S25FL016A0LMAI03 [SPANSION]

Flash, 16MX1, PDSO16, 0.300 INCH, PLASTIC, MS-013AA, SOP-16;
S25FL016A0LMAI03
型号: S25FL016A0LMAI03
厂家: SPANSION    SPANSION
描述:

Flash, 16MX1, PDSO16, 0.300 INCH, PLASTIC, MS-013AA, SOP-16

光电二极管
文件: 总36页 (文件大小:1536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V
S25FL016A  
16 Megabit CMOS 3.0 Volt Flash Memory  
with 50-MHz SPI (Serial Peripheral Interface) Bus  
Data Sheet  
S25FL016A Cover Sheet  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume  
such that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.  
Publication Number S25FL016A_00  
Revision C  
Amendment 2  
Issue Date June 29, 2007  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
S25FL016A  
16 Megabit CMOS 3.0 Volt Flash Memory  
with 50-MHz SPI (Serial Peripheral Interface) Bus  
Data Sheet  
Distinctive Characteristics  
„ Package Option  
Architectural Advantages  
„ Single power supply operation  
– Industry Standard Pinouts  
– 16-pin SO package (300 mils)  
– 8-pin SO package (208 mils)  
– 8-Contact WSON Package (6x8 mm), Pb Free  
– Full voltage range: 2.7 to 3.6 V read and program operations  
„ Memory Architecture  
– Thirty-two sectors with 512 Kb each  
„ Program  
Performance Characteristics  
„ Speed  
– Page Program (up to 256 bytes) in 1.4 ms (typical)  
– Program operations are on a page by page basis  
– 50 MHz clock rate (maximum)  
„ Erase  
„ Power Saving Standby Mode  
– Standby Mode 50 µA (max)  
– 0.5 s typical sector erase time  
– 10 s typical bulk erase time  
– Deep Power Down Mode 1.3 µA (typical)  
„ Cycling Endurance  
– 100,000 cycles per sector typical  
Memory Protection Features  
„ Memory Protection  
„ Data Retention  
– 20 years typical  
– W# pin works in conjunction with Status Register Bits to protect  
specified memory areas  
– Status Register Block Protection bits (BP2, BP1, BP0) in status  
register configure parts of memory as read-only  
„ Device ID  
– JEDEC standard two-byte electronic signature  
– RES command one-byte electronic signature for backward  
compatibility  
„ Process Technology  
Software Features  
– Manufactured on 0.20 µm MirrorBit® process technology  
– SPI Bus Compatible Serial Interface  
General Description  
The S25FL016A is a 3.0 Volt (2.7 V to 3.6 V), single-power-supply Flash memory device. The device consists  
of thirty-two sectors, each with 512 Kb memory.  
The device accepts data written to SI (Serial Input) and outputs data on SO (Serial Output). The devices are  
designed to be programmed in-system with the standard system 3.0 volt VCC supply.  
The memory can be programmed 1 to 256 bytes at a time, using the Page Program command. The device  
supports Sector Erase and Bulk Erase commands.  
Each device requires only a 3.0 volt power supply (2.7 V to 3.6 V) for both read and write functions. Internally  
generated and regulated voltages are provided for the program operations. This device does not require a  
VPP supply.  
Publication Number S25FL016A_00  
Revision C  
Amendment 2  
Issue Date June 29, 2007  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient pro-  
duction volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid com-  
binations offered may occur.  
D a t a S h e e t  
Table of Contents  
Distinctive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.  
2.  
3.  
4.  
5.  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Input/Output Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.1  
Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.  
7.  
Spansion SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Byte or Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Sector Erase / Bulk Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Monitoring Write Operations Using the Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Hold Mode (HOLD#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
8.  
9.  
Sector Address Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
Read Data Bytes (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Data Bytes at Higher Speed (FAST_READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Identification (RDID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Write Status Register (WRSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Page Program (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Sector Erase (SE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
9.10 Bulk Erase (BE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
9.11 Deep Power Down (DP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
9.12 Release from Deep Power Down (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10. Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
11. Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
13. Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
14. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15. Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
16. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
17. Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
17.1 SOC008 wide—8-pin Plastic Small Outline Package (208 mils Body Width) . . . . . . . . . . . . 32  
17.2 SO3 016 wide—16-pin Plastic Small Outline Package (300-mil Body Width) . . . . . . . . . . . . 33  
17.3 WSON 8-contact (6 x 8 mm) No-Lead Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
18. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
Figures  
Figure 2.1  
Figure 2.2  
Figure 2.3  
Figure 6.1  
Figure 6.2  
Figure 7.1  
Figure 9.1  
Figure 9.2  
Figure 9.3  
Figure 9.4  
Figure 9.5  
Figure 9.6  
Figure 9.7  
Figure 9.8  
Figure 9.9  
16-pin Plastic Small Outline Package (SO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
8-pin Plastic Small Outline Package (SO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
16 Mb 8-Pin WSON Package (6 x 8 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Hold Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Data Bytes (READ) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Data Bytes at Higher Speed (FAST_READ) Command Sequence . . . . . . . . . . . . . . . 17  
Read Identification (RDID) Command Sequence and Data-Out Sequence . . . . . . . . . . . . . 18  
Write Enable (WREN) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write Disable (WRDI) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Status Register (RDSR) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Write Status Register (WRSR) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Page Program (PP) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sector Erase (SE) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 9.10 Bulk Erase (BE) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 9.11 Deep Power Down (DP) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 9.12 Release from Deep Power Down (RES) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 9.13 Release from Deep Power Down and Read Electronic Signature (RES)  
Command Sequence  
25  
Figure 10.1 Power-Up Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 12.1 Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12.2 Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 15.1 AC Measurements I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 16.1 SPI Mode 0 (0,0) Input Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16.2 SPI Mode 0 (0,0) Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16.3 HOLD# Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16.4 Write Protect Setup and Hold Timing during WRSR when SRWD=1 . . . . . . . . . . . . . . . . . . 31  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
5
D a t a S h e e t  
Tables  
Table 5.1  
Table 7.1  
Table 8.1  
Table 8.2  
Table 9.1  
Table 9.2  
Table 9.3  
Table 9.4  
Table 10.1  
Table 12.1  
Table 13.1  
Table 14.1  
Table 15.1  
Table 16.1  
S25FL016A Valid Combinations Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
S25FL016A Protected Area Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
S25FL016A Device Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
S25FL016A Sector Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Read Identification (RDID) Data-Out Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
S25FL016A Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Power-Up Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
DC Characteristics (CMOS Compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
6
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
1. Block Diagram  
SRAM  
PS  
X
D
E
C
Array - L  
Array - R  
Logic  
RD  
DATA PATH  
IO  
2. Connection Diagrams  
Figure 2.1 16-pin Plastic Small Outline Package (SO)  
16  
15  
14  
SCK  
1
2
3
HOLD#  
VCC  
SI  
NC  
NC  
NC  
NC  
NC  
13  
4
5
NC  
NC  
12  
6
11  
NC  
GND  
W#  
CS#  
SO  
7
10  
9
8
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
7
D a t a S h e e t  
Figure 2.2 8-pin Plastic Small Outline Package (SO)  
VCC  
8
1
2
CS#  
SO  
7
HOLD#  
SCK  
SI  
3
W#  
6
5
4
GND  
Figure 2.3 16 Mb 8-Pin WSON Package (6 x 8 mm)  
CS#  
SO  
VCC  
8
7
6
1
2
HOLD#  
WSON  
W#  
3
4
SCK  
SI  
GND  
5
8
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
3. Input/Output Descriptions  
Signal  
I/O  
Description  
SO  
Output Signal Data Output: Transfers data serially out of the device on the falling edge of SCK.  
Serial Data Input: Transfers data serially into the device. Device latches commands, addresses,  
and program data on SI on the rising edge of SCK.  
SI  
Input  
Serial Clock: Provides serial interface timing. Latches commands, addresses, and data on SI on  
rising edge of SCK. Triggers output on SO after the falling edge of SCK.  
SCK  
Input  
Chip Select: Places device in active power mode when driven low. Deselects device and places  
SO at high impedance when high. After power-up, device requires a falling edge on CS# before any  
command is written. Device is in standby mode when a program, erase, or Write Status Register  
CS#  
Input  
operation is not in progress.  
Hold: Pauses any serial communication with the device without deselecting it. When driven low,  
HOLD#  
W#  
Input  
Input  
SO is at high impedance, and all input at SI and SCK are ignored. Requires that CS# also be driven  
low.  
Write Protect: Protects the memory area specified by Status Register bits BP2:BP0. When driven  
low, prevents any program or erase command from altering the data in the protected memory area.  
VCC  
Input  
Input  
Supply Voltage  
Ground  
GND  
4. Logic Symbol  
V
CC  
SO  
SI  
SCK  
CS#  
W#  
HOLD#  
GND  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
9
D a t a S h e e t  
5. Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S25FL  
016  
A
0L  
M
A
I
00  
1
PACKING TYPE (Note 1)  
0
1
3
=
=
=
Tray  
Tube  
13” Tape and Reel  
MODEL NUMBER (Additional Ordering Options)  
01  
00  
=
=
8-pin SO package  
16-pin SO / 8-contact WSON package  
TEMPERATURE RANGE  
Industrial (–40°C to + 85°C)  
I
=
PACKAGE MATERIALS  
A
=
Standard  
F
=
Lead (Pb)-free  
PACKAGE TYPE  
M
=
8-pin / 16-pin SO package  
N
=
8-contact WSON Package  
SPEED  
0L  
=
50 MHz  
DEVICE TECHNOLOGY  
A
=
0.20 µm MirrorBit® Process Technology  
DENSITY  
016  
=
16 Mbit  
DEVICE FAMILY  
S25FL  
SpansionTM Memory 3.0 Volt-only, Serial Peripheral Interface (SPI) Flash Memory  
Table 5.1 S25FL016A Valid Combinations Table  
S25FL016A Valid Combinations  
Package &  
Package Marking  
(Note 2)  
Base Ordering  
Part Number  
Model  
Number  
Speed Option  
Temperature  
Packing Type  
MAI, MFI  
00, 01  
1, 3 (Note 1)  
FL016A + (Temp) +  
(Note 3)  
S25FL016A  
0L  
0, 1, 3  
(Note 1)  
NAI, NFI  
00  
Notes  
1. Contact your local sales office for availability.  
2. Package marking omits leading “S25” and speed, package, and model number form.  
3. A for standard package (non-Pb free); F for Pb-free package.  
5.1  
Valid Combinations  
Table 5.1 lists the valid combinations configurations planned to be supported in volume for this device.  
10  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
6. Spansion SPI Modes  
A microcontroller can use either of its two SPI modes to control Spansion SPI Flash memory devices:  
„ CPOL = 0, CPHA = 0 (Mode 0)  
„ CPOL = 1, CPHA = 1 (Mode 3)  
Input data is latched in on the rising edge of SCK, and output data is available from the falling edge of SCK for  
both modes.  
When the bus master is in standby mode, SCK is as shown in Figure 6.2 for each of the two modes:  
„ SCK remains at 0 for (CPOL = 0, CPHA = 0 Mode 0)  
„ SCK remains at 1 for (CPOL = 1, CPHA = 1 Mode 3)  
Figure 6.1 Bus Master and Memory Devices on the SPI Bus  
SO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SI  
SCK  
SCK SO SI  
SCK SO SI  
SCK SO SI  
Bus Master  
SPI Memory  
SPI Memory  
SPI Memory  
Device  
Device  
Device  
CS3 CS2 CS1  
CS#  
W# HOLD#  
CS#  
W# HOLD#  
CS#  
W# HOLD#  
Note  
The Write Protect (W#) and Hold (HOLD#) signals should be driven high (logic level 1) or low (logic level 0) as appropriate.  
Figure 6.2 SPI Modes Supported  
CS#  
CPOL CPHA  
Mode 0  
SCK  
0
0
1
1
Mode 3  
SCK  
SI  
MSB  
SO  
MSB  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
11  
D a t a S h e e t  
7. Device Operations  
All Spansion SPI devices (S25FL-A) accept and output data in bytes (8 bits at a time).  
7.1  
Byte or Page Programming  
Programming data requires two commands: Write Enable (WREN), which is one byte, and a Page Program  
(PP) sequence, which consists of four bytes plus data. The Page Program sequence accepts from 1 byte up  
to 256 consecutive bytes of data (which is the size of one page) to be programmed in one operation.  
Programming means that bits can either be left at 0, or programmed from 1 to 0. Changing bits from 0 to 1  
requires an erase operation. Before this can be applied, the bytes of the memory need to be first erased to all  
1’s (FFh) before any programming.  
7.2  
7.3  
7.4  
Sector Erase / Bulk Erase  
The Sector Erase (SE) and Bulk Erase (BE) commands set all the bits in a sector or the entire memory array  
to 1. While bits can be individually programmed from a 1 to 0, erasing bits from 0 to 1 must be done on a  
sector-wide (SE) or array-wide (BE) level.  
Monitoring Write Operations Using the Status Register  
The host system can determine when a Write Status Register, program, or erase operation is complete by  
monitoring the Write in Progress (WIP) bit in the Status Register. The Read from Status Register command  
provides the state of the WIP bit.  
Active Power and Standby Power Modes  
The device is enabled and in the Active Power mode when Chip Select (CS#) is Low. When CS# is high, the  
device is disabled, but may still be in the Active Power mode until all program, erase, and Write Status  
Register operations have completed. The device then goes into the Standby Power mode, and power  
consumption drops to ISB. The Deep Power Down (DP) command provides additional data protection against  
inadvertent signals. After writing the DP command, the device ignores any further program or erase  
commands, and reduces its power consumption to IDP  
.
7.5  
Status Register  
The Status Register contains the status and control bits that can be read or set by specific commands  
(Table 9.2, S25FL016A Status Register on page 19):  
„ Write In Progress (WIP): Indicates whether the device is performing a Write Status Register, program or  
erase operation.  
„ Write Enable Latch (WEL): Indicates the status of the internal Write Enable Latch.  
„ Block Protect (BP2, BP1, BP0): Non-volatile bits that define memory area to be software-protected  
against program and erase commands.  
„ Status Register Write Disable (SRWD): Places the device in the Hardware Protected mode when this bit  
is set to 1 and the W# input is driven low. In this mode, the non-volatile bits of the Status Register (SRWD,  
BP2, BP1, BP0) become read-only bits.  
12  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
7.6  
Data Protection Modes  
Spansion SPI Flash memory devices provide the following data protection methods:  
„ The Write Enable (WREN) command: Must be written prior to any command that modifies data. The  
WREN command sets the Write Enable Latch (WEL) bit. The WEL bit resets (disables writes) on power-up  
or after the device completes the following commands:  
– Page Program (PP)  
– Sector Erase (SE)  
– Bulk Erase (BE)  
– Write Disable (WRDI)  
– Write Status Register (WRSR)  
„ Software Protected Mode (SPM): The Block Protect (BP2, BP1, BP0) bits define the section of the  
memory array that can be read but not programmed or erased. Table 7.1 shows the sizes and address  
ranges of protected areas that are defined by Status Register bits BP2:BP0.  
„ Hardware Protected Mode (HPM): The Write Protect (W#) input and the Status Register Write Disable  
(SRWD) bit together provide write protection.  
„ Clock Pulse Count: The device verifies that all program, erase, and Write Status Register commands  
consist of a clock pulse count that is a multiple of eight before executing them.  
Table 7.1 S25FL016A Protected Area Sizes  
Status Register  
Block Protect Bits  
Protected  
Memory Array  
Protected  
Portion of  
Total Memory  
Area  
Protected  
Address Range  
Unprotected  
Unprotected  
Sectors  
BP2  
BP1  
0
BP0  
Sectors  
Address Range  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
None  
(0)  
000000h–1FFFFFh  
000000h–1EFFFFh  
000000h–1DFFFFh  
000000h–1BFFFFh  
000000h–17FFFFh  
000000h–0FFFFFh  
None  
SA31:SA0  
SA30:SA0  
SA29:SA0  
SA27:SA0  
SA23:SA0  
SA15:SA0  
None  
0
0
1F0000h–1FFFFFh  
1E0000h–1FFFFFh  
1C0000h–1FFFFFh  
180000h–1FFFFFh  
100000h–1FFFFFh  
000000h–1FFFFFh  
000000h–1FFFFFh  
(1) SA31  
1/32  
1/16  
1/8  
1/4  
1/2  
All  
1
(2) SA31:SA30  
(4) SA31:SA28  
(8) SA31:SA24  
(16) SA31:SA16  
(32) SA31:SA0  
(32) SA31:SA0  
1
0
0
1
1
None  
None  
All  
7.7  
Hold Mode (HOLD#)  
The Hold input (HOLD#) stops any serial communication with the device, but does not terminate any Write  
Status Register, program or erase operation that is currently in progress.  
The Hold mode starts on the falling edge of HOLD# if SCK is also low (see Figure 7.1, standard use). If the  
falling edge of HOLD# does not occur while SCK is low, the Hold mode begins after the next falling edge of  
SCK (non-standard use).  
The Hold mode ends on the rising edge of HOLD# signal (standard use) if SCK is also low. If the rising edge  
of HOLD# does not occur while SCK is low, the Hold mode ends on the next falling edge of CLK (non-  
standard use) See Figure 7.1.  
The SO output is high impedance, and the SI and SCK inputs are ignored (don’t care) for the duration of the  
Hold mode.  
CS# must remain low for the entire duration of the Hold mode to ensure that the device internal logic remains  
unchanged. If CS# goes high while the device is in the Hold mode, the internal logic is reset. To prevent the  
device from reverting to the Hold mode when device communication is resumed, HOLD# must be held high,  
followed by driving CS# low.  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
13  
D a t a S h e e t  
Figure 7.1 Hold Mode Operation  
SCK  
HOLD#  
Hold  
Hold  
Condition  
Condition  
(standard use)  
(non-standard use)  
8. Sector Address Table  
Table 8.1 shows the size of the memory array, sectors, and pages. The device uses pages to cache the  
program data before the data is programmed into the memory array. Each page or byte can be individually  
programmed (bits are changed from 1 to 0). The data is erased (bits are changed from 0 to 1) on a sector- or  
device-wide basis using the SE or BE commands. Table 8.2 shows the starting and ending address for each  
sector. The complete set of sectors comprises the memory array of the Flash device.  
Table 8.1 S25FL016A Device Organization  
Each Device has  
2,097,152  
8,192  
Each Sector has  
Each Page has  
65,536  
256  
256  
bytes  
pages  
sectors  
32  
14  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
Table 8.2 S25FL016A Sector Address Table  
Sector  
SA31  
SA30  
SA29  
SA28  
SA27  
SA26  
SA25  
SA24  
SA23  
SA22  
SA21  
SA20  
SA19  
SA18  
SA17  
SA16  
SA15  
SA14  
SA13  
SA12  
SA11  
SA10  
SA9  
Address Range  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
180000h  
170000h  
160000h  
150000h  
140000h  
130000h  
120000h  
110000h  
100000h  
0F0000h  
0E0000h  
0D0000h  
0C0000h  
0B0000h  
0A0000h  
090000h  
080000h  
070000h  
060000h  
050000h  
040000h  
030000h  
020000h  
010000h  
000000h  
1FFFFFh  
1EFFFFh  
1DFFFFh  
1CFFFFh  
1BFFFFh  
1AFFFFh  
19FFFFh  
18FFFFh  
17FFFFh  
16FFFFh  
15FFFFh  
14FFFFh  
13FFFFh  
12FFFFh  
11FFFFh  
10FFFFh  
0FFFFFh  
0EFFFFh  
0DFFFFh  
0CFFFFh  
0BFFFFh  
0AFFFFh  
09FFFFh  
08FFFFh  
07FFFFh  
06FFFFh  
05FFFFh  
04FFFFh  
03FFFFh  
02FFFFh  
01FFFFh  
00FFFFh  
SA8  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
15  
D a t a S h e e t  
9. Command Definitions  
The host system must shift all commands, addresses, and data in and out of the device, beginning with the  
most significant bit. On the first rising edge of SCK after CS# is driven low, the device accepts the one-byte  
command on SI (all commands are one byte long), most significant bit first. Each successive bit is latched on  
the rising edge of SCK. Table 9.4 on page 25 lists the complete set of commands.  
Every command sequence begins with a one-byte command code. The command may be followed by  
address, data, both, or nothing, depending on the command. CS# must be driven high after the last bit of the  
command sequence has been written.  
The Read Data Bytes (READ), Read Status Register (RDSR), Read Data Bytes at Higher Speed  
(FAST_READ) and Read Identification (RDID) command sequences are followed by a data output sequence  
on SO. CS# can be driven high after any bit of the sequence is output to terminate the operation.  
The Page Program (PP), Sector Erase (SE), Bulk Erase (BE), Write Status Register (WRSR), Write Enable  
(WREN), or Write Disable (WRDI) commands require that CS# be driven high at a byte boundary, otherwise  
the command is not executed. Since a byte is composed of eight bits, CS# must therefore be driven high  
when the number of clock pulses after CS# is driven low is an exact multiple of eight.  
The device ignores any attempt to access the memory array during a Write Status Register, program, or  
erase operation, and continues the operation uninterrupted.  
9.1  
Read Data Bytes (READ)  
The Read Data Bytes (READ) command reads data from the memory array at the frequency (fSCK) presented  
at the SCK input, with a maximum speed of 33 MHz. The host system must first select the device by driving  
CS# low. The READ command is then written to SI, followed by a 3-byte address (A23-A0). Each bit is  
latched on the rising edge of SCK. The memory array data, at that address, are output serially on SO at a  
frequency fSCK, on the falling edge of SCK.  
Figure 9.1 and Table 9.4 on page 25 detail the READ command sequence. The first byte specified can be at  
any location. The device automatically increments to the next higher address after each byte of data is output.  
The entire memory array can therefore be read with a single READ command. When the highest address is  
reached, the address counter reverts to 00000h, allowing the read sequence to continue indefinitely.  
The READ command is terminated by driving CS# high at any time during data output. The device rejects any  
READ command issued while it is executing a program, erase, or Write Status Register operation, and  
continues the operation uninterrupted.  
Figure 9.1 Read Data Bytes (READ) Command Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31 32 33 34 35 36 37 38 39  
Mode 3  
SCK  
Mode 0  
Command  
24-Bit Address  
23 22 21  
2
0
1
3
SI  
MSB  
Data Out 1  
Data Out 2  
Hi-Z  
SO  
6
4
2
7
1 0  
7
5
3
MSB  
16  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
9.2  
Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ command reads data from the memory array at the frequency (fSCK) presented at the SCK  
input, with a maximum speed of 50 MHz. The host system must first select the device by driving CS# low. The  
FAST_READ command is then written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each  
bit is latched on the rising edge of SCK. The memory array data, at that address, are output serially on SO at  
a frequency fSCK, on the falling edge of SCK.  
The FAST_READ command sequence is shown in Figure 9.2 and Table 9.4 on page 25. The first byte  
specified can be at any location. The device automatically increments to the next higher address after each  
byte of data is output. The entire memory array can therefore be read with a single FAST_READ command.  
When the highest address is reached, the address counter reverts to 00000h, allowing the read sequence to  
continue indefinitely.  
The FAST_READ command is terminated by driving CS# high at any time during data output. The device  
rejects any FAST_READ command issued while it is executing a program, erase, or Write Status Register  
operation, and continues the operation uninterrupted.  
Figure 9.2 Read Data Bytes at Higher Speed (FAST_READ) Command Sequence  
CS#  
33  
0
1
2
5
6
7
8
9
29 30  
32  
38 39 40 41  
44 45 46  
42 43  
Mode 3  
31  
34 35 36 37  
3
4
10  
28  
47  
SCK  
Mode 0  
24-Bit Address  
Dummy Byte  
Command  
23  
3
2
22 21  
1
0
6
5
4
2
0
1
7
3
SI  
Hi-Z  
3
7
6
4
2
1
0
5
7
SO  
MSB  
MSB  
DATA OUT 1  
DATA OUT 2  
9.3  
Read Identification (RDID)  
The Read Identification (RDID) command outputs the one-byte manufacturer identification, followed by the  
two-byte device identification, to the host system.  
JEDEC assigns the manufacturer identification byte; for Spansion devices it is 01h. The device manufacturer  
assigns the device identification: the first byte provides the memory type; the second byte indicates the  
memory capacity. See Table 9.1 on page 18 or Table 9.4 on page 25 for device ID data.  
The host system must first select the device by driving CS# low. The RDID command is then written to SI,  
and each bit is latched on the rising edge of SCK. The 24-bit device identification data is output from the  
memory array on SO at a frequency fSCK, on the falling edge of SCK.  
The RDID command sequence is shown in Figure 9.3 and Table 9.4 on page 25.  
Driving CS# high after the device identification data has been read at least once terminates the READ_ID  
command. Driving CS# high at any time during data output also terminates the RDID operation.  
The device rejects any RDID command issued while it is executing a program, erase, or Write Status Register  
operation, and continues the operation uninterrupted.  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
17  
D a t a S h e e t  
Figure 9.3 Read Identification (RDID) Command Sequence and Data-Out Sequence  
CS#  
SCK  
1
28  
30  
29  
31  
2
3
4
5
6
18  
17  
Mode 3  
Mode 0  
0
7
14 15 16  
8
9
10 11  
13  
12  
Command  
SI  
Manufacturer Identification  
Device Identification  
Hi-Z  
0
1
3
2
14  
13  
SO  
15  
MSB  
Table 9.1 Read Identification (RDID) Data-Out Sequence  
Device Identification  
Manufacturer Identification  
Memory Type  
Memory Capacity  
01h  
02h  
14h  
9.4  
Write Enable (WREN)  
The Write Enable (WREN) command (see Figure 9.4) sets the Write Enable Latch (WEL) bit to a 1, which  
enables the device to accept a Write Status Register, program, or erase command. The WEL bit must be set  
prior to every Page Program (PP), Erase (SE or BE) and Write Status Register (WRSR) command.  
The host system must first drive CS# low, write the WREN command, and then drive CS# high.  
Figure 9.4 Write Enable (WREN) Command Sequence  
CS#  
6
5
7
0
1
2
3
4
Mode 3  
SCK  
SI  
Mode 0  
Command  
Hi-Z  
SO  
18  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
9.5  
Write Disable (WRDI)  
The Write Disable (WRDI) command (see Figure 9.5) resets the Write Enable Latch (WEL) bit to a 0, which  
disables the device from accepting a Write Status Register, program, or erase command. The host system  
must first drive CS# low, write the WRDI command, and then drive CS# high.  
Any of following conditions resets the WEL bit:  
„ Power-up  
„ Write Disable (WRDI) command completion  
„ Write Status Register (WRSR) command completion  
„ Page Program (PP) command completion  
„ Sector Erase (SE) command completion  
„ Bulk Erase (BE) command completion  
Figure 9.5 Write Disable (WRDI) Command Sequence  
CS#  
0
3
4
7
6
1 2  
5
Mode 3  
SCK  
SI  
Mode 0  
Command  
Hi-Z  
SO  
9.6  
Read Status Register (RDSR)  
The Read Status Register (RDSR) command outputs the state of the Status Register bits. Table 9.2 shows  
the status register bits and their functions.  
The RDSR command may be written at any time, even while a program, erase, or Write Status Register  
operation is in progress. The host system should check the Write In Progress (WIP) bit before sending a new  
command to the device if an operation is already in progress. Figure 9.6 shows the RDSR command  
sequence, which also shows that it is possible to read the Status Register continuously until CS# is driven  
high.  
Table 9.2 S25FL016A Status Register  
Bit  
Status Register Bit  
Bit Function  
Description  
1 = Protects when W# is low  
7
SRWD  
Status Register Write Disable  
0 = No protection, even when W# is low  
6
5
4
3
2
Not used  
Not used  
BP2  
BP1  
BP0  
000–111 = Protects upper half of address range in 5 sizes. See  
Table 7.1 on page 13.  
Block Protect  
1 = Device accepts Write Status Register, program, or erase  
commands  
1
0
WEL  
WIP  
Write Enable Latch  
Write in Progress  
0 = Ignores Write Status Register, program, or erase commands  
1 = Device Busy. A Write Status Register, program, or erase  
operation is in progress  
0 = Ready. Device is in standby mode and can accept commands.  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
19  
D a t a S h e e t  
Figure 9.6 Read Status Register (RDSR) Command Sequence  
CS#  
SCK  
7
0
2
3
4
5
6
9
11  
12 13 14  
15  
1
8
10  
Mode 3  
Mode 0  
Command  
SI  
Hi-Z  
SO  
6
4
2
6
5
7
5
3
1
0
4
2
7
0
7
3
1
MSB  
MSB  
Status Register Out  
Status Register Out  
The following describes the status and control bits of the Status Register.  
Write In Progress (WIP) bit: Indicates whether the device is busy performing a Write Status Register,  
program, or erase operation. This bit is read-only, and is controlled internally by the device. If WIP is 1, one of  
these operations is in progress; if WIP is 0, no such operation is in progress.  
Write Enable Latch (WEL) bit: Determines whether the device will accept and execute a Write Status  
Register, program, or erase command. When set to 1, the device accepts these commands; when set to 0,  
the device rejects the commands. This bit is set to 1 by writing the WREN command, and set to 0 by the  
WRDI command, and is also automatically reset to 0 after the completion of a Write Status Register, program,  
or erase operation. WEL cannot be directly set by the WRSR command.  
Block Protect (BP2, BP1, BP0) bits: Define the portion of the memory area that will be protected against  
any changes to the stored data. The Write Status Register (WRSR) command controls these bits, which are  
non-volatile. When one or more of these bits is set to 1, the corresponding memory area (see Table 7.1  
on page 13) is protected against Page Program (PP) and Sector Erase (SE) commands. If the Hardware  
Protected mode is enabled, BP2:BP0 cannot be changed. The Bulk Erase (BE) command is executed only if  
all Block Protect (BP2, BP1, BP0) bits are 0.  
Status Register Write Disable (SRWD) bit: Provides data protection when used together with the Write  
Protect (W#) signal. When SRWD is set to 1 and W# is driven low, the device enters the Hardware Protected  
mode. The non-volatile bits of the Status Register (SRWD, BP2, BP1, BP0) become read-only bits and the  
device ignores any Write Status Register (WRSR) command.  
9.7  
Write Status Register (WRSR)  
The Write Status Register (WRSR) command changes the bits in the Status Register. A Write Enable  
(WREN) command, which itself sets the Write Enable Latch (WEL) in the Status Register, is required prior to  
writing the WRSR command. Table 9.2, S25FL016A Status Register on page 19 shows the status register  
bits and their functions.  
The host system must drive CS# low, write the WRSR command, and the appropriate data byte on SI  
(Figure 9.7).  
The WRSR command cannot change the state of the Write Enable Latch (bit 1). The WREN command must  
be used for that purpose. Bit 0 is a status bit controlled internally by the Flash device. Bits 6 and 5 are always  
read as 0 and have no user significance.  
The WRSR command also controls the value of the Status Register Write Disable (SRWD) bit. The SRWD bit  
and W# together place the device in the Hardware Protected Mode (HPM). The device ignores all WRSR  
commands once it enters the Hardware Protected Mode (HPM). Table 9.3 on page 21 shows that W# must  
be driven low and the SRWD bit must be 1 for this to occur.  
20  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
Figure 9.7 Write Status Register (WRSR) Command Sequence  
CS#  
8
9
10  
12 13 14 15  
11  
4
6
7
Mode 3  
0
1
2
3
5
SCK  
Mode 0  
Command  
Register In  
Status  
7
6
5
4
3
2
1
0
SI  
MSB  
Hi-Z  
SO  
Table 9.3 Protection Modes  
W#  
Signal  
SRWD  
Bit  
Protected Area  
(See Note)  
Unprotected Area  
(See Note)  
Mode  
Write Protection of the Status Register  
1
1
0
1
0
0
Status Register is writable (if the WREN  
command has set the WEL bit). The values in  
the SRWD, BP2, BP1 and BP0 bits can be  
changed.  
Software  
Protected  
(SPM)  
Ready to accept Page  
Program and Sector Erase  
commands  
Protected against program  
and erase commands  
Hardware Status Register is Hardware write protected.  
Protected The values in the SRWD, BP2, BP1 and BP0  
Ready to accept Page  
Program and Sector Erase  
commands  
Protected against program  
and erase commands  
0
1
(HPM)  
bits cannot be changed.  
Note  
As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 7.1 on page 13.  
Table 9.3 shows that neither W# or SRWD bit by themselves can enable HPM. The device can enter HPM  
either by setting the SRWD bit after driving W# low, or by driving W# low after setting the SRWD bit.  
However, the device disables HPM only when W# is driven high.  
Note that HPM only protects against changes to the status register. Since BP2:BP0 cannot be changed in  
HPM, the size of the protected area of the memory array cannot be changed. Note that HPM provides no  
protection to the memory array area outside that specified by BP2:BP0 (Software Protected Mode, or SPM).  
If W# is permanently tied high, HPM can never be activated, and only the SPM (BP2:BP0 bits of the Status  
Register) can be used.  
9.8  
Page Program (PP)  
The Page Program (PP) command changes specified bytes in the memory array (from 1 to 0 only). A WREN  
command is required prior to writing the PP command.  
The host system must drive CS# low, and then write the PP command, three address bytes, and at least one  
data byte on SI. CS# must be driven low for the entire duration of the PP sequence. The command sequence  
is shown in Figure 9.8 and Table 9.4 on page 25.  
The device programs only the last 256 data bytes sent to the device. If the number of data bytes exceeds this  
limit, the bytes sent before the last 256 bytes are discarded, and the device begins programming the last 256  
bytes sent at the starting address of the specified page. This may result in data being programmed into  
different addresses within the same page than expected. If fewer than 256 data bytes are sent to device, they  
are correctly programmed at the requested addresses.  
The host system must drive CS# high after the device has latched the 8th bit of the data byte, otherwise the  
device does not execute the PP command. The PP operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of tPP. The Status Register may  
be read to check the value of the Write In Progress (WIP) bit while the PP operation is in progress. The WIP  
bit is 1 during the PP operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device does not execute a Page Program (PP) command that specifies a page that is protected by the  
Block Protect bits (BP2:BP0) (see Table 7.1 on page 13).  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
21  
D a t a S h e e t  
Figure 9.8 Page Program (PP) Command Sequence  
CS#  
SCK  
5
8
34  
37 38 39  
35 36  
0
2
4
6
7
10  
28 32 33  
29 30 31  
1
3
9
Mode 3  
Mode 0  
24-Bit Address  
22 21  
Data Byte 1  
Command  
4
3
2
3
2
1
0
7
6
5
1
0
23  
SI  
MSB  
MSB  
CS#  
SCK  
53 54 55  
52  
49 50 51  
46  
44 45  
40  
47 48  
41 42 43  
Data Byte 2  
Data Byte 3  
Data Byte 256  
0
7
6
0
1
7
MSB  
7
6
5
4
3
2
1
0
6
5
4
3
2
1
5
4
3
2
SI  
MSB  
MSB  
9.9  
Sector Erase (SE)  
The Sector Erase (SE) command sets all bits at all addresses within a specified sector to a logic 1. A WREN  
command is required prior to writing the PP command.  
The host system must drive CS# low, and then write the SE command plus three address bytes on SI. Any  
address within the sector (see Table 7.1 on page 13) is a valid address for the SE command. CS# must be  
driven low for the entire duration of the SE sequence. The command sequence is shown in Figure 9.9 and  
Table 9.4 on page 25.  
The host system must drive CS# high after the device has latched the 8th bit of the SE command, otherwise  
the device does not execute the command. The SE operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of tSE. The Status Register may  
be read to check the value of the Write In Progress (WIP) bit while the SE operation is in progress. The WIP  
bit is 1 during the SE operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device does not execute an SE command that specifies a sector that is protected by the Block Protect  
bits (BP2:BP0) (see Table 7.1 on page 13).  
Figure 9.9 Sector Erase (SE) Command Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
Mode 3  
SCK  
Mode 0  
Command  
24-bit Address  
1
SI  
23 22 21  
MSB  
3
2
0
Hi-Z  
SO  
22  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
9.10 Bulk Erase (BE)  
The Bulk Erase (BE) command sets all the bits within the entire memory array to logic 1s. A WREN command  
is required prior to writing the PP command.  
The host system must drive CS# low, and then write the BE command on SI. CS# must be driven low for the  
entire duration of the BE sequence. The command sequence is shown in Figure 9.10 and Table 9.4  
on page 25.  
The host system must drive CS# high after the device has latched the 8th bit of the CE command, otherwise  
the device does not execute the command. The BE operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of tBE. The Status Register may  
be read to check the value of the Write In Progress (WIP) bit while the BE operation is in progress. The WIP  
bit is 1 during the BE operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device only executes a BE command if all Block Protect bits (BP2:BP0) are 0 (see Table 7.1  
on page 13). Otherwise, the device ignores the command.  
Figure 9.10 Bulk Erase (BE) Command Sequence  
CS#  
Mode 3  
0
1
2
3
4
5
6
7
SCK  
Mode 0  
Command  
SI  
Hi-Z  
SO  
9.11 Deep Power Down (DP)  
The Deep Power Down (DP) command provides the lowest power consumption mode of the device. It is  
intended for periods when the device is not in active use, and ignores all commands except for the Release  
from Deep Power Down (RES) command. The DP mode therefore provides the maximum data protection  
against unintended write operations. The standard standby mode, which the device goes into automatically  
when CS# is high (and all operations in progress are complete), should generally be used for the lowest  
power consumption when the quickest return to device activity is required.  
The host system must drive CS# low, and then write the DP command on SI. CS# must be driven low for the  
entire duration of the DP sequence. The command sequence is shown in Figure 9.11 and Table 9.4  
on page 25.  
The host system must drive CS# high after the device has latched the 8th bit of the DP command, otherwise  
the device does not execute the command. After a delay of tDP, the device enters the DP mode and current  
reduces from ISB to IDP (see Table 14.1 on page 28).  
Once the device has entered the DP mode, all commands are ignored except the RES command (which  
releases the device from the DP mode). The RES command also provides the Electronic Signature of the  
device to be output on SO, if desired (see Section 9.12 and 9.12.1).  
DP mode automatically terminates when power is removed, and the device always powers up in the standard  
standby mode. The device rejects any DP command issued while it is executing a program, erase, or Write  
Status Register operation, and continues the operation uninterrupted.  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
23  
D a t a S h e e t  
Figure 9.11 Deep Power Down (DP) Command Sequence  
CS#  
SCK  
t
DP  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
Command  
SI  
Hi-Z  
SO  
Standby Mode  
Deep Power-down Mode  
9.12 Release from Deep Power Down (RES)  
The device requires the Release from Deep Power Down (RES) command to exit the Deep Power Down  
mode. When the device is in the Deep Power Down mode, all commands except RES are ignored.  
The host system must drive CS# low and write the RES command to SI. CS# must be driven low for the entire  
duration of the sequence. The command sequence is shown in Figure 9.12 and Table 9.4 on page 25.  
The host system must drive CS# high tRES(max) after the 8-bit RES command byte. The device transitions  
from DP mode to the standby mode after a delay of tRES (see Table 16.1 on page 29). In the standby mode,  
the device can execute any read or write command.  
Figure 9.12 Release from Deep Power Down (RES) Command Sequence  
CS#  
7
0
2
3
5
1
4
6
Mode 3  
SCK  
Mode 0  
tRES  
Command  
SI  
Hi-Z  
SO  
Deep Power-down Mode  
Standby Mode  
24  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
9.12.1  
Release from Deep Power Down and Read Electronic Signature (RES)  
The device features an 8-bit Electronic Signature, which can be read using the RES command. See  
Figure 9.13 and Table 9.4 on page 25 for the command sequence and signature value. The Electronic  
Signature is not to be confused with the identification data obtained using the RDID command. The device  
offers the Electronic Signature so that it can be used with previous devices that offered it; however, the  
Electronic Signature should not be used for new designs, which should read the RDID data instead.  
After the host system drives CS# low, it must write the RES command followed by 3 dummy bytes to SI (each  
bit is latched on SI during the rising edge of SCK). The Electronic Signature is then output on SO; each bit is  
shifted out on the falling edge of SCK. The RES operation is terminated by driving CS# high after the  
Electronic Signature is read at least once. Additional clock cycles on SCK with CS# low cause the device to  
output the Electronic Signature repeatedly.  
When CS# is driven high, the device transitions from DP mode to the standby mode after a delay of tRES, as  
previously described. The RES command always provides access to the Electronic Signature of the device  
and can be applied even if DP mode has not been entered.  
Any RES command issued while an erase, program, or WRSR operation is in progress not executed, and the  
operation continues uninterrupted.  
Figure 9.13 Release from Deep Power Down and Read Electronic Signature (RES) Command Sequence  
CS#  
2
28 29 30  
31 32 33 34  
1
8
36 37  
9
35  
38  
0
3
4
5
6
7
10  
SCK  
t
RES  
3 Dummy Bytes  
Command  
SI  
3
1
0
2
23 22  
MSB  
21  
Hi-Z  
7
6
5
4
3
2
1
SO  
0
MSB  
Electronic ID out  
Standby Mode  
Deep Power-down Mode  
Table 9.4 Command Definitions  
One-Byte  
Command Code  
Address  
Bytes  
Dummy  
Byte  
Operation  
Command  
Description  
Read Data Bytes  
Data Bytes  
READ  
03H (0000 0011)  
0BH (0000 1011)  
9FH (1001 1111)  
06H (0000 0110)  
04H (0000 0100)  
D8H (1101 1000)  
C7H (1100 0111)  
02H (0000 0010)  
05H (0000 0101)  
01H (0000 0001)  
B9H (1011 1001)  
ABH (1010 1011)  
3
3
0
0
0
3
0
3
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1 to ∞  
Read  
FAST_READ Read Data Bytes at Higher Speed  
1 to ∞  
RDID  
WREN  
WRDI  
SE  
Read Identification (Note 1)  
Write Enable  
1 to 3  
0
Write Control  
Write Disable  
0
Sector Erase  
0
Erase  
BE  
Bulk (Chip) Erase  
0
Program  
PP  
Page Program  
1 to 256  
RDSR  
WRSR  
DP  
Read from Status Register  
Write to Status Register  
Deep Power Down  
Release from Deep Power Down  
1 to ∞  
Status  
Register  
1
0
0
Power Saving  
RES  
Release from Deep Power Down and  
Read Electronic Signature (Note 2)  
ABH (1010 1011)  
0
3
1 to ∞  
Notes  
1. The S25FL016A has a manufacturer ID of 01h, and a device ID consisting of the memory type (02h) and the memory capacity (14h).  
2. The S25FL016A has an Electronic Signature ID of 14h.  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
25  
D a t a S h e e t  
10. Power-up and Power-down  
During power-up and power-down, certain conditions must be observed. CS# must follow the voltage applied  
on VCC, and must not be driven low to select the device until VCC reaches the allowable values as follows  
(see Figure 10.1 and Table 10.1 on page 26):  
„ At power-up, VCC (min) plus a period of tPU  
„ At power-down, VSS  
A pull-up resistor on Chip Select (CS#) typically meets proper power-up and power-down requirements.  
No Write Status Register, program, or erase command should be sent to the device until VCC rises to the VCC  
min, plus a delay of tPU. At power-up, the device is in standby mode (not Deep Power Down mode) and the  
WEL bit is reset (0).  
Each device in the host system should have the VCC rail decoupled by a suitable capacitor close to the  
package pins (this capacitor is generally of the order of 0.1 µF), as a precaution to stabilizing the VCC feed.  
When VCC drops from the operating voltage to below the minimum VCC threshold at power-down, all  
operations are disabled and the device does not respond to any commands. Note that data corruption may  
result if a power-down occurs while a Write Register, program, or erase operation is in progress.  
Figure 10.1 Power-Up Timing Diagram  
Vcc  
(max)  
cc  
V
(min)  
cc  
V
tPU  
Full Device Access  
Time  
Table 10.1 Power-Up Timing Characteristics  
Symbol  
Parameter  
Min  
2.7  
10  
Max  
Unit  
V
V
V
(minimum)  
CC(min)  
CC  
t
V
(min) to device operation  
CC  
ms  
PU  
11. Initial Delivery State  
The device is delivered with all bits set to 1 (each byte contains FFh) upon initial factory shipment. The Status  
Register contains 00h (all Status Register bits are 0).  
26  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
12. Absolute Maximum Ratings  
Do not stress the device beyond the ratings listed in this section, or serious, permanent damage to the device  
may result. These are stress ratings only and device operation at these or any other conditions beyond those  
indicated in this section and in the Operating Ranges section of this document is not implied. Device  
operation for extended periods at the limits listed in this section may affect device reliability.  
Table 12.1 Absolute Maximum Ratings  
Description  
Ambient Storage Temperature  
Rating  
–65°C to +150°C  
Voltage with Respect to Ground: All Inputs and I/Os  
–0.5 V to V +0.5 V  
CC  
Notes  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input at I/O pins may overshoot V to –2.0 V for periods of  
SS  
up to 20 ns. See Figure 12.2. Maximum DC voltage on output and I/O pins is 3.6 V. During voltage transitions output pins may overshoot  
to V + 2.0 V for periods up to 20 ns. See Figure 12.2.  
CC  
2. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
3. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not  
implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.  
Figure 12.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2 V  
20 ns  
Figure 12.2 Maximum Positive Overshoot Waveform  
20 ns  
V
CC +2.0 V  
V
CC+0.5 V  
2.0 V  
20 ns  
20 ns  
13. Operating Ranges  
Table 13.1 Operating Ranges  
Description  
Rating  
Ambient Operating Temperature (T )  
A
Industrial  
–40°C to +85°C  
2.7 V to 3.6 V  
Positive Power Supply  
Voltage Range  
Note  
Operating ranges define those limits between which functionality of the device is guaranteed.  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
27  
D a t a S h e e t  
14. DC Characteristics  
This section summarizes the DC Characteristics of the device. Designers should check that the operating  
conditions in their circuit match the measurement conditions specified in the Test Specifications in Table 15.1  
on page 28, when relying on the quoted parameters.  
Table 14.1 DC Characteristics (CMOS Compatible)  
Parameter  
Description  
Supply Voltage  
Test Conditions (See Note)  
Min  
Typ.  
Max  
3.6  
12  
Unit  
V
V
2.7  
3
9
CC  
SCK = 0.1 V /0.9V  
33 MHz  
mA  
CC  
CC  
I
Active Read Current  
CC1  
V
= 3.0V  
50 MHz  
CC  
SCK = 0.1 V /0.9V  
14  
19  
mA  
CC  
CC  
I
I
I
I
Active Page Program Current  
Active WRSR Current  
CS# = V  
CS# = V  
CS# = V  
CS# = V  
17.5  
28  
24  
24  
24  
mA  
mA  
mA  
mA  
CC2  
CC3  
CC4  
CC5  
CC  
CC  
CC  
CC  
Active Sector Erase Current  
Active Bulk Erase Current  
V
= 3.0 V  
CC  
I
Standby Current  
21  
50  
5
µA  
µA  
SB  
CS# = V  
CC  
V
= 3.0 V  
CC  
I
Deep Power Down Current  
1.3  
DP  
CS# = V  
CC  
I
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
V
V
= GND to V  
= GND to V  
1
1
µA  
µA  
V
LI  
IN  
CC  
I
LO  
IN  
CC  
V
–0.3  
0.3 V  
CC  
IL  
V
Input High Voltage  
0.7 V  
V
+ 0.5  
CC  
V
IH  
CC  
V
Output Low Voltage  
Output High Voltage  
I
= 1.6 mA, V = V  
0.4  
V
OL  
OH  
OL  
CC  
CC min  
V
I
= –0.1 mA  
V
– 0.2  
V
OH  
CC  
Note  
Typical values are at T = 25°C and 3.0 V.  
A
15. Test Conditions  
Figure 15.1 AC Measurements I/O Waveform  
0.8 VCC  
Input Levels  
0.2 VCC  
0.7 VCC  
0.5 VCC  
0.3 VCC  
Input and Output  
Timing Reference levels  
Table 15.1 Test Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
C
Load Capacitance  
30  
pF  
ns  
V
L
Input Rise and Fall Times  
Input Pulse Voltage  
5
0.2 V to 0.8 V  
CC  
CC  
CC  
Input Timing Reference Voltage  
Output Timing Reference Voltage  
0.3 V to 0.7 V  
V
CC  
0.5 V  
V
CC  
28  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
16. AC Characteristics  
Table 16.1 AC Characteristics  
Typ  
(Notes)  
Max  
(Notes)  
Symbol  
(Notes)  
Parameter  
Min  
Unit  
F
SCK Clock Frequency READ command  
D.C.  
33  
50  
MHz  
SCK  
SCK  
CRT  
SCK Clock Frequency for:  
FAST_READ, PP, SE, BE, DP, RES, WREN, WRDI, RDSR, WRSR  
F
D.C.  
MHz  
t
Clock Rise Time (Slew Rate)  
Clock Fall Time (Slew Rate)  
SCK High Time  
0.1  
0.1  
9
V/ns  
V/ns  
ns  
t
CFT  
t
WH  
t
SCK Low Time  
9
ns  
WL  
t
CS# High Time  
100  
5
ns  
CS  
t
(3)  
(3)  
(3)  
(3)  
CS# Setup Time  
ns  
CSS  
t
CS# HOLD Time  
5
ns  
CSH  
t
t
HOLD# Setup Time (relative to SCK)  
HOLD# Hold Time (relative to SCK)  
HOLD# Setup Time (relative to SCK)  
HOLD# Hold Time (relative to SCK)  
Output Valid  
5
ns  
HD  
CD  
5
ns  
t
t
5
ns  
HC  
CH  
5
ns  
t
10  
ns  
V
t
Output Hold Time  
0
5
5
ns  
HO  
t
Data in Hold Time  
ns  
HD:DAT  
t
Data in Setup Time  
ns  
SU:DAT  
t
Input Rise Time  
5
ns  
R
t
Input Fall Time  
5
ns  
F
t
(3)  
HOLD# to Output Low Z  
HOLD# to Output High Z  
Output Disable Time  
10  
10  
10  
ns  
LZ  
t
(3)  
(3)  
ns  
HZ  
t
ns  
DIS  
t
(3)  
(3)  
Write Protect Setup Time  
Write Protect Hold Time  
Write Status Register Time  
CS# High to Deep Power Down Mode  
Release DP Mode  
15  
15  
ns  
WPS  
WPH  
t
ns  
t
67  
150  
3
ms  
μs  
μs  
ms  
sec  
sec  
W
t
DP  
t
30  
RES  
t
t
t
Page Programming Time  
Sector Erase Time  
1.4 (1)  
0.5 (1)  
10 (1)  
3 (2)  
3 (2)  
96 (2)  
PP  
SE  
BE  
Bulk Erase Time  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, V = 3.0V; 10,000 cycles; checkerboard data pattern  
CC  
2. Under worst-case conditions of 90°C; V = 2.7V; 100,000 cycles  
CC  
3. Not 100% tested  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
29  
D a t a S h e e t  
Figure 16.1 SPI Mode 0 (0,0) Input Timing  
tCS  
CS#  
SCK  
SI  
tCSH  
tCSS  
tCSS  
tCSH  
tSU:DAT  
tCRT  
tHD:DAT  
tCFT  
MSB IN  
LSB IN  
Hi-Z  
SO  
Figure 16.2 SPI Mode 0 (0,0) Output Timing  
CS#  
SCK  
tWH  
tV  
tWL  
tDIS  
tV  
tHO  
tHO  
SO  
LSB OUT  
Figure 16.3 HOLD# Timing  
CS#  
tHC  
tHD  
tCH  
SCK  
SO  
tCD  
tHZ  
tLZ  
SI  
HOLD#  
30  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
Figure 16.4 Write Protect Setup and Hold Timing during WRSR when SRWD=1  
W#  
tWPS  
tWPH  
CS#  
SCK  
SI  
Hi-Z  
SO  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
31  
D a t a S h e e t  
17. Physical Dimensions  
17.1 SOC008 wide—8-pin Plastic Small Outline Package (208 mils Body Width)  
3
4
0.20  
C
A-B  
D
H
D
A
5
SEE  
DETAIL B  
WITH  
PLATING  
b1  
9
c
c1  
3
4
E
E1  
(b)  
BASE  
E1/2  
7
E/2  
METAL  
SECTION A-A  
0.33  
D
C
e
b
q2  
0.07 R MIN.  
0.25  
M
C
A-B  
B
5
H
0.10  
C
GAUGE  
PLANE  
A
0.10  
C
A2  
A
SEATING  
PLANE  
SEATING PLANE  
A
q1  
C
L2  
A1  
C
L
q
L1  
DETAIL B  
NOTES:  
1.  
2.  
3.  
ALL DIMENSIONS ARE IN BOTH INCHES AND MILLMETERS.  
DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.  
PACKAGE SOC 008 (inches)  
JEDEC  
SOC 008 (mm)  
DIMENSION D DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm  
PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 mm PER SIDE. D AND E1  
DIMENSIONS ARE DETERMINED AT DATUM H.  
SYMBOL  
MIN  
MAX  
0.085  
0.0098  
0.075  
0.019  
0.018  
MIN  
MAX  
2.159  
0.249  
1.91  
A
A1  
A2  
b
0.069  
0.002  
0.067  
0.014  
0.013  
1.753  
0.051  
1.70  
.
0.356  
0.330  
0.191  
0.152  
0.483  
0.457  
0.241  
0.203  
4.  
THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE  
BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE  
OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF  
MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD  
FLASH. BUT INCLUDING ANY MISMATCH BETWEEN THE TOP  
AND BOTTOM OF THE PLASTIC BODY.  
b1  
c
0.0075 0.0095  
0.006 0.008  
0.208 BSC  
c1  
D
5.283 BSC  
5.  
6.  
DATUMS A AND B TO BE DETERMINED AT DATUM H.  
E
0.315 BSC  
0.208 BSC  
.050 BSC  
8.001 BSC  
5.283 BSC  
1.27 BSC  
"N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR  
THE SPECIFIED PACKAGE LENGTH.  
E1  
e
7.  
8.  
THE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD  
BETWEEN 0.10 TO 0.25 mm FROM THE LEAD TIP.  
L
0.020  
0.030  
0.508  
0.762  
DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL  
IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL  
CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE  
LOWER RADIUS OF THE LEAD FOOT.  
L1  
L2  
N
.055 REF  
1.40 REF  
0.25 BSC  
8
.010 BSC  
8
θ
0˚  
5˚  
8˚  
15˚  
0˚  
0˚  
5˚  
8˚  
9.  
THIS CHAMFER FEATURE IS OPTIONAL. IF IT IS NOT PRESENT,  
THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX  
AREA INDICATED.  
θ1  
θ2  
15˚  
0˚  
10. LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED  
FROM THE SEATING PLANE.  
3432 \ 16-038.03 \ 10.28.04  
32  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
17.2 SO3 016 wide—16-pin Plastic Small Outline Package (300-mil Body Width)  
NOTES:  
1.  
2.  
3.  
ALL DIMENSIONS ARE IN BOTH INCHES AND MILLMETERS.  
DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.  
PACKAGE  
SO3 016 (inches)  
MS-013(D)AA  
SO3 016 (mm)  
MS-013(D)AA  
JEDEC  
DIMENSION D DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm  
PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 mm PER SIDE. D AND E1  
DIMENSIONS ARE DETERMINED AT DATUM H.  
SYMBOL  
MIN  
MAX  
0.104  
0.012  
0.104  
0.020  
0.019  
0.013  
0.012  
MIN  
MAX  
2.65  
0.30  
2.55  
0.51  
0.48  
0.33  
0.30  
A
A1  
A2  
b
0.093  
0.004  
0.081  
0.012  
0.011  
0.008  
0.008  
2.35  
0.10  
2.05  
0.31  
0.27  
0.20  
0.20  
.
4.  
THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE  
BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE  
OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF  
MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD  
FLASH. BUT INCLUDING ANY MISMATCH BETWEEN THE TOP  
AND BOTTOM OF THE PLASTIC BODY.  
b1  
c
c1  
D
0.406 BSC  
10.30 BSC  
5.  
6.  
DATUMS A AND B TO BE DETERMINED AT DATUM H.  
E
0.406 BSC  
0.295 BSC  
.050 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
"N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR  
THE SPECIFIED PACKAGE LENGTH.  
E1  
e
7.  
8.  
THE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD  
BETWEEN 0.10 TO 0.25 mm FROM THE LEAD TIP.  
L
0.016  
0.050  
0.40  
1.27  
DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL  
IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL  
CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE  
LOWER RADIUS OF THE LEAD FOOT.  
L1  
L2  
N
.055 REF  
.010 BSC  
16  
1.40 REF  
0.25 BSC  
16  
h
0.10  
0.30  
0.25  
0.75  
8˚  
9.  
THIS CHAMFER FEATURE IS OPTIONAL. IF IT IS NOT PRESENT,  
THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX  
AREA INDICATED.  
θ
0˚  
5˚  
8˚  
0˚  
5˚  
θ1  
θ2  
15˚  
15˚  
10. LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED  
FROM THE SEATING PLANE.  
0˚  
0˚  
3601 \ 16-038.03 \ 8.31.6  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
33  
D a t a S h e e t  
17.3 WSON 8-contact (6 x 8 mm) No-Lead Package  
(DATUM A)  
D2  
D
A
PIN #1 ID  
R0.20  
B
D2/2  
N
NX L  
1
2
E2/2  
9.  
E
E2  
0.30 DIA TYP.  
8.  
2X  
0.10 C  
2X  
1
2
K
N-1  
N
TOP VIEW  
0.10 C  
0.10 C  
0.05 C  
4.  
NX b  
e
0.10.  
0.05.  
M
M
C A B  
C
A
C
(ND-1)  
X
e
9.  
5.  
SEATING PLANE  
SEE DETAIL "A"  
A1  
SIDE VIEW  
DATUM A  
BOTTOM VIEW  
L
L1  
10.  
e/2  
TERMINAL TIP  
4.  
e
DETAIL "A"  
NOTES:  
QUAD FLAT NO LEAD PACKAGES (WSNB) - PLASTIC  
DIMENSIONS  
1. DIMENSIONING AND TOLERANCING CONFORMS TO  
ASME Y14.5M-1994.  
SYMBOL  
MIN  
NOM  
1.27 BSC  
8
MAX  
NOTE  
2. ALL DIMENSIONS ARE IN MILLIMETERS, SYM θ IS IN DEGREES.  
e
N
3. N IS THE TOTAL NUMBER OF TERMINALS.  
3
5
4. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS  
MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.  
IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER  
END OF THE TERMINAL, THE DIMENSION b SHOULD NOT BE  
MEASURED IN THAT RADIUS AREA.  
ND  
L
4
0.45  
0.35  
4.70  
6.30  
0.50  
0.55  
0.45  
4.90  
6.50  
b
0.40  
4
D2  
E2  
D
4.80  
5. ND REFERS TOT HE NUMBER OF TERMINALS ON D SIDE.  
6. MAXIMUM PACKAGE WARPAGE IS 0.05 mm.  
6.40  
6.00 BSC  
8.00 BSC  
0.75  
7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.  
8. PIN #1 ID ON TOP WILL BE LASER MARKED.  
E
A
0.70  
0.00  
0.80  
0.05  
9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED  
HEAT SINK SLUG AS WELL AS THE TERMINALS.  
A1  
L1  
θ
0.02  
10. A MAXIMUM 0.15 mm PULL BACK (L1) MAY BE PRESENT.  
0.15 MAX.  
---  
10  
2
0
12  
K
0.20 MIN.  
3408\ 16-038.28a  
34  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  
D a t a S h e e t  
18. Revision History  
Section  
Revision A (July 13, 2004)  
Global  
Description  
Initial release.  
Revision A1 (September 13, 2004)  
Connection Diagrams  
Added the WSON 6x8mm pin out.  
Changed OPN to reflect Device technology identification change from M to A for CS99S MirrorBit  
technology.  
Ordering Information Table  
Revision A2 (December 16, 2004)  
Read Identification (RDID)  
Changed memory capacity of the device in the second byte from 14h to 15h.  
Revision A3 (March 3, 2005)  
Added new commercial temperature range. Updated package and temperature, and package  
marking information. Added note on standard package A and Pb-free package F information.  
Ordering Information  
Read Identification (RDID)  
Revision A4 (March 29, 2005)  
DC Characteristics  
Updated memory capacity of the device in the second byte from 15h to 14h.  
Updated table.  
Global  
Removed Commercial temperature range.  
Revision A5 (June 21, 2005)  
Distinctive Characteristics  
Ordering Information  
Updated Page Program speed. Update Deep Power Down Mode time. Update timing numbers.  
Added Tray to packing type.  
Valid Combination Table  
Power-up and Power-down section  
DC Characteristics  
Updated Packing Type.  
Updated this section. Removed Figure 19. Updated Table 7 Power-up Timing.  
Added and updated values in Table 8.  
AC Characteristics  
Updated Figure 21.  
Revision A6 (December 21, 2005)  
Added 8-pin SO package to Distinctive Characteristics, Connection Diagram, and Ordering  
Information, and Physical Dimensions sections.  
Global  
Ordering Information  
Added Tray to packing type.  
Updated.  
Valid Combination Table  
Revision B0 (April 18, 2005)  
Changed document status from Advance Information to Preliminary. Changed title from family of  
devices to specific device.  
Global  
AC Characteristics table  
Revision B1 (June 29, 2006)  
DC Characteristics  
Updated tW specifications.  
Changed typical and maximum specifications for ICC2  
.
Revision C0 (August 28, 2006)  
Global  
Rewrote entire document for better flow and clarity. No specifications were changed.  
Revision C1 (February 16, 2007)  
Global  
Deleted Preliminary status from document.  
Added overshoot and undershoot information.  
Absolute Maximum Ratings  
Revision C2 (June 29, 2007)  
Device Operations  
Added sentence to Byte or Page Programming  
June 29, 2007 S25FL016A_00_C2  
S25FL016A  
35  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2004-2007 Spansion Inc. All rights reserved. Spansion®, the Spansion Logo, MirrorBit®, MirrorBit® Eclipse, ORNAND, HD-SIM™  
and combinations thereof, are trademarks of Spansion LLC in the US and other countries. Other names used are for informational purposes  
only and may be trademarks of their respective owners.  
36  
S25FL016A  
S25FL016A_00_C2 June 29, 2007  

相关型号:

S25FL016A0LMAI11

Flash, 16MX1, PDSO8, 0.208 INCH, PLASTIC, SOP-8
SPANSION

S25FL016A0LMFC001

Flash, 16MX1, PDSO16, 0.300 INCH, PLASTIC, LEAD FREE, SOP-16
SPANSION

S25FL016A0LMFI000

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LMFI001

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LMFI003

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LMFI01

Flash, 16MX1, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, MS-013AA, SOP-16
SPANSION

S25FL016A0LMFI010

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LMFI011

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LMFI013

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LNAI000

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LNAI001

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION

S25FL016A0LNAI003

16 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI (Serial Peripheral Interface) Bus
SPANSION