S25FL129P0XNFI003 [SPANSION]

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8;
S25FL129P0XNFI003
型号: S25FL129P0XNFI003
厂家: SPANSION    SPANSION
描述:

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8

光电二极管
文件: 总69页 (文件大小:1095K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S25FL129P  
128-Mbit CMOS 3.0 Volt Flash Memory  
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus  
Data Sheet  
S25FL129P Cover Sheet  
This product is not recommended for new and current designs. For new and current designs,  
S25FL128S supersedes S25FL129P. This is the factory-recommended migration path. Please refer to  
the S25FL128S data sheet for specifications and ordering information.  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Each product described herein may be designated as Advance Information,  
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S25FL129P_00  
Revision 09  
Issue Date January 30, 2013  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or V range. Changes may also include those needed to clarify a  
IO  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S25FL129P  
S25FL129P_00_09 January 30, 2013  
S25FL129P  
128-Mbit CMOS 3.0 Volt Flash Memory  
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus  
Data Sheet  
This product is not recommended for new and current designs. For new and current designs, S25FL128S  
supersedes S25FL129P. This is the factory-recommended migration path. Please refer to the S25FL128S  
data sheet for specifications and ordering information.  
Distinctive Characteristics  
One time programmable (OTP) area for permanent, secure  
Architectural Advantages  
Single power supply operation  
identification; can be programmed and locked at the factory  
or by the customer  
– Full voltage range: 2.7 to 3.6V read and write operations  
CFI (Common Flash Interface) compliant: allows host system  
Memory architecture  
to identify and accommodate multiple flash devices  
– Uniform 64 KB sectors  
Process technology  
Top or bottom parameter block (Two 64-KB sectors broken  
down into sixteen 4-KB sub-sectors each)  
– Manufactured on 0.09 µm MirrorBit® process technology  
Package option  
– Uniform 256 KB sectors (no 4-KB sub-sectors)  
– Industry Standard Pinouts  
– 256-byte page size  
– 16-pin SO package (300 mils)  
– Backward compatible with the S25FL128P (uniform 256 KB sector)  
device  
– 8-contact WSON package (6 x 8 mm)  
– 24-ball BGA (6 x 8 mm) package, 5 x 5 pin configuration  
– 24-ball BGA (6 x 8 mm) package, 6 x 4 pin configuration  
Program  
– Page Program (up to 256 bytes) in 1.5 ms (typical)  
– Program operations are on a page by page basis  
– Accelerated programming mode via 9V W#/ACC pin  
– Quad Page Programming  
Performance Characteristics  
Speed  
– Normal READ (Serial): 40 MHz clock rate  
– FAST_READ (Serial): 104 MHz clock rate (maximum)  
– DUAL I/O FAST_READ: 80 MHz clock rate or  
20 MB/s effective data rate  
Erase  
– Bulk erase function  
– Sector erase (SE) command (D8h) for 64 KB and 256 KB sectors  
– Sub-sector erase (P4E) command (20h) for 4 KB sectors  
(for uniform 64-KB sector device only)  
– QUAD I/O FAST_READ: 80 MHz clock rate or  
40 MB/s effective data rate  
– Sub-sector erase (P8E) command (40h) for 8 KB sectors  
(for uniform 64-KB sector device only)  
Power saving standby mode  
– Standby Mode 80 µA (typical)  
Cycling endurance  
– 100,000 cycles per sector typical  
Data retention  
– Deep Power-Down Mode 3 µA (typical)  
Memory Protection Features  
– 20 years typical  
Memory protection  
Device ID  
– W#/ACC pin works in conjunction with Status Register Bits to  
protect specified memory areas  
– JEDEC standard two-byte electronic signature  
– RES command one-byte electronic signature for backward  
compatibility  
– Status Register Block Protection bits (BP2, BP1, BP0) in status  
Publication Number S25FL129P_00  
Revision 09  
Issue Date January 30, 2013  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient pro-  
duction volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid com-  
binations offered may occur.  
D a t a S h e e t  
General Description  
The S25FL129P is a 3.0 Volt (2.7V to 3.6V), single-power-supply Flash memory device. The device is offered  
in two configurations: 256 uniform 64 KB sectors with the two (Top or Bottom) 64 KB sectors further split up  
into thirty-two 4 KB sub sectors, or 64 uniform 256 KB sectors. The S25FL129P device is backward  
compatible with the S25FL128P (uniform 256 KB sector) device.  
The device accepts data written to SI (Serial Input) and outputs data on SO (Serial Output). The devices are  
designed to be programmed in-system with the standard system 3.0-volt V supply.  
CC  
The S25FL129P device adds the following high-performance features using 5 new instructions:  
Dual Output Read using both SI and SO pins as output pins at a clock rate of up to 80 MHz  
Quad Output Read using SI, SO, W#/ACC and HOLD# pins as output pins at a clock rate of up to 80 MHz  
Dual I/O High Performance Read using both SI and SO pins as input and output pins at a clock rate of up  
to 80 MHz  
Quad I/O High Performance Read using SI, SO, W#/ACC and HOLD# pins as input and output pins at a  
clock rate of up to 80 MHz  
Quad Page Programming using SI, SO, W#/ACC and HOLD# pins as input pins to program data at a clock  
rate of up to 80 MHz  
The memory can be programmed 1 to 256 bytes at a time, using the Page Program command. The device  
supports Sector Erase and Bulk Erase commands.  
Each device requires only a 3.0-volt power supply (2.7V to 3.6V) for both read and write functions. Internally  
generated and regulated voltages are provided for the program operations. This device requires a high  
voltage supply to the W#/ACC pin to enable the Accelerated Programming mode.  
The S25FL129P device also offers a One-Time Programmable area (OTP) of up to 128-bits (16 bytes) for  
permanent secure identification and an additional 490 bytes of OTP space for other use. This OTP area can  
be programmed or read using the OTPP or OTPR instructions.  
4
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Table of Contents  
Distinctive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.  
2.  
3.  
4.  
5.  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input/Output Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.  
7.  
Spansion SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Byte or Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Quad Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Dual and Quad I/O Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Sector Erase / Bulk Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Monitoring Write Operations Using the Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.10 Hold Mode (HOLD#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.11 Accelerated Programming Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8.  
9.  
Sector Address Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
Read Data Bytes (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Read Data Bytes at Higher Speed (FAST_READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Dual Output Read Mode (DOR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Quad Output Read Mode (QOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DUAL I/O High Performance Read Mode (DIOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Quad I/O High Performance Read Mode (QIOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Read Identification (RDID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Read-ID (READ_ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.10 Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.11 Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.12 Read Configuration Register (RCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.13 Write Registers (WRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.14 Page Program (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.15 QUAD Page Program (QPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.16 Parameter Sector Erase (P4E, P8E) (only applicable for the uniform 64 KB sector device). 45  
9.17 Sector Erase (SE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.18 Bulk Erase (BE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.19 Deep Power-Down (DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.20 Release from Deep Power-Down (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
9.21 Clear Status Register (CLSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
9.22 OTP Program (OTPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
9.23 Read OTP Data Bytes (OTPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10. OTP Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.1 Programming OTP Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.2 Reading OTP Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.3 Locking OTP Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
11. Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
12. Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
5
D a t a S h e e t  
13. Program Acceleration via W#/ACC Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
14. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
14.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
15. Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
16. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
17. Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
18. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
18.1 Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
19. Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
19.1 SO3 016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width) . . . . . . . . . . 63  
19.2 WSON 8-contact (6 x 8 mm) No-Lead Package (WNF008) . . . . . . . . . . . . . . . . . . . . . . . . . 64  
19.3 FAB024 — 24-ball Ball Grid Array (6 x 8 mm) package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
19.4 FAC024 — 24-ball Ball Grid Array (6 x 8 mm) package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
20. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Figures  
Figure 2.1  
Figure 2.2  
Figure 2.3  
Figure 2.4  
Figure 6.1  
Figure 6.2  
Figure 7.1  
Figure 9.1  
Figure 9.2  
Figure 9.3  
Figure 9.4  
Figure 9.5  
Figure 9.6  
Figure 9.7  
Figure 9.8  
Figure 9.9  
16-pin Plastic Small Outline Package (SO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
8-contact WSON Package (6 x 8 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6 x 8 mm 24-ball BGA Package, 5 x 5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6 x 8 mm 24-ball BGA Package, 6 x 4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Hold Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read Data Bytes (READ) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Read Data Bytes at Higher Speed (FAST_READ) Command Sequence . . . . . . . . . . . . . . . 27  
Dual Output Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Quad Output Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DUAL I/O High Performance Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Continuous Dual I/O High Performance Read Instruction Sequence . . . . . . . . . . . . . . . . . . 31  
QUAD I/O High Performance Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Continuous QUAD I/O High Performance Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . 33  
Read Identification (RDID) Command Sequence and Data-Out Sequence . . . . . . . . . . . . . 34  
Figure 9.10 Read-ID (RDID) Command Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 9.11 Write Enable (WREN) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 9.12 Write Disable (WRDI) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 9.13 Read Status Register (RDSR) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 9.14 Read Configuration Register (RCR) Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Figure 9.15 Write Registers (WRR) Instruction Sequence – 8 data bits. . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 9.16 Write Registers (WRR) Instruction Sequence – 16 data bits. . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 9.17 Page Program (PP) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 9.18 QUAD Page Program Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 9.19 Parameter Sector Erase (P4E, P8E) Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 9.20 Sector Erase (SE) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 9.21 Bulk Erase (BE) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 9.22 Deep Power-Down (DP) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 9.23 Release from Deep Power-Down (RES) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 9.24 Release from Deep Power-Down and RES Command Sequence . . . . . . . . . . . . . . . . . . . . 50  
Figure 9.25 Clear Status Register (CLSR) Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 9.26 OTP Program Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 9.27 Read OTP Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 10.1 OTP Memory Map - Part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 10.2 OTP Memory Map - Part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 11.1 Power-Up Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 11.2 Power-down and Voltage Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 13.1 ACC Program Acceleration Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 14.1 Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 14.2 Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 17.1 AC Measurements I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 18.1 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 18.2 SPI Mode 0 (0,0) Input Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 18.3 SPI Mode 0 (0,0) Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 18.4 HOLD# Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 18.5 Write Protect Setup and Hold Timing during WRR when SRWD = 1 . . . . . . . . . . . . . . . . . . 62  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
7
D a t a S h e e t  
Tables  
Table 5.1  
Table 7.1  
Table 7.2  
Table 7.3  
Table 7.4  
Table 8.1  
Table 8.2  
Table 8.3  
Table 9.1  
Table 9.2  
Table 9.3  
Table 9.4  
Table 9.5  
Table 9.6  
Table 9.7  
Table 9.8  
Table 9.9  
Table 11.1  
Table 13.1  
Table 15.1  
Table 16.1  
Table 17.1  
S25FL129P Valid Combinations Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Configuration Register Table (Uniform 64 KB sector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Configuration Register Table (Uniform 256 KB sector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
TBPROT = 0 (Starts Protection from TOP of Array) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
TBPROT = 1 (Starts Protection from BOTTOM of Array) . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
S25FL129P Sector Address Table (Uniform 256 KB sector) . . . . . . . . . . . . . . . . . . . . . . . . .19  
S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=0) . . . . . . . . . . . . . . . .20  
S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=1) . . . . . . . . . . . . . . . .22  
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Manufacturer and Device Identification - RDID (9Fh): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Product Group CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Product Group CFI System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Product Group CFI Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Product Group CFI Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . .36  
READ_ID Data-Out Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
S25FL129P Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Power-Up / Power-Down Voltage and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
ACC Program Acceleration Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
DC Characteristics (CMOS Compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
8
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
1. Block Diagram  
SRAM  
PS  
X
D
E
C
Array - L  
Array - R  
Logic  
RD  
DATA PATH  
IO  
2. Connection Diagrams  
Figure 2.1 16-pin Plastic Small Outline Package (SO)  
16  
15  
14  
SCK  
1
2
3
HOLD#/IO3  
VCC  
SI/IO0  
DNC  
DNC  
DNC  
DNC  
DNC  
13  
4
5
DNC  
DNC  
12  
6
11  
DNC  
GND  
CS#  
7
10  
9
SO/IO1  
8
W#/ACC/IO2  
Note  
DNC = Do Not Connect (Reserved for future use)  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
9
D a t a S h e e t  
Figure 2.2 8-contact WSON Package (6 x 8 mm)  
CS#  
SO/IO1  
VCC  
8
7
6
1
2
HOLD#/IO3  
WSON  
W#/ACC/IO2  
GND  
3
4
SCK  
SI/IO0  
5
Note  
There is an exposed central pad on the underside of the WSON package. This should not be connected to any voltage or signal line on the  
PCB. Connecting the central pad to GND (VSS) is possible, provided PCB routing ensures 0mV difference between voltage at the WSON  
GND (VSS) lead and the central exposed pad.  
Figure 2.3 6 x 8 mm 24-ball BGA Package, 5 x 5 Pin Configuration  
1
2
3
4
5
A
B
C
D
E
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
SCK  
CS#  
GND  
VCC  
NC W#/ACC/IO2 NC  
SO/IO1 SI/IO0 HOLD#/IO3 NC  
NC  
NC  
NC  
NC  
Figure 2.4 6 x 8 mm 24-ball BGA Package, 6 x 4 Pin Configuration  
A1  
A2  
NC  
A3  
NC  
A4  
NC  
B4  
NC  
B2  
B3  
B1  
NC  
C1  
NC  
D1  
SCK  
C2  
GND  
C3  
VCC  
C4  
CS#  
D2  
NC W#/ACC/IO2  
D3 D4  
SI/IO0 HOLD#/IO3  
NC  
E1  
SO/IO1  
E2  
E3  
E4  
NC  
NC  
NC  
NC  
F1  
F2  
F3  
F4  
NC  
NC  
NC  
NC  
10  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
3. Input/Output Descriptions  
Signal  
I/O  
Description  
Serial Data Output: Transfers data serially out of the device on the falling edge of SCK.  
Functions as an I/O pin in Dual and Quad I/O, and Quad Page Program modes.  
SO/IO1  
I/O  
Serial Data Input: Transfers data serially into the device. Device latches commands,  
addresses, and program data on SI on the rising edge of SCK. Functions as an I/O pin in Dual  
and Quad I/O mode.  
SI/IO0  
SCK  
I/O  
Serial Clock: Provides serial interface timing. Latches commands, addresses, and data on SI on  
rising edge of SCK. Triggers output on SO after the falling edge of SCK.  
Input  
Chip Select: Places device in active power mode when driven low. Deselects device and places  
SO at high impedance when high. After power-up, device requires a falling edge on CS# before  
any command is written. Device is in standby mode when a program, erase, or Write Status  
Register operation is not in progress.  
CS#  
Input  
Hold: Pauses any serial communication with the device without deselecting it. When driven low,  
SO is at high impedance, and all input at SI and SCK are ignored. Requires that CS# also be  
driven low. Functions as an I/O pin in Quad I/O mode.  
HOLD#/IO3  
I/O  
I/O  
Write Protect: Protects the memory area specified by Status Register bits BP2:BP0. When  
driven low, prevents any program or erase command from altering the data in the protected  
memory area. Functions as an I/O pin in Quad I/O mode.  
W#/ACC/IO2  
VCC  
Input Supply Voltage  
Input Ground  
GND  
4. Logic Symbol  
V
CC  
SO/IO1  
SI/IO0  
SCK  
CS#  
W#/ACC/IO2  
HOLD#/IO3  
GND  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
11  
D a t a S h e e t  
5. Ordering Information  
This product is not recommended for new and current designs. For new and current designs, S25FL128S  
supersedes S25FL129P. This is the factory-recommended migration path. Please refer to the S25FL128S  
data sheet for specifications and ordering information.  
The ordering part number is formed by a valid combination of the following:  
S25FL  
129  
P
0X  
M
F
I
00  
1
Packing Type (Note 1)  
0
1
3
=
=
=
Tray  
Tube  
13” Tape and Reel  
Model Number (Additional Ordering Options)  
31  
30  
21  
20  
01  
00  
=
=
=
=
=
=
6x4 pin configuration BGA package, Uniform 256 KB sectors  
6x4 pin configuration BGA package, Uniform 64 KB sectors  
5x5 pin configuration BGA package, Uniform 256 KB sectors  
5x5 pin configuration BGA package, Uniform 64 KB sectors  
SO/WSON package, Uniform 256 KB sectors  
SO/WSON package, Uniform 64 KB sectors  
Temperature Range  
I
V
=
=
Industrial (–40°C to + 85°C)  
Automotive In-Cabin (-40*C to + 105*C)  
Package Materials  
F
H
=
=
Lead (Pb)-free  
Low-Halogen, Lead (Pb)-free  
Package Type  
M
N
B
=
=
=
16-pin SO package  
8-contact WSON package  
24-ball BGA 6 x 8 mm package, 1.00 mm pitch  
Speed  
0X  
=
104 MHz  
Device Technology  
P
=
0.09 µm MirrorBit® Process Technology  
Density  
129  
=
128 Mbit  
Device Family  
S25FL  
Spansion Memory 3.0 Volt-only, Serial Peripheral Interface (SPI) Flash Memory  
5.1  
Valid Combinations  
Table 5.1 lists the valid combinations configurations planned to be supported in volume for this device.  
Table 5.1 S25FL129P Valid Combinations Table  
S25FL129P Valid Combinations  
Base Ordering  
Part Number  
Package and  
Temperature  
Model  
Number  
Speed Option  
Packing Type  
Package Marking  
FL129P + (Temp) + F  
FL129P + (Temp) + FL  
FL129P + (Temp) + F  
FL129P + (Temp) + FL  
00  
MFI, NFI  
0, 1, 3  
MFV , NFV  
01  
S25FL129P  
0X  
20, 30  
21, 31  
BHI  
0, 3  
BHV  
Note  
1. Package Marking omits the leading “S25” and speed, package and model number.  
12  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
6. Spansion SPI Modes  
A microcontroller can use either of its two SPI modes to control Spansion SPI Flash memory devices:  
CPOL = 0, CPHA = 0 (Mode 0)  
CPOL = 1, CPHA = 1 (Mode 3)  
Input data is latched in on the rising edge of SCK, and output data is available from the falling edge of SCK for  
both modes.  
When the bus master is in standby mode, SCK is as shown in Figure 6.2 for each of the two modes:  
SCK remains at 0 for (CPOL = 0, CPHA = 0 Mode 0)  
SCK remains at 1 for (CPOL = 1, CPHA = 1 Mode 3)  
Figure 6.1 Bus Master and Memory Devices on the SPI Bus  
SO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SI  
SCK  
SCK SO SI  
SCK SO SI  
SCK SO SI  
Bus Master  
SPI Memory  
SPI Memory  
SPI Memory  
Device  
Device  
Device  
CS3 CS2 CS1  
CS#  
HOLD#  
CS#  
HOLD#  
CS#  
HOLD#  
W#/ACC  
W#/ACC  
W#/ACC  
Note  
The Write Protect/Accelerated Programming (W#/ACC) and Hold (HOLD#) signals should be driven high (logic level 1) or low (logic level 0)  
as appropriate.  
Figure 6.2 SPI Modes Supported  
CS#  
CPOL CPHA  
Mode 0  
SCK  
0
0
1
1
Mode 3  
SCK  
SI  
MSB  
SO  
MSB  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
13  
D a t a S h e e t  
7. Device Operations  
All Spansion SPI devices accept and output data in bytes (8 bits at a time). The SPI device is a slave device  
that supports an inactive clock while CS# is held low.  
7.1  
Byte or Page Programming  
Programming data requires two commands: Write Enable (WREN), which is one byte, and a Page Program  
(PP) sequence, which consists of four bytes plus data. The Page Program sequence accepts from 1 byte up  
to 256 consecutive bytes of data (which is the size of one page) to be programmed in one operation.  
Programming means that bits can either be left at 0, or programmed from 1 to 0. Changing bits from 0 to 1  
requires an erase operation.  
7.2  
7.3  
Quad Page Programming  
The Quad Page Program (QPP) instruction allows up to 256 bytes of data to be programmed using 4 pins as  
inputs at the same time, thus effectively quadrupling the data transfer rate, compared to the Page Program  
(PP) instruction. The Write Enable Latch (WEL) bit must be set to a 1 using the Write Enable (WREN)  
command prior to issuing the QPP command.  
Dual and Quad I/O Mode  
The S25FL129P device supports Dual and Quad I/O operation when using the Dual/Quad Output Read Mode  
and the Dual/Quad I/O High Performance Mode instructions. Using the Dual or Quad I/O instructions allows  
data to be transferred to or from the device at two to four times the rate of standard SPI devices. When  
operating in the Dual or Quad I/O High Performance Mode (BBh or EBh instructions), data can be read at fast  
speed using two or four data bits at a time, and the 3-byte address can be input two or four address bits at a  
time.  
7.4  
Sector Erase / Bulk Erase  
The Sector Erase (SE) and Bulk Erase (BE) commands set all the bits in a sector or the entire memory array  
to 1. While bits can be individually programmed from 1 to 0, erasing bits from 0 to 1 must be done on a sector-  
wide (SE) or array-wide (BE) level. In addition to the 64-KB Sector Erase (SE), the S25FL129P device also  
offers 4-KB Parameter Sector Erase (P4E) and 8-KB Parameter Sector Erase (P8E) (only applicable for the  
uniform 64 KB sector device).  
7.5  
7.6  
Monitoring Write Operations Using the Status Register  
The host system can determine when a Write Register, program, or erase operation is complete by  
monitoring the Write in Progress (WIP) bit in the Status Register. The Read from Status Register command  
provides the state of the WIP bit. In addition, the S25FL129P device offers two additional bits in the Status  
Register (P_ERR, E_ERR) to indicate whether a Program or Erase operation was a success or failure.  
Active Power and Standby Power Modes  
The device is enabled and in the Active Power mode when Chip Select (CS#) is Low. When CS# is high, the  
device is disabled, but may still be in the Active Power mode until all program, erase, and Write Registers  
operations have completed. The device then goes into the Standby Power mode, and power consumption  
drops to I . The Deep Power-Down (DP) command provides additional data protection against inadvertent  
SB  
signals. After writing the DP command, the device ignores any further program or erase commands, and  
reduces its power consumption to I  
.
DP  
14  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
7.7  
Status Register  
The Status Register contains the status and control bits that can be read or set by specific commands (see  
Table 9.1 on page 25). These bits configure different protection configurations and supply information of  
operation of the device. (for details see Table 9.8, S25FL129P Status Register on page 39):  
Write In Progress (WIP): Indicates whether the device is performing a Write Registers, program or erase  
operation.  
Write Enable Latch (WEL): Indicates the status of the internal Write Enable Latch.  
Block Protect (BP2, BP1, BP0): Non-volatile bits that define memory area to be software-protected  
against program and erase commands.  
Erase Error (E_ERR): The Erase Error Bit is used as an Erase operation success and failure check.  
Program Error (P_ERR): The Program Error Bit is used as an program operation success and failure check.  
Status Register Write Disable (SRWD): Places the device in the Hardware Protected mode when this bit  
is set to 1 and the W#/ACC input is driven low. In this mode, the non-volatile bits of the Status Register  
(SRWD, BP2, BP1, BP0) become read-only bits.  
7.8  
Configuration Register  
The Configuration Register contains the control bits that can be read or set by specific commands. These bits  
configure different configurations and security features of the device.  
The FREEZE bit locks the BP2-0 bits in Status Register and the TBPROT and TBPARM bits in the  
Configuration Register. Note that once the FREEZE bit has been set to ‘1’, then it cannot be cleared to ‘0’  
until a power-on-reset is executed. As long as the FREEZE bit is set to ‘0’, then the other bits of the  
Configuration Register, including FREEZE bit, can be written to.  
The QUAD bit is non-volatile and sets the pin out of the device to Quad mode; that is, W#/ACC becomes  
IO2 and HOLD# becomes IO3. The instructions for Serial, Dual Output, and Dual I/O reads function as  
normal. The W#/ACC and HOLD# functionality does not work when the device is set in Quad mode.  
The TBPARM bit defines the logical location of the 4 KB parameter sectors. The parameter sectors consist  
of thirty two 4 KB sectors. All sectors other than the parameter sectors are defined to be 64-KB uniform in  
size. When TBPARM is set to a ‘1’, the 4 KB parameter sectors starts at the top of the array. When  
TBPARM is set to a ‘0’, the 4 KB parameter sectors starts at the bottom of the array. Note that once this bit  
is set to a '1', it cannot be changed back to '0'. (This function is not applicable to the uniform 256 KB sector  
product.) The desired state of TBPARM must be selected during the initial configuration of the device  
during system manufacture; before the first program or erase operation on the main Flash array. TBPARM  
must not be programmed after programming or erasing is done in the main Flash array.  
The BPNV bit defines whether or not the BP2-0 bits in the Status Register are volatile or non-volatile.  
When BPNV is set to a ‘1’, the BP2-0 bits in the Status Register are volatile and will be reset to binary 111  
after power on reset. When BPNV is set to a ‘0’, the BP2-0 bits in the Status Register are non-volatile. Note  
that once this bit is set to a '1', it cannot be changed back to '0'.  
The TBPROT bit defines the operation of the block protection bits BP2, BP1, and BP0 in the Status  
Register. When TBPROT is set to a ‘0’, then the block protection is defined to start from the top of the array.  
When TBPROT is set to a ‘1’, then the block protection is defined to start from the bottom of the array. Note  
that once this bit is set to a '1', it cannot be changed back to '0'. The desired state of TBPROT must be  
selected during the initial configuration of the device during system manufacture; before the first program  
or erase operation on the main Flash array. TBPROT must not be programmed after programming or  
erasing is done in the main Flash array.  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
15  
D a t a S h e e t  
Note: It is suggested that the Block Protection and Parameter sectors not be set to the same area of the  
array; otherwise, the user cannot utilize the Parameter sectors if they are protected. The following matrix  
shows the recommended settings.  
TBPARM  
TBPROT  
Array Overview  
Parameter Sectors - Bottom  
BP Protection - Top (default)  
0
0
0
1
1
0
Not recommended (Parameters and BP Protection are both Bottom)  
Not recommended (parameters and BP Protection are both Top)  
Parameter Sectors - Top of Array (high address)  
BP Protection - Bottom of Array (low address)  
1
1
Table 7.1 Configuration Register Table (Uniform 64 KB sector)  
Bit  
7
Bit Name  
Bit Function  
Description  
NA  
NA  
-
-
Not Used  
Not Used  
6
1 = Bottom Array (low address)  
0 = Top Array (high address) (Default)  
5
4
3
TBPROT  
NA  
Configures start of block protection  
-
Do Not Use  
1 = Volatile  
0 = Non-volatile (Default)  
BPNV  
Configures BP2-0 bits in the Status Register  
1 = Top Array (high address)  
0 = Bottom Array (low address) (Default)  
2
1
0
TBPARM  
QUAD  
Configures Parameter sector location  
Puts the device into Quad I/O mode  
Locks BP2-0 bits in the Status Register  
1 = Quad I/O  
0 = Dual or Serial I/O (Default)  
1 = Enabled  
0 = Disabled (Default)  
FREEZE  
Note  
(Default) indicates the value of each Configuration Register bit set upon initial factory shipment.  
Table 7.2 Configuration Register Table (Uniform 256 KB sector)  
Bit  
7
Bit Name  
N/A  
Bit Function  
Description  
-
-
Not Used  
Not Used  
6
N/A  
1 = Bottom Array (low address)  
0 = Top Array (high address) (Default)  
5
4
3
2
1
TBPROT  
N/A  
Configures start of block protection  
-
Do Not Use  
1 = Volatile  
0 = Non-volatile (Default)  
BPNV  
N/A  
Configures BP2-0 bits in the Status Register  
-
Do not Use  
1 = Quad I/O  
0 = Dual or Serial I/O (Default)  
QUAD  
Puts the device into Quad I/O mode  
1 = Enabled  
0 = Disabled (Default)  
0
FREEZE  
Locks BP2-0 bits in the Status Register  
Note  
1. (Default) indicates the value of each Configuration Register bit set upon initial factory shipment.  
16  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
7.9  
Data Protection Modes  
Spansion SPI Flash memory devices provide the following data protection methods:  
The Write Enable (WREN) command: Must be written prior to any command that modifies data. The  
WREN command sets the Write Enable Latch (WEL) bit. The WEL bit resets (disables writes) on power-up  
or after the device completes the following commands:  
– Page Program (PP)  
– Sector Erase (SE)  
– Bulk Erase (BE)  
– Write Disable (WRDI)  
– Write Register (WRR)  
– Parameter 4 KB Sector Erase (P4E)  
– Parameter 8 KB Sector Erase (P8E)  
– Quad Page Programming (QPP)  
– OTP Byte Programming (OTPP)  
Software Protected Mode (SPM): The Block Protect BP2, BP1, BP0 bits define the section of the memory  
array that can be read but not programmed or erased. Table 7.3 and Table 7.4 shows the sizes and  
address ranges of protected areas that are defined by Status Register bits BP2:BP0.  
Hardware Protected Mode (HPM): The Write Protect (W#/ACC) input and the Status Register Write  
Disable (SRWD) bit together provide write protection.  
Clock Pulse Count: The device verifies that all program, erase, and Write Register commands consist of  
a clock pulse count that is a multiple of eight before executing them.  
Table 7.3 TBPROT = 0 (Starts Protection from TOP of Array)  
Status Register Block  
Memory Array  
Unprotected  
Sectors  
Protected Sectors  
Protected  
Address Range  
Uniform  
64 KB  
Uniform  
256 KB  
Unprotected  
Address Range  
Uniform  
64 KB  
Uniform Protected Portion of  
BP2  
BP1  
0
BP0  
0
256 KB  
Total Memory Area  
0
0
0
0
1
1
1
1
None  
0
0
000000h - FFFFFFh SA255:SA0 SA63:SA0  
000000h - FBFFFFh SA251:SA0 SA62:SA0  
0
0
1
FC0000h - FFFFFFh (4) SA255:SA252  
F80000h - FFFFFFh (8) SA255:SA248  
(1) SA63  
1/64  
1/32  
1/16  
1/8  
1
0
(2)SA63:SA62 000000h - F7FFFFh SA247:SA0 SA61:SA0  
1
1
F00000h - FFFFFFh (16) SA255:SA240 (4)SA63:SA60 000000h - EFFFFFh SA239:SA0 SA59:SA0  
E00000h - FFFFFFh (32) SA255:SA224 (8)SA63:SA56 000000h - DFFFFFh SA223:SA0 SA55:SA0  
C00000h - FFFFFFh (64)SA255:SA192 (16)SA63:SA48 000000h - BFFFFFh SA191:SA0 SA47:SA0  
800000h - FFFFFFh (128)SA255:SA128 (32)SA63:SA32 000000h - 7FFFFFh SA127:SA0 SA31:SA0  
0
0
0
1
1/4  
1
0
1/2  
1
1
000000h - FFFFFFh  
(256)SA255:SA0  
(64)SA63:SA0  
None  
None  
None  
All  
Table 7.4 TBPROT = 1 (Starts Protection from BOTTOM of Array)  
Status Register Block  
Memory Array  
Unprotected  
Sectors  
Protected Sectors  
Protected  
Address Range  
Uniform  
64 KB  
Uniform  
256 KB  
Unprotected  
Address Range  
Uniform  
64 KB  
Uniform  
256 KB  
Protected Portion of  
Total Memory Area  
BP2  
0
BP1  
0
BP0  
0
None  
0
0
000000h - FFFFFFh SA0:SA255  
040000h - FFFFFFh SA4:SA255  
080000h - FFFFFFh SA8:SA255  
SA0:SA63  
SA1:SA63  
SA2:SA63  
0
0
0
1
000000h - 03FFFFh  
000000h - 07FFFFh  
000000h - 0FFFFFh  
000000h - 1FFFFFh  
000000h - 3FFFFFh  
(4) SA0:SA3  
(8) SA0:SA7  
(16)SA0:SA15  
(32)SA0:SA31  
(64)SA0:SA63  
(1) SA0  
1/64  
1/32  
1/16  
1/8  
0
1
0
(2)SA0:SA1  
(4)SA0:SA3  
(8)SA0:SA7  
0
1
1
100000h - FFFFFFh SA16:SA255 SA4:SA63  
200000h - FFFFFFh SA32:SA255 SA8:SA63  
1
0
0
1
0
1
(16)SA0:SA15 400000h - FFFFFFh SA64:SA255 SA16:SA63  
1/4  
1
1
0
000000h - 7FFFFFh (128)SA0:SA127 (32)SA0:SA31 800000h - FFFFFFh SA128:255  
000000h - FFFFFFh (256)SA0:SA255 (64)SA0:SA63 None None  
SA32:SA63  
None  
1/2  
1
1
1
All  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
17  
D a t a S h e e t  
7.10 Hold Mode (HOLD#)  
The Hold input (HOLD#) stops any serial communication with the device, but does not terminate any Write  
Registers, program or erase operation that is currently in progress.  
The Hold mode starts on the falling edge of HOLD# if SCK is also low (see Figure 7.1, standard use). If the  
falling edge of HOLD# does not occur while SCK is low, the Hold mode begins after the next falling edge of  
SCK (non-standard use).  
The Hold mode ends on the rising edge of HOLD# signal (standard use) if SCK is also low. If the rising edge  
of HOLD# does not occur while SCK is low, the Hold mode ends on the next falling edge of CLK (non-  
standard use) See Figure 7.1.  
The SO output is high impedance, and the SI and SCK inputs are ignored (don’t care) for the duration of the  
Hold mode.  
CS# must remain low for the entire duration of the Hold mode to ensure that the device internal logic remains  
unchanged. If CS# goes high while the device is in the Hold mode, the internal logic is reset. To prevent the  
device from reverting to the Hold mode when device communication is resumed, HOLD# must be held high,  
followed by driving CS# low.  
Note: The HOLD Mode feature is disabled during Quad I/O Mode.  
Figure 7.1 Hold Mode Operation  
SCK  
HOLD#  
Hold  
Hold  
Condition  
Condition  
(standard use)  
(non-standard use)  
7.11 Accelerated Programming Operation  
The device offers accelerated program operations through the ACC function. This function is primarily  
intended to allow faster manufacturing throughput at the factory. If the system asserts V on this pin, the  
HH  
device uses the higher voltage on the pin to reduce the time required for program operations. Removing V  
HH  
from the W#/ACC pin returns the device to normal operation. Note that the W#/ACC pin must not be at V  
HH  
for operations other than accelerated programming, or device damage may result. In addition, the W#/ACC  
pin must not be left floating or unconnected; inconsistent behavior of the device may result.  
Note: The ACC function is disabled during Quad I/O Mode.  
18  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
8. Sector Address Table  
The Sector Address tables show the size of the memory array, sectors, and pages. The device uses pages to  
cache the program data before the data is programmed into the memory array. Each page or byte can be  
individually programmed (bits are changed from 1 to 0). The data is erased (bits are changed from 0 to 1) on  
a sub-sector, sector- or device-wide basis using the P4E/P8E (applicable only for the uniform 64 KB sector  
device), SE or BE commands. Table 8.1 to Table 8.3 show the starting and ending address for each sector.  
The complete set of sectors comprises the memory array of the Flash device.  
Table 8.1 S25FL129P Sector Address Table (Uniform 256 KB sector)  
Address Range  
Start Address  
Address Range  
Start Address  
Sector  
Sector  
End Address  
FFFFFFh  
FBFFFFh  
F7FFFFh  
F3FFFFh  
EFFFFFh  
EBFFFFh  
E7FFFFh  
E3FFFFh  
DFFFFFh  
DBFFFFh  
D7FFFFh  
D3FFFFh  
CFFFFFh  
CBFFFFh  
C7FFFFh  
C3FFFFh  
BFFFFFh  
BBFFFFh  
B7FFFFh  
B3FFFFh  
AFFFFFh  
ABFFFFh  
A7FFFFh  
A3FFFFh  
9FFFFFh  
9BFFFFh  
97FFFFh  
93FFFFh  
8FFFFFh  
8BFFFFh  
87FFFFh  
83FFFFh  
End Address  
7FFFFFh  
7BFFFFh  
77FFFFh  
73FFFFh  
6FFFFFh  
6BFFFFh  
67FFFFh  
63FFFFh  
5FFFFFh  
5BFFFFh  
57FFFFh  
53FFFFh  
4FFFFFh  
4BFFFFh  
47FFFFh  
43FFFFh  
3FFFFFh  
3BFFFFh  
37FFFFh  
33FFFFh  
2FFFFFh  
2BFFFFh  
27FFFFh  
23FFFFh  
1FFFFFh  
1BFFFFh  
17FFFFh  
13FFFFh  
0FFFFFh  
0BFFFFh  
07FFFFh  
03FFFFh  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
FC0000h  
F80000h  
F40000h  
F00000h  
EC0000h  
E80000h  
E40000h  
E00000h  
DC0000h  
D80000h  
D40000h  
D00000h  
CC0000h  
C80000h  
C40000h  
C00000h  
BC0000h  
B80000h  
B40000h  
B00000h  
AC0000h  
A80000h  
A40000h  
A00000h  
9C0000h  
980000h  
940000h  
900000h  
8C0000h  
880000h  
840000h  
800000h  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
7C0000h  
780000h  
740000h  
700000h  
6C0000h  
680000h  
640000h  
600000h  
5C0000h  
580000h  
540000h  
500000h  
4C0000h  
480000h  
440000h  
400000h  
3C0000h  
380000h  
340000h  
300000h  
2C0000h  
280000h  
240000h  
200000h  
1C0000h  
180000h  
140000h  
100000h  
0C0000h  
080000h  
040000h  
000000h  
8
7
6
5
4
3
2
1
0
January 30, 2013 S25FL129P_00_09  
S25FL129P  
19  
D a t a S h e e t  
Table 8.2 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=0) (Sheet 1 of 2)  
Address Range  
Start Address  
Address Range  
Start Address  
Address Range  
Start Address  
Sector  
Sector  
Sector  
End Address  
6CFFFFh  
6BFFFFh  
6AFFFFh  
69FFFFh  
68FFFFh  
67FFFFh  
66FFFFh  
65FFFFh  
64FFFFh  
63FFFFh  
62FFFFh  
61FFFFh  
60FFFFh  
5FFFFFh  
5EFFFFh  
5DFFFFh  
5CFFFFh  
5BFFFFh  
5AFFFFh  
59FFFFh  
58FFFFh  
57FFFFh  
56FFFFh  
55FFFFh  
54FFFFh  
53FFFFh  
52FFFFh  
51FFFFh  
50FFFFh  
4FFFFFh  
4EFFFFh  
4DFFFFh  
4CFFFFh  
4BFFFFh  
4AFFFFh  
49FFFFh  
48FFFFh  
47FFFFh  
46FFFFh  
45FFFFh  
44FFFFh  
43FFFFh  
42FFFFh  
41FFFFh  
40FFFFh  
3FFFFFh  
3EFFFFh  
End Address  
3DFFFFh  
3CFFFFh  
3BFFFFh  
3AFFFFh  
39FFFFh  
38FFFFh  
37FFFFh  
36FFFFh  
35FFFFh  
34FFFFh  
33FFFFh  
32FFFFh  
31FFFFh  
30FFFFh  
2FFFFFh  
2EFFFFh  
2DFFFFh  
2CFFFFh  
2BFFFFh  
2AFFFFh  
29FFFFh  
28FFFFh  
27FFFFh  
26FFFFh  
25FFFFh  
24FFFFh  
23FFFFh  
22FFFFh  
21FFFFh  
20FFFFh  
1FFFFFh  
1EFFFFh  
1DFFFFh  
1CFFFFh  
1BFFFFh  
1AFFFFh  
19FFFFh  
18FFFFh  
17FFFFh  
16FFFFh  
15FFFFh  
14FFFFh  
13FFFFh  
12FFFFh  
11FFFFh  
10FFFFh  
0FFFFFh  
End Address  
0EFFFFh  
0DFFFFh  
0CFFFFh  
0BFFFFh  
0AFFFFh  
09FFFFh  
08FFFFh  
07FFFFh  
06FFFFh  
05FFFFh  
04FFFFh  
03FFFFh  
02FFFFh  
01FFFFh  
00FFFFh  
01FFFFh  
01EFFFh  
01DFFFh  
01CFFFh  
01BFFFh  
01AFFFh  
019FFFh  
018FFFh  
017FFFh  
016FFFh  
015FFFh  
014FFFh  
013FFFh  
012FFFh  
011FFFh  
010FFFh  
00FFFFh  
00EFFFh  
00DFFFh  
00CFFFh  
00BFFFh  
00AFFFh  
009FFFh  
008FFFh  
007FFFh  
006FFFh  
005FFFh  
004FFFh  
003FFFh  
002FFFh  
001FFFh  
000FFFh  
SA108  
SA107  
SA106  
SA105  
SA104  
SA103  
SA102  
SA101  
SA100  
SA99  
SA98  
SA97  
SA96  
SA95  
SA94  
SA93  
SA92  
SA91  
SA90  
SA89  
SA88  
SA87  
SA86  
SA85  
SA84  
SA83  
SA82  
SA81  
SA80  
SA79  
SA78  
SA77  
SA76  
SA75  
SA74  
SA73  
SA72  
SA71  
SA70  
SA69  
SA68  
SA67  
SA66  
SA65  
SA64  
SA63  
SA62  
6C0000h  
6B0000h  
6A0000h  
690000h  
680000h  
670000h  
660000h  
650000h  
640000h  
630000h  
620000h  
610000h  
600000h  
5F0000h  
5E0000h  
5D0000h  
5C0000h  
5B0000h  
5A0000h  
590000h  
580000h  
570000h  
560000h  
550000h  
540000h  
530000h  
520000h  
510000h  
500000h  
4F0000h  
4E0000h  
4D0000h  
4C0000h  
4B0000h  
4A0000h  
490000h  
480000h  
470000h  
460000h  
450000h  
440000h  
430000h  
420000h  
410000h  
400000h  
3F0000h  
3E0000h  
SA61  
SA60  
SA59  
SA58  
SA57  
SA56  
SA55  
SA54  
SA53  
SA52  
SA51  
SA50  
SA49  
SA48  
SA47  
SA46  
SA45  
SA44  
SA43  
SA42  
SA41  
SA40  
SA39  
SA38  
SA37  
SA36  
SA35  
SA34  
SA33  
SA32  
SA31  
SA30  
SA29  
SA28  
SA27  
SA26  
SA25  
SA24  
SA23  
SA22  
SA21  
SA20  
SA19  
SA18  
SA17  
SA16  
SA15  
3D0000h  
3C0000h  
3B0000h  
3A0000h  
390000h  
380000h  
370000h  
360000h  
350000h  
340000h  
330000h  
320000h  
310000h  
300000h  
2F0000h  
2E0000h  
2D0000h  
2C0000h  
2B0000h  
2A0000h  
290000h  
280000h  
270000h  
260000h  
250000h  
240000h  
230000h  
220000h  
210000h  
200000h  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
180000h  
170000h  
160000h  
150000h  
140000h  
130000h  
120000h  
110000h  
100000h  
0F0000h  
SA14  
SA13  
SA12  
SA11  
SA10  
SA9  
0E0000h  
0D0000h  
0C0000h  
0B0000h  
0A0000h  
090000h  
080000h  
070000h  
060000h  
050000h  
040000h  
030000h  
020000h  
010000h  
000000h  
01F000h  
01E000h  
01D000h  
01C000h  
01B000h  
01A000h  
019000h  
018000h  
017000h  
016000h  
015000h  
014000h  
013000h  
012000h  
011000h  
010000h  
00F000h  
00E000h  
00D000h  
00C000h  
00B000h  
00A000h  
009000h  
008000h  
007000h  
006000h  
005000h  
004000h  
003000h  
002000h  
001000h  
000000h  
SA8  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
SS31  
SS30  
SS29  
SS28  
SS27  
SS26  
SS25  
SS24  
SS23  
SS22  
SS21  
SS20  
SS19  
SS18  
SS17  
SS16  
SS15  
SS14  
SS13  
SS12  
SS11  
SS10  
SS9  
SS8  
SS7  
SS6  
SS5  
SS4  
SS3  
SS2  
SS1  
SS0  
20  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Table 8.2 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=0) (Sheet 2 of 2)  
Address Range  
Start Address  
Address Range  
Start Address  
Address Range  
Start Address  
Sector  
Sector  
Sector  
End Address  
FFFFFFh  
FEFFFFh  
FDFFFFh  
FCFFFFh  
FBFFFFh  
FAFFFFh  
F9FFFFh  
F8FFFFh  
F7FFFFh  
F6FFFFh  
F5FFFFh  
F4FFFFh  
F3FFFFh  
F2FFFFh  
F1FFFFh  
F0FFFFh  
EFFFFFh  
EEFFFFh  
EDFFFFh  
ECFFFFh  
EBFFFFh  
EAFFFFh  
E9FFFFh  
E8FFFFh  
E7FFFFh  
E6FFFFh  
E5FFFFh  
E4FFFFh  
E3FFFFh  
E2FFFFh  
E1FFFFh  
E0FFFFh  
DFFFFFh  
DEFFFFh  
DDFFFFh  
DCFFFFh  
DBFFFFh  
DAFFFFh  
D9FFFFh  
D8FFFFh  
D7FFFFh  
D6FFFFh  
D5FFFFh  
D4FFFFh  
D3FFFFh  
D2FFFFh  
D1FFFFh  
D0FFFFh  
CFFFFFh  
End Address  
CEFFFFh  
CDFFFFh  
CCFFFFh  
CBFFFFh  
CAFFFFh  
C9FFFFh  
C8FFFFh  
C7FFFFh  
C6FFFFh  
C5FFFFh  
C4FFFFh  
C3FFFFh  
C2FFFFh  
C1FFFFh  
C0FFFFh  
BFFFFFh  
BEFFFFh  
BDFFFFh  
BCFFFFh  
BBFFFFh  
BAFFFFh  
B9FFFFh  
B8FFFFh  
B7FFFFh  
B6FFFFh  
B5FFFFh  
B4FFFFh  
B3FFFFh  
B2FFFFh  
B1FFFFh  
B0FFFFh  
AFFFFFh  
AEFFFFh  
ADFFFFh  
ACFFFFh  
ABFFFFh  
AAFFFFh  
A9FFFFh  
A8FFFFh  
A7FFFFh  
A6FFFFh  
A5FFFFh  
A4FFFFh  
A3FFFFh  
A2FFFFh  
A1FFFFh  
A0FFFFh  
9FFFFFh  
9EFFFFh  
End Address  
9DFFFFh  
9CFFFFh  
9BFFFFh  
9AFFFFh  
99FFFFh  
98FFFFh  
97FFFFh  
96FFFFh  
95FFFFh  
94FFFFh  
93FFFFh  
92FFFFh  
91FFFFh  
90FFFFh  
8FFFFFh  
8EFFFFh  
8DFFFFh  
8CFFFFh  
8BFFFFh  
8AFFFFh  
89FFFFh  
88FFFFh  
87FFFFh  
86FFFFh  
85FFFFh  
84FFFFh  
83FFFFh  
82FFFFh  
81FFFFh  
80FFFFh  
7FFFFFh  
7EFFFFh  
7DFFFFh  
7CFFFFh  
7BFFFFh  
7AFFFFh  
79FFFFh  
78FFFFh  
77FFFFh  
76FFFFh  
75FFFFh  
74FFFFh  
73FFFFh  
72FFFFh  
71FFFFh  
70FFFFh  
6FFFFFh  
6EFFFFh  
6DFFFFh  
SA255  
SA254  
SA253  
SA252  
SA251  
SA250  
SA249  
SA248  
SA247  
SA246  
SA245  
SA244  
SA243  
SA242  
SA241  
SA240  
SA239  
SA238  
SA237  
SA236  
SA235  
SA234  
SA233  
SA232  
SA231  
SA230  
SA229  
SA228  
SA227  
SA226  
SA225  
SA224  
SA223  
SA222  
SA221  
SA220  
SA219  
SA218  
SA217  
SA216  
SA215  
SA214  
SA213  
SA212  
SA211  
SA210  
SA209  
SA208  
SA207  
FF0000h  
FE0000h  
FD0000h  
FC0000h  
FB0000h  
FA0000h  
F90000h  
F80000h  
F70000h  
F60000h  
F50000h  
F40000h  
F30000h  
F20000h  
F10000h  
F00000h  
EF0000h  
EE0000h  
ED0000h  
EC0000h  
EB0000h  
EA0000h  
E90000h  
E80000h  
E70000h  
E60000h  
E50000h  
E40000h  
E30000h  
E20000h  
E10000h  
E00000h  
DF0000h  
DE0000h  
DD0000h  
DC0000h  
DB0000h  
DA0000h  
D90000h  
D80000h  
D70000h  
D60000h  
D50000h  
D40000h  
D30000h  
D20000h  
D10000h  
D00000h  
CF0000h  
SA206  
SA205  
SA204  
SA203  
SA202  
SA201  
SA200  
SA199  
SA198  
SA197  
SA196  
SA195  
SA194  
SA193  
SA192  
SA191  
SA190  
SA189  
SA188  
SA187  
SA186  
SA185  
SA184  
SA183  
SA182  
SA181  
SA180  
SA179  
SA178  
SA177  
SA176  
SA175  
SA174  
SA173  
SA172  
SA171  
SA170  
SA169  
SA168  
SA167  
SA166  
SA165  
SA164  
SA163  
SA162  
SA161  
SA160  
SA159  
SA158  
CE0000h  
CD0000h  
CC0000h  
CB0000h  
CA0000h  
C90000h  
C80000h  
C70000h  
C60000h  
C50000h  
C40000h  
C30000h  
C20000h  
C10000h  
C00000h  
BF0000h  
BE0000h  
BD0000h  
BC0000h  
BB0000h  
BA0000h  
B90000h  
B80000h  
B70000h  
B60000h  
B50000h  
B40000h  
B30000h  
B20000h  
B10000h  
B00000h  
AF0000h  
AE0000h  
AD0000h  
AC0000h  
AB0000h  
AA0000h  
A90000h  
A80000h  
A70000h  
A60000h  
A50000h  
A40000h  
A30000h  
A20000h  
A10000h  
A00000h  
9F0000h  
9E0000h  
SA157  
SA156  
SA155  
SA154  
SA153  
SA152  
SA151  
SA150  
SA149  
SA148  
SA147  
SA146  
SA145  
SA144  
SA143  
SA142  
SA141  
SA140  
SA139  
SA138  
SA137  
SA136  
SA135  
SA134  
SA133  
SA132  
SA131  
SA130  
SA129  
SA128  
SA127  
SA126  
SA125  
SA124  
SA123  
SA122  
SA121  
SA120  
SA119  
SA118  
SA117  
SA116  
SA115  
SA114  
SA113  
SA112  
SA111  
SA110  
SA109  
9D0000h  
9C0000h  
9B0000h  
9A0000h  
990000h  
980000h  
970000h  
960000h  
950000h  
940000h  
930000h  
920000h  
910000h  
900000h  
8F0000h  
8E0000h  
8D0000h  
8C0000h  
8B0000h  
8A0000h  
890000h  
880000h  
870000h  
860000h  
850000h  
840000h  
830000h  
820000h  
810000h  
800000h  
7F0000h  
7E0000h  
7D0000h  
7C0000h  
7B0000h  
7A0000h  
790000h  
780000h  
770000h  
760000h  
750000h  
740000h  
730000h  
720000h  
710000h  
700000h  
6F0000h  
6E0000h  
6D0000h  
Note  
Sector SA0 is split up into sub-sectors SS0 - SS15 (dark gray shading)  
Sector SA1 is split up into sub-sectors SS16 - SS31(light gray shading)  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
21  
D a t a S h e e t  
Table 8.3 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=1) (Sheet 1 of 2)  
Address Range  
Start Address  
Address Range  
Start Address  
Address Range  
Start Address  
Sector  
Sector  
Sector  
End Address  
FFFFFFh  
FFEFFFh  
FFDFFFh  
FFCFFFh  
FFBFFFh  
FFAFFFh  
FF9FFFh  
FF8FFFh  
FF7FFFh  
FF6FFFh  
FF5FFFh  
FF4FFFh  
FF3FFFh  
FF2FFFh  
FF1FFFh  
FF0FFFh  
FEFFFFh  
FEEFFFh  
FEDFFFh  
FECFFFh  
FEBFFFh  
FEAFFFh  
FE9FFFh  
FE8FFFh  
FE7FFFh  
FE6FFFh  
FE5FFFh  
FE4FFFh  
FE3FFFh  
FE2FFFh  
FE1FFFh  
FE0FFFh  
FFFFFFh  
FEFFFFh  
FDFFFFh  
FCFFFFh  
FBFFFFh  
FAFFFFh  
F9FFFFh  
F8FFFFh  
F7FFFFh  
F6FFFFh  
F5FFFFh  
F4FFFFh  
F3FFFFh  
F2FFFFh  
F1FFFFh  
F0FFFFh  
End Address  
EFFFFFh  
EEFFFFh  
EDFFFFh  
ECFFFFh  
EBFFFFh  
EAFFFFh  
E9FFFFh  
E8FFFFh  
E7FFFFh  
E6FFFFh  
E5FFFFh  
E4FFFFh  
E3FFFFh  
E2FFFFh  
E1FFFFh  
E0FFFFh  
DFFFFFh  
DEFFFFh  
DDFFFFh  
DCFFFFh  
DBFFFFh  
DAFFFFh  
D9FFFFh  
D8FFFFh  
D7FFFFh  
D6FFFFh  
D5FFFFh  
D4FFFFh  
D3FFFFh  
D2FFFFh  
D1FFFFh  
D0FFFFh  
CFFFFFh  
CEFFFFh  
CDFFFFh  
CCFFFFh  
CBFFFFh  
CAFFFFh  
C9FFFFh  
C8FFFFh  
C7FFFFh  
C6FFFFh  
C5FFFFh  
C4FFFFh  
C3FFFFh  
C2FFFFh  
C1FFFFh  
C0FFFFh  
End Address  
BFFFFFh  
BEFFFFh  
BDFFFFh  
BCFFFFh  
BBFFFFh  
BAFFFFh  
B9FFFFh  
B8FFFFh  
B7FFFFh  
B6FFFFh  
B5FFFFh  
B4FFFFh  
B3FFFFh  
B2FFFFh  
B1FFFFh  
B0FFFFh  
AFFFFFh  
AEFFFFh  
ADFFFFh  
ACFFFFh  
ABFFFFh  
AAFFFFh  
A9FFFFh  
A8FFFFh  
A7FFFFh  
A6FFFFh  
A5FFFFh  
A4FFFFh  
A3FFFFh  
A2FFFFh  
A1FFFFh  
A0FFFFh  
9FFFFFh  
9EFFFFh  
9DFFFFh  
9CFFFFh  
9BFFFFh  
9AFFFFh  
99FFFFh  
98FFFFh  
97FFFFh  
96FFFFh  
95FFFFh  
94FFFFh  
93FFFFh  
92FFFFh  
91FFFFh  
90FFFFh  
SS31  
SS30  
SS29  
SS28  
SS27  
SS26  
SS25  
SS24  
SS23  
SS22  
SS21  
SS20  
SS19  
SS18  
SS17  
SS16  
SS15  
SS14  
SS13  
SS12  
SS11  
SS10  
SS9  
FFF000h  
FFE000h  
FFD000h  
FFC000h  
FFB000h  
FFA000h  
FF9000h  
FF8000h  
FF7000h  
FF6000h  
FF5000h  
FF4000h  
FF3000h  
FF2000h  
FF1000h  
FF0000h  
FEF000h  
FEE000h  
FED000h  
FEC000h  
FEB000h  
FEA000h  
FE9000h  
FE8000h  
FE7000h  
FE6000h  
FE5000h  
FE4000h  
FE3000h  
FE2000h  
FE1000h  
FE0000h  
FF0000h  
FE0000h  
FD0000h  
FC0000h  
FB0000h  
FA0000h  
F90000h  
F80000h  
F70000h  
F60000h  
F50000h  
F40000h  
F30000h  
F20000h  
F10000h  
F00000h  
SA239  
SA238  
SA237  
SA236  
SA235  
SA234  
SA233  
SA232  
SA231  
SA230  
SA229  
SA228  
SA227  
SA226  
SA225  
SA224  
SA223  
SA222  
SA221  
SA220  
SA219  
SA218  
SA217  
SA216  
SA215  
SA214  
SA213  
SA212  
SA211  
SA210  
SA209  
SA208  
SA207  
SA206  
SA205  
SA204  
SA203  
SA202  
SA201  
SA200  
SA199  
SA198  
SA197  
SA196  
SA195  
SA194  
SA193  
SA192  
EF0000h  
EE0000h  
ED0000h  
EC0000h  
EB0000h  
EA0000h  
E90000h  
E80000h  
E70000h  
E60000h  
E50000h  
E40000h  
E30000h  
E20000h  
E10000h  
E00000h  
DF0000h  
DE0000h  
DD0000h  
DC0000h  
DB0000h  
DA0000h  
D90000h  
D80000h  
D70000h  
D60000h  
D50000h  
D40000h  
D30000h  
D20000h  
D10000h  
D00000h  
CF0000h  
CE0000h  
CD0000h  
CC0000h  
CB0000h  
CA0000h  
C90000h  
C80000h  
C70000h  
C60000h  
C50000h  
C40000h  
C30000h  
C20000h  
C10000h  
C00000h  
SA191  
SA190  
SA189  
SA188  
SA187  
SA186  
SA185  
SA184  
SA183  
SA182  
SA181  
SA180  
SA179  
SA178  
SA177  
SA176  
SA175  
SA174  
SA173  
SA172  
SA171  
SA170  
SA169  
SA168  
SA167  
SA166  
SA165  
SA164  
SA163  
SA162  
SA161  
SA160  
SA159  
SA158  
SA157  
SA156  
SA155  
SA154  
SA153  
SA152  
SA151  
SA150  
SA149  
SA148  
SA147  
SA146  
SA145  
SA144  
BF0000h  
BE0000h  
BD0000h  
BC0000h  
BB0000h  
BA0000h  
B90000h  
B80000h  
B70000h  
B60000h  
B50000h  
B40000h  
B30000h  
B20000h  
B10000h  
B00000h  
AF0000h  
AE0000h  
AD0000h  
AC0000h  
AB0000h  
AA0000h  
A90000h  
A80000h  
A70000h  
A60000h  
A50000h  
A40000h  
A30000h  
A20000h  
A10000h  
A00000h  
9F0000h  
9E0000h  
9D0000h  
9C0000h  
9B0000h  
9A0000h  
990000h  
980000h  
970000h  
960000h  
950000h  
940000h  
930000h  
920000h  
910000h  
900000h  
SS8  
SS7  
SS6  
SS5  
SS4  
SS3  
SS2  
SS1  
SS0  
SA255  
SA254  
SA253  
SA252  
SA251  
SA250  
SA249  
SA248  
SA247  
SA246  
SA245  
SA244  
SA243  
SA242  
SA241  
SA240  
22  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Table 8.3 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=1) (Sheet 2 of 2)  
Address Range  
Start Address  
Address Range  
Start Address  
Address Range  
Start Address  
Sector  
Sector  
Sector  
End Address  
8FFFFFh  
8EFFFFh  
8DFFFFh  
8CFFFFh  
8BFFFFh  
8AFFFFh  
89FFFFh  
88FFFFh  
87FFFFh  
86FFFFh  
85FFFFh  
84FFFFh  
83FFFFh  
82FFFFh  
81FFFFh  
80FFFFh  
7FFFFFh  
7EFFFFh  
7DFFFFh  
7CFFFFh  
7BFFFFh  
7AFFFFh  
79FFFFh  
78FFFFh  
77FFFFh  
76FFFFh  
75FFFFh  
74FFFFh  
73FFFFh  
72FFFFh  
71FFFFh  
70FFFFh  
6FFFFFh  
6EFFFFh  
6DFFFFh  
6CFFFFh  
6BFFFFh  
6AFFFFh  
69FFFFh  
68FFFFh  
67FFFFh  
66FFFFh  
65FFFFh  
64FFFFh  
63FFFFh  
62FFFFh  
61FFFFh  
60FFFFh  
End Address  
5FFFFFh  
5EFFFFh  
5DFFFFh  
5CFFFFh  
5BFFFFh  
5AFFFFh  
59FFFFh  
58FFFFh  
57FFFFh  
56FFFFh  
55FFFFh  
54FFFFh  
53FFFFh  
52FFFFh  
51FFFFh  
50FFFFh  
4FFFFFh  
4EFFFFh  
4DFFFFh  
4CFFFFh  
4BFFFFh  
4AFFFFh  
49FFFFh  
48FFFFh  
47FFFFh  
46FFFFh  
45FFFFh  
44FFFFh  
43FFFFh  
42FFFFh  
41FFFFh  
40FFFFh  
3FFFFFh  
3EFFFFh  
3DFFFFh  
3CFFFFh  
3BFFFFh  
3AFFFFh  
39FFFFh  
38FFFFh  
37FFFFh  
36FFFFh  
35FFFFh  
34FFFFh  
33FFFFh  
32FFFFh  
31FFFFh  
30FFFFh  
End Address  
2FFFFFh  
2EFFFFh  
2DFFFFh  
2CFFFFh  
2BFFFFh  
2AFFFFh  
29FFFFh  
28FFFFh  
27FFFFh  
26FFFFh  
25FFFFh  
24FFFFh  
23FFFFh  
22FFFFh  
21FFFFh  
20FFFFh  
1FFFFFh  
1EFFFFh  
1DFFFFh  
1CFFFFh  
1BFFFFh  
1AFFFFh  
19FFFFh  
18FFFFh  
17FFFFh  
16FFFFh  
15FFFFh  
14FFFFh  
13FFFFh  
12FFFFh  
11FFFFh  
10FFFFh  
0FFFFFh  
0EFFFFh  
0DFFFFh  
0CFFFFh  
0BFFFFh  
0AFFFFh  
09FFFFh  
08FFFFh  
07FFFFh  
06FFFFh  
05FFFFh  
04FFFFh  
03FFFFh  
02FFFFh  
01FFFFh  
00FFFFh  
SA143  
SA142  
SA141  
SA140  
SA139  
SA138  
SA137  
SA136  
SA135  
SA134  
SA133  
SA132  
SA131  
SA130  
SA129  
SA128  
SA127  
SA126  
SA125  
SA124  
SA123  
SA122  
SA121  
SA120  
SA119  
SA118  
SA117  
SA116  
SA115  
SA114  
SA113  
SA112  
SA111  
SA110  
SA109  
SA108  
SA107  
SA106  
SA105  
SA104  
SA103  
SA102  
SA101  
SA100  
SA99  
8F0000h  
8E0000h  
8D0000h  
8C0000h  
8B0000h  
8A0000h  
890000h  
880000h  
870000h  
860000h  
850000h  
840000h  
830000h  
820000h  
810000h  
800000h  
7F0000h  
7E0000h  
7D0000h  
7C0000h  
7B0000h  
7A0000h  
790000h  
780000h  
770000h  
760000h  
750000h  
740000h  
730000h  
720000h  
710000h  
700000h  
6F0000h  
6E0000h  
6D0000h  
6C0000h  
6B0000h  
6A0000h  
690000h  
680000h  
670000h  
660000h  
650000h  
640000h  
630000h  
620000h  
610000h  
600000h  
SA95  
SA94  
SA93  
SA92  
SA91  
SA90  
SA89  
SA88  
SA87  
SA86  
SA85  
SA84  
SA83  
SA82  
SA81  
SA80  
SA79  
SA78  
SA77  
SA76  
SA75  
SA74  
SA73  
SA72  
SA71  
SA70  
SA69  
SA68  
SA67  
SA66  
SA65  
SA64  
SA63  
SA62  
SA61  
SA60  
SA59  
SA58  
SA57  
SA56  
SA55  
SA54  
SA53  
SA52  
SA51  
SA50  
SA49  
SA48  
5F0000h  
5E0000h  
5D0000h  
5C0000h  
5B0000h  
5A0000h  
590000h  
580000h  
570000h  
560000h  
550000h  
540000h  
530000h  
520000h  
510000h  
500000h  
4F0000h  
4E0000h  
4D0000h  
4C0000h  
4B0000h  
4A0000h  
490000h  
480000h  
470000h  
460000h  
450000h  
440000h  
430000h  
420000h  
410000h  
400000h  
3F0000h  
3E0000h  
3D0000h  
3C0000h  
3B0000h  
3A0000h  
390000h  
380000h  
370000h  
360000h  
350000h  
340000h  
330000h  
320000h  
310000h  
300000h  
SA47  
SA46  
SA45  
SA44  
SA43  
SA42  
SA41  
SA40  
SA39  
SA38  
SA37  
SA36  
SA35  
SA34  
SA33  
SA32  
SA31  
SA30  
SA29  
SA28  
SA27  
SA26  
SA25  
SA24  
SA23  
SA22  
SA21  
SA20  
SA19  
SA18  
SA17  
SA16  
SA15  
SA14  
SA13  
SA12  
SA11  
SA10  
SA9  
2F0000h  
2E0000h  
2D0000h  
2C0000h  
2B0000h  
2A0000h  
290000h  
280000h  
270000h  
260000h  
250000h  
240000h  
230000h  
220000h  
210000h  
200000h  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
180000h  
170000h  
160000h  
150000h  
140000h  
130000h  
120000h  
110000h  
100000h  
0F0000h  
0E0000h  
0D0000h  
0C0000h  
0B0000h  
0A0000h  
090000h  
080000h  
070000h  
060000h  
050000h  
040000h  
030000h  
020000h  
010000h  
000000h  
SA8  
SA7  
SA6  
SA5  
SA4  
SA3  
SA98  
SA2  
SA97  
SA1  
SA96  
SA0  
Note  
Sector SA254 is split up into sub-sectors SS0 - SS15 (dark gray shading)  
Sector SA255 is split up into sub-sectors SS16 - SS31(light gray shading)  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
23  
D a t a S h e e t  
9. Command Definitions  
The host system must shift all commands, addresses, and data in and out of the device, beginning with the  
most significant bit. On the first rising edge of SCK after CS# is driven low, the device accepts the one-byte  
command on SI (all commands are one byte long), most significant bit first. Each successive bit is latched on  
the rising edge of SCK. Table 9.1 lists the complete set of commands.  
Every command sequence begins with a one-byte command code. The command may be followed by  
address, data, both, or nothing, depending on the command. CS# must be driven high after the last bit of the  
command sequence has been written.  
The Read Data Bytes (READ), Read Data Bytes at Higher Speed (FAST_READ), Dual Output Read (DOR),  
Quad Output Read (QOR), Dual I/O High Performance Read (DIOR), Quad I/O High Performance Read  
(QIOR), Read Status Register (RDSR), Read Configuration Register (RCR), Read OTP Data (OTPR), Read  
Manufacturer and Device ID (READ_ID), Read Identification (RDID) and Release from Deep Power-Down  
and Read Electronic Signature (RES) command sequences are followed by a data output sequence on SO.  
CS# can be driven high after any bit of the sequence is output to terminate the operation.  
The Page Program (PP), Quad Page Program (QPP), 64 KB Sector Erase (SE), 4 KB Parameter Sector  
Erase (P4E), 8 KB Parameter Sector Erase (P8E), Bulk Erase (BE), Write Status and Configuration Registers  
(WRR), Program OTP space (OTPP), Write Enable (WREN), or Write Disable (WRDI) commands require that  
CS# be driven high at a byte boundary, otherwise the command is not executed. Since a byte is composed of  
eight bits, CS# must therefore be driven high when the number of clock pulses after CS# is driven low is an  
exact multiple of eight.  
The device ignores any attempt to access the memory array during a Write Registers, program, or erase  
operation, and continues the operation uninterrupted.  
The instruction set is listed in Table 9.1.  
24  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Table 9.1 Instruction Set  
Mode  
Bit  
Cycle  
Data  
Byte  
Cycle  
One byte Command  
Code  
Address  
Byte Cycle  
Dummy  
Byte Cycle  
Operation  
Command  
Description  
READ  
FAST_READ  
DOR  
(03h) 0000 0011  
(0Bh) 0000 1011  
(3Bh) 0011 1011  
(6Bh) 0110 1011  
(BBh) 1011 1011  
(EBh) 1110 1011  
(9Fh) 1001 1111  
(90h) 1001 0000  
(06h) 0000 0110  
(04h) 0000 0100  
(20h) 0010 0000  
(40h) 0100 0000  
(D8h) 1101 1000  
Read Data bytes  
3
3
3
3
3
3
0
3
0
0
3
3
3
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
2
0
0
0
0
0
0
0
1 to  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to 81  
1 to ∞  
0
Read Data bytes at Fast Speed  
Dual Output Read  
QOR  
Quad Output Read  
Read  
DIOR  
Dual I/O High Performance Read  
Quad I/O High Performance Read  
Read Identification  
QIOR  
RDID  
READ_ID  
WREN  
WRDI  
Read Manufacturer and Device Identification  
Write Enable  
Write Control  
Erase  
Write Disable  
0
P4E (1)  
P8E (1)  
SE  
4 KB Parameter Sector Erase  
8 KB (two 4KB) Parameter Sector Erase  
64 KB and 256 KB Sector Erase  
0
0
0
(60h) 0110 0000 or  
(C7h) 1100 0111  
BE  
Bulk Erase  
0
0
0
0
PP  
(02h) 0000 0010  
(32h) 0011 0010  
(05h) 0000 0101  
(01h) 0000 0001  
(35h) 0011 0101  
Page Programming  
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
1 to 256  
1 to 256  
1 to ∞  
1 to 2  
Program  
QPP  
RDSR  
WRR  
RCR  
Quad Page Programming  
Read Status Register  
Write (Status and Configuration) Register  
Read Configuration Register (CFG)  
Status and  
Configuration  
Register  
1 to ∞  
Reset the Erase and Program Fall Flag (SRS and  
SR6) and restore normal operation)  
CLSR  
DP  
(30h) 0011 0000  
0
0
0
0
(B9h) 1011 1001  
(ABh) 1010 1011  
Deep Power-Down  
0
0
0
0
0
0
0
0
Release from Deep Power-Down Mode  
Power Saving  
RES  
Release from Deep Power-Down and Read  
Electronic Signature  
(ABh) 1010 1011  
0
0
3
1 to ∞  
OTPP  
OTPR  
(42h) 0100 0010  
(4Bh) 0100 1011  
Program one byte of data in OTP memory space  
Read data in the OTP memory space  
3
3
0
0
0
1
1
OTP  
1 to ∞  
Note  
1. For uniform 64 KB sector device only.  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
25  
D a t a S h e e t  
9.1  
Read Data Bytes (READ)  
The Read Data Bytes (READ) command reads data from the memory array at the frequency (f ) presented at  
R
the SCK input, with a maximum speed of 40 MHz. The host system must first select the device by driving CS#  
low. The READ command is then written to SI, followed by a 3 byte address (A23-A0). Each bit is latched on  
the rising edge of SCK. The memory array data, at that address, are output serially on SO at a frequency f ,  
R
on the falling edge of SCK.  
Figure 9.1 and Table 9.1 on page 25 detail the READ command sequence. The first address byte specified  
can start at any location of the memory array. The device automatically increments to the next higher address  
after each byte of data is output. The entire memory array can therefore be read with a single READ  
command. When the highest address is reached, the address counter reverts to 00000h, allowing the read  
sequence to continue indefinitely.  
The READ command is terminated by driving CS# high at any time during data output. The device rejects any  
READ command issued while it is executing a program, erase, or Write Registers operation, and continues  
the operation uninterrupted.  
Figure 9.1 Read Data Bytes (READ) Command Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
Mode 3  
SCK  
Mode 0  
Command  
24 Bit Address  
23 22 21  
2
0
1
3
SI  
MSB  
Data Out 1  
Data Out 2  
Hi-Z  
SO  
6
4
2
7
1 0  
7
5
3
MSB  
26  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.2  
Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ command reads data from the memory array at the frequency (f ) presented at the SCK  
C
input, with a maximum speed of 104 MHz. The host system must first select the device by driving CS# low.  
The FAST_READ command is then written to SI, followed by a 3 byte address (A23-A0) and a dummy byte.  
Each bit is latched on the rising edge of SCK. The memory array data, at that address, are output serially on  
SO at a frequency f , on the falling edge of SCK.  
C
The FAST_READ command sequence is shown in Figure 9.2 and Table 9.1 on page 25. The first address  
byte specified can start at any location of the memory array. The device automatically increments to the next  
higher address after each byte of data is output. The entire memory array can therefore be read with a single  
FAST_READ command. When the highest address is reached, the address counter reverts to 000000h,  
allowing the read sequence to continue indefinitely.  
The FAST_READ command is terminated by driving CS# high at any time during data output. The device  
rejects any FAST_READ command issued while it is executing a program, erase, or Write Registers  
operation, and continues the operation uninterrupted.  
Figure 9.2 Read Data Bytes at Higher Speed (FAST_READ) Command Sequence  
CS#  
33  
0
1
2
5
6
7
8
9
29 30  
32  
38 39 40 41  
44 45 46  
42 43  
Mode 3  
31  
34 35 36 37  
3
4
10  
28  
47  
SCK  
Mode 0  
24 Bit Address  
Dummy Byte  
Command  
23  
3
2
22 21  
1
0
6
5
4
2
0
1
7
3
SI  
Hi-Z  
3
7
6
4
2
1
0
5
7
SO  
MSB  
MSB  
DATA OUT 1  
DATA OUT 2  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
27  
D a t a S h e e t  
9.3  
Dual Output Read Mode (DOR)  
The Dual Output Read instruction is similar to the FAST_READ instruction, except that the data is shifted out  
2 bits at a time using 2 pins (SI/IO0 and SO/IO1) instead of 1 bit, at a maximum frequency of 80 MHz. The  
Dual Output Read mode effectively doubles the data transfer rate compared to the FAST_READ instruction.  
The host system must first select the device by driving CS# low. The Dual Output Read command is then  
written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each bit is latched on the rising edge  
of SCK. Then the memory contents, at the address that is given, are shifted out two bits at a time through the  
IO0 (SI) and IO1 (SO) pins at a frequency f on the falling edge of SCK.  
C
The Dual Output Read command sequence is shown in Figure 9.3 and Table 9.1 on page 25. The first  
address byte specified can start at any location of the memory array. The device automatically increments to  
the next higher address after each byte of data is output. The entire memory array can therefore be read with  
a single Dual Output Read command. When the highest address is reached, the address counter reverts to  
00000h, allowing the read sequence to continue indefinitely.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The Dual Output Read command is terminated by driving CS# high at any time during data output. The  
device rejects any Dual Output Read command issued while it is executing a program, erase, or Write  
Registers operation, and continues the operation uninterrupted.  
Figure 9.3 Dual Output Read Instruction Sequence  
CS#  
0
1
2
5
6
7
8
9
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
3
4
10  
SCK  
24 Bit  
Address  
Instruction  
Dummy Byte  
SI Switches from Input to Output  
SI/IO0  
23 22 21  
6
3
2
1
0
7
6
5
4
3
2
1
0
6
4
2
0
6
4
5
2
0
1
*
*
Hi-Z  
3
5
3
1
7
7
7
SO/IO1  
*
*
Byte 1  
Byte 2  
*MSB  
28  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.4  
Quad Output Read Mode (QOR)  
The Quad Output Read instruction is similar to the FAST_READ instruction, except that the data is shifted out  
4 bits at a time using 4 pins (SI/IO0, SO/IO1, W#/ACC/IO2 and HOLD#/IO3) instead of 1 bit, at a maximum  
frequency of 80 MHz. The Quad Output Read mode effectively doubles the data transfer rate compared to the  
Dual Output Read instruction, and is four times the data transfer rate of the FAST_READ instruction.  
The host system must first select the device by driving CS# low. The Quad Output Read command is then  
written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each bit is latched on the rising edge  
of SCK. Then the memory contents, at the address that are given, are shifted out four bits at a time through  
IO0 (SI), IO1 (SO), IO2 (W#/ACC), and IO3 (HOLD#) pins at a frequency f on the falling edge of SCK.  
C
The Quad Output Read command sequence is shown in Figure 9.4 and Table 9.1 on page 25. The first  
address byte specified can start at any location of the memory array. The device automatically increments to  
the next higher address after each byte of data is output. The entire memory array can therefore be read with  
a single Quad Output Read command. When the highest address is reached, the address counter reverts to  
00000h, allowing the read sequence to continue indefinitely.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The Quad Output Read command is terminated by driving CS# high at any time during data output. The  
device rejects any Quad Output Read command issued while it is executing a program, erase, or Write  
Registers operation, and continues the operation uninterrupted.  
The Quad bit of Configuration Register must be set (CR Bit1 = 1) to enable the Quad mode capability of the  
S25FL device.  
Figure 9.4 Quad Output Read Instruction Sequence  
CS#  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
0
1
2
3
4
5
6
7
8
9 10  
SCK  
24 Bit  
Address  
Instruction  
Dummy Byte  
SI Switches from Input to Output  
SI/IO0  
3
2
1
0
7
6
5
4
3
1
0
23 22 21  
0
1
0
1
2
0
1
4
5
4
5
0
4
4
5
4
*
Hi-Z  
Hi-Z  
*
5
1
5
SO/IO1  
W#/ACC/IO2  
6
2
6
2
6
6
6
2
2
Hi-Z  
3
3
3
7
7
7
3
7
7
HOLD#/IO3  
*
*
*
*
*
DATA DATA DATA DATA  
OUT 1 OUT 2 OUT 3 OUT 4  
*MSB  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
29  
D a t a S h e e t  
9.5  
DUAL I/O High Performance Read Mode (DIOR)  
The Dual I/O High Performance Read instruction is similar to the Dual Output Read instruction, except that it  
improves throughput by allowing input of the address bits (A23-A0) using two bits per SCK via two input pins  
(SI/IO2 and SO/IO1), at a maximum frequency of 80 MHz.  
The host system must first select the device by driving CS# low. The Dual I/O High Performance Read  
command is then written to SI, followed by a 3-byte address (A23-A0) and a 1-byte Mode instruction, with two  
bits latched on the rising edge of SCK. Then the memory contents, at the address that is given, are shifted out  
two bits at a time through IO0 (SI) and IO1 (SO).  
The DUAL I/O High Performance Read command sequence is shown in Figure 9.5 and Table 9.1  
on page 25. The first address byte specified can start at any location of the memory array. The device  
automatically increments to the next higher address after each byte of data is output. The entire memory  
array can therefore be read with a single DUAL I/O High Performance Read command. When the highest  
address is reached, the address counter reverts to 00000h, allowing the read sequence to continue  
indefinitely.  
In addition, address jumps can be done without exiting the Dual I/O High Performance Mode through the  
setting of the Mode bits (after the Address (A23-0) sequence, as shown in Figure 9.5). This added feature  
removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble  
(bits 7-4) of the Mode bits control the length of the next Dual I/O High Performance instruction through the  
inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are DON’T  
CARE (“x”). If the Mode bits equal Axh, then the device remains in Dual I/O High Performance Read Mode  
and the next address can be entered (after CS# is raised high and then asserted low) without requiring the  
BBh instruction opcode, as shown in Figure 9.6, thus eliminating eight cycles for the instruction sequence.  
However, if the Mode bits are any value other than Axh, then the next instruction (after CS# is raised high and  
then asserted low) requires the instruction sequence, which is normal operation. The following sequences will  
release the device from Dual I/O High Performance Read mode; after which, the device can accept standard  
SPI instructions:  
1. During the Dual I/O High Performance Instruction Sequence, if the Mode bits are any value other  
than Axh, then the next time CS# is raised high and then asserted low, the device will be released  
from Dual I/O High Performance Read mode.  
2. Furthermore, during any operation, if CS# toggles high to low to high for eight cycles (or less) and  
data input (IO0 and IO1) are not set for a valid instruction sequence, then the device will be  
released from Dual I/O High Performance Read mode.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The read instruction can be terminated by driving the CS# pin to the logic high state. The CS# pin can be  
driven high at any time during data output to terminate a read operation.  
Figure 9.5 DUAL I/O High Performance Read Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
18 19 20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
24 Bit  
Address  
Instruction  
IO0 & IO1 Switches from Input to Output  
2
2
6
4
5
6
2
6
4
5
6
4
5
0
1
0
1
20  
21  
2
0
1
22  
0
1
SI/IO0  
Hi-Z  
3
3
3
7
3
7
7
23  
7
SO/IO1  
*
*
*
*
*
Mode Bits  
Byte 1  
Byte 2  
*MSB  
30  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Figure 9.6 Continuous Dual I/O High Performance Read Instruction Sequence  
CS#  
SCK  
0
1
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
24 Bit  
Address  
IO0 & IO1 Switches from Input to Output  
22 20  
2
6
4
2
0
1
6
4
5
2
0
6
0
1
6
4
5
2
0
1
SI/IO0  
SO/IO1  
23  
7
21  
3
3
3
5
3
7
1
7
7
*
*
*
*
*
Mode Bits  
Byte 1  
Byte 2  
*MSB  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
31  
D a t a S h e e t  
9.6  
Quad I/O High Performance Read Mode (QIOR)  
The Quad I/O High Performance Read instruction is similar to the Quad Output Read instruction, except that  
it further improves throughput by allowing input of the address bits (A23-A0) using 4 bits per SCK via four  
input pins (SI/IO0, SO/IO1, W#/ACC/IO2 and HOLD#/IO3), at a maximum frequency of 80 MHz.  
The host system must first select the device by driving CS# low. The Quad I/O High Performance Read  
command is then written to SI, followed by a 3-byte address (A23-A0) and a 1-byte Mode instruction, with four  
bits latched on the rising edge of SCK. Note that four dummy clocks are required prior to the data input. Then  
the memory contents, at the address that is given, are shifted out four bits at a time through IO0 (SI), IO1  
(SO), IO2 (W#/ACC), and IO3 (HOLD#).  
The Quad I/O High Performance Read command sequence is shown in Figure 9.7 and Table 9.1 on page 25.  
The first address byte specified can start at any location of the memory array. The device automatically  
increments to the next higher address after each byte of data is output. The entire memory array can  
therefore be read with a single Quad I/O High Performance Read command. When the highest address is  
reached, the address counter reverts to 00000h, allowing the read sequence to continue indefinitely.  
In addition, address jumps can be done without exiting the Quad I/O High Performance Mode through the  
setting of the Mode bits (after the Address (A23-0) sequence, as shown in Figure 9.7). This added feature the  
removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble  
(bits 7-4) of the Mode bits control the length of the next Quad I/O High Performance instruction through the  
inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are DON'T  
CARE (“x”). If the Mode bits equal Axh, then the device remains in Quad I/O High Performance Read Mode  
and the next address can be entered (after CS# is raised high and then asserted low) without requiring the  
EBh instruction opcode, as shown in Figure 9.8, thus eliminating eight cycles for the instruction sequence.  
The following sequences will release the device from Quad I/O High Performance Read mode; after which,  
the device can accept standard SPI instructions:  
1. During the Quad I/O High Performance Instruction Sequence, if the Mode bits are any value other  
than Axh, then the next time CS# is raised high and then asserted low the device will be released  
from Quad I/O High Performance Read mode.  
2. Furthermore, during any operation, if CS# toggles high to low to high for eight cycles (or less) and  
data input (IO0, IO1, IO2, and IO3) are not set for a valid instruction sequence, then the device will  
be released from Quad I/O High Performance Read mode.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The read instruction can be terminated by driving the CS# pin to the logic high state. The CS# pin can be  
driven high at any time during data output to terminate a read operation.  
Figure 9.7 QUAD I/O High Performance Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
13 14 15 16 17 18 19 20 21 22 23 24 25 26  
SCK  
24 Bit  
Address  
Instruction  
IO’s Switches from Input to Output  
SI/IO0  
16  
0
1
0
4
20  
0
1
2
3
4
5
4
5
0
4
Hi-Z  
5
17  
18  
19  
1
5
6
21  
22  
1
2
3
SO/IO1  
Hi-Z  
Hi-Z  
W#/ACC/IO2  
6
6
6
2
2
7
7
3
3
7
HOLD#/IO3  
23  
7
*
*
*
*
*
DUMMY DUMMY  
Mode Bits  
Byte 1  
Byte 2  
*MSB  
32  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Figure 9.8 Continuous QUAD I/O High Performance Instruction Sequence  
CS#  
SCK  
0
1
4
5
6
7
8
9
10 11  
12 13 14 15 16  
24 Bit  
Address  
IO’s Switches from Input to Output  
16  
20  
SI/IO0  
0
0
4
0
4
4
5
0
1
4
5
17  
21  
22  
5
6
1
2
3
1
5
6
1
2
3
SO/IO1  
W#/ACC/IO2  
18  
6
2
6
2
7
7
3
3
HOLD#/IO3  
7
19  
7
23  
*
*
*
*
*
DUMMY  
DUMMY  
Mode Bits  
Byte 1  
Byte 2  
*MSB  
9.7  
Read Identification (RDID)  
The Read Identification (RDID) command outputs the one-byte manufacturer identification, followed by the  
two-byte device identification and the bytes for the Common Flash Interface (CFI) tables. The manufacturer  
identification is assigned by JEDEC; for Spansion devices, it is 01h. The device identification (2 bytes) and  
CFI bytes are assigned by the device manufacturer.  
See Table 9.2 on page 34 for device ID data.  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation  
handshake, which allows vendor-specified software algorithms to be used for entire families of devices.  
Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-  
compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for  
long-term compatibility. The system can read CFI information at the addresses given in Table 9.3.  
The host system must first select the device by driving CS# low. The RDID command is then written to SI,  
and each bit is latched on the rising edge of SCK. One byte of manufacture identification, two bytes of device  
identification and sixty-six bytes of extended device identification are then output from the memory array on  
SO at a frequency f , on the falling edge of SCK. The maximum clock frequency for the RDID (9Fh)  
R
command is 50 MHz (Normal Read). The manufacturer ID and Device ID can be read repeatedly by applying  
multiples of six hundred and forty eight clock cycles. The manufacturer ID, Device ID and CFI table can be  
continuously read as long as CS# is held low with a clock input.  
The RDID command sequence is shown in Figure 9.9 and Table 9.1 on page 25.  
Driving CS# high after the device identification data has been read at least once terminates the RDID  
command. Driving CS# high at any time during data output (for example, while reading the extended CFI  
bytes), also terminates the RDID operation.  
The device rejects any RDID command issued while it is executing a program, erase, or Write Registers  
operation, and continues the operation uninterrupted.  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
33  
D a t a S h e e t  
Figure 9.9 Read Identification (RDID) Command Sequence and Data-Out Sequence  
CS#  
SCK  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32  
34  
33  
652 653 654 655  
Instruction  
SI  
Extended Device Information  
Manufacturer / Device Identification  
20 21 22 23  
High Impedance  
644  
645  
646  
647  
0
1
2
24  
25  
26  
SO  
Table 9.2 Manufacturer and Device Identification - RDID (9Fh):  
Manufacturer  
Device Identification  
Extended Device Identification  
Identification  
Byte 0  
01h  
Device  
Byte 1  
Byte 2  
18h  
Byte 3  
4Dh  
Byte 4  
00h  
Uniform 256 KB Sector  
Uniform 64 KB Sector  
20h  
20h  
01h  
18h  
4Dh  
01h  
Notes  
1. Byte 0 is Manufacturer ID of Spansion.  
2. Byte 1 and 2 is Device Id.  
3. Byte 3 is Extended Device Information String Length, to indicate how many Extended Device Information bytes will follow.  
4. Byte 4 indicates uniform 64 KB sector or uniform 256 KB sector device.  
5. Bytes 5 and 6 are Spansion reserved (do not use).  
6. For Bytes 07h-0Fh and 3Dh-3Fh, the data will be read as 0xFF.  
7. Bytes 10h-50h are factory programmed per JEDEC standard.  
Table 9.3 Product Group CFI Query Identification String  
Byte  
Data  
Description  
10h  
11h  
12h  
51h  
52h  
59h  
Query Unique ASCII string “QRY”  
13h  
14h  
02h  
00h  
Primary OEM Command Set  
15h  
16h  
40h  
00h  
Address for Primary Extended Table  
17h  
18h  
00h  
00h  
Alternate OEM Command Set  
(00h = none exists)  
19h  
1Ah  
00h  
00h  
Address for Alternate OEM Extended Table  
(00h = none exists)  
34  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Table 9.4 Product Group CFI System Interface String  
Byte  
Data  
Description  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
27h  
36h  
00h  
00h  
0Bh  
0Bh  
09h  
11h  
01h  
01h  
02h  
V
V
V
V
CC Min. (erase/program): (D7-D4: Volt, D3-D0: 100 mV)  
CC Max. (erase/program): (D7-D4: Volt, D3-D0: 100 mV)  
PP Min. voltage (00h = no VPP pin present)  
PP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte program 2N µs  
Typical timeout for Min. size Page program 2N µs (00h = not supported)  
Typical timeout per individual sector erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte program 2N times typical  
Max. timeout for page program 2N times typical  
Max. timeout per individual sector erase 2N times typical  
Max. timeout for full chip erase 2N times typical  
(00h = not supported)  
26h  
01h  
Table 9.5 Product Group CFI Device Geometry Definition  
Byte  
27h  
Data  
18h  
Description  
Device Size = 2 N byte;  
28h  
05h  
Flash Device Interface Description;  
00h = x8 only  
01h = x16 only  
02h = x8/x16 capable  
29h  
05h  
03h = x32 only  
04h = Single I/O SPI, 3-byte address  
05h = Multi I/O SPI, 3-byte address  
2Ah  
2Bh  
08h  
00h  
Max. number of bytes in multi-byte write = 2N (00 = not supported)  
02h (uniform 64 KB sector)  
01h (uniform 256 KB sector)  
Number of Erase Block Regions within device  
1 = Uniform Device, 2 = Parameter Block  
2Ch  
1Fh (uniform 64 KB sector)  
3Fh (uniform 256 KB sector)  
2Dh  
2Eh  
2Fh  
00h  
Erase Block Region 1 Information (refer to CFI publication 100)  
10h (uniform 64 KB sector)  
00h (uniform 256 KB sector)  
00h (uniform 64 KB sector)  
04h (uniform 256 KB sector)  
30h  
31h  
FDh (uniform 64 KB sector)  
00h (uniform 256 KB sector)  
32h  
33h  
00h  
00h  
Erase Block Region 2 Information (refer to CFI publication 100)  
01h (uniform 64 KB sector)  
00h (uniform 256 KB sector)  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
35  
D a t a S h e e t  
Table 9.6 Product Group CFI Primary Vendor-Specific Extended Query  
Byte  
40h  
41h  
42h  
43h  
44h  
Data  
50h  
52h  
49h  
31h  
33h  
Description  
Query-unique ASCII string “PRI”  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
00b = Required, 01b = Not Required  
Process Technology (Bits 5-2)  
0000b = 0.23 µm Floating Gate  
0001b = 0.17 µm Floating Gate  
0010b = 0.23 µm MirrorBit  
45h  
15h  
0010b = 0.20 µm MirrorBit  
0011b = 0.11 µm Floating Gate  
0100b = 0.11 µm MirrorBit  
0101b = 0.09 µm MirrorBit  
1000b = 0.065 µm MirrorBit  
Erase Suspend  
0 = Not Supported, 1 = Read Only, 2 = Read and Write  
46h  
47h  
48h  
00h  
04h  
00h  
Sector Protect  
00 = Not Supported, X = Number of sectors in per smallest group  
Temporary Sector Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect Scheme  
04 = High Voltage Method  
05 = Software Command Locking Method  
08 = Advanced Sector Protection Method  
49h  
05h  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors outside Bank 1  
4Ah  
4Bh  
00h  
01h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
4Ch  
03h  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page,  
03 = 256 Byte Page  
ACC (Acceleration) Supply Minimum  
00 = Not Supported, (D7-D4: Volt, D3-D0: 100 mV)  
4Dh  
4Eh  
4Fh  
50h  
85h  
95h  
07h  
00h  
ACC (Acceleration) Supply Maximum  
00 = Not Supported, (D7-D4: Volt, D3-D0: 100 mV)  
W# Protection  
07 = Uniform Device with Top or Bottom Write Protect (user select)  
Program Suspend  
00 = Not Supported, 01 = Supported  
Note  
CFI data related to VCC and time-outs may differ from actual VCC and time-outs of the product. Please consult the Ordering Information  
tables to obtain the VCC range for particular part numbers. Please consult the AC Characteristics on page 60 for typical timeout  
specifications.  
36  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.8  
Read-ID (READ_ID)  
The READ_ID instruction provides the S25FL129P manufacturer and device information and is provided as  
an alternative to the Release from Deep Power-Down and Read Electronic Signature (RES), and the JEDEC  
Read Identification (RDID) commands.  
The instruction is initiated by driving the CS# pin low and shifting in (via the SI input pin) the instruction code  
“90h” followed by a 24-bit address (which is either 00000h or 00001h). Following this, the Manufacturer ID  
and the Device ID are shifted out on the SO output pin starting after the falling edge of the SCK serial clock  
input signal. If the 24-bit address is set to 000000h, the Manufacturer ID is read out first followed by the  
Device ID. If the 24-bit address is set to 000001h, then the Device ID is read out first followed by the  
Manufacturer ID. The Manufacturer ID and the Device ID are always shifted out on the SO output pin with the  
MSB first, as shown in Figure 9.10. Once the device is in Read-ID mode, the Manufacturer ID and Device ID  
output data toggles between address 000000H and 000001H until terminated by a low to high transition on  
the CS# input pin. The maximum clock frequency for the Read-ID (90h) command is at 104 MHz  
(FAST_READ). The Manufacturer ID and Device ID is output continuously until terminated by a low to high  
transition on CS# chip select input pin.  
Figure 9.10 Read-ID (RDID) Command Timing Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
Instruction  
24-Bit Address  
SI  
23  
21  
2
22  
3
1
0
MSB  
Manufacture Identification  
Device Identification  
High Impedance  
7
6
5
4
3
2
1
SO  
0
Table 9.7 READ_ID Data-Out Sequence  
Address  
00000h  
00001h  
Data  
01h  
17h  
Manufacturer Identification  
Device Identification  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
37  
D a t a S h e e t  
9.9  
Write Enable (WREN)  
The Write Enable (WREN) command (see Figure 9.11) sets the Write Enable Latch (WEL) bit to a 1, which  
enables the device to accept a Write Status Register, program, or erase command. The WEL bit must be set  
prior to every Page Program (PP), Quad Page Program (QPP), Parameter Sector Erase (P4E, P8E), Erase  
(SE or BE), Write Registers (WRR) and OTP Program (OTPP) command.  
The host system must first drive CS# low, write the WREN command, and then drive CS# high.  
Figure 9.11 Write Enable (WREN) Command Sequence  
CS#  
6
7
0
1
2
3
4
5
Mode 3  
SCK  
SI  
Mode 0  
Command  
Hi-Z  
SO  
9.10 Write Disable (WRDI)  
The Write Disable (WRDI) command (see Figure 9.12) resets the Write Enable Latch (WEL) bit to a 0, which  
disables the device from accepting a Page Program (PP), Quad Page Program (QPP), Parameter Sector  
Erase (P4E, P8E), Erase (SE, BE), Write Registers (WRR) and OTP Program (OTPP) command. The host  
system must first drive CS# low, write the WRDI command, and then drive CS# high.  
Any of following conditions resets the WEL bit:  
Power-up  
Write Disable (WRDI) command completion  
Write Registers (WRR) command completion  
Page Program (PP) command completion  
Quad Page Program (QPP) completion  
Parameter Sector Erase (P4E, P8E) completion (applicable for the uniform 64 KB sector device only)  
Sector Erase (SE) command completion  
Bulk Erase (BE) command completion  
OTP Program (OTPP) completion  
Figure 9.12 Write Disable (WRDI) Command Sequence  
CS#  
0
3
4
7
6
1 2  
5
Mode 3  
SCK  
SI  
Mode 0  
Command  
Hi-Z  
SO  
38  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.11 Read Status Register (RDSR)  
The Read Status Register (RDSR) command outputs the state of the Status Register bits. Table 9.8 shows  
the status register bits and their functions. The RDSR command may be written at any time, even while a  
program, erase, or Write Registers operation is in progress. The host system should check the Write In  
Progress (WIP) bit before sending a new command to the device if an operation is already in progress.  
Figure 9.13 shows the RDSR command sequence, which also shows that it is possible to read the Status  
Register continuously until CS# is driven high. The maximum clock frequency for the RDSR command is  
104 MHz.  
Table 9.8 S25FL129P Status Register  
Bit  
Status Register Bit  
Bit Function  
Description  
1 = Protects when W#/ACC is low  
7
SRWD  
Status Register Write Disable  
0 = No protection, even when W#/ACC is low  
0 = No Error  
6
5
P_ERR  
E_ERR  
Programming Error Occurred  
Erase Error Occurred  
1 = Error occurred  
0 = No Error  
1 = Error occurred  
4
3
2
BP2  
BP1  
BP0  
Block Protect  
Protects selected Blocks from Program or Erase  
1 = Device accepts Write Registers, program or erase commands  
0 = Ignores Write Registers, program or erase commands  
1
0
WEL  
WIP  
Write Enable Latch  
Write in Progress  
1 = Device Busy a Write Registers, program or erase operation is in  
progress  
0 = Ready. Device is in standby mode and can accept commands.  
Figure 9.13 Read Status Register (RDSR) Command Sequence  
CS#  
SCK  
7
0
2
3
4
5
6
9
11  
12 13 14  
15  
1
8
10  
Mode 3  
Mode 0  
Command  
SI  
Hi-Z  
SO  
6
4
2
6
5
7
5
3
1
0
4
2
7
0
7
3
1
MSB  
MSB  
Status Register Out  
Status Register Out  
The following describes the status and control bits of the Status Register.  
Write In Progress (WIP) bit: Indicates whether the device is busy performing a Write Registers, program, or  
erase operation. This bit is read-only, and is controlled internally by the device. If WIP is 1, one of these  
operations is in progress; if WIP is 0, no such operation is in progress. This bit is a Read-only bit.  
Write Enable Latch (WEL) bit: Determines whether the device will accept and execute a Write Registers,  
program, or erase command. When set to 1, the device accepts these commands; when set to 0, the device  
rejects the commands. This bit is set to 1 by writing the WREN command, and set to 0 by the WRDI  
command, and is also automatically reset to 0 after the completion of a Write Registers, program, or erase  
operation, and after a power down/power up sequence. WEL cannot be directly set by the WRR command.  
Block Protect (BP2, BP1, BP0) bits: Define the portion of the memory area that will be protected against  
any changes to the stored data. The Block Protection (BP2, BP1, BP0) bits are either volatile or non-volatile,  
depending on the state of the non-volatile bit BPNV in the Configuration register. The Block Protection (BP2,  
BP1, BP0) bits are written with the Write Registers (WRR) instruction. When one or more of the Block Protect  
(BP2, BP1, BP0) bits is set to 1’s, the relevant memory area is protected against Page Program (PP),  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
39  
D a t a S h e e t  
Parameter Sector Erase (P4E, P8E), Sector Erase (SE), Quad Page Programming (QPP) and Bulk Erase  
(BE) instructions. If the Hardware Protected mode is enabled, BP2:BP0 cannot be changed.  
The Bulk Erase (BE) instruction can be executed only when the Block Protection (BP2, BP1, BP0) bits are set  
to 0’s.  
The default condition of the BP2-0 bits is binary 000 (all 0’s).  
Erase Error bit (E_ERR): The Erase Error Bit is used as a Erase operation success and failure check. When  
the Erase Error bit is set to a “1”, it indicates that there was an error which occurred in the last erase  
operation. With the Erase Error bit set to a “1”, this bit is reset with the Clear Status Register (CLSR)  
command.  
Program Error bit (P_ERR): The Program Error Bit is used as a Program operation success and failure  
check. When the Program Error bit is set to a “1”, it indicates that there was an error which occurred in the last  
program operation. With the Program Error bit set to a “1”, this bit is reset with the Clear Status Register  
(CLSR) command.  
Status Register Write Disable (SRWD) bit: Provides data protection when used together with the Write  
Protect (W#/ACC) signal. The Status Register Write Disable (SRWD) bit is operated in conjunction with the  
Write Protect (W#/ACC) input pin. The Status Register Write Disable (SRWD) bit and the Write Protect (W#/  
ACC) signal allow the device to be put in the Hardware Protected mode. With the Status Register Write  
Disable (SRWD) bit set to a “1” and the W#/ACC driven to the logic low state, the device enters the Hardware  
Protected mode; the non-volatile bits of the Status Register (SRWD, BP2, BP1, BP0) and the nonvolatile bits  
of the Configuration Register (TBPARM, TBPROT, BPNV and QUAD) become read-only bits and the Write  
Registers (WRR) instruction opcode is no longer accepted for execution.  
Note that the P_ERR and E_ERR bits will not be set to a 1 if the application writes to a protected memory  
area.  
9.12 Read Configuration Register (RCR)  
The Read Configuration Register (RCR) instruction opcode allows the Configuration Register contents to be  
read out of the SO serial output pin. The Configuration Register contents may be read at any time, even while  
a program, erase, or write cycle is in progress. When one of these cycles is in progress, it is recommended to  
the user to check the Write In Progress (WIP) bit of the Status Register before issuing a new instruction  
opcode to the device. The Configuration Register originally shows 00h when the device is first shipped from  
the factory to the customer. (Refer to Section 7.8 on page 15, Table 7.1 and Table 7.1 on page 16 for more  
details.)  
Figure 9.14 Read Configuration Register (RCR) Instruction Sequence  
CS#  
SCK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
Instruction  
SI  
Configuration Register Out  
Configuration Register Out  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
SO  
MSB  
MSB  
MSB  
40  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.13 Write Registers (WRR)  
The Write Registers (WRR) command allows changing the bits in the Status and Configuration Registers. A  
Write Enable (WREN) command, which itself sets the Write Enable Latch (WEL) in the Status Register, is  
required prior to writing the WRR command. Table 9.8 shows the status register bits and their functions.  
The host system must drive CS# low, then write the WRR command and the appropriate data byte on SI  
Figure 9.15.  
The WRR command cannot change the state of the Write Enable Latch (bit 1). The WREN command must be  
used for that purpose.  
The Status Register consists of one data byte in length; similarly, the Configuration Register is also one data  
byte in length. The CS# pin must be driven to the logic low state during the entire duration of the sequence.  
The WRR command also controls the value of the Status Register Write Disable (SRWD) bit. The SRWD bit  
and W#/ACC pin together place the device in the Hardware Protected Mode (HPM). The device ignores all  
WRR commands once it enters the Hardware Protected Mode (HPM). Table 9.9 shows that W#/ACC must be  
driven low and the SRWD bit must be 1 for this to occur.  
The Write Registers (WRR) instruction has no effect on the P/E Error and the WIP bits of the Status and  
Configuration Registers. Any bit reserved for the future is always read as a ‘0’  
The CS# chip select input pin must be driven to the logic high state after the eighth (see Figure 9.15) or  
sixteenth (see Figure 9.16) bit of data has been latched in. If not, the Write Registers (WRR) instruction is not  
executed. If CS# is driven high after the eighth cycle then only the Status Register is written to; otherwise,  
after the sixteenth cycle both the Status and Configuration Registers are written to. As soon as the CS# chip  
select input pin is driven to the logic high state, the self-timed Write Registers cycle is initiated. While the  
Write Registers cycle is in progress, the Status Register may still be read to check the value of the Write In  
Progress (WIP) bit. The Write In Progress (WIP) bit is a ‘1’ during the self-timed Write Registers cycle, and is  
a ‘0’ when it is completed. When the Write Registers cycle is completed, the Write Enable Latch (WEL) is set  
to a ‘0’. The WRR command can operate at a maximum clock frequency of 104 MHz.  
Figure 9.15 Write Registers (WRR) Instruction Sequence – 8 data bits  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
Instruction  
Status Register In  
SI  
7
6
5
4
3
2
1
0
MSB  
High Impedance  
SO  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
41  
D a t a S h e e t  
Figure 9.16 Write Registers (WRR) Instruction Sequence – 16 data bits  
CS#  
SCK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
Status Register In  
14 15  
16 17 18 19 20 21  
Configuration Register In  
22  
23  
Instruction  
7
6
5
4
3
2
1
0
SI  
7
6
5
4
3
2
1
0
MSB  
MSB  
High Impedance  
SO  
Table 9.9 Protection Modes  
Memory Content  
W#/  
ACC  
SRWD  
Bit  
Mode  
Write Protection of Registers  
Protected Area  
Unprotected Area  
1
1
1
0
Status and Configuration Registers are  
Writable (if WREN instruction has set the WEL  
bit). The values in the SRWD, BP2, BP1, and  
BP0 bits and those in the Configuration  
Register can be changed  
Protected against Page  
Program, Parameter  
Sector Erase, Sector  
Erase, and Bulk Erase  
Ready to accept Page  
Program, Parameter  
Sector Erase, and Sector  
Erase instructions  
Software  
Protected  
(SPM)  
0
0
Status and Configuration Registers are  
Hardware  
Protected  
(HPM)  
Protected against Page  
Program, Sector Erase,  
and Bulk Erase  
Ready to accept Page  
Program, Sector Erase  
instructions  
Hardware Write Protected. The values in the  
SRWD, BP2, BP1, and BP0 bits and those in  
the Configuration Register cannot be changed  
0
1
Note  
As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 7.3 on page 17.  
Table 9.9 shows that neither W#/ACC or SRWD bit by themselves can enable HPM. The device can enter  
HPM either by setting the SRWD bit after driving W#/ACC low, or by driving W#/ACC low after setting the  
SRWD bit. However, the device disables HPM only when W#/ACC is driven high.  
Note that HPM only protects against changes to the status register. Since BP2:BP0 cannot be changed in  
HPM, the size of the protected area of the memory array cannot be changed. Note that HPM provides no  
protection to the memory array area outside that specified by BP2:BP0 (Software Protected Mode, or SPM).  
If W#/ACC is permanently tied high, HPM can never be activated, and only the SPM (Block Protect bits of the  
Status Register) can be used.  
The Status and Configuration registers originally default to 00h, when the device is first shipped from the  
factory to the customer.  
Note: HPM is disabled when the Quad I/O Mode is enabled (Quad bit = 1 in the Configuration Register).  
W# becomes IO2; therefore, HPM cannot be utilized.  
42  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.14 Page Program (PP)  
The Page Program (PP) command changes specified bytes in the memory array (from 1 to 0 only). A WREN  
command is required prior to writing the PP command.  
The host system must drive CS# low, and then write the PP command, three address bytes, and at least one  
data byte on SI. If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data that goes  
beyond the end of the currently selected page are programmed from the starting address of the same page  
(from the address whose 8 least significant bits are all zero). CS# must be driven low for the entire duration of  
the PP sequence. The command sequence is shown in Figure 9.17 and Table 9.1 on page 25.  
The device programs only the last 256 data bytes sent to the device. If the 8 least significant address bits (A7-  
A0) are not all zero, all transmitted data that goes beyond the end of the currently selected page are  
programmed from the starting address of the same page (from the address whose 8 least significant bits are  
all zero). If fewer than 256 data bytes are sent to device, they are correctly programmed at the requested  
addresses without having any effect on the other bytes in the same page.  
The host system must drive CS# high after the device has latched the 8th bit of the data byte, otherwise the  
device does not execute the PP command. The PP operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of t . The Status Register may  
PP  
be read to check the value of the Write In Progress (WIP) bit while the PP operation is in progress. The WIP  
bit is 1 during the PP operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device does not execute a Page Program (PP) command that specifies a page that is protected by the  
Block Protect bits (BP2:BP0) (see Table 7.3 on page 17).  
Figure 9.17 Page Program (PP) Command Sequence  
CS#  
5
8
34  
37 38 39  
35 36  
0
2
4
6
7
10  
28 32 33  
29 30 31  
1
3
9
Mode 3  
Mode 0  
SCK  
SI  
24 Bit Address  
22 21  
Data Byte 1  
Command  
4
3
2
3
2
1
0
7
6
5
1
0
23  
MSB  
MSB  
CS#  
SCK  
53 54 55  
52  
49 50 51  
46  
44 45  
40  
47 48  
41 42 43  
Data Byte 2  
Data Byte 3  
Data Byte 256  
0
7
6
0
1
7
MSB  
7
6
5
4
3
2
1
0
6
5
4
3
2
1
5
4
3
2
SI  
MSB  
MSB  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
43  
D a t a S h e e t  
9.15 QUAD Page Program (QPP)  
The Quad Page Program instruction is similar to the Page Program instruction, except that the Quad Page  
Program (QPP) instruction allows up to 256 bytes of data to be programmed at previously erased (FFh)  
memory locations using four pins: IO0 (SI), IO1 (SO), IO2 (W#/ACC), and IO3 (HOLD#), instead of just one  
pin (SI) as in the case of the Page Program (PP) instruction. This effectively increases the data transfer rate  
by up to four times, as compared to the Page Program (PP) instruction. The QPP feature can improve  
performance for PROM Programmer and applications that have slow clock speeds < 5 MHz. Systems with  
faster clock speed will not realize much benefit for the QPP instruction since the inherent page program time  
is much greater than the time it take to clock-in the data.  
To use QPP, the Quad Enable Bit in the Configuration Register must be set (QUAD = 1). A Write Enable  
instruction must be executed before the device will accept the Quad Page Program instruction (Status  
Register-1, WEL = 1). The instruction is initiated by driving the CS# pin low then shifting the instruction code  
“32h” followed by a 24 bit address (A23-A0) and at least one data byte, into the IO pins. The CS# pin must be  
held low for the entire length of the instruction while data is being sent to the device. All other functions of  
Quad Input Page Program are identical to standard Page Program. The QPP instruction sequence is shown  
below.  
Figure 9.18 QUAD Page Program Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCK  
24 Bit  
Address  
Instruction  
3
2
0
1
SI/IO0  
0
4
5
6
1
0
4
5
4
5
6
22 21  
0
1
0
1
23  
4
5
*
1
2
3
SO/IO1  
W#/ACC/IO2  
2
6
6
2
2
3
7
7
3
3
7
HOLD#/IO3  
7
*
*
*
*
Byte 1 Byte 2  
Byte 3  
Byte 4  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCK  
SI/IO0  
0
0
0
0
4
5
4
5
0
0
0
4
5
4
5
4
5
4
5
0
4
5
0
0
0
4
5
4
5
4
5
4
5
0
4
5
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
SO/IO1  
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
W#/ACC/IO2  
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
HOLD#/IO3  
7
*
*
*
*
*
*
*
*
*
*
*
*
Byte 5  
Byte 6  
Byte 7  
Byte 8 Byte 9 Byte 10 Byte 11 Byte 12  
Byte 253 Byte 254 Byte 255 Byte 256  
*MSB  
44  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.16 Parameter Sector Erase (P4E, P8E) (only applicable for the uniform 64 KB  
sector device)  
The Parameter Sector Erase (P4E, P8E) command sets all bits at all addresses within a specified sector to a  
logic 1 (FFh). A WREN command is required prior to writing the Parameter Sector Erase commands.  
The host system must drive CS# low, and then write the P4E or P8E command, plus three address bytes on  
SI. Any address within the sector (see Table 5.1 on page 12) is a valid address for the P4E or P8E command.  
CS# must be driven low for the entire duration of the P4E/P8E sequence. The command sequence is shown  
in Figure 9.19 and Table 9.1 on page 25.  
The host system must drive CS# high after the device has latched the 24th bit of the P4E/P8E address,  
otherwise the device does not execute the command. The parameter sector erase operation begins as soon  
as CS# is driven high. The device internally controls the timing of the operation, which requires a period of  
t
. The Status Register may be read to check the value of the Write In Progress (WIP) bit while the  
SE  
parameter sector erase operation is in progress. The WIP bit is 1 during the P4E/P8E operation, and is 0  
when the operation is completed. The device internally resets the Write Enable Latch to 0 before the  
operation completes (the exact timing is not specified).  
A Parameter Sector Erase (P4E, P8E) instruction applied to a sector that has been Write Protected through  
the Block Protect Bits will not be executed.  
The Parameter Sector Erase Command (P8E) erases two of the 4 KB Sectors in selected address space.  
The Parameter Sector Erase Command (P8E) erases two sequential 4 KB Parameter Sectors in the selected  
address space. The address LSB is disregarded so that two sequential 4 KB Parameter Sectors are erased.  
The 24 Bit Address is any location within the first Sector to be erased (n), and the next sequential 4 KB  
Parameter Sector will also be erased (n+1). The 4 KB parameter Sector will only be erased properly if n or  
n+1 is a valid 4 KB parameter Sector. i.e. If n is not a valid 4K parameter Sector, then it will not be erased. If  
n+1 is not a valid 4 KB parameter Sector, then it will not be erased.  
Note: The P4E and P8E commands do not apply to the uniform 256 KB sector device.  
Figure 9.19 Parameter Sector Erase (P4E, P8E) Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCK  
SI  
Instruction  
24 Bit Address  
23  
3
2
1
0
22 21  
20h or 40h  
MSB  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
45  
D a t a S h e e t  
9.17 Sector Erase (SE)  
The Sector Erase (SE) command sets all bits at all addresses within a specified sector to a logic 1. A WREN  
command is required prior to writing the SE command.  
The host system must drive CS# low, and then write the SE command plus three address bytes on SI. Any  
address within the sector (see Table 7.3 on page 17) is a valid address for the SE command. CS# must be  
driven low for the entire duration of the SE sequence. The command sequence is shown in Figure 9.20 and  
Table 9.1 on page 25.  
The host system must drive CS# high after the device has latched the 24th bit of the SE address, otherwise  
the device does not execute the command. The SE operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of t . The Status Register may  
SE  
be read to check the value of the Write In Progress (WIP) bit while the SE operation is in progress. The WIP  
bit is 1 during the SE operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device only executes a SE command for those sectors which are not protected by the Block Protect bits  
(BP2:BP0) (see Table 7.3 on page 17). Otherwise, the device ignores the command.  
A 64 KB sector erase (D8h) command issued on 4 KB or 8 KB erase sectors will erase all sectors in the  
specified 64 KB region. However, please note that a 4 KB sector erase (20h) or 8 KB sector erase (40h)  
command will not work on a 64 KB sector.  
Figure 9.20 Sector Erase (SE) Command Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
Mode 3  
SCK  
Mode 0  
Command  
24 bit Address  
1
SI  
23 22 21  
MSB  
3
2
0
Hi-Z  
SO  
46  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.18 Bulk Erase (BE)  
The Bulk Erase (BE) command sets all the bits within the entire memory array to logic 1s. A WREN command  
is required prior to writing the BE command.  
The host system must drive CS# low, and then write the BE command on SI. CS# must be driven low for the  
entire duration of the BE sequence. The command sequence is shown in Figure 9.21 and Table 9.1  
on page 25.  
The host system must drive CS# high after the device has latched the 8th bit of the CE command, otherwise  
the device does not execute the command. The BE operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of t . The Status Register may  
BE  
be read to check the value of the Write In Progress (WIP) bit while the BE operation is in progress. The WIP  
bit is 1 during the BE operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device only executes a BE command if all Block Protect bits (BP2:BP0) are 0 (see Table 7.3  
on page 17). Otherwise, the device ignores the command.  
Figure 9.21 Bulk Erase (BE) Command Sequence  
CS#  
Mode 3  
0
1
2
3
4
5
6
7
SCK  
Mode 0  
Command  
SI  
Hi-Z  
SO  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
47  
D a t a S h e e t  
9.19 Deep Power-Down (DP)  
The Deep Power-Down (DP) command provides the lowest power consumption mode of the device. It is  
intended for periods when the device is not in active use, and ignores all commands except for the Release  
from Deep Power-Down (RES) command. The DP mode therefore provides the maximum data protection  
against unintended write operations. The standard standby mode, which the device goes into automatically  
when CS# is high (and all operations in progress are complete), should generally be used for the lowest  
power consumption when the quickest return to device activity is required.  
The host system must drive CS# low, and then write the DP command on SI. CS# must be driven low for the  
entire duration of the DP sequence. The command sequence is shown in Figure 9.22 and Table 9.1  
on page 25.  
The host system must drive CS# high after the device has latched the 8th bit of the DP command, otherwise  
the device does not execute the command. After a delay of t the device enters the DP mode and current  
DP,  
reduces from I to I (see Table 16.1 on page 58).  
SB  
DP  
Once the device has entered the DP mode, all commands are ignored except the RES command (which  
releases the device from the DP mode). The RES command also provides the Electronic Signature of the  
device to be output on SO, if desired (see Section 9.20 and 9.20.1).  
DP mode automatically terminates when power is removed, and the device always powers up in the standard  
standby mode. The device rejects any DP command issued while it is executing a program, erase, or Write  
Registers operation, and continues the operation uninterrupted.  
Figure 9.22 Deep Power-Down (DP) Command Sequence  
CS#  
t
DP  
0
1
2
3
4
5
6
7
Mode 3  
SCK  
Mode 0  
Command  
SI  
Hi-Z  
SO  
Standby Mode  
Deep Power-down Mode  
48  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.20 Release from Deep Power-Down (RES)  
The device requires the Release from Deep Power-Down (RES) command to exit the Deep Power-Down  
mode. When the device is in the Deep Power-Down mode, all commands except RES are ignored.  
The host system must drive CS# low and write the RES command to SI. CS# must be driven low for the entire  
duration of the sequence. The command sequence is shown in Figure 9.23 and Table 9.1 on page 25.  
The host system must drive CS# high t  
after the 8-bit RES command byte. The device transitions  
RES(max)  
from DP mode to the standby mode after a delay of t  
can execute any read or write command.  
(see Figure 18.1). In the standby mode, the device  
RES  
Note: The RES command dose not reset the Write Enable Latch (WEL) bit.  
Figure 9.23 Release from Deep Power-Down (RES) Command Sequence  
CS#  
7
0
2
3
5
1
4
6
Mode 3  
SCK  
Mode 0  
tRES  
Command  
SI  
Hi-Z  
SO  
Deep Power-down Mode  
Standby Mode  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
49  
D a t a S h e e t  
9.20.1  
Release from Deep Power-Down and Read Electronic Signature (RES)  
The device features an 8-bit Electronic Signature, which can be read using the RES command. See  
Figure 9.24 and Table 9.1 on page 25 for the command sequence and signature value. The Electronic  
Signature is not to be confused with the identification data obtained using the RDID command. The device  
offers the Electronic Signature so that it can be used with previous devices that offered it; however, the  
Electronic Signature should not be used for new designs, which should read the RDID data instead.  
After the host system drives CS# low, it must write the RES command followed by 3 dummy bytes to SI (each  
bit is latched on SI during the rising edge of SCK). The Electronic Signature is then output on SO; each bit is  
shifted out on the falling edge of SCK. The RES operation is terminated by driving CS# high after the  
Electronic Signature is read at least once. Additional clock cycles on SCK with CS# low cause the device to  
output the Electronic Signature repeatedly.  
When CS# is driven high, the device transitions from DP mode to the standby mode after a delay of t  
, as  
RES  
previously described. The RES command always provides access to the Electronic Signature of the device  
and can be applied even if DP mode has not been entered.  
Any RES command issued while an erase, program, or Write Registers operation is in progress not executed,  
and the operation continues uninterrupted.  
Note: The RES command does not reset the Write Enable Latch (WEL) bit.  
Figure 9.24 Release from Deep Power-Down and RES Command Sequence  
CS#  
2
28 29 30  
31 32 33 34  
1
8
36 37  
35  
9
38 39  
0
3
4
5
6
7
10  
SCK  
t
RES  
3 Dummy Bytes  
Command  
SI  
3
1
0
2
23 22  
MSB  
21  
Electronic ID  
Hi-Z  
7
6
5
4
3
2
1
0
SO  
MSB  
Deep Power-Down Mode  
Standby Mode  
9.21 Clear Status Register (CLSR)  
The Clear Status Register command resets bit SR5 (Erase Fail Flag) and bit SR6 (Program Fail Flag). It is not  
necessary to set the WEL bit before the Clear SR Fail Flags command is executed. The WEL bit will be  
unchanged after this command is executed.  
Figure 9.25 Clear Status Register (CLSR) Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
SCK  
SI  
Instruction  
50  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
9.22 OTP Program (OTPP)  
The OTP Program command programs data in the OTP region, which is in a different address space from the  
main array data. Refer to OTP Regions on page 52 for details on the OTP region. The protocol of the OTP  
Program command is the same as the Page Program command, except that the OTP Program command  
requires exactly one byte of data; otherwise, the command will be ignored. To program the OTP in bit  
granularity, the rest of the bits within the data byte can be set to “1”.  
The OTP memory space can be programmed one or more times, provided that the OTP memory space is not  
locked (as described in “Locking OTP Regions”). Subsequent OTP programming can be performed only on  
the unprogrammed bits (that is, “1” data).  
Note: The Write Enable (WREN) command must precede the OTPP command before programming of the  
OTP can occur.  
Figure 9.26 OTP Program Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCK  
SI  
24 Bit  
Instruction  
Data Byte 1  
Address  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
9.23 Read OTP Data Bytes (OTPR)  
The Read OTP Data Bytes command reads data from the OTP region. Refer to “OTP Regions” for details on  
the OTP region. The protocol of the Read OTP Data Bytes command is the same as the Fast Read Data  
Bytes command except that it will not wrap to the starting address after the OTP address is at its maximum;  
instead, the data will be indeterminate.  
Figure 9.27 Read OTP Instruction Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
24 Bit  
Address  
Instruction  
Dummy Byte  
SI  
23 22 21  
3
2
1
0
7
6
5
4
3
2
1
0
DATA OUT 1  
DATA OUT 2  
High Impedance  
SO  
7
6
5
4
3
2
1
0
7
MSB  
MSB  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
51  
D a t a S h e e t  
10. OTP Regions  
The OTP Regions are separately addressable from the main array and consists of two 8-byte (ESN), thirty  
16-byte, and one 10-byte regions that can be individually locked.  
The two 8-byte ESN region is a special order part (please contact your local Spansion sales representative  
for further details). The two 8-byte regions enable permanent part identification through an Electronic  
Serial Number (ESN). The customer can utilize the ESN to pair a Flash device with the system CPU/ASIC  
to prevent system cloning. The Spansion factory programs and locks the lower 8-byte ESN with a 64-bit  
randomly generated, unique number. The upper 8-byte ESN is left blank for customer use or, if special  
ordered, Spansion can program (and lock) in a unique customer ID.  
Lock Register ESN1  
(Bit 0)  
Lock Register ESN2  
(Bit 1)  
ESN1 Region Contains  
0h  
ESN2 Region Contains  
Standard part  
1h  
1h  
1h  
0h  
Factory/Customer  
programmed pattern  
Special order part  
1h/0h  
Unique random pattern  
The thirty 16-byte and one 10-byte OTP regions are open for the customer usage.  
The thirty 16-byte, one 10-byte, and upper 8-byte ESN OTP regions can be individually locked by the end  
user. Once locked, the data cannot changed. The locking process is permanent and cannot be undone.  
The following general conditions should be noted with respect to the OTP Regions:  
On power-up, or following a hardware reset, or at the end of an OTPP or an OTPR command, the device  
reverts to sending commands to the normal address space.  
Reads or Programs outside of the OTP Regions will be ignored  
The OTP Region is not accessible when the device is executing an Embedded Program or Embedded  
Erase algorithm.  
The ACC function is not available when accessing the OTP Regions.  
The thirty 16-byte and one 10-byte OTP regions are left open for customer usage, but special care of the  
OTP locking must be maintained, or else a malevolent user can permanently lock the OTP regions. This is  
not a concern, if the OTP regions are not used.  
10.1 Programming OTP Address Space  
The protocol of the OTP Program command (42h) is the same as the Page Program command. Refer to  
Table 9.1 for the command description and protocol. The OTP Program command can be issued multiple  
times to any given OTP address, but this address space can never be erased. After a given OTP region is  
programmed, it can be locked to prevent further programming with the OTP lock registers (refer to  
Section 10.3). The valid address range for OTP Program is depicted in the figure below. OTP Program  
operations outside the valid OTP address range will be ignored.  
10.2 Reading OTP Data  
The protocol of the OTP Read command (4Bh) is the same as that of the Fast Read command. Refer to  
Table 9.1 for the command description and protocol. The valid address range for OTP Reads is depicted in  
the figure below. OTP Read operations outside the valid OTP address range will yield indeterminate data.  
10.3 Locking OTP Regions  
In order to permanently lock the ESN and OTP regions, individual bits at the specified addresses can be set  
to 1 to lock specific regions of OTP memory, as highlighted in Figures 10.1 and 10.2.  
52  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Figure 10.1 OTP Memory Map - Part 1  
ADDRESS  
0x213h  
OTP REGION  
16 bytes (OTP16)  
0x204h  
0x203h  
16 bytes (OTP15)  
16 bytes (OTP14)  
16 bytes (OTP13)  
16 bytes (OTP12)  
16 bytes (OTP11)  
16 bytes (OTP10)  
16 bytes (OTP9)  
16 bytes (OTP8)  
16 bytes (OTP7)  
16 bytes (OTP6)  
16 bytes (OTP5)  
16 bytes (OTP4)  
16 bytes (OTP3)  
16 bytes (OTP2)  
16 bytes (OTP1)  
0x1F4h  
0x1F3h  
0x1E4h  
0x1E3  
0x1D4h  
0x1D3h  
0x1C4h  
0x1C3h  
0x1B4h  
0x1B3h  
0x1A4h  
0x1A3h  
0x194h  
0x193h  
0x184h  
0x183h  
0x174h  
0x173h  
0x164h  
0x163h  
0x154h  
0x153h  
Address  
0x112h  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
Locks Region…  
OTP1  
0x144h  
0x143h  
OTP2  
OTP3  
OTP4  
OTP5  
OTP6  
OTP7  
OTP8  
OTP9  
OTP10  
OTP11  
OTP12  
OTP13  
OTP14  
OTP15  
OTP16  
ESN1  
0x134h  
0x133h  
0x124h  
0x123h  
0x113h  
0x114h  
0x113h  
0x112h  
0x111h  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
8 bytes (ESN2)  
0x10Ah  
0x109h  
8 bytes (ESN1)  
Reserved  
0x100h  
0x102h  
0x101h  
0x100h  
1
ESN2  
Reserved  
X
X
X
X
X
X
Bit 1 Bit 0  
2 - 7  
Notes  
1. Bit 0 at address 0x100h locks ESN1 region.  
2. Bit 1 at address 0x100h locks ESN2 region.  
3. Bits 2-7 (“X”) are NOT programmable and will be ignored.  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
53  
D a t a S h e e t  
Figure 10.2 OTP Memory Map - Part 2  
ADDRESS  
OTP REGION  
0x2FFh  
10 bytes (OTP31)  
16 bytes (OTP30)  
16 bytes (OTP29)  
16 bytes (OTP28)  
16 bytes (OTP27)  
16 bytes (OTP26)  
16 bytes (OTP25)  
16 bytes (OTP24)  
16 bytes (OTP23)  
16 bytes (OTP22)  
16 bytes (OTP21)  
16 bytes (OTP20)  
16 bytes (OTP19)  
16 bytes (OTP18)  
0x2F6h  
0x2F5h  
0x2E6h  
0x2E5  
0x2D6h  
0x2D5h  
0x2C6h  
0x2C5h  
0x2B6h  
0x2B5h  
0x2A6h  
0x2A5h  
0x296h  
0x295h  
0x286h  
0x285h  
0x276h  
0x275h  
0x266h  
0x265h  
Address  
0x214h  
Bit Locks Region…  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
OTP17  
OTP18  
OTP19  
OTP20  
OTP21  
OTP22  
OTP23  
OTP24  
OTP25  
OTP26  
OTP27  
OTP28  
OTP29  
OTP30  
OTP31  
0x256h  
0x255h  
0x246h  
0x245h  
0x236h  
0x235h  
0x215h  
0x226h  
0x225h  
16 bytes (OTP17)  
0x216h  
0x215h  
0x214h  
X
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Reserved  
Note  
1. Bit 7 (“X”) at address 0x215h is NOT programmable and will be ignored.  
54  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
11. Power-up and Power-down  
During power-up and power-down, certain conditions must be observed. CS# must follow the voltage applied  
on V , and must not be driven low to select the device until V reaches the allowable values as follows  
CC  
CC  
(see Figure 11.1 and Table 11.1 on page 56):  
At power-up, V (min.) plus a period of t  
CC  
PU  
At power-down, GND  
A pull-up resistor on Chip Select (CS#) typically meets proper power-up and power-down requirements.  
No Read, Write Registers, program, or erase command should be sent to the device until V rises to the  
CC  
V
min., plus a delay of t . At power-up, the device is in standby mode (not Deep Power-Down mode) and  
CC  
PU  
the WEL bit is reset (0).  
Each device in the host system should have the V rail decoupled by a suitable capacitor close to the  
CC  
package pins (this capacitor is generally of the order of 0.1 µF), as a precaution to stabilizing the V feed.  
CC  
When V drops from the operating voltage to below the minimum V threshold at power-down, all  
CC  
CC  
operations are disabled and the device does not respond to any commands. Note that data corruption may  
result if a power-down occurs while a Write Registers, program, or erase operation is in progress.  
Figure 11.1 Power-Up Timing Diagram  
Vcc  
(max)  
cc  
V
(min)  
cc  
V
tPU  
Full Device Access  
Time  
Figure 11.2 Power-down and Voltage Drop  
V
CC  
(max)  
V
CC  
No Device Access Allowed  
(min)  
V
CC  
Device Access  
Allowed  
t
PU  
(cut-off)  
V
CC  
(low)  
V
CC  
t
PD  
time  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
55  
D a t a S h e e t  
Table 11.1 Power-Up / Power-Down Voltage and Timing  
Symbol  
VCC(min)  
CC(cut-off)  
Parameter  
VCC (minimum operation voltage)  
Min  
2.7  
2.4  
Max  
Unit  
V
V
VCC (Cut off where re-initialization is needed)  
V
0.2  
2.3  
V
VCC (Low voltage for initialization to occur at read/standby)  
VCC (Low voltage for initialization to occur at embedded)  
V
CC(low)  
tPU  
VCC(min.) to device operation  
VCC (low duration time)  
300  
1.0  
µs  
µs  
TPD  
12. Initial Delivery State  
The device is delivered with the memory array erased i.e. all bits are set to 1 (FFh) upon initial factory  
shipment. The Status Register and Configuration Register contains 00h (all bits are set to 0).  
The Lock Register (address 0x100h) is written to 0x01 and ESN1 (addresses 0x102h-0x109h) are written  
with a 64-bit randomly generated, unique number (taken from Section 10. on page 52).  
13. Program Acceleration via W#/ACC Pin  
The program acceleration function requires applying V to the W#/ACC input, and then waiting a period of  
HH  
t
. Minimum t  
rise and fall times is required for W#/ACC to change to V from V or V . Removing  
WC  
VHH HH IL IH  
V
from the W#/ACC pin returns the device to normal operation after a period of t  
.
HH  
WC  
Figure 13.1 ACC Program Acceleration Timing Requirements  
V
HH  
ACC  
t
t
WC  
WC  
V
or V  
IH  
V
or V  
IH  
IL  
IL  
Command OK  
t
VHH  
t
VHH  
Note  
Only Read Status Register (RDSR) and Page Program (PP) operation are allow when ACC is at (VHH).  
The W#/ACC pin is disabled during Quad I/O mode.  
Table 13.1 ACC Program Acceleration Specifications  
Symbol  
VHH  
Parameter  
ACC Pin Voltage High  
Min.  
8.5  
2.2  
5
Max  
Unit  
9.5  
V
tVHH  
ACC Voltage Rise and Fall time  
µs  
µs  
tWC  
ACC at VHH and VIL or VIH to First command  
56  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
14. Electrical Specifications  
14.1 Absolute Maximum Ratings  
Description  
Rating  
-65°C to +150°C  
-0.5V to VCC+0.5V  
200 mA  
Ambient Storage Temperature  
Voltage with Respect to Ground: All Inputs and I/Os  
Output Short Circuit Current (2)  
Note  
1. Minimum DC voltage on input or I/Os is -0.5V. During voltage transitions, inputs or I/Os may undershoot GND to -2.0V for periods of up to  
20 ns. See Figure 14.1. Maximum DC voltage on input or I/Os is VCC + 0.5V. During voltage transitions inputs or I/Os may overshoot to  
VCC + 2.0V for periods up to 20 ns. See Figure 14.2.  
2. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
3. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.  
Figure 14.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8V  
–0.5V  
–2.0V  
20 ns  
Figure 14.2 Maximum Positive Overshoot Waveform  
20 ns  
VCC  
+2.0V  
VCC  
+0.5V  
2.0V  
20 ns  
20 ns  
15. Operating Ranges  
Table 15.1 Operating Ranges  
Description  
Rating  
Industrial  
–40°C to +85°C  
–40°C to +105°C  
2.7V to 3.6V  
Ambient Operating Temperature (TA)  
Automotive In-Cabin  
Voltage Range  
Positive Power Supply  
Note  
Operating ranges define those limits between which functionality of the device is guaranteed.  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
57  
D a t a S h e e t  
16. DC Characteristics  
This section summarizes the DC Characteristics of the device. Designers should check that the operating  
conditions in their circuit match the measurement conditions specified in the Test Specifications in Table 17.1  
on page 59, when relying on the quoted parameters.  
Table 16.1 DC Characteristics (CMOS Compatible)  
Limits  
Symbol  
Parameter  
Supply Voltage  
Test Conditions  
Unit  
Min.  
Typ*  
Max  
VCC  
VHH  
2.7  
3.6  
V
V
ACC Program Acceleration  
Voltage  
VCC = 2.7V to 3.6V  
8.5  
9.5  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.3  
0.3 x VCC  
V
V
0.7 x VCC  
VCC +0.5  
0.4  
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 1.6 mA, VCC = VCC min.  
IOH = -0.1 mA  
V
V
VCC-0.6  
V
CC = VCC Max,  
ILI  
Input Leakage Current  
Output Leakage Current  
2
2
µA  
µA  
V
IN = VCC or GND  
V
CC = VCC Max,  
ILO  
V
IN = VCC or GND  
At 80 MHz  
(Dual or Quad)  
38  
Active Power Supply Current -  
READ  
(SO = Open)  
ICC1  
mA  
At 104 MHz (Serial)  
At 40 MHz (Serial)  
25  
12  
Active Power Supply Current  
(Page Program)  
ICC2  
ICC3  
ICC4  
ICC5  
CS# = VCC  
CS# = VCC  
CS# = VCC  
CS# = VCC  
26  
15  
mA  
mA  
mA  
mA  
µA  
Active Power Supply Current  
(WRR)  
Active Power Supply Current  
(SE)  
26  
Active Power Supply Current  
(BE)  
26  
Standby Current (Industrial  
Temperature Range Parts)  
80  
80  
3
200  
CS# = VCC  
;
ISB1  
Standby Current  
(Automotive In-Cabin  
Temperature Range Parts)  
SO + VIN = GND or VCC  
250  
10  
µA  
µA  
CS# = VCC  
;
IPD  
Deep Power-down Current  
SO + VIN = GND or VCC  
*Typical values are at TAI = 25°C and VCC = 3V  
58  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
17. Test Conditions  
Figure 17.1 AC Measurements I/O Waveform  
0.8 VCC  
Input Levels  
0.2 VCC  
0.7 VCC  
0.5 VCC  
0.3 VCC  
Input and Output  
Timing Reference levels  
Table 17.1 Test Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
pF  
ns  
V
CL  
Load Capacitance  
30  
Input Rise and Fall Times  
Input Pulse Voltage  
5
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
0.5 VCC  
Input Timing Reference Voltage  
Output Timing Reference Voltage  
V
V
January 30, 2013 S25FL129P_00_09  
S25FL129P  
59  
D a t a S h e e t  
18. AC Characteristics  
Figure 18.1 AC Characteristics  
Symbol  
(Notes)  
Parameter  
(Notes)  
Min.  
(Notes)  
Typ  
(Notes)  
Max  
(Notes)  
Unit  
MHz  
MHz  
SCK Clock Frequency for READ command  
SCK Clock Frequency for RDID command  
DC  
DC  
40  
50  
fR  
SCK Clock Frequency for all others:  
FAST_READ, PP, QPP, P4E, P8E, SE, BE, DP,  
RES, WREN, WRDI, RDSR, WRR, READ_ID  
104 (serial)  
80 (dual/quad)  
fC  
DC  
MHz  
t
WH, tCH (5)  
Clock High Time  
4.5  
4.5  
0.1  
0.1  
ns  
ns  
t
WL, tCL (5)  
CRT, tCLCH  
CFT, tCHCL  
Clock Low Time  
t
Clock Rise Time (slew rate)  
Clock Fall Time (slew rate)  
V/ns  
V/ns  
t
10  
50  
CS# High Time (Read Instructions)  
CS# High Time (Program/Erase)  
tCS  
ns  
tCSS  
tCSH  
tSU:DAT  
tHD:DAT  
CS# Active Setup Time (relative to SCK)  
CS# Active Hold Time (relative to SCK)  
Data in Setup Time  
3
3
3
2
ns  
ns  
ns  
ns  
Data in Hold Time  
8 (Serial)Δ  
9.5 (Dual/Quad)Δ  
6.5 (Serial)∞  
8 (Dual/Quad)∞  
7 (Dual/Quad)Ω  
tV  
Clock Low to Output Valid  
Output Hold Time  
0
2
ns  
tHO  
ns  
tDIS  
tHLCH  
tCHHH  
tHHCH  
tCHHL  
tHZ  
Output Disable Time  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HOLD# Active Setup Time (relative to SCK)  
HOLD# Active Hold Time (relative to SCK)  
HOLD# Non Active Setup Time (relative to SCK)  
HOLD# Non Active Hold Time (relative to SCK)  
HOLD# enable to Output Invalid  
3
3
3
3
8
8
tLZ  
HOLD# disable to Output Valid  
tWPS  
W#/ACC Setup Time (4)  
20  
tWPH  
tW  
tPP  
tEP  
W#/ACC Hold Time (4)  
100  
ns  
ms  
ms  
ms  
sec  
sec  
ms  
sec  
µs  
WRR Cycle Time  
50  
3
Page Programming (1)(2)  
1.5  
1.2  
0.5  
2
Page Programming (ACC = 9V) (1)(2)(3)  
Sector Erase Time (64 KB) (1)(2)  
Sector Erase Time (256 KB) (1)(2)  
Parameter Sector Erase Time (4 KB or 8 KB) (1)(2)  
Bulk Erase Time (1)(2)  
2.4  
2
tSE  
8
tPE  
tBE  
tRES  
tDP  
tVHH  
tWC  
200  
128  
800  
256  
30  
10  
Deep Power-down to Standby Mode  
Time to enter Deep Power-down Mode  
ACC Voltage Rise and Fall time  
ACC at VHH and VIL or VIH to first command  
µs  
2.2  
5
µs  
µs  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, VCC = 3.0V; 10,000 cycles; checkerboard data pattern.  
2. Under worst-case conditions of 85°C; VCC = 2.7V; 100,000 cycles.  
3. Acceleration mode (9V ACC) only in Program mode, not Erase.  
4. Only applicable as a constraint for WRR instruction when SRWD is set to a ‘1’.  
5. tWH + tWL must be less than or equal to 1/fC.  
6. Δ Full Vcc range (2.7 – 3.6V) and CL = 30 pF  
7. Regulated Vcc range (3.0 – 3.6V) and CL = 30 pF  
8. ΩRegulated Vcc range (3.0 – 3.6V) and CL = 15 pF  
60  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
18.1 Capacitance  
Symbol  
Parameter  
Test Conditions  
OUT = 0V  
IN = 0V  
Min  
Typ  
Max  
Unit  
Input Capacitance  
(applies to SCK, PO7-PO0, SI, CS#)  
CIN  
V
9.0  
12.0  
pF  
Output Capacitance  
(applies to PO7-PO0, SO)  
COUT  
V
12.0  
16.0  
pF  
Figure 18.2 SPI Mode 0 (0,0) Input Timing  
tCS  
CS#  
SCK  
SI  
tCSH  
tCSS  
tCSS  
tCSH  
tSU:DAT  
tCRT  
tHD:DAT  
tCFT  
MSB IN  
LSB IN  
Hi-Z  
SO  
Figure 18.3 SPI Mode 0 (0,0) Output Timing  
CS#  
tWH  
SCK  
tV  
tWL  
tDIS  
tV  
tHO  
tHO  
SO  
LSB OUT  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
61  
D a t a S h e e t  
Figure 18.4 HOLD# Timing  
CS#  
tHHCH  
tHLCH  
tCHHL  
SCK  
SO  
tCHHH  
tHZ  
tLZ  
SI  
HOLD#  
Figure 18.5 Write Protect Setup and Hold Timing during WRR when SRWD = 1  
W#  
tWPS  
tWPH  
CS#  
SCK  
SI  
Hi-Z  
SO  
62  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
19. Physical Dimensions  
19.1  
SO3 016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width)  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
63  
D a t a S h e e t  
19.2 WSON 8-contact (6 x 8 mm) No-Lead Package (WNF008)  
NOTES:  
1. DIMENSIONING AND TOLERANCING CONFORMS TO  
ASME Y14.5M - 1994.  
PACKAGE  
WNF008  
2. ALL DIMENSIONS ARE IN MILLMETERS.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
SYMBOL  
MIN  
NOM  
1.27 BSC.  
8
MAX  
NOTE  
e
N
4
DIMENSION “b” APPLIES TO METALLIZED TERMINAL AND IS  
MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL  
TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE  
OTHER END OF THE TERMINAL, THE DIMENSION “b”  
SHOULD NT BE MEASURED IN THAT RADIUS AREA.  
3
5
ND  
L
4
0.45  
0.35  
4.70  
5.70  
0.50  
0.55  
0.45  
4.90  
5.90  
b
0.40  
4
5
ND REFER TO THE NUMBER OF TERMINALS ON D SIDE.  
D2  
E2  
D
4.80  
6. MAX. PACKAGE WARPAGE IS 0.05mm.  
5.80  
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.  
6.00 BSC  
8.00 BSC  
0.75  
8
9
PIN #1 ID ON TOP WILL BE LASER MARKED.  
E
BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED  
HEAT SINK SLUG AS WELL AS THE TERMINALS.  
A
0.70  
0.00  
0.80  
0.05  
A1  
K
0.02  
10 A MAXIMUM 0.15mm PULL BACK (L1) MAY BE PRESENT.  
0.20 MIN.  
---  
L1  
0.00  
0.15  
10  
g1015 \ 16-038.30 \ 07.21.11  
64  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
19.3 FAB024 — 24-ball Ball Grid Array (6 x 8 mm) package  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
65  
D a t a S h e e t  
19.4 FAC024 — 24-ball Ball Grid Array (6 x 8 mm) package  
NOTES:  
PACKAGE  
JEDEC  
FAC024  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASMEY14.5M-1994.  
D x E  
8.00 mm x 6.00 mm NOM  
PACKAGE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
3. BALL POSITION DESIGNATION PER JEP95, SECTION  
4.3, SPP-010.  
SYMBOL  
A
MIN  
NOM  
---  
MAX  
NOTE  
---  
1.20  
---  
PROFILE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A1  
0.25  
0.70  
---  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
A2  
---  
0.90  
BODY THICKNESS  
BODY SIZE  
D
8.00 BSC.  
6.00 BSC.  
5.00 BSC.  
3.00 BSC.  
6
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
E
BODY SIZE  
n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
MD  
ME  
N
4
DATUM C IS THE SEATING PLANE AND IS DEFINED BY THE  
CROWNS OF THE SOLDER BALLS.  
24  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
Øb  
e
0.35  
0.40  
0.45  
BALL DIAMETER  
1.00 BSC.  
0.5/0.5  
BALL PITCHL  
SD/ SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
J
PACKAGE OUTLINE TYPE  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
10 OUTLINE AND DIMENSIONS PER CUSTOMER REQUIREMENT.  
3642 F16-038.9 \ 09.10.09  
66  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
20. Revision History  
Section  
Description  
Revision 01 (May 26, 2009)  
Initial release.  
Revision 02 (June 22, 2009)  
Quad Page Programming  
Corrected description.  
Removed the Note in the bottom of the page.  
Added Suggested cross setting table.  
Configuration Register  
Data Protection Modes  
Corrected description for Software Protected Mode.  
Added Note.  
Accelerated Programming Operation  
Corrected description.  
Read Identification (RDID)  
Added statement for operating clock frequency.  
Corrected figure.  
Read Status Register (RDSR)  
Added statement for operating clock frequency.  
Added reference section.  
Read Configuration Register (RCR)  
Added Note for Hardware Protect Mode.  
Write Registers (WRR)  
Removed all occurrences of Quad operations.  
Corrected description.  
Added Note.  
Parameter Sector Erase (P4E, P8E)  
Sector Erase (SE)  
Corrected description.  
Added Note.  
Release from Deep Power-down  
(RES)  
Release from Deep Power-down and  
Read Electronic Signature (RES)  
Added Note.  
Corrected description for ESN.  
Added ESN table.  
OTP Regions  
Initial Delivery State  
Added description for the Rock Register.  
Corrected description of Note.  
Added BGA package.  
AC Characteristics  
Physical Dimensions  
Revision 03 (October 14, 2009)  
Changed datasheet designation from Advanced Information to Preliminary  
Changed all references to RDID clock rate from 40 to 50 MHz  
Global  
Added note regarding exposed central pad on bottom of package to the WSON connection diagram  
Added “5 x 5 pin configuration” to Figure 2.3 title  
Connection Diagrams  
Added 6 x 4 pin configuration BGA connection diagram  
Added 20, 21, 30, and 31 model numbers for BGA packages  
Added Automotive In-Cabin temperature ordering option  
Added Low-Halogen material option  
Ordering Information  
Valid Combinations  
Changed valid BGA model number combinations to 20, 21, 30, and 31  
Changed valid BGA material option to Low-Halogen  
Added Automotive In-Cabin temperature valid combinations for all packages  
Added Note 2 regarding contact factory for availability of Automotive In-Cabin temperature grade  
parts  
Physical Dimensions  
DC Characteristics  
AC Characteristics  
Added FAC024 BGA package  
Added Note 1 indicating that ICSB1 maximum value only applies to Industrial temperature grade parts  
Added min and max values for Sector Erase Time (256 KB)  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
67  
D a t a S h e e t  
Section  
Revision 04 (November 2, 2009)  
Ordering Information  
Description  
Removed Note 2  
Added separate Standby Current values for Industrial and Automotive In-Cabin temperature range  
parts.  
DC Characteristics  
Removed Note 1.  
Revision 05 (August 12, 2010)  
Global  
The data sheet went from a “Preliminary” designation to full production.  
Sector Address Table  
Command Definitions  
Read Identification  
In Table 8.2, corrected the End Address of SS30 from 01E000h to 01EFFFh.  
In Table 9.1, corrected the QIOR one byte command code from 1110 1111 to 1110 1011.  
In Table 9.5 added CFI data of bytes 2Dh to 34h for the 256 KB sector products.  
Clarified that the device only executes a SE command for those sectors which are not protected by  
the Block Protect Bits.  
Sector Erase  
Operating Ranges  
Added the Automotive In-Cabin range.  
Revision 06 (October 1, 2010)  
Clarified that TBPARM and TBPROT must be selected at the initial configuration of the device, before  
any program or erase operations.  
Configuration Register  
Command Definitions  
Sector Erase (SE)  
In the Instruction Set table, corrected the CLSR Data Byte Cycle value from 1 to 0.  
Clarified that a 64 KB sector erase command will work on 4 KB and 8 KB sectors.  
Removed incomplete statement regarding internal state machine.  
Clear Status Register  
OTP Regions  
Clarified that for locking OTP regions, setting the bit refers to changing the value from 0 to 1.  
Revision 07 (May 16, 2012)  
Global  
Added text for recommending FL128S as migration device.  
Revision 08 (September 21, 2012)  
AC Characteristics  
Changed Output Hold Time (tHO) to 2 ns (min).  
Physical Dimensions  
Revision 09 (January 30, 2013)  
Updated the package outline drawing for SO3016 and WSON 6x8 packages.  
Added “Typical” values column  
Capacitance  
Corrected “Max” values for CIN / COUT (Input / Output Capacitance)  
68  
S25FL129P  
S25FL129P_00_09 January 30, 2013  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2009-2013 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™ and  
combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used  
are for informational purposes only and may be trademarks of their respective owners.  
January 30, 2013 S25FL129P_00_09  
S25FL129P  
69  

相关型号:

S25FL129P0XNFI011

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8
SPANSION

S25FL129P0XNFV001

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8
SPANSION

S25FL129P0XNFV003

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8
SPANSION

S25FL129P0XNFV010

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8
SPANSION

S25FL129P0XNFV013

Flash, 16MX8, PDSO8, 6 X 8 MM, LEAD FREE, PLASTIC, WSON-8
SPANSION

S25FL129P_00

128-Mbit CMOS 3.0 Volt Flash Memory with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus
SPANSION

S25FL132K

CMOS 3.0-Volt Flash Non-Volatile Memory Serial Peripheral Interface with Multi-I/O Industrial and Automotive Temperature
SPANSION

S25FL132K0XMFI000

CMOS 3.0-Volt Flash Non-Volatile Memory Serial Peripheral Interface with Multi-I/O Industrial and Automotive Temperature
SPANSION

S25FL132K0XMFI001

CMOS 3.0-Volt Flash Non-Volatile Memory Serial Peripheral Interface with Multi-I/O Industrial and Automotive Temperature
SPANSION

S25FL132K0XMFI010

CMOS 3.0-Volt Flash Non-Volatile Memory Serial Peripheral Interface with Multi-I/O Industrial and Automotive Temperature
SPANSION

S25FL132K0XMFI011

CMOS 3.0-Volt Flash Non-Volatile Memory Serial Peripheral Interface with Multi-I/O Industrial and Automotive Temperature
SPANSION

S25FL132K0XMFI020

CMOS 3.0-Volt Flash Non-Volatile Memory Serial Peripheral Interface with Multi-I/O Industrial and Automotive Temperature
SPANSION