeping these aspects of production under  
consideration. Spansion places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification  
has been completed, and that initial production has begun. Due to the phases of the  
manufacturing process that require maintaining efficiency and quality, this document may be  
revised by subsequent versions or modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their  
designations wherever necessary, typically on the first page, the ordering information page, and pages  
with the DC Characteristics table and the AC Erase and Program table (in the table notes). The  
disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes  
may include those affecting the number of ordering part numbers available, such as the addition or  
deletion of a speed option, temperature range, package type, or VIO range. Changes may also include  
those needed to clarify a description or to correct a typographical error or incorrect specification.  
Spansion Inc. applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may  
occur.”  
Questions regarding these document designations may be directed to your local sales office.  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
MB9B120M Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9BF124K/L/M, MB9BF122K/L/M,  
MB9BF121K/L/M  
Data Sheet (Full Production)  
Description  
The MB9B120M Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers  
with low-power consumption mode and competitive cost.  
These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have  
peripheral functions such as various timers, ADCs, DACs and Communication Interfaces (UART, CSIO,  
I2C, LIN).  
The products which are described in this data sheet are placed into TYPE9 product categories in "FM3  
Family PERIPHERAL MANUAL".  
Note: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
Publication Number MB9B120M_DS706-00050  
Revision 3.0  
Issue Date March 18, 2015  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient  
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the  
valid combinations offered may occur.  
D a t a S h e e t  
Features  
32-bit ARM Cortex-M3 Core  
Processor version: r2p1  
Up to 72 MHz Frequency Operation  
Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and  
48 peripheral interrupts and 16 priority levels  
24-bit System timer (Sys Tick): System timer for OS task management  
On-chip Memories  
[Flash memory]  
Dual operation Flash memory  
Dual Operation Flash memory has the upper bank and the lower bank.  
So, this series could implement erase, write and read operations  
for each bank simultaneously.  
Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank + 16 Kbytes lower bank)  
Work area: 32 Kbytes (lower bank)  
Read cycle: 0 wait-cycle  
Security function for code protection  
[SRAM]  
This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is  
connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.  
SRAM0: Up to 16 Kbytes  
SRAM1: Up to 16 Kbytes  
Multi-function Serial Interface (Max eight channels)  
4 channels with 16steps×9-bit FIFO (ch.0/1/3/4), 4 channels without FIFO (ch.2/5/6/7)  
Operation mode is selectable from the followings for each channel.  
UART  
CSIO  
LIN  
I2C  
[UART]  
Full duplex double buffer  
Selection with or without parity supported  
Built-in dedicated baud rate generator  
External clock available as a serial clock  
Hardware Flow control : Automatically control the transmission/reception by CTS/RTS (only ch.4)  
Various error detection functions available (parity errors, framing errors, and overrun errors)  
[CSIO]  
Full duplex double buffer  
Built-in dedicated baud rate generator  
Overrun error detection function available  
[LIN]  
LIN protocol Rev.2.1 supported  
Full duplex double buffer  
Master/Slave mode supported  
LIN break field generation (can be changed to 13 to 16-bit length)  
LIN break delimiter generation (can be changed to 1 to 4-bit length)  
Various error detection functions available (parity errors, framing errors, and overrun errors)  
[I2C]  
Standard mode (Max 100 kbps) / Fast mode (Max 400 kbps) supported  
2
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
DMA Controller (Eight channels)  
The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process  
simultaneously.  
8 independently configured and operated channels  
Transfer can be started by software or request from the built-in peripherals  
Transfer address area: 32-bit (4 Gbytes)  
Transfer mode: Block transfer/Burst transfer/Demand transfer  
Transfer data type: byte/half-word/word  
Transfer block count: 1 to 16  
Number of transfers: 1 to 65536  
A/D Converter (Max 26 channels)  
[12-bit A/D Converter]  
Successive Approximation type  
Built-in 2units  
Conversion time: 0.8 μs @ 5 V  
Priority conversion available (priority at 2 levels)  
Scanning conversion mode  
Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion:  
4 steps)  
D/A Converter (Max two channels)  
R-2R type  
10-bit resolution  
Base Timer (Max eight channels)  
Operation mode is selectable from the followings for each channel.  
16-bit PWM timer  
16-bit PPG timer  
16-/32-bit reload timer  
16-/32-bit PWC timer  
General-Purpose I/O Port  
This series can use its pins as general-purpose I/O ports when they are not used for peripherals. Moreover,  
the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to.  
Capable of pull-up control per pin  
Capable of reading pin level directly  
Built-in the port relocate function  
Up to 65 high-speed general-purpose I/O Ports @ 80 pin Package  
Some ports are 5 V tolerant.  
See "List of Pin Functions" and "I/O Circuit Type" to confirm the corresponding pins  
Dual Timer (32-/16-bit Down Counter)  
The Dual Timer consists of two programmable 32-/16-bit down counters.  
Operation mode is selectable from the followings for each channel.  
Free-running  
Periodic (=Reload)  
One-shot  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
3
D a t a S h e e t  
Quadrature Position/Revolution Counter (QPRC) (Max two channels)  
The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position  
encoder. Moreover, it is possible to use as the up/down counter.  
The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.  
16-bit position counter  
16-bit revolution counter  
Two 16-bit compare registers  
Multi-function Timer  
The Multi-function timer is composed of the following blocks.  
16-bit free-run timer × 3ch./unit  
Input capture × 4ch./unit  
Output compare × 6ch./unit  
A/D activation compare × 2ch./unit  
Waveform generator × 3ch./unit  
16-bit PPG timer × 3ch./unit  
The following function can be used to achieve the motor control.  
PWM signal output function  
DC chopper waveform output function  
Dead time function  
Input capture function  
A/D convertor activate function  
DTIF (Motor emergency stop) interrupt function  
Real-time clock (RTC)  
The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.  
The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of  
the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or  
Minute.  
Timer interrupt function after set time or each set time.  
Capable of rewriting the time with continuing the time count.  
Leap year automatic count is available.  
Watch Counter  
The Watch counter is used for wake up from Sleep and Timer mode.  
Interval timer: up to 64s (Max) @ Sub Clock : 32.768 kHz  
External Interrupt Controller Unit  
Up to 23 external interrupt input pins @ 80 pin Package  
Include one non-maskable interrupt (NMI) input pin  
Watchdog Timer (Two channels)  
A watchdog timer can generate interrupts or a reset when a time-out value is reached.  
This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.  
The "Hardware" watchdog timer is clocked by the built-in Low-speed CR oscillator. Therefore, the  
"Hardware" watchdog is active in any low-power consumption modes except RTC, Stop, Deep Standby  
RTC, Deep Standby Stop modes.  
4
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
CRC (Cyclic Redundancy Check) Accelerator  
The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a  
reduction of the integrity check processing load for reception data and storage.  
CCITT CRC16 and IEEE-802.3 CRC32 are supported.  
CCITT CRC16 Generator Polynomial: 0x1021  
IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7  
Clock and Reset  
[Clocks]  
Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).  
Main Clock:  
Sub Clock:  
4 MHz to 48 MHz  
32.768 kHz  
Built-in High-speed CR Clock: 4 MHz  
Built-in Low-speed CR Clock: 100 kHz  
Main PLL Clock  
[Resets]  
Reset requests from INITX pin  
Power-on reset  
Software reset  
Watchdog timers reset  
Low-voltage detection reset  
Clock Super Visor reset  
Clock Super Visor (CSV)  
Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.  
If external clock failure (clock stop) is detected, reset is asserted.  
If external frequency anomaly is detected, interrupt or reset is asserted.  
Low-Voltage Detector (LVD)  
This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the  
voltage that has been set, Low-Voltage Detector generates an interrupt or reset.  
LVD1: error reporting via interrupt  
LVD2: auto-reset operation  
Low-Power Consumption Mode  
Six low-power consumption modes supported.  
Sleep  
Timer  
RTC  
Stop  
Deep Standby RTC (selectable between keeping the value of RAM and not)  
Deep Standby Stop (selectable between keeping the value of RAM and not)  
Debug  
Serial Wire JTAG Debug Port (SWJ-DP)  
Unique ID  
Unique value of the device (41 bits) is set.  
Power Supply  
Wide range voltage: VCC = 2.7 V to 5.5 V  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
5
D a t a S h e e t  
Product Lineup  
Memory size  
Product name  
On-chip  
MB9BF121K/L/M  
MB9BF122K/L/M  
MB9BF124K/L/M  
Main area  
64 Kbytes  
32 Kbytes  
128 Kbytes  
256 Kbytes  
Flash  
Work area  
32 Kbytes  
32 Kbytes  
memory  
16 Kbytes  
16 Kbytes  
32 Kbytes  
SRAM0  
SRAM1  
Total  
8 Kbytes  
8 Kbytes  
16 Kbytes  
8 Kbytes  
8 Kbytes  
16 Kbytes  
On-chip  
SRAM  
Function  
MB9BF121K  
MB9BF122K  
MB9BF124K  
48  
MB9BF121L  
MB9BF122L  
MB9BF124L  
64  
Cortex-M3  
72 MHz  
MB9BF121M  
MB9BF122M  
MB9BF124M  
80/96  
Product name  
Pin count  
CPU  
Freq.  
Power supply voltage range  
DMAC  
2.7 V to 5.5 V  
8ch.  
4ch. (Max)  
ch.0/1/3: FIFO  
ch.5: No FIFO  
8ch. (Max)  
ch.0/1/3/4 FIFO  
ch.2/5/6/7: No FIFO  
Multi-function Serial Interface  
(UART/CSIO/LIN/I2C)  
(In ch.1/5, only UART  
and LIN are available.)  
(In ch.1, only UART and LIN are available.)  
Base Timer  
(PWC/Reload timer/PWM/PPG)  
8ch. (Max)  
A/D activation  
compare  
2ch.  
Input capture  
Free-run timer  
Output compare  
Waveform  
generator  
4ch.*  
3ch.  
6ch.  
MF-  
Timer  
1 unit  
3ch.  
3ch.  
PPG  
QPRC  
1ch.  
2ch. (Max)  
Dual Timer  
1 unit  
Real-Time Clock  
Watch Counter  
CRC Accelerator  
Watchdog timer  
1 unit  
1 unit  
Yes  
1ch. (SW) + 1ch. (HW)  
14 pins (Max) +  
NMI × 1  
35 pins (Max)  
14ch. (2 units)  
19 pins (Max) +  
NMI × 1  
50 pins (Max)  
23ch. (2 units)  
2ch. (Max)  
Yes  
23 pins (Max) +  
NMI × 1  
65 pins (Max)  
26ch. (2 units)  
External Interrupts  
I/O ports  
12-bit A/D converter  
10-bit D/A converter  
CSV (Clock Super Visor)  
LVD (Low-Voltage Detector)  
2ch.  
High-speed  
Low-speed  
4 MHz  
Built-in CR  
100 kHz  
SWJ-DP  
Yes  
Debug Function  
Unique ID  
*: The external input channel which can be used is shown as follws.  
ch.0 to ch.3 : MB9BF121M/F122M/F124M  
ch.0, ch.2, ch.3 : MB9BF121K/F122K/F124K, MB9BF121L/F122L/F124L  
6
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.  
It is necessary to use the port relocate function of the I/O port according to your function use.  
See "Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics" for  
accuracy of built-in CR.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
7
D a t a S h e e t  
Packages  
MB9BF121K  
MB9BF122K  
MB9BF124K  
MB9BF121L  
MB9BF122L  
MB9BF124L  
MB9BF121M  
MB9BF122M  
MB9BF124M  
-
Product name  
Package  
LQFP: FPT-48P-M49 (0.5 mm pitch)  
QFN: LCC-48P-M73 (0.5 mm pitch)  
LQFP: FPT-64P-M38 (0.5 mm pitch)  
LQFP: FPT-64P-M39 (0.65 mm pitch)  
QFN: LCC-64P-M24 (0.5 mm pitch)  
LQFP: FPT-80P-M37 (0.5 mm pitch)  
LQFP: FPT-80P-M40 (0.65 mm pitch)  
BGA: BGA-96P-M07 (0.5 mm pitch)  
-
-
-
-
-  
-
-
-
-  
-  
-  
-  
-
-
-
: Supported  
Note: See "Package Dimensions" for detailed information on each package.  
8
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin Assignment  
FPT-80P-M37/M40  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
60 P20/INT05_0/CROUT_0/AIN1_1  
59 P21/AN14/SIN0_0/INT06_1/BIN1_1/WKUP2  
58 P22/AN13/SOT0_0/TIOB7_1/ZIN1_1  
57 P23/AN12/SCK0_0/TIOA7_1  
56 P1B/AN11/SOT4_1/INT20_2/IC01_1  
55 P1A/AN10/SIN4_1/INT05_1/IC00_1  
54 P19/AN09/SCK2_2  
P50/AN22/INT00_0/AIN0_2/SIN3_1  
P51/AN23/INT01_0/BIN0_2/SOT3_1  
P52/AN24/INT02_0/ZIN0_2/SCK3_1  
P53/SIN6_0/TIOA1_2/INT07_2  
P54/SOT6_0/TIOB1_2/INT18_1  
P55/SCK6_0/ADTG_1/INT19_1  
P56/INT08_2  
53 P18/AN08/SOT2_2  
P30/AN25/AIN0_0/TIOB0_1/INT03_2  
52 AVRL  
P31/AN26/BIN0_0/TIOB1_1/SCK6_1/INT04_2 10  
P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2 11  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 12  
P39/DTTI0X_0/INT06_0/ADTG_2 13  
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 14  
P3B/RTO01_0/TIOA1_1 15  
51 AVRH  
LQFP - 80  
50 AVCC  
49 P17/AN07/SIN2_2/INT04_1  
48 P16/AN06/SCK0_1/INT15_0  
47 P15/AN05/SOT0_1/INT14_0/IC03_2  
46 P14/AN04/SIN0_1/INT03_1/IC02_2  
45 AVSS  
P3C/RTO02_0/TIOA2_1/INT18_2 16  
P3D/RTO03_0/TIOA3_1 17  
44 P12/AN02/SOT1_1/IC00_2  
43 P11/AN01/SIN1_1/INT02_1/FRCK0_2/WKUP1  
42 P10/AN00  
P3E/RTO04_0/TIOA4_1/INT19_2 18  
P3F/RTO05_0/TIOA5_1 19  
VSS 20  
41 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
9
D a t a S h e e t  
FPT-64P-M38/M39  
(TOP VIEW)  
VCC  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P21/AN14/SIN0_0/INT06_1/WKUP2  
P22/AN13/SOT0_0/TIOB7_1  
P23/AN12/SCK0_0/TIOA7_1  
P19/AN09/SCK2_2  
P50/AN22/INT00_0/AIN0_2/SIN3_1  
P51/AN23/INT01_0/BIN0_2/SOT3_1  
P52/AN24/INT02_0/ZIN0_2/SCK3_1  
P30/AN25/AIN0_0/TIOB0_1/INT03_2  
P31/AN26/BIN0_0/TIOB1_1/SCK6_1/INT04_2  
P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6  
P39/DTTI0X_0/INT06_0/ADTG_2  
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2  
P3B/RTO01_0/TIOA1_1  
3
4
5
P18/AN08/SOT2_2  
6
AVRL  
7
AVRH  
LQFP - 64  
8
AVCC  
9
P17/AN07/SIN2_2/INT04_1  
P15/AN05/SOT0_1/INT14_0/IC03_2  
P14/AN04/SIN0_1/INT03_1/IC02_2  
AVSS  
10  
11  
12  
13  
14  
15  
16  
P3C/RTO02_0/TIOA2_1/INT18_2  
P3D/RTO03_0/TIOA3_1  
P12/AN02/SOT1_1/IC00_2  
P11/AN01/SIN1_1/INT02_1/FRCK0_2/WKUP1  
P10/AN00  
P3E/RTO04_0/TIOA4_1/INT19_2  
P3F/RTO05_0/TIOA5_1  
VSS  
VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
10  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
LCC-64P-M24  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
48 P21/AN14/SIN0_0/INT06_1/WKUP2  
47 P22/AN13/SOT0_0/TIOB7_1  
46 P23/AN12/SCK0_0/TIOA7_1  
45 P19/AN09/SCK2_2  
44 P18/AN08/SOT2_2  
43 AVRL  
P50/AN22/INT00_0/AIN0_2/SIN3_1  
P51/AN23/INT01_0/BIN0_2/SOT3_1  
P52/AN24/INT02_0/ZIN0_2/SCK3_1  
P30/AN25/AIN0_0/TIOB0_1/INT03_2  
P31/AN26/BIN0_0/TIOB1_1/SCK6_1/INT04_2  
P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6  
P39/DTTI0X_0/INT06_0/ADTG_2  
42 AVRH  
QFN - 64  
41 AVCC  
40 P17/AN07/SIN2_2/INT04_1  
39 P15/AN05/SOT0_1/INT14_0/IC03_2  
38 P14/AN04/SIN0_1/INT03_1/IC02_2  
37 AVSS  
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 10  
P3B/RTO01_0/TIOA1_1 11  
P3C/RTO02_0/TIOA2_1/INT18_2 12  
P3D/RTO03_0/TIOA3_1 13  
36 P12/AN02/SOT1_1/IC00_2  
35 P11/AN01/SIN1_1/INT02_1/FRCK0_2/WKUP1  
34 P10/AN00  
P3E/RTO04_0/TIOA4_1/INT19_2 14  
P3F/RTO05_0/TIOA5_1 15  
VSS 16  
33 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
11  
D a t a S h e e t  
FPT-48P-M49  
(TOP VIEW)  
VCC  
1
2
36  
P21/AN14/SIN0_0/INT06_1/WKUP2  
P22/AN13/SOT0_0/TIOB7_1  
P23/AN12/SCK0_0/TIOA7_1  
AVRL  
P50/AN22/INT00_0/AIN0_2/SIN3_1  
P51/AN23/INT01_0/BIN0_2/SOT3_1  
P52/AN24/INT02_0/ZIN0_2/SCK3_1  
P39/DTTI0X_0/INT06_0/ADTG_2  
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2  
P3B/RTO01_0/TIOA1_1  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
5
AVRH  
6
AVCC  
LQFP - 48  
7
P15/AN05/SOT0_1/INT14_0/IC03_2  
P14/AN04/SIN0_1/INT03_1/IC02_2  
AVSS  
P3C/RTO02_0/TIOA2_1/INT18_2  
P3D/RTO03_0/TIOA3_1  
8
9
P3E/RTO04_0/TIOA4_1/INT19_2  
P3F/RTO05_0/TIOA5_1  
10  
11  
12  
P12/AN02/SOT1_1/IC00_2  
P11/AN01/SIN1_1/INT02_1/FRCK0_2/WKUP1  
P10/AN00  
VSS  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
12  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
LCC-48P-M73  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
36 P21/AN14/SIN0_0/INT06_1/WKUP2  
35 P22/AN13/SOT0_0/TIOB7_1  
34 P23/AN12/SCK0_0/TIOA7_1  
33 AVRL  
P50/AN22/INT00_0/AIN0_2/SIN3_1  
P51/AN23/INT01_0/BIN0_2/SOT3_1  
P52/AN24/INT02_0/ZIN0_2/SCK3_1  
P39/DTTI0X_0/INT06_0/ADTG_2  
32 AVRH  
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2  
P3B/RTO01_0/TIOA1_1  
31 AVCC  
QFN - 48  
30 P15/AN05/SOT0_1/INT14_0/IC03_2  
29 P14/AN04/SIN0_1/INT03_1/IC02_2  
28 AVSS  
P3C/RTO02_0/TIOA2_1/INT18_2  
P3D/RTO03_0/TIOA3_1  
P3E/RTO04_0/TIOA4_1/INT19_2 10  
P3F/RTO05_0/TIOA5_1 11  
VSS 12  
27 P12/AN02/SOT1_1/IC00_2  
26 P11/AN01/SIN1_1/INT02_1/FRCK0_2/WKUP1  
25 P10/AN00  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
13  
D a t a S h e e t  
BGA-96P-M07  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
11  
TMS/  
SWDIO  
A
B
C
D
E
F
TRSTX  
VSS  
VSS  
VCC  
AN22  
P53  
P81  
VSS  
AN23  
P54  
AN25  
VSS  
P33  
P3B  
P3E  
VSS  
C
P80  
AN24  
VSS  
P55  
VCC  
AN20  
AN21  
Index  
VSS  
P63  
AN18  
P0D  
P0E  
VSS  
AN17  
AN16  
P07  
VSS  
TDI  
TDO/  
SWO  
TCK/  
SWCLK  
AN19  
AN15  
VSS  
AN13  
AN11  
AN08  
AN06  
P20  
AN14  
VSS  
AN09  
AN12  
AN10  
P56  
AN26  
VSS  
P39  
VSS  
P32  
AN07 AVRH  
AN05 AVRL  
G
H
J
P3A  
P3D  
VCC  
VSS  
P3C  
VSS  
X1A  
X0A  
AN04 AVSS AVCC  
P3F  
INITX  
VSS  
P48  
P45  
P44  
P4A  
P49  
VSS  
P4D  
P4C  
P4B  
AN02  
P4E  
VSS  
MD1  
X0  
AN01  
VSS  
X1  
AN00  
VCC  
VSS  
K
L
MD0  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
14  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
List of Pin Functions  
List of pin numbers  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin No  
I/O circuit Pin state  
Pin Name  
LQFP-64 LQFP-48  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
QFN-48  
1
B1  
1
1
VCC  
P50  
-
INT00_0  
AIN0_2  
SIN3_1  
AN22  
2
3
C1  
C2  
2
3
2
3
F
N
P51  
INT01_0  
BIN0_2  
F
F
N
N
SOT3_1  
(SDA3_1)  
AN23  
P52  
INT02_0  
ZIN0_2  
4
B3  
4
4
SCK3_1  
(SCL3_1)  
AN24  
P53  
SIN6_0  
TIOA1_2  
INT07_2  
P54  
5
6
D1  
D2  
-
-
-
-
E
E
L
L
SOT6_0  
(SDA6_0)  
TIOB1_2  
INT18_1  
P55  
SCK6_0  
(SCL6_0)  
7
8
9
D3  
E1  
E2  
-
-
-
-
-
E
E
F
L
L
N
ADTG_1  
INT19_1  
P56  
INT08_2  
P30  
AIN0_0  
TIOB0_1  
INT03_2  
AN25  
5
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
15  
D a t a S h e e t  
Pin No  
I/O circuit Pin state  
Pin Name  
LQFP-64  
LQFP-48  
QFN-48  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
P31  
BIN0_0  
TIOB1_1  
10  
E3  
6
-
-
F
N
SCK6_1  
(SCL6_1)  
INT04_2  
AN26  
P32  
ZIN0_0  
TIOB2_1  
11  
G1  
7
E
L
SOT6_1  
(SDA6_1)  
INT05_2  
P33  
INT04_0  
TIOB3_1  
SIN6_1  
ADTG_6  
P39  
12  
13  
G2  
G3  
8
9
-
E
E
L
L
DTTI0X_0  
INT06_0  
ADTG_2  
P3A  
5
RTO00_0  
(PPG00_0)  
TIOA0_1  
INT07_0  
SUBOUT_2  
RTCCO_2  
P3B  
14  
H1  
10  
6
G
L
RTO01_0  
(PPG00_0)  
15  
16  
17  
H2  
H3  
J1  
11  
12  
13  
7
8
9
G
G
G
K
L
TIOA1_1  
P3C  
RTO02_0  
(PPG02_0)  
TIOA2_1  
INT18_2  
P3D  
RTO03_0  
(PPG02_0)  
K
TIOA3_1  
16  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
I/O circuit Pin state  
Pin Name  
LQFP-64  
QFN-64  
LQFP-48  
QFN-48  
type  
type  
LQFP-80  
BGA-96  
P3E  
RTO04_0  
(PPG04_0)  
18  
J2  
14  
10  
G
L
TIOA4_1  
INT19_2  
P3F  
RTO05_0  
(PPG04_0)  
19  
J4  
15  
11  
G
K
TIOA5_1  
20  
21  
L1  
L5  
16  
-
12  
-
VSS  
P44  
TIOA4_0  
INT10_0  
P45  
TIOA5_0  
INT11_0  
C
-
G
G
L
L
22  
K5  
-
-
23  
24  
25  
L2  
L4  
K1  
17  
-
13  
-
-
-
-
VSS  
VCC  
18  
14  
P46  
26  
L3  
19  
15  
D
F
X0A  
P47  
27  
28  
K3  
K4  
20  
21  
16  
17  
D
B
G
C
X1A  
INITX  
P48  
29  
J5  
-
-
18  
-
INT14_1  
SIN3_2  
P49  
E
L
TIOB0_0  
INT20_1  
DA0_0  
30  
K6  
22  
L
L
SOT3_2  
(SDA3_2)  
AIN0_1  
P4A  
TIOB1_0  
INT21_1  
DA1_0  
19  
-
31  
J6  
23  
L
L
SCK3_2  
(SCL3_2)  
BIN0_1  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
17  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
I/O circuit Pin state  
Pin Name  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
QFN-48  
P4B  
TIOB2_0  
INT22_1  
IGTRG_0  
ZIN0_1  
P4C  
32  
L7  
24  
-
E
L
TIOB3_0  
SCK7_1  
(SCL7_1)  
33  
K7  
25  
-
I*  
L
INT12_0  
AIN1_2  
P4D  
TIOB4_0  
SOT7_1  
(SDA7_1)  
34  
35  
J7  
26  
27  
-
-
I*  
I*  
L
L
INT13_0  
BIN1_2  
P4E  
TIOB5_0  
INT06_2  
SIN7_1  
ZIN1_2  
MD1  
K8  
36  
37  
38  
K9  
L8  
L9  
28  
29  
30  
20  
21  
22  
C
K
A
E
D
A
PE0  
MD0  
X0  
PE2  
X1  
39  
L10  
31  
23  
A
F
F
B
M
N
PE3  
40  
41  
L11  
K11  
32  
33  
24  
-
VSS  
-
-
VCC  
P10  
42  
J11  
34  
25  
AN00  
P11  
AN01  
SIN1_1  
INT02_1  
FRCK0_2  
WKUP1  
P12  
43  
J10  
35  
26  
AN02  
44  
J8  
36  
27  
F
M
SOT1_1  
(SDA1_1)  
IC00_2  
18  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
I/O circuit Pin state  
Pin Name  
LQFP-64 LQFP-48  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
QFN-48  
45  
H10  
37  
28  
AVSS  
P14  
-
AN04  
INT03_1  
IC02_2  
SIN0_1  
P15  
46  
47  
H9  
38  
39  
29  
30  
F
N
AN05  
IC03_2  
G10  
F
N
SOT0_1  
(SDA0_1)  
INT14_0  
P16  
AN06  
48  
49  
G9  
-
-
-
F
F
N
N
SCK0_1  
(SCL0_1)  
INT15_0  
P17  
AN07  
SIN2_2  
INT04_1  
AVCC  
AVRH  
AVRL  
P18  
F10  
40  
50  
51  
52  
H11  
F11  
G11  
41  
42  
43  
31  
32  
33  
-
-
-
AN08  
53  
54  
F9  
44  
45  
-
-
F
F
M
M
SOT2_2  
(SDA2_2)  
P19  
AN09  
E11  
SCK2_2  
(SCL2_2)  
P1A  
AN10  
55  
E10  
-
-
SIN4_1  
INT05_1  
IC00_1  
F
N
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
19  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
I/O circuit Pin state  
Pin Name  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
QFN-48  
P1B  
AN11  
SOT4_1  
(SDA4_1)  
56  
E9  
D10  
D9  
-
-
F
N
IC01_1  
INT20_2  
P23  
SCK0_0  
(SCL0_0)  
57  
58  
46  
34  
F
F
M
M
TIOA7_1  
AN12  
P22  
SOT0_0  
(SDA0_0)  
47  
-
35  
-
TIOB7_1  
AN13  
ZIN1_1  
P21  
SIN0_0  
INT06_1  
WKUP2  
BIN1_1  
AN14  
P20  
59  
60  
C11  
C10  
48  
36  
F
E
N
N
INT05_0  
CROUT_0  
AIN1_1  
P00  
-
-
61  
62  
63  
64  
A10  
B9  
49  
50  
51  
52  
37  
38  
39  
40  
E
E
E
E
J
J
J
J
TRSTX  
P01  
TCK  
SWCLK  
P02  
B11  
A9  
TDI  
P03  
TMS  
SWDIO  
P04  
65  
66  
B8  
A8  
53  
-
41  
-
TDO  
E
E
J
SWO  
P07  
ADTG_0  
INT23_1  
L
20  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
I/O circuit Pin state  
Pin Name  
LQFP-64 LQFP-48  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
QFN-48  
P0A  
SIN4_0  
INT00_2  
AN15  
67  
C8  
54  
-
J*  
N
P0B  
SOT4_0  
(SDA4_0)  
68  
69  
C7  
B7  
55  
56  
-
-
J*  
J*  
N
N
TIOB6_1  
AN16  
INT18_0  
P0C  
SCK4_0  
(SCL4_0)  
TIOA6_1  
INT19_0  
AN17  
P0D  
RTS4_0  
TIOA3_2  
INT20_0  
P0E  
70  
71  
B6  
C6  
-
-
-
-
E
E
L
L
CTS4_0  
TIOB3_2  
INT21_0  
P0F  
NMIX  
SUBOUT_0  
CROUT_1  
RTCCO_0  
WKUP0  
AN18  
72  
A6  
57  
42  
F
I
P63  
73  
74  
B5  
C5  
-
-
-
E
F
L
INT03_0  
P62  
SCK5_0  
(SCL5_0)  
58  
M
ADTG_3  
AN19  
P61  
SOT5_0  
(SDA5_0)  
75  
B4  
59  
43  
F
M
TIOB2_2  
DTTI0X_2  
AN20  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
21  
D a t a S h e e t  
Pin No  
LQFP-64  
I/O circuit Pin state  
Pin Name  
LQFP-48  
QFN-48  
type  
type  
LQFP-80  
BGA-96  
QFN-64  
P60  
SIN5_0  
TIOA2_2  
INT15_1  
WKUP3  
IGTRG_1  
AN21  
76  
C4  
60  
44  
J*  
N
77  
78  
A4  
A3  
61  
62  
45  
46  
VCC  
-
P80  
H
H
H
H
INT16_1  
P81  
79  
80  
A2  
A1  
63  
64  
47  
48  
INT17_1  
VSS  
-
-
A5, A7, A11,  
B2, B10, C3,  
C9, F1, F2,  
F3, J3, J9, K2,  
K10, L6  
-
-
-
VSS  
*: 5 V tolerant I/O  
22  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
List of functions  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin No  
Pin  
function  
Pin name  
Function description  
LQFP-64 LQFP-48  
QFN-64 QFN-48  
LQFP-80 BGA-96  
ADC  
ADTG_0  
ADTG_1  
66  
7
A8  
D3  
G3  
C5  
G2  
J11  
J10  
J8  
H9  
G10  
G9  
F10  
F9  
-
-
9
58  
8
34  
35  
36  
38  
39  
-
40  
44  
45  
-
-
-
5
-
-
25  
26  
27  
29  
30  
-
ADTG_2 A/D converter external trigger input pin  
13  
74  
12  
42  
43  
44  
46  
47  
48  
49  
53  
54  
55  
56  
57  
58  
59  
67  
68  
69  
72  
74  
75  
76  
2
ADTG_3  
ADTG_6  
AN00  
AN01  
AN02  
AN04  
AN05  
AN06  
AN07  
AN08  
AN09  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
-
-
-
-
E11  
E10  
E9  
-
-
D10  
D9  
C11  
C8  
C7  
B7  
A6  
C5  
B4  
C4  
C1  
C2  
B3  
E2  
46  
47  
48  
54  
55  
56  
57  
58  
59  
60  
2
34  
35  
36  
-
-
-
42  
-
43  
44  
2
A/D converter analog input pin.  
ANxx describes ADC ch.xx.  
3
4
9
10  
3
4
5
6
3
4
-
-
E3  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
23  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
Base Timer  
0
TIOA0_1  
TIOB0_0  
TIOB0_1  
TIOA1_1  
TIOA1_2  
TIOB1_0  
TIOB1_1  
TIOB1_2  
TIOA2_1  
TIOA2_2  
TIOB2_0  
TIOB2_1  
TIOB2_2  
TIOA3_1  
TIOA3_2  
TIOB3_0  
TIOB3_1  
TIOB3_2  
TIOA4_0  
TIOA4_1  
TIOB4_0  
TIOA5_0  
TIOA5_1  
TIOB5_0  
TIOA6_1  
TIOB6_1  
TIOA7_1  
TIOB7_1  
Base timer ch.0 TIOA pin  
Base timer ch.0 TIOB pin  
14  
30  
9
15  
5
31  
10  
6
H1  
K6  
E2  
H2  
D1  
J6  
E3  
D2  
H3  
C4  
L7  
G1  
B4  
J1  
B6  
K7  
G2  
C6  
L5  
J2  
10  
22  
5
11  
-
23  
6
-
12  
60  
24  
7
59  
13  
-
25  
8
-
6
18  
-
7
-
19  
-
-
8
44  
-
-
43  
9
-
-
-
-
-
10  
-
Base Timer  
1
Base timer ch.1 TIOA pin  
Base timer ch.1 TIOB pin  
Base timer ch.2 TIOA pin  
Base timer ch.2 TIOB pin  
Base timer ch.3 TIOA pin  
Base timer ch.3 TIOB pin  
Base Timer  
2
16  
76  
32  
11  
75  
17  
70  
33  
12  
71  
21  
18  
34  
22  
19  
35  
69  
68  
57  
58  
Base Timer  
3
Base Timer  
4
-
Base timer ch.4 TIOA pin  
Base timer ch.4 TIOB pin  
Base timer ch.5 TIOA pin  
14  
26  
-
15  
27  
56  
55  
46  
47  
J7  
K5  
J4  
K8  
B7  
C7  
D10  
D9  
Base Timer  
5
-
11  
-
-
-
Base timer ch.5 TIOB pin  
Base timer ch.6 TIOA pin  
Base timer ch.6 TIOB pin  
Base timer ch.7 TIOA pin  
Base timer ch.7 TIOB pin  
Serial wire debug interface clock input  
pin  
Base Timer  
6
Base Timer  
7
Debugger  
34  
35  
SWCLK  
SWDIO  
62  
64  
B9  
A9  
50  
52  
38  
40  
Serial wire debug interface data input /  
output pin  
SWO  
TCK  
TDI  
TDO  
TMS  
Serial wire viewer output pin  
J-TAG test clock input pin  
J-TAG test data input pin  
J-TAG debug data output pin  
J-TAG test mode state input/output pin  
J-TAG test reset input pin  
65  
62  
63  
65  
64  
61  
B8  
B9  
B11  
B8  
A9  
A10  
53  
50  
51  
53  
52  
49  
41  
38  
39  
41  
40  
37  
TRSTX  
24  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
External  
Interrupt  
INT00_0  
INT00_2  
INT01_0  
INT02_0  
INT02_1  
INT03_0  
INT03_1  
INT03_2  
INT04_0  
INT04_1  
INT04_2  
INT05_0  
INT05_1  
INT05_2  
INT06_0  
INT06_1  
INT06_2  
INT07_0  
INT07_2  
INT08_2  
INT10_0  
INT11_0  
INT12_0  
INT13_0  
INT14_0  
INT14_1  
INT15_0  
INT15_1  
INT16_1  
INT17_1  
INT18_0  
INT18_1  
INT18_2  
INT19_0  
INT19_1  
INT19_2  
INT20_0  
INT20_1  
INT20_2  
INT21_0  
INT21_1  
INT22_1  
INT23_1  
NMIX  
2
C1  
C8  
C2  
B3  
J10  
B5  
H9  
E2  
2
54  
3
4
35  
-
38  
5
8
40  
6
-
-
7
9
48  
27  
10  
-
-
-
2
-
3
4
26  
-
29  
-
-
-
-
-
-
External interrupt request 00 input pin  
External interrupt request 01 input pin  
External interrupt request 02 input pin  
67  
3
4
43  
73  
46  
9
12  
49  
10  
60  
55  
11  
13  
59  
35  
14  
5
External interrupt request 03 input pin  
External interrupt request 04 input pin  
External interrupt request 05 input pin  
G2  
F10  
E3  
P20  
E10  
G1  
G3  
C11  
K8  
H1  
D1  
E1  
-
5
36  
-
6
-
-
-
-
-
External interrupt request 06 input pin  
External interrupt request 07 input pin  
External interrupt request 08 input pin  
External interrupt request 10 input pin  
External interrupt request 11 input pin  
External interrupt request 12 input pin  
External interrupt request 13 input pin  
8
21  
22  
33  
34  
47  
29  
48  
76  
78  
79  
68  
6
L5  
K5  
K7  
J7  
G10  
J5  
G9  
C4  
A3  
A2  
C7  
D2  
H3  
C11  
D3  
J2  
B6  
K6  
E9  
C6  
J6  
L7  
A8  
A6  
-
25  
26  
39  
-
-
30  
-
External interrupt request 14 input pin  
External interrupt request 15 input pin  
-
-
60  
62  
63  
55  
-
12  
56  
-
14  
-
22  
-
44  
46  
47  
-
-
8
-
-
10  
-
18  
-
-
External interrupt request 16 input pin  
External interrupt request 17 input pin  
External interrupt request 18 input pin  
External interrupt request 19 input pin  
16  
59  
7
18  
70  
30  
56  
71  
31  
32  
66  
72  
External interrupt request 20 input pin  
External interrupt request 21 input pin  
-
23  
24  
-
19  
-
-
External interrupt request 22 input pin  
External interrupt request 23 input pin  
Non-Maskable Interrupt input pin  
57  
42  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
25  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
GPIO  
P00  
P01  
P02  
P03  
P04  
P07  
P0A  
P0B  
P0C  
P0D  
P0E  
P0F  
P10  
P11  
P12  
P14  
P15  
P16  
P17  
P18  
P19  
P1A  
P1B  
P20  
P21  
P22  
P23  
P30  
P31  
P32  
P33  
P39  
P3A  
P3B  
P3C  
P3D  
P3E  
P3F  
61  
A10  
B9  
B11  
A9  
B8  
A8  
C8  
C7  
B7  
B6  
C6  
A6  
J11  
J10  
J8  
H9  
G10  
G9  
F10  
F9  
E11  
E10  
E9  
49  
50  
51  
52  
53  
-
54  
55  
56  
-
37  
38  
39  
40  
41  
-
-
-
-
-
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
42  
43  
44  
46  
47  
48  
49  
53  
54  
55  
56  
60  
59  
58  
57  
9
General-purpose I/O port 0  
-
-
57  
34  
35  
36  
38  
39  
-
40  
44  
45  
-
-
-
48  
47  
46  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
42  
25  
26  
27  
29  
30  
-
-
-
-
-
-
-
36  
35  
34  
-
-
-
-
5
General-purpose I/O port 1  
General-purpose I/O port 2  
General-purpose I/O port 3  
C10  
C11  
D9  
D10  
E2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
E3  
G1  
G2  
G3  
H1  
H2  
H3  
J1  
6
7
8
9
10  
11  
J2  
J4  
26  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
GPIO  
P44  
P45  
P46  
P47  
P48  
P49  
P4A  
P4B  
P4C  
P4D  
P4E  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P60  
P61  
P62  
P63  
P80  
P81  
PE0  
PE2  
PE3  
21  
22  
26  
27  
29  
30  
31  
32  
33  
34  
35  
2
3
4
5
6
7
8
76  
75  
74  
73  
78  
79  
36  
38  
39  
L5  
K5  
L3  
K3  
J5  
K6  
J6  
L7  
K7  
J7  
K8  
C1  
C2  
B3  
D1  
D2  
D3  
E1  
C4  
B4  
C5  
B5  
A3  
A2  
K9  
L9  
L10  
-
-
-
-
15  
16  
-
18  
19  
-
-
-
-
2
3
4
-
-
-
-
44  
43  
-
19  
20  
-
22  
23  
24  
25  
26  
27  
2
3
4
-
-
-
-
60  
59  
58  
-
62  
63  
28  
30  
31  
General-purpose I/O port 4  
General-purpose I/O port 5  
General-purpose I/O port 6  
-
46  
47  
20  
22  
23  
General-purpose I/O port 8  
General-purpose I/O port E  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
27  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
Multi-  
function  
Serial  
0
SIN0_0  
SIN0_1  
59  
46  
C11  
H9  
48  
38  
36  
29  
Multi-function serial interface ch.0  
input pin  
Multi-function serial interface ch.0  
output pin.  
SOT0_0  
(SDA0_0)  
58  
47  
57  
D9  
47  
39  
46  
35  
30  
34  
This pin operates as SOT0 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA0 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.0  
clock I/O pin.  
This pin operates as SCK0 when it is  
used in a CSIO (operation mode 2)  
and as SCL0 when it is used in an I2C  
(operation mode 4).  
Multi-function serial interface ch.1  
input pin  
Multi-function serial interface ch.1  
output pin.  
SOT0_1  
(SDA0_1)  
G10  
D10  
SCK0_0  
(SCL0_0)  
SCK0_1  
(SCL0_1)  
48  
43  
G9  
-
-
Multi-  
function  
Serial  
1
SIN1_1  
J10  
35  
26  
SOT1_1  
(SDA1_1)  
This pin operates as SOT1 when it is  
used in a UART/LIN (operation  
modes 0,1,3) .  
Multi-function serial interface ch.2  
input pin  
44  
49  
J8  
36  
40  
27  
-
Multi-  
function  
Serial  
2
SIN2_2  
F10  
Multi-function serial interface ch.2  
output pin.  
SOT2_2  
This pin operates as SOT2 when it is  
53  
54  
F9  
44  
45  
-
-
(SDA2_2) used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA2 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.2  
clock I/O pin.  
SCK2_2  
(SCL2_2)  
This pin operates as SCK2 when it is  
used in a CSIO (operation mode 2)  
and as SCL2 when it is used in an I2C  
(operation mode 4).  
E11  
Multi-  
function  
Serial  
3
SIN3_1  
SIN3_2  
2
29  
C1  
J5  
2
-
2
-
Multi-function serial interface ch.3  
input pin  
Multi-function serial interface ch.3  
output pin.  
This pin operates as SOT3 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA3 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.3  
clock I/O pin.  
This pin operates as SCK3 when it is  
used in a CSIO (operation mode 2)  
and as SCL3 when it is used in an I2C  
(operation mode 4).  
SOT3_1  
(SDA3_1)  
3
30  
4
C2  
K6  
B3  
J6  
3
-
3
-
SOT3_2  
(SDA3_2)  
SCK3_1  
(SCL3_1)  
4
-
4
-
SCK3_2  
(SCL3_2)  
31  
28  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
Multi-  
function  
Serial  
4
SIN4_0  
SIN4_1  
67  
55  
C8  
E10  
54  
-
-
-
Multi-function serial interface ch.4  
input pin  
Multi-function serial interface ch.4  
output pin.  
This pin operates as SOT4 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA4 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.4  
clock I/O pin.  
SOT4_0  
(SDA4_0)  
68  
56  
C7  
E9  
55  
-
-
-
SOT4_1  
(SDA4_1)  
SCK4_0  
(SCL4_0)  
This pin operates as SCK4 when it is  
used in a CSIO (operation mode 2)  
and as SCL4 when it is used in an I2C  
(operation mode 4).  
69  
B7  
56  
-
Multi-function serial interface ch.4  
RTS output pin  
Multi-function serial interface ch.4  
CTS input pin  
Multi-function serial interface ch.5  
input pin  
RTS4_0  
CTS4_0  
SIN5_0  
70  
71  
76  
B6  
C6  
C4  
-
-
-
-
Multi-  
function  
Serial  
5
60  
44  
Multi-function serial interface ch.5  
output pin.  
SOT5_0  
This pin operates as SOT5 when it is  
75  
74  
B4  
C5  
59  
58  
43  
(SDA5_0) used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA5 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.5  
clock I/O pin.  
SCK5_0  
(SCL5_0)  
This pin operates as SCK5 when it is  
used in a CSIO (operation mode 2)  
and as SCL5 when it is used in an I2C  
(operation mode 4).  
-
Multi-  
function  
Serial  
6
SIN6_0  
SIN6_1  
5
12  
D1  
G2  
-
8
-
-
Multi-function serial interface ch.6  
input pin  
Multi-function serial interface ch.6  
output pin.  
SOT6_0  
(SDA6_0)  
6
11  
7
D2  
G1  
D3  
E3  
-
7
-
-
-
-
-
This pin operates as SOT6 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA6 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.6  
clock I/O pin.  
This pin operates as SCK6 when it is  
used in a CSIO (operation mode 2)  
and as SCL6 when it is used in an I2C  
(operation mode 4).  
SOT6_1  
(SDA6_1)  
SCK6_0  
(SCL6_0)  
SCK6_1  
(SCL6_1)  
10  
6
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
29  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
Multi-  
function  
Serial  
7
Multi-function serial interface ch.7  
input pin  
Multi-function serial interface ch.7  
output pin.  
SIN7_1  
35  
K8  
27  
-
SOT7_1  
This pin operates as SOT7 when it is  
34  
J7  
26  
-
(SDA7_1) used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA7 when it is  
used in an I2C (operation mode 4).  
Multi-function serial interface ch.7  
clock I/O pin.  
SCK7_1  
(SCL7_1)  
This pin operates as SCK7 when it is  
used in a CSIO (operation mode 2)  
and as SCL7 when it is used in an I2C  
(operation mode 4).  
33  
K7  
25  
-
Multi-  
function  
Timer  
0
Input signal of waveform generator to  
control outputs RTO00 to RTO05 of  
Multi-function timer 0.  
16-bit free-run timer ch.0 external  
clock input pin  
DTTI0X_0  
DTTI0X_2  
13  
75  
G3  
B4  
9
5
59  
43  
FRCK0_2  
43  
J10  
35  
26  
IC00_1  
IC00_2  
IC01_1  
IC02_2  
IC03_2  
55  
44  
56  
46  
47  
E10  
J8  
E9  
H9  
G10  
-
36  
-
38  
39  
-
27  
-
29  
30  
16-bit input capture input pin of  
Multi-function timer 0.  
ICxx describes channel number.  
Waveform generator output pin of  
Multi-function timer 0.  
(PPG00_0) This pin operates as PPG00 when it is  
used in PPG0 output mode.  
Waveform generator output pin of  
Multi-function timer 0.  
(PPG00_0) This pin operates as PPG00 when it is  
used in PPG0 output mode.  
Waveform generator output pin of  
Multi-function timer 0.  
(PPG02_0) This pin operates as PPG02 when it is  
used in PPG0 output mode.  
Waveform generator output pin of  
Multi-function timer 0.  
(PPG02_0) This pin operates as PPG02 when it is  
used in PPG0 output mode.  
Waveform generator output pin of  
Multi-function timer 0.  
(PPG04_0) This pin operates as PPG04 when it is  
used in PPG0 output mode.  
Waveform generator output pin of  
Multi-function timer 0.  
(PPG04_0) This pin operates as PPG04 when it is  
used in PPG0 output mode.  
RTO00_0  
14  
15  
16  
17  
18  
19  
H1  
H2  
H3  
J1  
10  
11  
12  
13  
14  
15  
6
7
RTO01_0  
RTO02_0  
8
RTO03_0  
9
RTO04_0  
J2  
10  
11  
RTO05_0  
J4  
IGTRG_0  
IGTRG_1  
32  
76  
L7  
C4  
24  
60  
-
44  
PPG IGBT mode external trigger input  
pin  
30  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
Function description  
QPRC ch.0 AIN input pin  
QPRC ch.0 BIN input pin  
QPRC ch.0 ZIN input pin  
LQFP-80 BGA-96  
QFN-64 QFN-48  
Quadrature  
Position/  
Revolution  
Counter 0  
AIN0_0  
AIN0_1  
AIN0_2  
BIN0_0  
BIN0_1  
BIN0_2  
ZIN0_0  
ZIN0_1  
ZIN0_2  
AIN1_1  
AIN1_2  
BIN1_1  
BIN1_2  
ZIN1_1  
9
30  
2
10  
31  
3
11  
32  
4
60  
33  
59  
34  
58  
35  
72  
14  
72  
14  
E2  
K6  
C1  
E3  
J6  
C2  
G1  
L7  
B3  
C10  
K7  
C11  
J7  
D9  
K8  
A6  
H1  
A6  
H1  
5
22  
2
6
23  
3
7
24  
4
-
25  
-
-
-
2
-
-
3
-
-
4
-
-
-
-
-
-
42  
6
42  
6
Quadrature  
Position/  
Revolution  
Counter 1  
QPRC ch.1 AIN input pin  
QPRC ch.1 BIN input pin  
QPRC ch.1 ZIN input pin  
26  
-
ZIN1_2  
27  
57  
10  
57  
10  
Real-time  
clock  
RTCCO_0  
RTCCO_2  
SUBOUT_0  
SUBOUT_2  
0.5 seconds pulse output pin of  
Real-time clock  
Sub clock output pin  
Low-Power  
Consumption  
Mode  
Deep standby mode return signal  
input pin 0  
Deep standby mode return signal  
input pin 1  
Deep standby mode return signal  
input pin 2  
Deep standby mode return signal  
input pin 3  
WKUP0  
WKUP1  
WKUP2  
WKUP3  
72  
43  
59  
76  
A6  
J10  
C11  
C4  
57  
35  
48  
60  
42  
26  
36  
44  
DAC  
DA0  
DA1  
D/A converter ch.0 analog output pin  
D/A converter ch.1 analog output pin  
External Reset Input pin.  
A reset is valid when INITX="L".  
30  
31  
K6  
J6  
22  
23  
18  
19  
RESET  
INITX  
28  
K4  
21  
17  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
31  
D a t a S h e e t  
Pin No  
LQFP-64 LQFP-48  
Pin  
function  
Pin name  
MD0  
Function description  
LQFP-80 BGA-96  
QFN-64 QFN-48  
Mode  
Mode 0 pin.  
During normal operation, MD0="L"  
must be input. During serial  
programming to Flash memory,  
MD0="H" must be input.  
Mode 1 pin.  
37  
L8  
29  
21  
MD1  
During serial programming to Flash  
memory, MD1="L" must be input.  
Power supply Pin  
Power supply Pin  
Power supply Pin  
Power supply Pin  
GND Pin  
36  
K9  
28  
20  
POWER  
GND  
VCC  
VCC  
VCC  
VCC  
VSS  
1
25  
41  
77  
-
B1  
K1  
K11  
A4  
F1  
1
18  
33  
61  
-
1
14  
-
45  
-
VSS  
GND Pin  
-
F2  
-
-
VSS  
GND Pin  
-
F3  
-
-
VSS  
VSS  
VSS  
VSS  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
-
20  
-
B2  
L1  
K2  
J3  
-
16  
-
-
12  
-
-
-
-
VSS  
GND Pin  
-
L6  
-
-
VSS  
VSS  
VSS  
VSS  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
24  
40  
-
L4  
-
32  
-
-
24  
-
L11  
K10  
J9  
-
-
-
VSS  
VSS  
GND Pin  
GND Pin  
-
-
B10  
C9  
-
-
-
-
VSS  
VSS  
VSS  
VSS  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
-
-
-
-
D11  
A11  
A7  
C3  
-
-
-
-
-
-
-
-
VSS  
VSS  
X0  
X0A  
X1  
GND Pin  
GND Pin  
-
A5  
A1  
L9  
-
-
80  
38  
26  
39  
27  
60  
72  
64  
30  
19  
31  
20  
-
48  
22  
15  
23  
16  
-
CLOCK  
Main clock (oscillation) input pin  
Sub clock (oscillation) input pin  
Main clock (oscillation) I/O pin  
Sub clock (oscillation) I/O pin  
Built-in high-speed CR-osc clock  
output port  
L3  
L10  
K3  
C10  
A6  
X1A  
CROUT_0  
CROUT_1  
57  
42  
Analog  
POWER  
A/D converter and D/A converter  
analog power supply pin  
A/D converter analog reference  
voltage input pin  
A/D converter and D/A converter  
GND pin  
A/D converter analog reference  
voltage input pin  
Power supply stabilization capacity  
pin  
AVCC  
AVRH  
AVSS  
AVRL  
C
50  
51  
45  
52  
23  
H11  
F11  
H10  
G11  
L2  
41  
42  
37  
43  
17  
31  
32  
28  
33  
13  
Analog  
GND  
C pin  
32  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
I/O Circuit Type  
Type  
Circuit  
Remarks  
A
It is possible to select the main  
oscillation / GPIO function  
Pull-up  
resistor  
When the main oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 1 MΩ  
With Standby mode control  
Digital output  
Digital output  
P-ch  
P-ch  
X1A  
When the GPIO is selected.  
CMOS level output.  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
N-ch  
R
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
Pull-up resistor control  
Digital input  
Standby mode control  
Clock input  
Feedback  
resistor  
Standby mode control  
Digital input  
Standby mode control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0A  
Digital output  
Pull-up resistor control  
B
CMOS level hysteresis input  
Pull-up resistor  
: Approximately 50 kΩ  
Pull-up resistor  
Digital input  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
33  
D a t a S h e e t  
Type  
Circuit  
Remarks  
C
Open drain output  
CMOS level hysteresis input  
Digital input  
Digital output  
N-ch  
D
It is possible to select the sub  
oscillation / GPIO function  
Pull-up  
resistor  
When the sub oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 5 MΩ  
With Standby mode control  
P-ch  
P-ch  
Digital output  
Digital output  
X1A  
When the GPIO is selected.  
CMOS level output.  
N-ch  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
R
Pull-up resistor control  
Digital input  
Standby mode control  
Clock input  
Feedback  
resistor  
Standby mode control  
Digital input  
Standby mode control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0A  
Digital output  
Pull-up resistor control  
34  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
E
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
P-ch  
P-ch  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
+B input is available  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
F
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
+B input is available  
Digital output  
Digital output  
P-ch  
P-ch  
N-ch  
Pull-up resistor control  
Digital input  
R
Standby mode control  
Analog input  
Input control  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
35  
D a t a S h e e t  
Type  
Circuit  
Remarks  
G
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -12 mA, IOL= 12 mA  
+B input is available  
P-ch  
P-ch  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
H
CMOS level output  
CMOS level hysteresis input  
With standby mode control  
IOH = -18 mA, IOL= 16.5 mA  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
Standby mode control  
36  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
CMOS level output  
CMOS level hysteresis input  
5 V tolerant  
I
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
Available to control PZR  
registers.  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
P-ch  
P-ch  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
J
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog input  
5 V tolerant  
Digital output  
Digital output  
P-ch  
P-ch  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
Available to control PZR  
registers.  
N-ch  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Pull-up resistor control  
Digital input  
R
Standby mode control  
Analog input  
Input control  
K
CMOS level hysteresis input  
Mode input  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
37  
D a t a S h e e t  
Type  
Circuit  
Remarks  
L
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog output  
P-ch  
P-ch  
Digital output  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH = -4 mA, IOL= 4 mA  
N-ch  
Digital output  
Pull-up resistor control  
Digital input  
R
Standby mode Control  
Analog output  
38  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Handling Precautions  
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly  
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This  
page describes precautions that must be observed to minimize the chance of failure and to obtain higher  
reliability from your Spansion semiconductor devices.  
1. Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device's electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these  
ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data  
sheet. Users considering application outside the listed conditions are advised to contact their sales  
representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins which connect semiconductor devices to power  
supply and input/output functions.  
(1) Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause  
deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to  
prevent such overvoltage or over-current conditions at the design stage.  
(2) Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can  
cause large current flows. Such conditions if present for extended periods of time can damage the  
device.  
Therefore, avoid this type of connection.  
(3) Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation.  
Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.  
Latch-up  
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When  
subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may  
be formed, causing large current levels in excess of several hundred mA to flow continuously at the power  
supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but  
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the  
following:  
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should  
include attention to abnormal noise, surge levels, etc.  
(2) Be sure that abnormal current flows do not occur during the power-on sequence.  
Code: DS00-00004-3E  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
39  
D a t a S h e e t  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from  
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards  
in the design of products.  
Fail-Safe Design  
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,  
damage or loss from such failures by incorporating safety design measures into your facility and equipment  
such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions.  
Precautions Related to Usage of Devices  
Spansion semiconductor devices are intended for use in standard applications (computers, office automation  
and other office equipment, industrial, communications, and measurement equipment, personal or  
household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or  
abnormal operation may directly affect human lives or cause physical injury or property damage, or where  
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea  
floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult  
with sales representatives before such use. The company will not be responsible for damages arising from  
such use without prior approval.  
2. Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance  
during soldering, you should only mount under Spansion's recommended conditions. For detailed  
information about mount conditions, contact your sales representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct  
soldering on the board, or mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the  
board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the  
soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for  
storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can  
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment  
of socket contacts and IC leads be verified before mounting.  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are  
more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in  
increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has  
established a ranking of mounting conditions for each product. Users are advised to mount packages in  
accordance with Spansion ranking of recommended conditions.  
40  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic  
soldering, junction strength may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions  
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed  
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent,  
do the following:  
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product.  
Store products in locations where temperature changes are slight.  
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at  
temperatures between 5°C and 30°C.  
When you open Dry Package that recommends humidity 40% to 70% relative humidity.  
(3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum  
laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags  
for storage.  
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion  
recommended conditions for baking.  
Condition: 125°C/24 h  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take  
the following precautions:  
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus  
for ion generation may be needed to remove electricity.  
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.  
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high  
resistance (on the level of 1 MΩ).  
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to  
minimize shock loads is recommended.  
(4) Ground all fixtures and instruments, or protect with anti-static measures.  
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board  
assemblies.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
41  
D a t a S h e e t  
3. Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described  
above.  
For reliable performance, do the following:  
(1) Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high  
humidity levels are anticipated, consider anti-humidity processing.  
(2) Discharge of Static Electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal  
operation. In such cases, use anti-static measures or processing to prevent discharges.  
(3) Corrosive Gases, Dust, or Oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will  
adversely affect the device. If you use devices in such conditions, consider ways to prevent such  
exposure or to protect the devices.  
(4) Radiation, Including Cosmic Radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.  
Users should provide shielding as appropriate.  
(5) Smoke, Flame  
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible  
substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Spansion products in other special environmental conditions should  
consult with sales representatives.  
Please check the latest handling precautions at the following URL.  
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf  
42  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Handling Devices  
Power supply pins  
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected  
within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be  
connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels,  
to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the  
total output current rating.  
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low  
impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass  
capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin, between  
AVRH pin and AVRL pin near this device.  
Stabilizing power supply voltage  
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is  
within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage  
stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at  
the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended  
operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary  
fluctuation on switching the power supply.  
Crystal oscillator circuit  
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit  
board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as  
close to the device as possible.  
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins  
are surrounded by ground plane as this is expected to produce stable operation.  
Evaluate oscillation of your using crystal oscillator by your mount board.  
Sub crystal oscillator  
This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to  
fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.  
Surface mount type  
Size : More than 3.2 mm × 1.5 mm  
Load capacitance : Approximately 6 pF to 7 pF  
Lead type  
Load capacitance : Approximately 6 pF to 7 pF  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
43  
D a t a S h e e t  
Using an external clock  
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input  
the clock to X0. X1(PE3) can be used as a general-purpose I/O port.  
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock  
input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.  
Example of Using an External Clock  
Device  
X0(X0A)  
Set as  
Can be used as  
general-purpose  
I/O ports.  
External clock  
input  
X1(PE3),  
X1A (P47)  
Handling when using Multi-function serial pin as I2C pin  
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled.  
However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external  
I2C bus system with power OFF.  
C Pin  
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between  
the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency  
characteristics as a smoothing capacitor.  
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to  
thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the  
specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.  
A smoothing capacitor of about 4.7μF would be recommended for this series.  
C
Device  
CS  
VSS  
GND  
Mode pins (MD0)  
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the  
pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins  
is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for  
switching the pin level and rewriting the Flash memory data. It is because of preventing the device  
erroneously switching to test mode due to noise.  
44  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Notes on power-on  
Turn power on/off in the following order or at the same time.  
If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS.  
Turning on : VCC →AVCC AVRH  
Turning off : AVRH AVCC VCC  
Serial Communication  
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.  
Therefore, design a printed circuit board so as to avoid noise.  
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a  
checksum of data at the end. If an error is detected, retransmit the data.  
Differences in features among the products with different memory sizes and between  
Flash memory products and MASK products  
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and  
oscillation characteristics among the products with different memory sizes and between Flash memory  
products and MASK products are different because chip layout and memory structures are different.  
If you are switching to use a different product of the same series, please make sure to evaluate the electric  
characteristics.  
Pull-Up function of 5 V tolerant I/O  
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant  
I/O.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
45  
D a t a S h e e t  
Block Diagram  
MB9BF121K/L/M, F122K/L/M, F124K/L/M  
TRSTX,TCK,  
TDI,TMS  
TDO  
SRAM0  
8/16 Kbytes  
SWJ-DP  
ROM Table  
Cortex-M3Core  
@72MHz(Max)  
I
SRAM1  
8/16 Kbytes  
D
Sys  
NVIC  
On-Chip Flash  
64+32 Kbytes/  
128+32 Kbytes/  
256+32 Kbytes  
Flash I/F  
Security  
Dual-Timer  
WatchDog Timer  
(Software)  
Clock Reset  
Generator  
INITX  
WatchDog Timer  
(Hardware)  
DMAC  
8ch.  
CSV  
CLK  
Main  
X0  
X1  
Source Clock  
PLL  
Osc  
Sub  
Osc  
CR  
4MHz  
CR  
100kHz  
X0A  
X1A  
CROUT  
AVCC,  
AVSS,  
AVRH,  
AVRL  
12-bit A/D Converter  
Unit 0  
ANxx  
Unit 1  
Power-On  
Reset  
ADTGx  
10-bit D/A Converter  
2units  
LVD  
LVD Ctrl  
DAx  
C
Regulator  
IRQ-Monitor  
Base Timer  
16-bit 8ch./  
32-bit 4ch.  
TIOAx  
TIOBx  
CRC  
Accelerator  
AINx  
BINx  
ZINx  
RTCCO_x,  
SUBOUT_x  
QPRC  
2ch.  
Real-Time Colck  
Watch Counter  
A/D Activation  
Compare 2ch.  
External Interrupt  
Controller  
16-pin + NMI  
INTx  
NMIX  
16-bit Input Capture  
4ch.  
IC0x  
MD0,  
MD1  
MODE-Ctrl  
16-bit Free-run Timer  
3ch.  
FRCKx  
WKUPx  
Deep Standby Ctrl  
16-bit Output  
Compare 6ch.  
P0x,  
P1x,  
GPIO  
PIN-Function-Ctrl  
DTTI0X  
RTO0x  
Waveform Generator  
3ch.  
PFx  
SCKx  
Multi-Function Serial I/F  
8ch.  
(with FIFO ch.0/1/3/4)  
HW flow control(ch.4)  
SINx  
16-bit PPG  
3ch.  
IGTRG_x  
SOTx  
CTS4  
RTS4  
Multi-function Timer  
Memory Size  
See " Memory size" in "Product Lineup" to confirm the memory size.  
46  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Memory Map  
Memory Map (1)  
Peripherals Area  
0x41FF_FFFF  
Reserved  
0xFFFF_FFFF  
Reserved  
0xE010_0000  
0xE000_0000  
Cortex-M3 Private  
Peripherals  
0x4006_1000  
0x4006_0000  
DMAC  
Reserved  
Reserved  
0x4003_C000  
0x4003_B000  
0x4003_A000  
0x4003_9000  
0x4003_8000  
RTC  
Watch Counter  
CRC  
0x7000_0000  
0x6000_0000  
External DeviceArea  
Reserved  
MFS  
Reserved  
0x4003_6000  
0x4003_5000  
0x4003_4000  
0x4003_3000  
0x4003_2000  
0x4003_1000  
0x4003_0000  
0x4002_F000  
0x4002_E000  
0x4002_9000  
0x4002_8000  
0x4002_7000  
0x4002_6000  
0x4002_5000  
0x4002_4000  
LVD/DS mode  
Reserved  
GPIO  
0x4400_0000  
0x4200_0000  
0x4000_0000  
0x2400_0000  
0x2200_0000  
32Mbytes  
Bit band alias  
Reserved  
Int-Req.Read  
EXTI  
Peripherals  
Reserved  
Reserved  
CR Trim  
Reserved  
D/AC  
32Mbytes  
Bit band alias  
Reserved  
A/DC  
0x2008_0000  
0x2000_0000  
0x1FF8_0000  
SRAM1  
SRAM0  
QPRC  
Base Timer  
PPG  
Reserved  
0x0020_8000  
0x0020_0000  
0x0010_4000  
0x0010_0000  
Reserved  
Flash(Work area)  
Reserved  
0x4002_1000  
0x4002_0000  
See "Memory Map (2)"  
for the memory size  
details.  
Security/CR Trim  
MFT unit0  
Reserved  
Dual Timer  
Reserved  
0x4001_6000  
0x4001_5000  
Flash(Main area)  
0x4001_3000  
0x4001_2000  
0x4001_1000  
0x4001_0000  
SW WDT  
HW WDT  
0x0000_0000  
Clock/Reset  
Reserved  
Flash I/F  
0x4000_1000  
0x4000_0000  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
47  
D a t a S h e e t  
Memory Map (2)  
MB9BF124K/L/M  
MB9BF122K/L/M  
MB9BF121K/L/M  
0x2008_0000  
0x2008_0000  
0x2008_0000  
Reserved  
Reserved  
Reserved  
0x2000_4000  
0x2000_0000  
0x1FFF_C000  
0x0020_8000  
0x2000_2000  
0x2000_0000  
0x1FFF_E000  
0x2000_2000  
0x2000_0000  
0x1FFF_E000  
SRAM1  
16Kbytes  
SRAM1  
8Kbytes  
SRAM1  
8Kbytes  
SRAM0  
8Kbytes  
SRAM0  
8Kbytes  
SRAM0  
16Kbytes  
Reserved  
Reserved  
Reserved  
0x0020_8000  
0x0020_0000  
0x0020_8000  
0x0020_0000  
SA7(8KB)  
SA6(8KB)  
SA5(8KB)  
SA4(8KB)  
SA7(8KB)  
SA6(8KB)  
SA5(8KB)  
SA4(8KB)  
SA7(8KB)  
SA6(8KB)  
SA5(8KB)  
SA4(8KB)  
0x0020_0000  
Reserved  
Reserved  
Reserved  
0x0010_4000  
0x0010_2000  
0x0010_0000  
0x0010_4000  
0x0010_2000  
0x0010_0000  
0x0010_4000  
0x0010_2000  
0x0010_0000  
CR trimming  
Security  
CR trimming  
Security  
CR trimming  
Security  
Reserved  
0x0004_0000  
Reserved  
SA11(64KB)  
SA10(64KB)  
Reserved  
0x0002_0000  
SA9(64KB)  
SA8(48KB)  
SA9(64KB)  
SA8(48KB)  
0x0001_0000  
0x0000_0000  
SA8(48KB)  
SA3(8KB)  
SA2(8KB)  
SA3(8KB)  
SA2(8KB)  
SA3(8KB)  
SA2(8KB)  
0x0000_0000  
0x0000_0000  
Refer to the programming manual for the detail of Flash main area.  
MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual  
48  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Peripheral Address Map  
Start address  
End address  
Bus  
Peripherals  
0x4000_0000  
0x4000_1000  
0x4001_0000  
0x4001_1000  
0x4001_2000  
0x4001_3000  
0x4001_5000  
0x4001_6000  
0x4002_0000  
0x4002_1000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
0x4002_7000  
0x4002_8000  
0x4002_9000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_3000  
0x4003_4000  
0x4003_5000  
0x4003_5800  
0x4003_6000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_C000  
0x4004_0000  
0x4006_0000  
0x4006_1000  
0x4000_0FFF  
Flash Memory I/F register  
AHB  
0x4000_FFFF  
0x4001_0FFF  
0x4001_1FFF  
0x4001_2FFF  
0x4001_4FFF  
0x4001_5FFF  
0x4001_FFFF  
0x4002_0FFF  
0x4002_3FFF  
0x4002_4FFF  
0x4002_5FFF  
0x4002_6FFF  
0x4002_7FFF  
0x4002_8FFF  
0x4002_DFFF  
0x4002_EFFF  
0x4002_FFFF  
0x4003_0FFF  
0x4003_1FFF  
0x4003_2FFF  
0x4003_3FFF  
0x4003_4FFF  
0x4003_57FF  
0x4003_5FFF  
0x4003_7FFF  
0x4003_8FFF  
0x4003_9FFF  
0x4003_AFFF  
0x4003_BFFF  
0x4003_FFFF  
0x4005_FFFF  
0x4006_0FFF  
0x41FF_FFFF  
Reserved  
Clock/Reset Control  
Hardware Watchdog timer  
Software Watchdog timer  
Reserved  
APB0  
Dual-Timer  
Reserved  
Multi-function timer unit0  
Reserved  
PPG  
Base Timer  
Quadrature Position/Revolution Counter (QPRC)  
A/D Converter  
APB1  
D/A Converter  
Reserved  
built-in CR trimming  
Reserved  
External Interrupt  
Interrupt Source Check Register  
Reserved  
GPIO  
Reserved  
Low-Voltage Detector  
APB2 Deep standby mode Controller  
Reserved  
Multi-function serial Interface  
CRC  
Watch Counter  
Real-time clock  
Reserved  
Reserved  
AHB  
DMAC register  
Reserved  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
49  
D a t a S h e e t  
Pin Status in Each CPU State  
The terms used for pin status have the following meanings.  
INITX=0  
This is the period when the INITX pin is the "L" level.  
INITX=1  
This is the period when the INITX pin is the "H" level.  
SPL=0  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register  
(STB_CTL) is set to "0".  
SPL=1  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register  
(STB_CTL) is set to "1".  
Input enabled  
Indicates that the input function can be used.  
Internal input fixed at "0"  
This is the status that the input function cannot be used. Internal input is fixed at "L".  
Hi-Z  
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  
Setting disabled  
Indicates that the setting is disabled.  
Maintain previous state  
Maintains the state that was immediately prior to entering the current mode.  
If a built-in peripheral function is operating, the output follows the peripheral function.  
If the pin is being used as a port, that output is maintained.  
Analog input is enabled  
Indicates that the analog input is enabled.  
Trace output  
Indicates that the trace function can be used.  
GPIO selected  
In Deep standby mode, pins switch to the general-purpose I/O port.  
50  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
List of Pin Status  
Power-on  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
reset or  
low-voltage  
detection  
state  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
A
Main crystal  
oscillator input  
pin/  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External main  
clock input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
External main  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
B
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Hi-Z /  
Internal  
input  
state/When state/When state/When state/When state/When state/When  
oscillation oscillation oscillation oscillation oscillation oscillation  
Hi-Z /  
Hi-Z /  
Main crystal  
oscillator output  
pin  
Internal  
Internal  
fixed at  
"0"/  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
input fixed input fixed  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
at "0"  
at "0"  
or Input  
enable  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed  
at "0"  
at "0"  
at "0"  
at "0"  
at "0"  
at "0"  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
INITX  
C
D
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
E
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z /  
Input  
Hi-Z /  
Input  
GPIO  
Setting  
Setting  
Setting  
GPIO  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
selected  
enabled  
enabled  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
51  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
F
Sub crystal  
oscillator input  
pin /  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External sub  
clock input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
External sub  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
G
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Hi-Z /  
Internal  
input  
state/When state/When state/When state/When state/When  
Maintain oscillation oscillation oscillation oscillation oscillation  
Hi-Z /  
Hi-Z /  
Sub crystal  
oscillator output  
pin  
Internal  
Internal  
fixed at  
"0"/  
previous  
state  
stops*2,  
stops*2,  
stops*2,  
stops*2,  
stops*2,  
input fixed input fixed  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
at "0"  
at "0"  
or Input  
enable  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed  
at "0"  
at "0"  
at "0"  
at "0"  
at "0"  
Maintain  
previous  
state  
External interrupt  
enabled selected  
Setting  
Setting  
Setting  
GPIO  
selected  
Internal  
input fixed  
at "0"  
disabled  
disabled  
disabled  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
H
Hi-Z /  
Internal  
input fixed  
at "0"  
selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
GPIO  
Hi-Z  
selected  
enabled  
enabled  
52  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
Internal  
Hi-Z /  
Internal  
Hi-Z /  
Internal  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
Maintain  
previous  
state  
disabled  
disabled  
disabled  
Setting  
Setting  
Setting  
I
NMIX selected  
disabled  
disabled  
disabled  
GPIO  
Hi-Z /  
WKUP  
input  
selected  
Resource other  
than above  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
WKUP  
input  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
enabled  
enabled  
Hi-Z  
Hi-Z  
Maintain  
previous  
state  
enabled  
enabled  
GPIO  
selected  
Pull-up /  
Input  
Pull-up /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
JTAG  
selected  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Internal  
input fixed  
at "0"  
J
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Resource selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
K
Hi-Z  
selected  
GPIO  
enabled  
enabled  
selected  
Analog output  
selected  
*3  
*4  
Setting  
Setting  
Setting  
Maintain  
previous  
state  
disabled  
disabled  
disabled  
External interrupt  
enabled selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
GPIO  
L
Maintain  
previous  
state  
Resource other  
than above  
selected  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
53  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
M
Resource other  
than above  
selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
N
Maintain  
previous  
state  
External interrupt  
enabled selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource other  
than above  
selected  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
GPIO  
selected  
*1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep  
Standby RTC mode, and Deep Standby Stop mode.  
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.  
*3: Maintain previous state at Timer mode. GPIO selected Internal input fixed at "0" at RTC mode, Stop mode.  
*4: Maintain previous state at Timer mode. Hi-Z/Internal input fixed at "0" at RTC mode, Stop mode.  
54  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Electrical Characteristics  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit Remarks  
Min  
Max  
Power supply voltage*1, *2  
VCC  
AVCC  
AVRH  
Vss - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
VCC + 0.5  
(6.5 V)  
VSS + 6.5  
AVCC + 0.5  
(6.5 V)  
VCC + 0.5  
(6.5 V)  
+2  
V
V
V
Analog power supply voltage*1, *3  
Analog reference voltage*1, *3  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
V
Input voltage*1  
VI  
V
V
5 V tolerant  
Analog pin input voltage*1  
Output voltage*1  
VIA  
VO  
VSS - 0.5  
-2  
V
Clamp maximum current  
ICLAMP  
mA *7  
Clamp total maximum current  
Σ[ICLAMP  
]
+20  
10  
20  
39  
4
mA *7  
mA 4 mA type  
mA 12 mA type  
mA P80/P81 pin  
mA 4 mA type  
mA 12 mA type  
mA P80/P81 pin  
mA  
L level maximum output current*4  
IOL  
-
-
L level average output current*5  
IOLAV  
12  
16.5  
100  
50  
L level total maximum output current  
L level total average output current*6  
IOL  
IOLAV  
-
-
mA  
- 10  
- 20  
- 39  
- 4  
- 12  
- 18  
- 100  
- 50  
300  
+ 150  
mA 4 mA type  
mA 12 mA type  
mA P80/P81 pin  
mA 4 mA type  
mA 12 mA type  
mA P80/P81 pin  
mA  
mA  
mW  
°C  
H level maximum output current*4  
IOH  
-
-
H level average output current*5  
IOHAV  
H level total maximum output current  
H level total average output current*6  
Power consumption  
IOH  
IOHAV  
PD  
-
-
-
Storage temperature  
TSTG  
- 55  
*1: These parameters are based on the condition that VSS = AVSS = 0 V.  
*2: VCC must not drop below VSS - 0.5 V.  
*3: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.  
*4: The maximum output current is defined as the value of the peak current flowing through any one of the  
corresponding pins.  
*5: The average output current is defined as the average current value flowing through any one of the  
corresponding pins for a 100 ms period.  
*6: The total average output current is defined as the average current value flowing through all of  
corresponding pins for a 100 ms period.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
55  
D a t a S h e e t  
*7:  
See "List of Pin Functions" and "I/O Circuit Type" about +B input available pin.  
Use within recommended operating conditions.  
Use at DC voltage (current) the +B input.  
The +B signal should always be applied a limiting resistance placed between the +B signal and the device.  
The value of the limiting resistance should be set so that when the +B signal is applied the input current to  
the device pin does not exceed rated values, either instantaneously or for prolonged periods.  
Note that when the device drive current is low, such as in the low-power consumpsion modes, the +B input  
potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and  
this may affect other devices.  
Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is  
provided from the pins, so that incomplete operation may result.  
The following is a recommended circuit example (I/O equivalent circuit).  
Protection Diode  
VCC  
VCC  
P-ch  
Limiting  
resistor  
Digital output  
Digital input  
+B input (0V to 16V)  
N-ch  
R
AVCC  
Analog input  
<WARNING>  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
56  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
2. Recommended Operating Conditions  
(VSS = AVSS = AVRL = 0.0V)  
Value  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
Max  
5.5  
Power supply voltage  
Analog power supply voltage  
VCC  
AVCC  
AVRH  
AVRL  
CS  
-
-
-
-
-
-
2.7*2  
2.7  
V
V
V
V
μF  
°C  
5.5  
AVCC = VCC  
2.7  
AVCC  
AVSS  
10  
Analog reference voltage  
AVSS  
1
Smoothing capacitor  
Operating temperature  
For Regulator*1  
TA  
- 40  
+ 105  
*1: See "C Pin" in "Handling Devices" for the connection of the smoothing capacitor.  
*2: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or  
more, instruction execution and low voltage detection function by built-in High-speed CR(including Main  
PLL is used) or bulit-in Low-speed CR is possible to operate only.  
<WARNING>  
The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure. No warranty is made  
with respect to uses, operating conditions, or combinations not represented on the data sheet. Users  
considering application outside the listed conditions are advised to contact their representatives beforehand.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
57  
D a t a S h e e t  
3. DC Characteristics  
(1) Current Rating  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)  
Value  
Typ Max  
Pin  
name  
Parameter Symbol  
Conditions  
Unit Remarks  
CPU : 72MHz,  
Peripheral : 36MHz  
32.5  
18  
41  
23  
mA *1, *5  
PLL  
Run mode  
CPU:72MHz,  
Peripheral clock stops  
NOP operation  
mA *1, *5  
Run  
mode  
High-speed  
CR  
CPU/ Peripheral : 4MHz*2  
2.5  
3.4  
mA *1  
ICC  
current  
Run mode  
Sub  
Run mode  
CPU/ Peripheral : 32kHz  
110  
980  
µA *1, *6  
Low-speed  
CR  
Run mode  
PLL  
Sleep mode  
High-speed  
CR  
Sleep mode  
Sub  
VCC  
CPU/ Peripheral : 100kHz  
Peripheral : 36MHz  
Peripheral : 4MHz*2  
Peripheral : 32kHz  
130  
22  
1030 µA *1  
28  
mA *1, *5  
1.6  
96  
2.6  
mA *1  
Sleep  
mode  
current  
ICCS  
955  
975  
µA *1, *6  
µA *1  
Sleep mode  
Low-speed  
CR  
Peripheral : 100kHz  
115  
Sleep mode  
*1: When all ports are fixed.  
*2: When setting it to 4 MHz by trimming.  
*3: TA=+25°C, VCC=5.5 V  
*4: TA=+105°C, VCC=5.5 V  
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
58  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter Symbol  
Conditions  
Unit Remarks  
mA *1, *4  
mA *1, *4  
μA *1, *5  
μA *1, *5  
μA *1, *5  
μA *1, *5  
μA *1  
Typ*2 Max*2  
TA = + 25°C,  
4.1  
4.8  
5.4  
66  
When LVD is off  
TA = + 105°C,  
Main  
ICCT  
Timer mode  
-
Timer  
mode  
current  
ICCT  
When LVD is off  
TA = + 25°C,  
17  
-
When LVD is off  
TA = + 105°C,  
Sub  
Timer mode  
835  
61  
When LVD is off  
TA = + 25°C,  
15  
-
RTC  
When LVD is off  
TA = + 105°C,  
When LVD is off  
TA = + 25°C,  
When LVD is off  
TA = + 105°C,  
mode  
ICCR  
RTC mode  
Stop mode  
current  
680  
53  
14  
-
Stop  
mode  
current  
ICCH  
600  
μA *1  
When LVD is off  
TA = + 25°C,  
When LVD is off,  
When RAM is off  
TA = + 25°C,  
When LVD is off,  
When RAM is on  
TA = + 105°C,  
When LVD is off,  
When RAM is off  
TA = + 105°C,  
When LVD is off,  
When RAM is on  
TA = + 25°C,  
When LVD is off,  
When RAM is off  
TA = + 25°C,  
When LVD is off,  
When RAM is on  
TA = + 105°C,  
2.2  
6.2  
11  
23  
μA *1, *3, *5  
μA *1, *3, *5  
μA *1, *3, *5  
μA *1, *3, *5  
μA *1, *3  
VCC  
Deep Standby  
RTC mode  
ICCRD  
155  
215  
9.6  
22  
-
Deep  
Standby  
mode  
current  
1.6  
5.6  
μA *1, *3  
Deep Standby  
Stop mode  
ICCHD  
When LVD is off,  
When RAM is off  
TA = + 105°C,  
When LVD is off,  
When RAM is on  
150  
210  
μA *1, *3  
-
μA *1, *3  
*1: When all ports are fixed.  
*2: VCC=5.5 V  
*3: RAM on/off setting is on-chip SRAM only.  
*4: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
59  
D a t a S h e e t  
· Low-Voltage Detection Current  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
At operation  
for reset  
Vcc = 5.5 V  
0.13  
0.3  
μA At not detect  
μA At not detect  
Low-voltage  
detection circuit  
(LVD) power  
supply current  
ICCLVD  
VCC  
At operation  
for interrupt  
Vcc = 5.5 V  
0.13  
0.3  
· Flash Memory Current  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
Flash memory  
write/erase  
current  
ICCFLASH  
VCC  
At Write/Erase  
9.5  
11.2  
mA  
*
*: The current at which to write or erase Flash memory, "ICCFLASH" is added to "ICC".  
· A/D Converter Current  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)  
Value  
Max  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
mA  
μA  
Remarks  
Typ  
At 1unit  
operation  
0.69  
0.90  
Power supply  
current  
ICCAD  
AVCC  
AVRH  
At stop  
0.25  
1.1  
25.84  
At 1unit  
operation  
AVRH=5.5 V  
1.97  
3.4  
mA  
Reference power  
supply current  
ICCAVRH  
At stop  
0.2  
μA  
· D/A Converter Current  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 105°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
At 1unit  
operation  
AVCC=3.3 V  
At 1unit  
operation  
AVCC=5.0 V  
250  
315  
380  
μA  
IDDA*2  
IDSA  
Power supply  
current*1  
AVCC  
380  
-
475  
-
580  
16  
μA  
μA  
At stop  
*1: No-load  
*2: Generates the max current by the CODE about 0x200  
60  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(2) Pin Characteristics  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)  
Value  
Typ  
Parameter Symbol Pin name  
Conditions  
Unit Remarks  
Min  
Max  
CMOS  
hysteresis  
input pin,  
MD0, MD1  
5V tolerant  
input pin  
H level input  
voltage  
(hysteresis  
input)  
-
-
-
-
VCC × 0.8  
-
VCC + 0.3  
V
V
V
V
VIHS  
VCC × 0.8  
VSS - 0.3  
VSS - 0.3  
-
-
-
VSS + 5.5  
VCC × 0.2  
VCC × 0.2  
CMOS  
hysteresis  
input pin,  
MD0, MD1  
5 V tolerant  
input pin  
L level input  
voltage  
(hysteresis  
input)  
VILS  
VCC 4.5 V,  
IOH = - 4 mA  
4 mA type  
12 mA type  
P80, P81  
VCC - 0.5  
VCC - 0.5  
VCC - 0.4  
VSS  
-
-
-
-
-
VCC  
VCC  
VCC  
0.4  
V
V
V
V
V
V
VCC < 4.5 V,  
IOH = - 2 mA  
VCC 4.5 V,  
IOH = - 12 mA  
VCC < 4.5 V,  
IOH = - 8 mA  
VCC 4.5 V,  
IOH = - 18.0 mA  
VCC < 4.5 V,  
IOH = - 12.0 mA  
VCC 4.5 V,  
IOL = 4 mA  
VCC < 4.5 V,  
IOL = 2 mA  
VCC 4.5 V,  
IOL = 12 mA  
VCC < 4.5 V,  
IOL = 8 mA  
H level  
output voltage  
VOH  
4 mA type  
12 mA type  
P80, P81  
L level  
output voltage  
VOL  
VSS  
0.4  
VCC 4.5 V,  
IOL = 16.5 mA  
VCC < 4.5 V,  
IOL = 10.5 mA  
VSS  
- 5  
-
-
0.4  
+ 5  
Input leak  
current  
IIL  
-
-
μA  
kΩ  
Pull-up  
resistance  
value  
VCC 4.5 V  
33  
-
50  
-
90  
RPU  
Pull-up pin  
VCC < 4.5 V  
180  
Other than  
VCC,  
VSS,  
Input  
capacitance  
CIN  
AVCC,  
AVSS,  
AVRH,  
AVRL  
-
-
5
15  
pF  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
61  
D a t a S h e e t  
4. AC Characteristics  
(1) Main Clock Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter  
Input frequency  
Input clock cycle  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
48  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
VCC < 4.5 V  
PWH/tCYLH,  
PWL/tCYLH  
4
4
4
4
When crystal oscillator  
is connected  
When using external  
Clock  
When using external  
Clock  
When using external  
Clock  
MHz  
MHz  
ns  
20  
48  
20  
250  
250  
fCH  
20.83  
50  
X0,  
X1  
tCYLH  
-
Input clock pulse  
width  
45  
55  
%
Input clock rising  
time and falling  
time  
tCF,  
tCR  
When using external  
Clock  
-
-
5
ns  
fCM  
fCC  
-
-
-
-
-
-
72  
72  
MHz Master clock  
Base clock  
(HCLK/FCLK)  
MHz  
Internal operating  
clock frequency*1  
fCP0  
fCP1  
fCP2  
-
-
-
-
-
-
-
-
-
40  
40  
40  
MHz APB0 bus clock*2  
MHz APB1 bus clock*2  
MHz APB2 bus clock*2  
Base clock  
tCYCC  
-
-
13.8  
-
ns  
(HCLK/FCLK)  
Internal operating  
clock cycle time*1  
tCYCP0  
tCYCP1  
tCYCP2  
-
-
-
-
-
-
25  
25  
25  
-
-
-
ns  
ns  
ns  
APB0 bus clock*2  
APB1 bus clock*2  
APB2 bus clock*2  
*1: For more information about each internal operating clock, see "Chapter 2-1:Clock" in "FM3 Family  
PERIPHERAL MANUAL".  
*2: For about each APB bus which each peripheral is connected to, see "Block Diagram" in this data sheet.  
X0  
62  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(2) Sub Clock Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
When crystal  
-
-
32.768  
-
kHz oscillator is  
connected  
Input frequency  
1/ tCYLL  
When using  
external clock  
When using  
external clock  
When using  
external clock  
-
-
32  
10  
45  
-
-
-
100  
31.25  
55  
kHz  
X0A,  
X1A  
Input clock cycle  
tCYLL  
-
μs  
Input clock pulse  
width  
PWH/tCYLL,  
PWL/tCYLL  
%
*: See "Sub crystal oscillator" in "Handling Devices" for the crystal oscillator used.  
X0A  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
63  
D a t a S h e e t  
(3) Built-in CR Oscillation Characteristics  
Built-in High-speed CR  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
TA = + 25°C  
3.92  
3.9  
4
4.08  
TA = 0°C to + 85°C  
4
4
4
4.1  
TA = -40°C to + 105°C 3.88  
4.12  
When trimming*1  
TA = + 25°C  
3.94  
Clock frequency  
fCRH  
4.06 MHz  
VCC 3.6 V  
TA = - 20°C to + 85°C  
VCC 3.6 V  
TA = - 20°C to + 105°C  
3.92  
4
4
4
-
4.08  
4.1  
3.9  
VCC 3.6 V  
TA = - 40°C to + 105°C  
-
2.8  
-
5.2  
When not trimming  
Frequency  
stabilization time  
2
tCRWT  
30  
μs  
*
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature  
trimming.  
*2: This is the time to stabilize the frequency of high-speed CR clock after setting trimming value.  
This period is able to use high-speed CR clock as source clock.  
Built-in Low-speed CR  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Clock frequency  
fCRL  
-
50  
100  
150  
kHz  
64  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min Typ Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
fPLLI  
-
fPLLO  
fCLKPLL  
4
5
75  
-
-
-
-
-
16  
MHz  
37 multiplier  
150  
72  
PLL macro oscillation clock frequency  
MHz  
MHz  
Main PLL clock frequency*2  
*1: Time from when the PLL starts operating until the oscillation stabilizes.  
*2: For more information about Main PLL clock (CLKPLL), see "Chapter: Clock" in "FM3 Family  
PERIPHERAL MANUAL".  
(4-2) Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock  
of Main PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min Typ Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
fPLLI  
-
fPLLO  
fCLKPLL  
3.8  
19  
72  
-
4
-
-
4.2  
MHz  
35 multiplier  
150  
72  
PLL macro oscillation clock frequency  
MHz  
MHz  
Main PLL clock frequency*2  
-
*1: Time from when the PLL starts operating until the oscillation stabilizes.  
*2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family  
PERIPHERAL MANUAL".  
Note: Make sure to input to the Main PLL source clock, the high-speed CR clock (CLKHC) that the  
frequency/temperature has been trimmed.  
When setting PLL multiple rate, please take the accuracy of the built-in high-speed CR clock into account  
and prevent the master clock from exceeding the maximum frequency.  
Main PLL connection  
Main PLL  
clock  
(CLKPLL)  
PLL input  
clock  
PLL macro  
oscillation clock  
K
M
divider  
Main  
PLL  
divider  
N
divider  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
65  
D a t a S h e e t  
(5) Reset Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit Remarks  
Min  
Max  
Reset input time  
tINITX  
INITX  
-
500  
-
ns  
(6) Power-on Reset Timing  
Parameter  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Pin  
name  
Symbol  
Unit  
Remarks  
Min  
0
Max  
Power supply rising time  
tVCCR  
tOFF  
-
-
ms  
ms  
Power supply shut down time  
1
VCC  
Time until releasing  
Power-on reset  
tPRT  
1.34  
18.6  
ms  
VCC_minimum  
VDH_minimum  
VCC  
0.2V  
0.2V  
0.2V  
tVCCR  
tPRT  
tOFF  
Internal reset  
Reset active  
Release  
start  
CPU Operation  
Glossary  
VCC_minimum : Minimum VCC of recommended operating conditions  
VDH_minimum : Minimum detection voltage (when SVHR=00000) of Low-Voltage detection reset  
See "7. Low-Voltage Detection Characteristics"  
66  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(7) Base Timer Input Timing  
Timer input timing  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Pin name Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
ECK, TIN)  
tTIWH  
tTIWL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTIWH  
tTIWL  
ECK  
TIN  
VIHS  
VIHS  
VILS  
VILS  
Trigger input timing  
Parameter  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Symbol Pin name Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
TGIN)  
tTRGH  
tTRGL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTRGH  
tTRGL  
VIHS  
VIHS  
TGIN  
VILS  
VILS  
Note: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Base Timer is connected to, see "Block Diagram" in this data  
sheet.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
67  
D a t a S h e e t  
(8) CSIO/UART Timing  
CSIO (SPI = 0, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
VCC < 4.5 V  
Pin  
VCC 4.5 V  
Parameter  
Serial clock cycle time  
SCK ↓ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSLOVI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
Master mode  
SIN SCK setup time  
SCK ↑ → SIN hold time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↓ → SOT delay time  
SIN SCK setup time  
SCK ↑ → SIN hold time  
tIVSHI  
tSHIXI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
30  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see "Block Diagram" in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
68  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
tSCYC  
VOH  
SCK  
SOT  
VOL  
VOL  
tSLOVI  
VOH  
VOL  
tIVSHI  
tSHIXI  
VIH  
VIL  
VIH  
VIL  
SIN  
Master mode  
tSLSH  
tSHSL  
VIH  
tR  
VIH  
tF  
VIH  
SCK  
VIL  
VIL  
tSLOVE  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
69  
D a t a S h e e t  
CSIO (SPI = 0, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
VCC < 4.5 V  
Pin  
VCC 4.5 V  
Parameter  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSHOVI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
Master mode  
SIN SCK setup time  
SCK ↓ → SIN hold time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↑ → SOT delay time  
SIN SCK setup time  
SCK ↓ → SIN hold time  
tIVSLI  
tSLIXI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
30  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see "Block Diagram" in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
70  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
71  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
VCC < 4.5 V  
Pin  
VCC 4.5 V  
Parameter  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx Master mode  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSHOVI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
SIN SCK setup time  
SCK ↓→ SIN hold time  
SOT SCK delay time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↑ → SOT delay time  
SIN SCK setup time  
SCK ↓→ SIN hold time  
tIVSLI  
tSLIXI  
tSOVLI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SOTx  
2tCYCP  
30  
-
2tCYCP  
30  
-
-
-
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
-
-
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
30  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see "Block Diagram" in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
72  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
VIH  
tF  
VIH  
VIH  
SCK  
SOT  
SIN  
VIL  
VIL  
tR  
tSHOVE  
VOH  
VOL  
*
VOH  
VOL  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
*: Changes when writing to TDR register  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
73  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
VCC < 4.5 V  
Pin  
name  
VCC 4.5 V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
Serial clock cycle time  
tSCYC  
SCKx  
4tCYCP  
-
4tCYCP  
-
ns  
SCKx,  
SOTx  
SCK ↓ → SOT delay time  
tSLOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
SCKx,  
SINx  
SCKx,  
SINx  
SCKx,  
SOTx  
SIN SCK setup time  
SCK ↑ → SIN hold time  
SOT SCK delay time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↓ → SOT delay time  
SIN SCK setup time  
SCK ↑ → SIN hold time  
tIVSHI  
tSHIXI  
tSOVHI  
tSLSH  
50  
0
-
-
30  
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
2tCYCP  
30  
2tCYCP  
10  
tCYCP  
10  
-
2tCYCP  
30  
2tCYCP  
10  
tCYCP  
10  
-
-
-
-
-
SCKx  
SCKx  
-
-
+
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
30  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see "Block Diagram" in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
74  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
tSCYC  
VOL  
VOH  
VOH  
SCK  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tR  
tF  
tSHSL  
tSLSH  
VIH  
VIH  
SCK  
VIL  
VIL  
VIL  
tSLOVE  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
UART external clock input (EXT = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Parameter  
Symbol Conditions  
Min  
Max  
Unit Remarks  
Serial clock L pulse width  
Serial clock H pulse width  
SCK falling time  
tSLSH  
tSHSL  
tCYCP + 10  
tCYCP + 10  
-
-
5
5
ns  
ns  
ns  
ns  
CL = 30 pF  
tF  
-
-
SCK rising time  
tR  
tR  
tF  
tSHSL  
tSLSH  
VIH  
VIH  
SCK  
VIL  
VIL  
VIL  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
75  
D a t a S h e e t  
(9) External Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Min  
Parameter Symbol Pin name Conditions  
Unit  
Remarks  
Max  
A/D converter  
trigger input  
ns Free-run timer input  
clock  
ADTG  
1
-
2tCYCP  
*
-
FRCKx  
ICxx  
DTTIxX  
INTxx,  
NMIX  
Input capture  
ns Waveform generator  
tINH,  
tINL  
Input pulse width  
1
-
*2  
*3  
2tCYCP  
*
-
-
-
2tCYCP + 100*1  
500  
ns  
ns  
External interrupt  
NMI  
Deep standby wake  
up  
WKUPx  
*4  
500  
-
ns  
*1: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected  
to, see "Block Diagram" in this data sheet.  
*2: When in Run mode, in Sleep mode.  
*3: When in Stop mode, in RTL mode, in Timer mode.  
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.  
76  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(10) Quadrature Position/Revolution Counter timing  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
AIN pin H width  
AIN pin L width  
BIN pin H width  
BIN pin L width  
tAHL  
tALL  
tBHL  
tBLL  
-
-
-
-
BIN rising time from  
AIN pin H level  
AIN falling time from  
BIN pin H level  
BIN falling time from  
AIN pin L level  
AIN rising time from  
BIN pin L level  
AIN rising time from  
BIN pin H level  
BIN falling time from  
AIN pin H level  
AIN falling time from  
BIN pin L level  
BIN rising time from  
AIN pin L level  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
QCR:CGSC=0  
QCR:CGSC=0  
tAUBU  
tBUAD  
tADBD  
tBDAU  
tBUAU  
tAUBD  
tBDAD  
tADBU  
2tCYCP  
*
-
ns  
ZIN pin H width  
ZIN pin L width  
tZHL  
tZLL  
AIN/BIN rise and falling  
time from determined ZIN  
level  
Determined ZIN level from  
AIN/BIN rise and falling  
time  
tZABE  
QCR:CGSC=1  
QCR:CGSC=1  
tABEZ  
*: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see "Block  
Diagram" in this data sheet.  
tALL  
tAHL  
AIN  
BIN  
tADBD  
tAUBU  
tBUAD  
tBDAU  
tBHL  
tBLL  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
77  
D a t a S h e e t  
tBLL  
tBHL  
BIN  
AIN  
tBDAD  
tBUAU  
tAUBD  
tADBU  
tAHL  
tALL  
ZIN  
ZIN  
AIN/BIN  
78  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
(11) I2C Timing  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Standard-  
mode  
Fast-  
mode  
Parameter  
Symbol Conditions  
Unit Remarks  
Min  
Max Min Max  
SCL clock frequency  
(Repeated) START condition  
hold time  
fSCL  
0
100  
0
400 kHz  
tHDSTA  
4.0  
-
0.6  
-
μs  
SDA ↓ → SCL ↓  
SCL clock L width  
SCL clock H width  
(Repeated) START condition  
setup time  
tLOW  
tHIGH  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
μs  
tSUSTA  
4.7  
-
0.6  
-
μs  
SCL ↑ → SDA ↓  
Data hold time  
CL = 30 pF,  
R = (VP/IOL)*1  
tHDDAT  
0
3.45*2  
0
0.9*3 μs  
SCL ↓ → SDA ↓ ↑  
Data setup time  
SDA ↓ ↑ → SCL ↑  
STOP condition setup time  
SCL ↑ → SDA ↑  
tSUDAT  
tSUSTO  
250  
4.0  
-
-
100  
0.6  
-
-
ns  
μs  
Bus free time between  
STOP condition and  
START condition  
Noise filter  
tBUF  
4.7  
-
-
1.3  
-
-
μs  
4
4
tSP  
-
2 tCYCP  
*
2 tCYCP  
*
ns  
*1:R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.  
VP indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.  
*2:The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.  
*3:A Fast-speed mode I2C bus device can be used on a Standard mode I2C bus system as long as the device  
satisfies the requirement of "tSUDAT ≥ 250 ns".  
*4:tCYCP is the APB bus clock cycle time.  
About the APB bus number that I2C is connected to, see "Block Diagram" in this data sheet.  
To use Standard-mode, set the APB bus clock at 2 MHz or more  
To use Fast-mode, set the APB bus clock at 8 MHz or more.  
SDA  
SCL  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
79  
D a t a S h e e t  
(12) JTAG Timing  
Parameter  
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)  
Value  
Symbol Pin name Conditions  
Unit  
ns  
Remarks  
Min  
Max  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
VCC < 4.5 V  
VCC 4.5 V  
TMS, TDI setup  
time  
TCK,  
TMS, TDI  
tJTAGS  
15  
-
TCK,  
TMS, TDI  
TMS, TDI hold time tJTAGH  
TDO delay time tJTAGD  
15  
-
ns  
-
-
25  
45  
TCK,  
TDO  
ns  
VCC < 4.5 V  
Note: When the external load capacitance CL = 30 pF.  
TCK  
TMS/TDI  
TDO  
80  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
5. 12-bit A/D Converter  
Electrical Characteristics for the A/D Converter  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)  
Value  
Typ  
-
± 1.5  
± 1.7  
± 10  
Pin  
name  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
12  
± 4.5  
± 2.5  
± 15  
Resolution  
-
-
-
-
-
-
-
-
-
-
bit  
Integral Nonlinearity  
Differential Nonlinearity  
Zero transition voltage  
Full-scale transition  
voltage  
LSB  
LSB  
mV  
AVRH = 2.7 V  
to 5.5 V  
VZT  
ANxx  
VFST  
ANxx  
-
AVRH ± 5 AVRH ± 15 mV  
0.8*1  
1.0*1  
0.24  
0.3  
-
-
-
-
-
-
-
-
AVCC 4.5 V  
AVCC < 4.5 V  
AVCC 4.5 V  
AVCC < 4.5 V  
AVCC 4.5 V  
AVCC < 4.5 V  
Conversion time  
-
-
-
μs  
μs  
ns  
Sampling time*2  
tS  
10  
40  
Compare clock cycle*3  
tCCK  
-
1000  
50  
State transition time to  
operation permission  
tSTT  
CAIN  
RAIN  
-
-
-
-
-
-
-
-
-
1.0  
9.7  
μs  
pF  
kΩ  
Analog input capacity  
Analog input resistor  
1.7  
2.4  
AVCC 4.5 V  
AVCC < 4.5 V  
Interchannel disparity  
Analog port input current  
Analog input voltage  
-
-
-
-
-
-
-
-
-
-
-
-
-
4
5
LSB  
μA  
V
V
V
ANxx  
ANxx  
AVRH  
AVRL  
AVRL  
2.7  
AVSS  
AVRH  
AVCC  
AVSS  
Reference voltage  
*1: The conversion time is the value of sampling time (tS) + compare time (tC).  
The condition of the minimum conversion time is the following.  
AVCC ≥ 4.5 V, HCLK=50 MHz sampling time: 240 ns, compare time: 560 ns.  
AVCC < 4.5 V, HCLK=40 MHz sampling time: 300 ns, compare time: 700 ns  
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).  
For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family  
PERIPHERAL MANUAL Analog Macro Part".  
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock  
timing.  
For the number of the APB bus to which the A/D Converter is connected, see "Block Diagram".  
The base clock (HCLK) is used to generate the sampling time and the compare clock cycle.  
*2: A necessary sampling time changes by external impedance.  
Ensure that it sets the sampling time to satisfy (Equation 1).  
*3: The compare time (tC) is the value of (Equation 2).  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
81  
D a t a S h e e t  
Comparator  
ANxx  
Analog input pin  
REXT  
RAIN  
Analog  
signal source  
CAIN  
(Equation 1) tS ( RAIN + REXT ) × CAIN × 9  
tS:  
Sampling time  
RAIN  
:
input resistor of A/D = 1.5 kΩ at 4.5 V < AVCC < 5.5 V ch.0 to ch.7  
input resistor of A/D = 1.6 kΩ at 4.5 V < AVCC < 5.5 V ch.8 to ch.15  
input resistor of A/D = 1.7 kΩ at 4.5 V < AVCC < 5.5 V ch.16 to ch.26  
input resistor of A/D = 2.2 kΩ at 2.7 V < AVCC < 4.5 V ch.0 to ch.7  
input resistor of A/D = 2.3 kΩ at 2.7 V < AVCC < 4.5 V ch.8 to ch.15  
input resistor of A/D = 2.4 kΩ at 2.7 V < AVCC < 4.5 V ch.16 to ch.26  
input capacity of A/D = 9.7 pF at 2.7 V < AVCC < 5.5 V  
CAIN  
:
REXT  
:
Output impedance of external circuit  
(Equation 2) tC = tCCK × 14  
tC:  
tCCK  
Compare time  
Compare clock cycle  
:
82  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Definition of 12-bit A/D Converter Terms  
Resolution:  
Integral Nonlinearity:  
Analog variation that is recognized by an A/D converter.  
Deviation of the line between the zero-transition point  
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point  
(0b111111111110 ←→ 0b111111111111) from the actual conversion  
characteristics.  
Differential Nonlinearity:  
Deviation from the ideal value of the input voltage that is required to change  
the output code by 1 LSB.  
Integral Nonlinearity  
Differential Nonlinearity  
0xFFF  
Actual conversion  
Actual conversion  
characteristics  
characteristics  
0xFFE  
0x(N+1)  
0xN  
{1 LSB(N-1) + VZT}  
0xFFD  
VFST  
Ideal characteristics  
(Actually-  
measured  
value)  
VNT  
0x004  
0x003  
0x002  
(Actually-measured  
value)  
V(N+1)T  
(Actually-measured  
value)  
0x(N-1)  
0x(N-2)  
Actual conversion  
characteristics  
VNT  
(Actually-measured  
value)  
Ideal characteristics  
0x001  
(Actually-measured value)  
VZT  
Actual conversion characteristics  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
Analog input  
VNT - {1LSB × (N - 1) + VZT}  
1LSB  
Integral Nonlinearity of digital output N =  
Differential Nonlinearity of digital output N =  
[LSB]  
V(N + 1) T - VNT  
- 1 [LSB]  
1LSB  
VFST - VZT  
1LSB =  
4094  
N:  
A/D converter digital output value.  
VZT: Voltage at which the digital output changes from 0x000 to 0x001.  
VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF.  
VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
83  
D a t a S h e e t  
6. 10-bit D/A Converter  
Electrical Characteristics for the D/A Converter  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)  
Value  
Typ Max  
Parameter  
Symbol Pin name  
Unit  
Remarks  
Min  
-
0.47  
2.37  
- 4.0  
Resolution  
-
-
10  
0.69  
3.43  
bit  
μs  
μs  
tC20  
tC100  
INL  
0.58  
2.90  
-
Load 20 pF  
Load 100 pF  
Conversion time  
Integral Nonlinearity*1  
Differential  
+ 4.0 LSB  
DNL  
DAx  
- 0.9  
-
+ 0.9 LSB  
Nonlinearity*1,*2  
-
- 20.0  
3.10  
2.0  
-
-
10.0  
mV Code is 0x000  
Output Voltage offset  
VOFF  
+ 5.4 mV Code is 0x3FF  
4.50  
-
3.80  
-
-
kΩ D/A operation  
MΩ D/A stop  
ns  
Analog output  
impedance  
Output undefined period  
*1: No-load  
RO  
tR  
-
70  
*2: Generates the max current by the CODE about 0x200  
84  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
7. Low-Voltage Detection Characteristics  
(1) Low-Voltage Detection Reset  
(TA = - 40°C to + 105°C)  
Value  
Min Typ Max  
Parameter  
Symbol Conditions  
Unit  
Remarks  
SVHR*1=  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDL  
2.25  
2.30  
2.39  
2.48  
2.48  
2.58  
2.58  
2.67  
2.76  
2.85  
2.94  
3.04  
3.31  
3.40  
3.40  
3.50  
3.68  
3.77  
3.77  
3.86  
3.86  
3.96  
2.45  
2.50  
2.60  
2.70  
2.70  
2.80  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.60  
3.70  
3.70  
3.80  
4.00  
4.10  
4.10  
4.20  
4.20  
4.30  
2.65  
2.70  
2.81  
2.92  
2.92  
3.02  
3.02  
3.13  
3.24  
3.35  
3.46  
3.56  
3.89  
4.00  
4.00  
4.10  
4.32  
4.43  
4.43  
4.54  
4.54  
4.64  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
00000  
SVHR*1=  
00001  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
SVHR*1=  
00010  
SVHR*1=  
00011  
SVHR*1=  
00100  
SVHR*1=  
00101  
SVHR*1=  
00110  
SVHR*1=  
00111  
SVHR*1=  
01000  
SVHR*1=  
01001  
SVHR*1=  
01010  
LVD stabilization  
wait time  
8160 ×  
tLVDW  
-
-
-
-
-
-
μs  
μs  
2
tCYCP  
*
LVD detection delay  
time  
tLVDDL  
200  
*1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to "00000" by  
Low-Voltage Detection Reset.  
*2: tCYCP indicates the APB2 bus clock cycle time.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
85  
D a t a S h e e t  
(2) Interrupt of Low-Voltage Detection  
(TA = - 40°C to + 105°C)  
Value  
Min Typ Max  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDL  
2.58  
2.67  
2.76  
2.85  
2.94  
3.04  
3.31  
3.40  
3.40  
3.50  
3.68  
3.77  
3.77  
3.86  
3.86  
3.96  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.60  
3.70  
3.70  
3.80  
4.00  
4.10  
4.10  
4.20  
4.20  
4.30  
3.02  
3.13  
3.24  
3.35  
3.46  
3.56  
3.89  
4.00  
4.00  
4.10  
4.32  
4.43  
4.43  
4.54  
4.54  
4.64  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
SVHI = 00011  
VDH  
VDL  
SVHI = 00100  
VDH  
VDL  
SVHI = 00101  
VDH  
VDL  
SVHI = 00110  
VDH  
VDL  
SVHI = 00111  
VDH  
VDL  
VDH  
SVHI = 01000  
VDL  
SVHI = 01001  
VDH  
VDL  
SVHI = 01010  
VDH  
LVD stabilization  
wait time  
8160×  
tCYCP  
tLVDW  
-
-
-
-
-
-
μs  
μs  
*
LVD detection  
delay time  
tLVDDL  
200  
*: tCYCP indicates the APB2 bus clock cycle time.  
86  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
8. Flash Memory Write/Erase Characteristics  
(1) Write / Erase time  
(VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Unit  
Remarks  
Typ  
Max  
Large Sector  
Small Sector  
1.1  
2.7  
Sector erase  
time  
Includes write time prior to internal  
erase  
s
0.3  
16  
0.9  
Half word (16-bit)  
write time  
Not including system-level overhead  
time  
310  
μs  
Includes write time prior to internal  
erase  
Chip erase time  
6.8  
18  
s
*: The typical value is immediately after shipment, the maximam value is guarantee value under 10,000 cycle  
of erase/write.  
(2) Write cycles and data hold time  
Erase/write cycles (cycle) Data hold time (year)  
Remarks  
1,000  
10,000  
20*  
10*  
*: At average + 85C  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
87  
D a t a S h e e t  
9. Return Time from Low-Power Consumption Mode  
(1) Return Factor: Interrupt/WKUP  
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the  
return factor to starting the program operation.  
Return Count Time  
(VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
tCYCC  
Sleep mode  
μs  
High-speed CR Timer mode,  
Main Timer mode,  
40  
80  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
Sub Timer mode  
340  
680  
680  
860  
μs  
μs  
tICNT  
RTC mode,  
Stop mode  
268  
503  
μs  
308  
268  
583  
503  
μs  
μs  
When RAM is off  
When RAM is on  
Deep Standby RTC mode  
Deep Standby Stop mode  
*: The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by external interrupt*)  
External  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: External interrupt is set to detecting fall edge.  
88  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)  
Internal  
resource  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.  
Notes: The return factor is different in each Low-Power consumption modes.  
See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3  
Family PERIPHERAL MANUAL.  
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before  
the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in  
"FM3 Family PERIPHERAL MANUAL".  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
89  
D a t a S h e e t  
(2) Return Factor: Reset  
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to  
starting the program operation.  
Return Count Time  
(VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
Sleep mode  
148  
263  
μs  
High-speed CR Timer mode,  
Main Timer mode,  
148  
263  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
Sub Timer mode  
248  
312  
463  
496  
μs  
μs  
tRCNT  
RTC mode,  
Stop mode  
268  
503  
μs  
308  
268  
583  
503  
μs  
μs  
When RAM is off  
When RAM is on  
Deep Standby RTC mode  
Deep Standby Stop mode  
*: The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by INITX)  
INITX  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
90  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Operation example of return from low power consumption mode (by internal resource reset*)  
Internal  
resource  
reset  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.  
Notes: The return factor is different in each Low-Power consumption modes.  
See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3  
Family PERIPHERAL MANUAL.  
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before  
the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in  
"FM3 Family PERIPHERAL MANUAL".  
The time during the power-on reset/low-voltage detection reset is excluded. See "(6) Power-on  
Reset Timing in 4. AC Characteristics in Electrical Characteristics" for the detail on the time  
during the power-on reset/low -voltage detection reset.  
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main  
clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or  
the Main PLL clock stabilization wait time.  
The internal resource reset means the watchdog reset and the CSV reset.  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
91  
D a t a S h e e t  
Ordering Information  
On-chip  
Flash  
memory  
On-chip  
SRAM  
Part number  
Package  
Packing  
Main: 64 Kbyte  
Work: 32 Kbyte  
MB9BF121KQN-G-AVE2  
MB9BF122KQN-G-AVE2  
MB9BF124KQN-G-AVE2  
MB9BF121KPMC-G-JNE2  
MB9BF122KPMC-G-JNE2  
MB9BF124KPMC-G-JNE2  
MB9BF121LQN-G-AVE2  
MB9BF122LQN-G-AVE2  
MB9BF124LQN-G-AVE2  
MB9BF121LPMC1-G-JNE2  
MB9BF122LPMC1-G-JNE2  
MB9BF124LPMC1-G-JNE2  
MB9BF121LPMC-G-JNE2  
MB9BF122LPMC-G-JNE2  
MB9BF124LPMC-G-JNE2  
MB9BF121MPMC-G-JNE2  
MB9BF122MPMC-G-JNE2  
MB9BF124MPMC-G-JNE2  
MB9BF121MPMC1-G-JNE2  
MB9BF122MPMC1-G-JNE2  
MB9BF124MPMC1-G-JNE2  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
PlasticQFN  
(0.5 mm pitch), 48-pin  
(LCC-48P-M73)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
PlasticLQFP  
(0.5 mm pitch), 48-pin  
(FPT-48P-M49)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
PlasticQFN  
(0.5 mm pitch), 64-pin  
(LCC-64P-M24)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
PlasticLQFP  
(0.5 mm pitch), 64-pin  
(FPT-64P-M38)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Tray  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
PlasticLQFP  
(0.65 mm pitch), 64-pin  
(FPT-64P-M39)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
PlasticLQFP  
(0.5 mm pitch), 80-pin  
(FPT-80P-M37)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
PlasticLQFP  
(0.65 mm pitch), 80-pin  
(FPT-80P-M40)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
92  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
On-chip  
Flash  
memory  
On-chip  
SRAM  
Part number  
Package  
Packing  
Main: 64 Kbyte  
Work: 32 Kbyte  
MB9BF121MBGL-GE1  
MB9BF122MBGL-GE1  
MB9BF124MBGL-GE1  
16 Kbyte  
16 Kbyte  
32 Kbyte  
PlasticPFBGA  
(0.5 mm pitch), 96-pin  
(BGA-96P-M07)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Tray  
Main: 256 Kbyte  
Work: 32 Kbyte  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
93  
D a t a S h e e t  
Package Dimensions  
80-pin plastic LQFP  
Lead pitch  
0.50 mm  
12.00 mm × 12.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.47 g  
Sealing method  
Mounting height  
Weight  
(FPT-80P-M37)  
80-pin plastic LQFP  
(FPT-80P-M37)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
14.00± 0.20(.551± .008)SQ  
*12.00± 0.10(.472± .004)SQ  
0.145± 0.055  
(.006± .002)  
60  
41  
Details of "A" part  
61  
40  
1.50+00..1200  
(Mounting height)  
.059+..000048  
0.25(.010)  
0~8°  
0.08(.003)  
0.50± 0.20  
(.020± .008)  
0.60± 0.15  
0.10± 0.05  
(.004± .002)  
(Stand off)  
(.024± .006)  
INDEX  
80  
21  
"A"  
1
20  
0.50(.020)  
0.22± 0.05  
M
0.08(.003)  
(.009± .002)  
Dimensions in mm (inches).  
C
Note: The values in parentheses are reference values.  
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F80037S-c-1-2  
94  
MB9B120M_DS706-00050-3v0-E, March 10, 2015  
D a t a S h e e t  
80-pin plastic LQFP  
Lead pitch  
0.65 mm  
14.00 mm × 14.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Plastic mold  
1.60 mm Max.  
Code  
(Reference)  
P-LQFP80-14 × 14-0.65  
(FPT-80P-M40)  
80-pin plastic LQFP  
(FPT-80P-M40)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
16.00±0.20(.630±.008)SQ  
*14.00±0.10(.551±.004)SQ  
0.145±0.055  
(.006±.002)  
60  
41  
Details of "A" part  
61  
40  
1.50±0.10  
(.059±.004)  
0.25(.010)  
0.10(.004)  
0˚~7˚  
INDEX  
0.50±0.20  
(.020±.008)  
0.10±0.05  
80  
21  
(.004±.002)  
0.60±0.15  
(.024±.006)  
20  
1
0.65(.026)  
0.32±0.06  
M
0.13(.005)  
(.013±.002)  
Dimensions in mm (inches).  
Note: The values in parentheses are referencevalues.  
C
2012 FUJITSU SEMICONDUCTOR LIMITED HMbF80-40Sc-1-1  
March 10, 2015, MB9B120M_DS706-00050-3v0-E  
95  
D a t a S h e e t  
64-pin plastic LQFP  
Lead pitch  
0.50 mm  
10.00 mm × 10.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.32 g  
Sealing method  
Mounting height  
Weight  
(FPT-64P-M38)  
64-pin plastic LQFP  
(FPT-64P-M38)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
12.00±0.20(.472±.008)SQ  
*10.00±0.10(.394±.004)SQ  
0.145 ± 0.055  
(.006 ± .002)  
48  
33  
Details of "A" part  
49  
32  
1.50+00..1200  
0.08(.003)  
(Mounting height)  
.059+..000084  
0.25(.010)  
0~8°  
INDEX  
0.50±0.20  
(.020±.008)  
0.60 ± 0.15  
(.024±.006)  
0.10 ± 0.10  
(.004±.004)  
(Stand off)  
64  
17  
"A"  
1
16  
0.50(.020)  
0.22±0.05  
M
0.08(.003)  
(.009±.002)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2010 FUJITSU SEMICONDUCTOR LIMITED F64038S-c-1-2  
96  
MB9B120M_DS706-00050-3v0-E, March 10, 2015  
D a t a S h e e t  
64-pin plastic LQFP  
Lead pitch  
0.65 mm  
12.00 mm × 12.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.70 mm MAX  
0.47 g  
(FPT-64P-M39)  
64-pin plastic LQFP  
(FPT-64P-M39)  
Note 1) Pins width and pins thickness include plating thickness.  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
48  
33  
Details of "A" part  
49  
32  
1.50+00..1200  
.059+..000048  
0~8˚  
0.10(.004)  
0.10±0.10  
(.004±.004)  
INDEX  
0.50±0.20  
(.020±.008)  
0.60±0.15  
(.024±.006)  
0.25(.010)BSC  
64  
17  
1
16  
"A"  
0.65(.026)  
0.32±0.05  
(.013±.002)  
M
0.13(.005)  
C
Dimensions in mm (inches).  
Note: The values in parentheses are referencevalues.  
2010-2011 FUJITSU SEMICONDUCTOR LIMITED HMbF64-39Sc-2-2  
March 10, 2015, MB9B120M_DS706-00050-3v0-E  
97  
D a t a S h e e t  
64-pin plastic QFN  
Lead pitch  
0.50 mm  
9.00 mm × 9.00 mm  
Plastic mold  
0.90 mm MAX  
-
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-64P-M24)  
64-pin plastic QFN  
(LCC-64P-M24)  
9.00±0.10  
(.354±.004)  
6.00±0.10  
(.236±.004)  
0.25±0.05  
(.010±.002)  
6.00±0.10  
(.236±.004)  
9.00±0.10  
(.354±.004)  
INDEX AREA  
0.45 (.018)  
1PIN ID  
(0.20R (.008R))  
0.50 (.020)  
(TYP)  
0.40±0.05  
(.016±.002)  
0.85±0.05  
(.033±.002)  
0.05 (.002) MAX  
(0.20 (.008))  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2011 FUJITSU SEMICONDUCTOR LIMITED HMbC64-24Sc-2-1  
98  
MB9B120M_DS706-00050-3v0-E, March 10, 2015  
D a t a S h e e t  
48-pin plastic LQFP  
Lead pitch  
0.50 mm  
7.00 mm × 7.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.17 g  
Sealing method  
Mounting height  
Weight  
(FPT-48P-M49)  
48-pin plastic LQFP  
(FPT-48P-M49)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
9.00± 0.20(.354 ± .008)SQ  
*7.00± 0.10(.276 ± .004)SQ  
0.145± 0.055  
(.006± .002)  
36  
25  
37  
24  
Details of "A" part  
0.08(.003)  
1.50+00..2100  
(Mounting height)  
.059+..000048  
INDEX  
48  
13  
0.10± 0.10  
(.004± .004)  
(Stand off)  
"A"  
0°~8°  
1
12  
0.50(.020)  
0.25(.010)  
0.22± 0.05  
(.008± .002)  
M
0.08(.003)  
0.60± 0.15  
(.024± .006)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2010 FUJITSU SEMICONDUCTOR LIMITED HMbF48-49Sc-1-2  
March 10, 2015, MB9B120M_DS706-00050-3v0-E  
99  
D a t a S h e e t  
48-pin plastic QFN  
Lead pitch  
0.5 mm  
7.00 mm × 7.00 mm  
Plastic mold  
0.90 mm MAX  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-48P-M73)  
48-pin plastic QFN  
(LCC-48P-M73)  
7.00±0.10  
5.50±0.10  
(.276±.004)  
(.217±.004)  
0.25±0.05  
(.010±.002)  
7.00±0.10  
(.276±.004)  
5.50±0.10  
(.217±.004)  
INDEX AREA  
0.45 (.018)  
1PIN ID  
(0.20R (.008R))  
0.85±0.05  
(.033±.002)  
0.50 (.020)  
(TYP)  
0.40±0.05  
(.016±.002)  
0.05 (.002) MAX  
(0.20(.008))  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2011 FUJITSU SEMICONDUCTOR LIMITED HMbC48-73Sc-2-1  
100  
MB9B120M_DS706-00050-3v0-E, March 10, 2015  
D a t a S h e e t  
96-pin plastic FBGA  
Lead pitch  
0.5 mm  
6.00 mm × 6.00 mm  
Ball  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.30 mm MAX  
0.08 g  
(BGA-96P-M07)  
96-pin plastic FBGA  
(BGA-96P-M07)  
5.00(.197)  
REF  
B
6.00±0.10(.236±.004)  
0.50  
(.020)  
TYP  
0.20(.008) S  
B
11  
10  
9
8
A
7
5.00(.197)  
REF  
6.00±0.10  
(.236±.004)  
6
5
0.50(.020)  
TYP  
4
3
2
1
L
K
J
H
G
F
E
D
C
B
A
(INDEX AREA)  
0.20(.008) S  
INDEX  
A
96-ø0.30±0.10  
(96-ø.012±.004)  
M
ø0.05(.002)  
S A B  
S
1.15±0.15  
(.045±.006)  
(Seated height)  
0.08(.003) S  
0.25±0.10  
(.010±.004)  
(Stand off)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2012 FUJITSU SEMICONDUCTOR LIMITED B96007S-c-1-1  
March 10, 2015, MB9B120M_DS706-00050-3v0-E  
101  
D a t a S h e e t  
Major Changes  
Page  
Section  
Change Results  
Revision 1.0  
-
-
Preliminary → Data Sheet  
FEATURES  
A/D Converter (Max 26channels)  
Revised the conversion time: 1.0μs 0.8μs  
3
UniqueID  
Added the "Unique ID".  
Added the "Unique ID".  
5
6
PRODUCT LINEUP  
Function  
LIST OF PIN FUNCTIONS  
• List of pin numbers  
• List of pin functions  
Corrected the I/O circuit type.  
Corrected the Pin state type.  
Corrected the Pin function.  
15 to 17  
32  
38  
I/O CIRCUIT TYPE  
Added the "Type: L".  
BLOCK DIAGRAM  
Corrected the figure.  
45  
- TIOA: input input/output  
- TIOB: output input  
Revised the value of "TBD".  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
2. Recommended Operating Conditions  
54  
55  
Revised the Condition of "Operating temperature".  
3. DC Characteristics  
(1) Current Rating  
4. AC Characteristics  
(3) Built-in CR Oscillation Characteristics  
(4-2) Operating Conditions of Main PLL (In the  
case of using built-in high-speed CR for input clock  
of main PLL)  
Revised the value of "TBD".  
Added "Flash memory write/erase current".  
Revised the Condition.  
Revised the footnote.  
Revised the value of "TBD".  
56, 57  
60  
61  
5. 12-bit A/D Converter  
Electrical characteristics for the A/D converter  
Deleted "(Preliminary value)".  
Revised the conversion time.  
Min: 1.0μs 0.8μs  
Revised the value of "Compare clock cycle  
77  
(AVCC 4.5V)".  
Min: 50ns 40ns  
Revised the footnote.  
6. 10-bit D/A Converter  
Deleted "(Preliminary value)".  
80  
81  
7. Low-Voltage Detection Characteristics  
8. MainFlash Memory Write/Erase Characteristics  
Revised the value of "TBD".  
Revised the value of "TBD".  
Revised the value of "Sector erase time".  
- Large Sector Typ: 1.065s 1.1s  
- Small Sector Typ: 0.606s 0.3s  
Revised the value of "Chip erase time".  
Typ: 9.11s 6.8s  
82  
Deleted "(targeted value)".  
Revision 1.1  
-
-
Company name and layout design change  
Revision 2.0  
FEATURES  
On-chip Memories [Flash memory]  
Revised the features of Dual operation Flash memory  
2
Corrected the mode.  
Multi-function Serial Interface [I2C]  
High speed mode Fast mode  
Revised the features of 5V tolerant I/O.  
Corrected the number of A/D activating compare channels.  
3ch. 2ch.  
3
4
General-Purpose I/O Port  
Multi-function Timer  
Corrected the number of A/D activating compare channels.  
3ch. 2ch.  
6
Revised Built-in CR.  
PRODUCT LINEUP  
Function  
High-speed: 4MHz(± 2%) 4MHz  
Low-speed: 100kHz(Typ) 100kHz  
Revised the footnote.  
7
LIST OF PIN FUNCTIONS  
List of pin numbers  
20  
Corrected the pin number of ZIN1_1.  
23  
28  
30  
Corrected the pin number of ADTG_2.  
Corrected pin numbers of SIN0_1 and SOT0_1.  
Corrected the pin number of DTTI0X_2.  
TYPE H :  
List of pin functions  
I/O CIRCUIT TYPE  
36  
Revised the value of "TBD".  
102  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
Page  
Section  
HANDLING DEVICES  
Change Results  
43  
46  
Added the descriptions.  
Corrected the figure.  
Sub crystal oscillator  
BLOCK DIAGRAM  
-A/D Activation Compare: 3ch 2ch  
MEMORY MAP  
Memory Map (2)  
48  
53  
54  
Added the explanatory note.  
Added the pin function of selected Analog output about type L.  
Corrected the footnote.  
PIN STATUS IN EACH CPU STATE  
List of Pin Status  
Sub CR timerLow-speed CR tim  
Added the note and footnote.  
Corrected the value of Analog reference voltage AVRH.  
Min.: AVss 2.7  
ELECTRICAL CHARACTERISTICS  
2. Recommended Operating Conditions  
56  
57  
Added notes and footnotes.  
Added the remarks of Icc.  
Added the frequency of main clock crystal oscillator in remarks.  
3. DC Characteristics  
(1) Current Rating  
4. AC Characteristics  
61  
62  
64  
Added the footnote.  
(2) Sub clock input Characteristics  
(3) Built-in CR Oscillation Characteristics  
Built-in High-speed CR  
Added "Frequency stabilization time"  
Added notes and footnotes.  
Added "Timing until releaseing Power-on reset"  
Added the timing chart  
(6) Power-on Reset Timing  
Corrected the title.  
UART Timing CSIO Timing  
Corrected the notefoot.  
UART Multi-function serial  
66  
(8) CSIO Timing  
Corrected the notefoot.  
UART Multi-function serial  
Revised the Condition.  
Revised the footnote.  
68,70,72  
77  
(11) I2C Timing  
Changed the name of parameter.  
Non Linearity error Integral Nonlinearity  
Differential linearity error Differential Nonlinearity  
Changed the Symbol. Of Zero transition voltage.  
VoT VZT  
79  
5. 12-bit A/D Converter  
Electrical characteristics for the A/D converter  
Changed the pin name.  
AN00 to AN26 ANxx  
Corrected the value of V0T, VFST, Ts, Tstt, and reference voltage.  
Revides footnotes.  
Change the figure.  
AN00 to AN26 ANxx  
Linearity error Integral Nonlinearity  
Differential linearity error Differential Nonlinearity  
V0T VZT  
80  
81  
Difinition of 12-bit A/D Converter Terms  
Revised the remark of IDDA.  
D/A operation D/A 1unit operation  
Changed the name of parameter.  
Linearity error Integral Nonlinearity  
Differential linearity error Differential Nonlinearity  
Corrected the condition and the value.  
Added the note and the footnote.  
Added LVD detection delay time.  
Corrected the condition and the value.  
Added LVD detection delay time.  
Changed the title of Chapter.  
6. 10-bit D/A Converter  
Electrical characteristics for the D/A converter  
82  
7. Low-Voltage Detection Characteristics  
(1) Low-Voltage Detection Reset  
83  
84  
85  
(2) Interrupt of Low-Voltage Detection  
8. Flash Memory Write/Erase Characteristics  
9. Return Time Low-Power Consumption Mode  
Main Flash Memory Write/Erase Characteristics →  
Flash Memory Write/Erase Characteristics  
Added the Chapter Return Time from Low-Power Consumption Mode.  
86  
Revision 3.0  
Features  
USB Interface  
I/O Circuit Type  
Memory Map  
2
Added the description of PLL for USB  
Added about +B input  
35, 36  
48  
Added the summary of Flash memory sector and the note  
· Memory map(2)  
PIN STATUS IN EACH CPU STAE  
· List of Pin Status  
Electrical Characteristics  
1. Absolute Maximum Ratings  
52  
Changed the pin status of I-type  
· Added the Clamp maximum current  
· Added about +B input  
55, 56  
· Changed the table format  
Electrical Characteristics  
3. DC Characteristics  
(1) Current rating  
· Added Main TIMER mode current  
· Moved A/D Converter Current  
· Moved D/A Converter Current  
58-60  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
103  
D a t a S h e e t  
Electrical Characteristics  
4. AC Characteristics  
(4-1) Operating Conditions of Main PLL  
(4-2) Operating Conditions of Main PLL  
Electrical Characteristics  
4. AC Characteristics  
(7) CSIO/UART Timing  
Electrical Characteristics  
4. AC Characteristics  
65  
· Added the figure of Main PLL connection  
· Modified from UART Timing to CSIO/UART Timing  
· Changed from Internal shift clock operation to Master mode  
· Changed from External shift clock operation to Slave mode  
68-75  
76  
Added input pulse width of WKUPx pin  
(9) External Input Timing  
· Added the typical value of Integral Nonlinearity, Differential Nonlinearity,  
Zero transition voltage and Full-scale transition voltage  
· Added Conversion time at AVcc < 4.5V  
Electrical Characteristics  
5. 12bit A/D Converter  
81  
92, 93  
Ordering Information  
Change to full part number  
104  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  
D a t a S h e e t  
March 18, 2015, MB9B120M_DS706-00050-3v0-E  
105  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use,  
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not  
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless  
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,  
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use  
where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not  
be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the  
products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss  
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire  
protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in  
this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and  
Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a  
Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any  
product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to  
its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party  
rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind  
arising out of the use of the information in this document.  
Copyright © 2012-2015 Spansion All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM  
ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of  
,
Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be  
trademarks of their respective owners.  
106  
MB9B120M_DS706-00050-3v0-E, March 18, 2015  

相关型号:

MB9BF122LPMC-G-JNE2

RISC Microcontroller, CMOS,
CYPRESS

MB9BF122LPMC1-G-JNE2

RISC Microcontroller, CMOS,
CYPRESS

MB9BF122LQN-G-AVE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF122M

The MB9B120M Series are highly integrated
SPANSION

MB9BF122MBGL-GE1

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF122MPMC-G-JNE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF122MPMC1-G-JNE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF124K

The MB9B120M Series are highly integrated
SPANSION

MB9BF124KPMC-G-JNE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF124KQN-G-AVE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF124L

The MB9B120M Series are highly integrated
SPANSION

MB9BF124LPMC-G-JNE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS