S29AL032D70TAE032 [SPANSION]

32 Megabit CMOS 3.0 Volt-only Flash Memory; 32兆位CMOS 3.0伏只快闪记忆体
S29AL032D70TAE032
型号: S29AL032D70TAE032
厂家: SPANSION    SPANSION
描述:

32 Megabit CMOS 3.0 Volt-only Flash Memory
32兆位CMOS 3.0伏只快闪记忆体

文件: 总69页 (文件大小:1731K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29AL032D  
32 Megabit CMOS 3.0 Volt-only Flash Memory  
4 M x 8-Bit Uniform Sector  
4 M x 8-Bit/2 M x 16-Bit Boot Sector  
ADVANCE  
INFORMATION  
Data Sheet  
Notice to Readers: The Advance Information status indicates that this  
document contains information on one or more products under development  
at Spansion LLC. The information is intended to help you evaluate this product.  
Do not design in this product without contacting the factory. Spansion LLC  
reserves the right to change or discontinue work on this proposed product  
without notice.  
Publication Number S29AL032D_00 Revision A Amendment 3 Issue Date June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, in-  
cluding development, qualification, initial production, and full production. In all cases, however,  
readers are encouraged to verify that they have the latest information before finalizing their de-  
sign. The following descriptions of Spansion data sheet designations are presented here to high-  
light their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more spe-  
cific products, but has not committed any design to production. Information presented in a doc-  
ument with this designation is likely to change, and in some cases, development on the product  
may discontinue. Spansion LLC therefore places the following conditions upon Advance Informa-  
tion content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the prod-  
uct life cycle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical  
specifications presented in a Preliminary document should be expected while keeping these as-  
pects of production under consideration. Spansion places the following conditions upon Prelimi-  
nary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance In-  
formation, Preliminary, or Full Production). This type of document will distinguish these products  
and their designations wherever necessary, typically on the first page, the ordering information  
page, and pages with DC Characteristics table and AC Erase and Program table (in the table  
notes). The disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal  
changes may include those affecting the number of ordering part numbers available, such as the  
addition or deletion of a speed option, temperature range, package type, or VIO range. Changes  
may also include those needed to clarify a description or to correct a typographical error or incor-  
rect specification. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or Fujitsu  
sales office.  
ii  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
S29AL032D  
32 Megabit CMOS 3.0 Volt-only Flash Memory  
4 M x 8-Bit Uniform Sector  
4 M x 8-Bit/2 M x 16-Bit Boot Sector  
ADVANCE  
INFORMATION  
Data Sheet  
Distinctive Characteristics  
„
Ultra low power consumption (typical values  
at 5 MHz)  
Architectural Advantages  
„
„
„
Single power supply operation  
200 nA Automatic Sleep mode current  
200 nA standby mode current  
9 mA read current  
Full voltage range: 2.7 to 3.6 volt read and write op-  
erations for battery-powered applications  
Manufactured on 200 nm process technology  
20 mA program/erase current  
Fully compatible with 0.23 µm Am29LV320D, 0.32 µm  
Am29LV033C, and 0.33 µm MBM29LV320E devices  
„
„
Cycling endurance: 1,000,000 cycles per  
sector typical  
Data retention: 20 years typical  
Flexible sector architecture  
Boot sector models: Eight 8-Kbyte sectors; sixty-  
three 64-Kbyte sectors; top or bottom boot block  
configurations available  
Software Features  
„
„
„
CFI (Common Flash Interface) compliant  
Uniform sector models: Sixty-four 64-Kbyte sectors  
Provides device-specific information to the system,  
allowing host software to easily reconfigure for  
different Flash devices  
„
Sector Protection features  
A hardware method of locking a sector to prevent any  
program or erase operations within that sector  
Sectors can be locked in-system or via programming  
equipment  
Erase Suspend/Erase Resume  
Suspends an erase operation to read data from, or  
program data to, a sector that is not being erased,  
then resumes the erase operation  
Temporary Sector Unprotect feature allows code  
changes in previously locked sectors  
Data# Polling and toggle bits  
„
„
Unlock Bypass Program Command  
Provides a software method of detecting program or  
erase operation completion  
Reduces overall programming time when issuing  
multiple program command sequences  
Unlock Bypass Program Command  
Secured Silicon Sector  
Reduces overall programming time when issuing  
multiple program command sequences  
128-word sector for permanent, secure identification  
through an 8-word random Electronic Serial Number  
May be programmed and locked at the factory or by  
the customer  
Hardware Features  
„
„
„
Ready/Busy# pin (RY/BY#)  
Accessible through a command sequence  
Provides a hardware method of detecting program or  
erase cycle completion  
„
Compatibility with JEDEC standards  
Hardware reset pin (RESET#)  
Pinout and software compatible with single-power  
supply Flash  
Hardware method to reset the device to reading array  
data  
Superior inadvertent write protection  
WP#/ACC input pin  
Package Options  
Write protect (WP#) function allows protection of two  
outermost boot sectors (boot sector models only),  
regardless of sector protect status  
„
„
„
48-ball FBGA  
48-pin TSOP  
40-pin TSOP  
Acceleration (ACC) function provides accelerated  
program times  
Performance Characteristics  
High performance  
Access times as fast as 70 ns  
„
Publication Number S29AL032D_00 Revision A Amendment 3 Issue Date June 13, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
General Description  
The S29AL032D is a 32 megabit, 3.0 volt-only flash memory device, organized as 2,097,152  
words of 16 bits each or 4,194,304 bytes of 8 bits each. Word mode data appears on DQ0-DQ15;  
byte mode data appears on DQ0-DQ7. The device is designed to be programmed in-system with  
the standard 3.0 volt VCC supply, and can also be programmed in standard EPROM programmers.  
The device is available with access times as fast as 70 ns. The devices are offered in 40-pin TSOP,  
48-pin TSOP and 48-ball FBGA packages. Standard control pins- chip enable (CE#), write enable  
(WE#), and output enable (OE#)-control normal read and write operations, and avoid bus con-  
tention issues.  
The device requires only a single 3.0 volt power supply for both read and write functions. In-  
ternally generated and regulated voltages are provided for the pro-gram and erase operations.  
S29AL032D Features  
The Secured Silicon Sector is an extra sector capable of being permanently locked by Spansion  
or customers. The Secured Silicon Indicator Bit (DQ7) is permanently set to a 1 if the part is  
factory locked, and set to a 0 if customer lockable. This way, customer lockable parts can never  
be used to replace a factory locked part. Note that the S29AL032D has a Secured Silicon  
Sector size of 128 words (256 bytes).  
Factory locked parts provide several options. The Secured Silicon Sector may store a secure, ran-  
dom 16 byte ESN (Electronic Serial Number), customer code (programmed through the Spansion  
programming service), or both.  
The S29AL032D is entirely command set compatible with the JEDEC single-power-supply  
Flash standard. Commands are written to the command register using standard microprocessor  
write timings. Register contents serve as input to an internal state-machine that controls the  
erase and programming circuitry. Write cycles also internally latch addresses and data needed for  
the programming and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. This initiates the Em-  
bedded Program algorithm—an internal algorithm that automatically times the program pulse  
widths and verifies proper cell margin. The Unlock Bypass mode facilitates faster programming  
times by requiring only two write cycles to program data instead of four.  
Device erasure occurs by executing the erase command sequence. This initiates the Embedded  
Erase algorithm—an internal algorithm that automatically preprograms the array (if it is not al-  
ready programmed) before executing the erase operation. During erase, the device automatically  
times the erase pulse widths and verifies proper cell margin.  
The host system can detect whether a program or erase operation is complete by observing the  
RY/BY# pin, or by reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a pro-  
gram or erase cycle has been completed, the device is ready to read array data or accept another  
command.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without  
affecting the data contents of other sectors. The device is fully erased when shipped from the  
factory.  
Hardware data protection measures include a low V detector that automatically inhibits write  
CC  
operations during power transitions. The hardware sector protection feature disables both  
program and erase operations in any combination of the sectors of memory. This can be achieved  
in-system or via programming equipment.  
2
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period  
of time to read data from, or program data to, any sector that is not selected for erasure. True  
background erase can thus be achieved.  
The hardware RESET# pin terminates any operation in progress and resets the internal state  
machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A sys-  
tem reset would thus also reset the device, enabling the system microprocessor to read the  
boot-up firmware from the Flash memory.  
The device offers two power-saving features. When addresses have been stable for a specified  
amount of time, the device enters the automatic sleep mode. The system can also place the  
device into the standby mode. Power consumption is greatly reduced in both these modes.  
The Spansion Flash technology combines years of Flash memory manufacturing experience to  
produce the highest levels of quality, reliability and cost effectiveness. The device electrically  
erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is  
programmed using hot electron injection.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
3
A d v a n c e I n f o r m a t i o n  
Table of Contents  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . .10  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 11  
Table 1. S29AL032D Device Bus Operations . . . . . . . . . . . . . . . . . . . . . .11  
Word/Byte Configuration (Models 03, 04 Only) . . . . . . . . . . .11  
Requirements for Reading Array Data . . . . . . . . . . . . . . . . . . .11  
Writing Commands/Command Sequences . . . . . . . . . . . . . . . 12  
Program and Erase Operation Status . . . . . . . . . . . . . . . . . . . 12  
Accelerated Program Operation . . . . . . . . . . . . . . . . . . . . . . . 12  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Automatic Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
RESET#: Hardware Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 2. Model 00 Sector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3. Model 00 Secured Silicon Sector Addresses . . . . . . . . . . . . . . 15  
Table 4. Model 03 Sector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5. Model 03 Secured Silicon Sector Addresses . . . . . . . . . . . . . . 17  
Table 6. Model 04 Sector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 7. Model 04 Secured Silicon Sector Addresses . . . . . . . . . . . . . . 19  
Autoselect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 8. S29AL032D Autoselect Codes (High Voltage Method) . . . . .20  
Sector Protection/Unprotection . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 9. Sector Block Addresses for Protection/Unprotection  
Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . .35  
Figure 5. Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Table 16. S29AL032D Command Definitions — Model 00 . . . . . . . . . . 37  
Table 17. S29AL032D Command Definitions — Models 03, 04 . . . . . . 38  
Write Operation Status. . . . . . . . . . . . . . . . . . . . . 39  
DQ7: Data# Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Figure 6. Data# Polling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
RY/BY#: Ready/Busy# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DQ6: Toggle Bit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DQ2: Toggle Bit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Reading Toggle Bits DQ6/DQ2 . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 7. Toggle Bit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DQ5: Exceeded Timing Limits . . . . . . . . . . . . . . . . . . . . . . . . . .43  
DQ3: Sector Erase Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 18. Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 45  
Figure 8. Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . 45  
Figure 9. Maximum Positive Overshoot Waveform . . . . . . . . . . . . . . . 45  
Operating Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 10. I  
Current vs. Time (Showing Active and  
CC1  
Automatic Sleep Currents). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 11. Typical I vs. Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
CC1  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 12. Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 19. Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 13. Input Waveforms and Measurement Levels . . . . . . . . . . . . . 49  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 50  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 14. Read Operations Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 15. RESET# Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 16. BYTE# Timings for Read Operations . . . . . . . . . . . . . . . . . . 52  
Figure 17. BYTE# Timings for Write Operations . . . . . . . . . . . . . . . . . . 53  
Erase/Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 18. Program Operation Timings . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 19. Chip/Sector Erase Operation Timings. . . . . . . . . . . . . . . . . . 56  
Figure 20. Back to Back Read/Write Cycle Timing. . . . . . . . . . . . . . . . 56  
Figure 21. Data# Polling Timings (During Embedded Algorithms) . . . . 57  
Figure 22. Toggle Bit Timings (During Embedded Algorithms) . . . . . . 57  
Figure 23. DQ2 vs. DQ6 for Erase and Erase Suspend Operations. . . 58  
Figure 24. Temporary Sector Unprotect/Timing Diagram . . . . . . . . . . 58  
Figure 25. Accelerated Program Timing Diagram . . . . . . . . . . . . . . . . . 59  
Figure 26. Sector Protect/Unprotect Timing Diagram . . . . . . . . . . . . . 59  
Figure 27. Alternate CE# Controlled Write Operation Timings. . . . . . 61  
Erase and Programming Performance . . . . . . . . 62  
TSOP and BGA Pin Capacitance . . . . . . . . . . . . . 62  
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 63  
TS040—40-Pin Standard TSOP . . . . . . . . . . . . . . . . . . . . . . . .63  
TS 048—48-Pin Standard TSOP . . . . . . . . . . . . . . . . . . . . . . . 64  
VBN048—48-Ball Fine-Pitch Ball Grid Array (FBGA)  
— Model 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 10. Sector Block Addresses for Protection/Unprotection  
— Model 03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 11. Sector Block Addresses for Protection/Unprotection  
— Model 04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Write Protect (WP#) — Models 03, 04 Only . . . . . . . . . . . . 23  
Temporary Sector Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 1. Temporary Sector Unprotect Operation . . . . . . . . . . . . . . . . 24  
Figure 2. In-System Sector Protect/Unprotect Algorithms. . . . . . . . . . 25  
Secured Silicon Sector Flash Memory Region . . . . . . . . . . . . . 26  
Figure 3. Secured Silicon Sector Protect Verify. . . . . . . . . . . . . . . . . . . 27  
Hardware Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Common Flash Memory Interface (CFI). . . . . . . 28  
Table 12. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . .28  
Table 13. System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Table 14. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 15. Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . 30  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 31  
Reading Array Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Autoselect Command Sequence . . . . . . . . . . . . . . . . . . . . . . . 32  
Enter Secured SiliconSector/Exit Secured Silicon Sector  
Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Word/Byte Program Command Sequence . . . . . . . . . . . . . . . 32  
Figure 4. Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . 34  
Sector Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . 35  
10.0 x 6.0 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . . 66  
4
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
Family Part Number  
S29AL032D  
Speed Option  
Voltage Range: VCC = 2.7–3.6 V  
70  
70  
70  
30  
90  
90  
90  
35  
Max access time, ns (tACC  
)
Max CE# access time, ns (tCE  
)
Max OE# access time, ns (tOE  
)
Note: See AC Characteristics on page 50 for full specifications.  
Block Diagram  
DQ0DQ15 (A-1), (DQ0-DQ7 Model 00)  
RY/BY#  
VCC  
Sector Switches  
VSS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
State  
Control  
WE#  
BYTE#  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
X-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
A0–A20 (A0-A21 Model 00)  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
5
A d v a n c e I n f o r m a t i o n  
Connection Diagrams  
A17  
VSS  
A16  
A15  
A14  
A13  
A12  
A11  
A9  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
2
3
A20  
A19  
A10  
DQ7  
DQ6  
DQ5  
DQ4  
VCC  
4
5
6
7
A8  
8
WE#  
RESET#  
ACC  
RY/BY#  
A18  
A7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40-pin Standard TSOP  
VCC  
A21  
DQ3  
DQ2  
DQ1  
DQ0  
A6  
A5  
A4  
OE#  
VSS  
A3  
A2  
CE#  
A0  
A1  
A15  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
2
BYTE#  
A14  
A13  
A12  
A11  
A10  
A9  
VSS  
DQ15/A-1  
DQ7  
3
4
5
6
DQ14  
DQ6  
7
A8  
8
DQ13  
DQ5  
A19  
A20  
WE#  
RESET#  
NC  
9
48-pin Standard TSOP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
OE#  
VSS  
A3  
A2  
CE#  
A0  
A1  
6
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Connection Diagrams  
For Model 00 Only  
48-ball FBGA Top view balls facing down  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
VSS  
A14  
A13  
A15  
A16  
A17  
NC  
A20  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A11  
A12  
A19  
A10  
DQ6  
DQ7  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
VCC  
WE# RESET#  
NC  
NC  
DQ5  
NC  
DQ4  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY#  
ACC  
NC  
NC  
DQ2  
DQ3  
VCC  
A21  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
NC  
H2  
A18  
DQ0  
NC  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
VSS  
CE#  
OE#  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
7
A d v a n c e I n f o r m a t i o n  
For Models 03, 04 Only  
48-ball FBGA Top view balls facing down  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
VSS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
VCC  
WE# RESET#  
NC  
A19  
DQ5  
DQ12  
DQ4  
A3 B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
VSS  
CE#  
OE#  
Special Handling Instructions  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning meth-  
ods. The package and/or data integrity may be compromised if the package body is exposed to  
temperatures above 150°C for prolonged periods of time.  
8
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Pin Configuration  
A0–A21  
=
=
=
=
=
22 address inputs  
A0-A20  
21 address inputs  
DQ0–DQ7  
DQ0-DQ14  
DQ15/A-1  
8 data inputs/outputs  
15 data inputs/outputs  
DQ15 (data input/output, word mode),  
A-1 (LSB address input, byte mode)  
BYTE#  
CE#  
=
=
=
=
=
=
Selects 8-bit or 16-bit mode  
Chip enable  
OE#  
Output enable  
WE#  
Write enable  
RESET#  
WP#/ACC  
Hardware reset pin  
Hardware Write Protect input/Programming  
Acceleration input.  
ACC  
=
=
=
Hardware Write Protect input  
Ready/Busy output  
RY/BY#  
V
3.0 volt-only single power supply  
CC  
see Product Selector Guide on page 5 for speed  
options and voltage supply tolerances)  
V
=
=
Device ground  
SS  
NC  
Pin not connected internally  
Logic Symbol  
Model 00  
Models 03, 04  
21  
22  
A0–A20  
8
A0–A21  
16 or 8  
DQ0–DQ15  
(A-1)  
DQ0–DQ7  
CE#  
OE#  
CE#  
OE#  
WE#  
WE#  
RESET#  
RESET#  
ACC  
WP#/ACC  
BYTE#  
RY/BY#  
RY/BY#  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
9
A d v a n c e I n f o r m a t i o n  
Ordering Information  
S29AL032D Standard Products  
Spansion standard products are available in several packages and operating  
ranges. The order number (Valid Combination) is formed by a combination of the  
elements below.  
S29AL032D  
70  
T
A
I
00  
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
00  
03  
=
=
x8, VCC = 2.7 V to 3.6 V, Uniform sector device  
x8/x16, VCC = 2.7 V to 3.6 V, Top boot sector device, top two address  
sectors protected when WP#/ACC = VIL  
04  
=
x8/x16, VCC = 2.7 V to 3.6 V, Bottom boot sector device, bottom two  
address sectors protected when WP#/ACC = VIL  
TEMPERATURE RANGE  
I
E
=
=
Industrial (–40  
°
C to +85  
°
C)  
Engineering Samples (available prior to Production Release only)  
PACKAGE MATERIAL SET  
A
F
=
=
Standard  
Pb-Free  
PACKAGE TYPE  
T
B
=
=
Thin Small Outline Package (TSOP) Standard Pinout  
Fine-pitch Ball-Grid Array Package  
SPEED OPTION  
See “Product Selector Guide” and Valid Combinations  
DEVICE NUMBER/DESCRIPTION  
S29AL032D  
3.0 Volt-only, 32 Megabit Standard Flash Memory  
manufactured using 200 nm process technology  
S29AL032D Valid Combinations  
Package Type,  
Package Description  
Speed  
Option  
Model  
Number  
Device Number  
Material, and  
Temperature Range  
Packing Type  
00  
TS040 (Note 2)  
TSOP  
TSOP  
TAI, TFI  
BAI, BFI  
0, 3 (Note 1)  
S29AL032D  
70, 90  
03, 04  
TS048 (Note 2)  
00, 03, 04  
0, 2, 3 (Note 1)  
VBN048 (Note 3)  
Fine-Pitch BGA  
Notes:  
1. Type 0 is standard. Specify other options as required.  
2. TSOP package marking omits packing type designator from ordering part number.  
3. BGA package marking omits leading S29 and packing type designator from ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device. Consult your  
local sales office to confirm availability of specific valid combinations and to check on newly released  
combinations.  
10  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated  
through the internal command register. The command register itself does not occupy any addres-  
sable memory location. The register is composed of latches that store the commands, along with  
the address and data information needed to execute the command. The contents of the register  
serve as inputs to the internal state machine. The state machine outputs dictate the function of  
the device. Table 1 lists the device bus operations, the inputs and control levels they require, and  
the resulting output. The following subsections describe each of these operations in further detail.  
Table 1. S29AL032D Device Bus Operations  
DQ8–DQ15 (Note 6)  
WP#(Note 6)/  
ACC  
Addresses  
(Note 3)  
DQ0–  
DQ7  
Operation  
CE#  
OE# WE# RESET#  
BYTE#  
= V  
BYTE# = V  
IL  
IH  
OUT  
Read  
L
L
L
H
L
H
H
L/H  
A
A
D
D
IN  
OUT  
DQ8–DQ14 =  
High-Z, DQ15 =  
A-1  
Write (Note 1)  
H
(Note 4)  
(Note 5) (Note 5)  
IN  
Accelerated Program  
(Note 6)  
L
H
X
L
H
V
A
(Note 5) (Note 5)  
HH  
IN  
V
V
CC  
0.3 V  
CC  
0.3 V  
Standby  
X
H
X
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
X
SA, A6 = L,  
A1 = H, A0 = L  
Sector Protect (Note 3)  
L
L
H
H
X
L
L
V
V
V
L/H  
(Note 5)  
(Note 5)  
X
X
X
X
ID  
ID  
ID  
Sector Unprotect  
(Note 3)  
SA, A6 = H,  
A1 = H, A0 = L  
(Note 4)  
(Note 4)  
Temporary Sector  
Unprotect  
X
X
A
(Note 5) (Note 5)  
High-Z  
IN  
Legend:  
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT  
= Data Out  
Notes:  
1. When the ACC pin is at VHH, the device enters the accelerated program mode. See  
2. Addresses are A20:A0 in word mode (BYTE# = VIH), A20:A-1 in byte mode (BYTE# = VIL).  
3. The sector protect and sector unprotect functions may also be implemented via programming equipment.  
4. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or unprotected. If WP#/ACC = VHH, all sectors are unprotected.  
5. DIN or DOUT as required by command sequence, data polling, or sector protection algorithm.  
6. Models 03, 04 only  
Word/Byte Configuration (Models 03, 04 Only)  
The BYTE# pin controls whether the device data I/O pins DQ15–DQ0 operate in the byte or word  
configuration. If the BYTE# pin is set at logic 1, the device is in word configuration, DQ15–DQ0  
are active and controlled by CE# and OE#.  
If the BYTE# pin is set at logic 0, the device is in byte configuration, and only data I/O pins DQ0–  
DQ7 are active and controlled by CE# and OE#. The data I/O pins DQ8–DQ14 are tri-stated, and  
the DQ15 pin is used as an input for the LSB (A-1) address function.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE# pins to V . CE# is  
IL  
the power control and selects the device. OE# is the output control and gates array data to the  
output pins. WE# should remain at V . The BYTE# pin determines whether the device outputs  
IH  
array data in words or bytes.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
11  
A d v a n c e I n f o r m a t i o n  
The internal state machine is set for reading array data upon device power-up, or after a hardware  
reset. This ensures that no spurious alteration of the memory content occurs during the power  
transition. No command is necessary in this mode to obtain array data. Standard microprocessor  
read cycles that assert valid addresses on the device address inputs produce valid data on the  
device data outputs. The device remains enabled for read access until the command register con-  
tents are altered.  
See Reading Array Data on page 31 for more information. Refer to the AC Read Operations on  
page 50 table for timing specifications and to Figure 14, on page 50 for the timing diagram. I  
CC1  
in the DC Characteristics table represents the active current specification for reading array data.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the device and  
erasing sectors of memory), the system must drive WE# and CE# to V , and OE# to V  
.
IH  
IL  
For program operations, the BYTE# pin determines whether the device accepts program data in  
bytes or words. Refer to Word/Byte Configuration (Models 03, 04 Only) on page 11 for more  
information.  
The device features an Unlock Bypass mode to facilitate faster programming. Once the device  
enters the Unlock Bypass mode, only two write cycles are required to program a word or byte,  
instead of four. The Word/Byte Program Command Sequence on page 32 section has details on  
programming data to the device using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table 2 on page 14  
and Table 4 on page 16 indicate the address space that each sector occupies. A sector address  
consists of the address bits required to uniquely select a sector. The Command Definitions on  
page 31 contains details on erasing a sector or the entire chip, or suspending/resuming the erase  
operation.  
After the system writes the autoselect command sequence, the device enters the autoselect  
mode. The system can then read autoselect codes from the internal register (which is separate  
from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to  
Autoselect Mode on page 20 and Autoselect Command Sequence on page 32 for more  
information.  
I
in the DC Characteristics table represents the active current specification for the write mode.  
CC2  
AC Characteristics on page 50 contains timing specification tables and timing diagrams for write  
operations.  
Program and Erase Operation Status  
During an erase or program operation, the system may check the status of the operation by read-  
ing the status bits on DQ7–DQ0. Standard read cycle timings and I read specifications apply.  
CC  
Refer to Write Operation Status on page 39 for more information, and to AC Characteristics on  
page 50 for timing diagrams.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This is one of two  
functions provided by the WP#/ACC (ACC on Model 00) pin. This function is primarily intended to  
allow faster manufacturing throughput at the factory.  
If the system asserts V  
on this pin, the device automatically enters the aforementioned Unlock  
HH  
Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the  
pin to reduce the time required for program operations. The system would use a two-cycle pro-  
gram command sequence as required by the Unlock Bypass mode. Removing V from the WP#/  
HH  
ACC pin returns the device to normal operation. Note that the WP#/ACC pin must not be at V  
HH  
for operations other than accelerated programming, or device damage may result. In addition,  
12  
S29AL032D S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device  
may result.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby  
mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the  
high impedance state, independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are both held at V  
CC  
0.3 V. (Note that this is a more restricted voltage range than V .) If CE# and RESET# are held  
IH  
at V , but not within V  
0.3 V, the device will be in the standby mode, but the standby current  
IH  
CC  
will be greater. The device requires standard access time (t ) for read access when the device is  
CE  
in either of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until  
the operation is completed.  
In the DC Characteristics table, I  
and I  
represents the standby current specification.  
CC4  
CC3  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically  
enables this mode when addresses remain stable for t + 30 ns. The automatic sleep mode is  
ACC  
independent of the CE#, WE#, and OE# control signals. Standard address access timings provide  
new data when addresses are changed. While in sleep mode, output data is latched and always  
available to the system. I  
in DC Characteristics on page 46 represents the automatic sleep  
CC4  
mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data. When  
the system drives the RESET# pin to V for at least a period of t , the device immediately ter-  
IL  
RP  
minates any operation in progress, tristates all data output pins, and ignores all read/write  
attempts for the duration of the RESET# pulse. The device also resets the internal state machine  
to reading array data. The operation that was interrupted should be reinitiated once the device is  
ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at V ±0.3 V, the  
SS  
device draws CMOS standby current (I  
standby current will be greater.  
). If RESET# is held at V but not within V ±0.3 V, the  
IL SS  
CC4  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset  
the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a 0 (busy)  
until the internal reset operation is complete, which requires a time of t  
(during Embedded  
READY  
Algorithms). The system can thus monitor RY/BY# to determine whether the reset operation is  
complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin  
is 1), the reset operation is completed within a time of t  
(not during Embedded Algorithms).  
READY  
The system can read data t  
after the RESET# pin returns to V .  
IH  
RH  
Refer to AC Characteristics on page 50 for RESET# parameters and to Figure 15, on page 51 for  
the timing diagram.  
Output Disable Mode  
When the OE# input is at V , output from the device is disabled. The output pins are placed in  
IH  
the high impedance state.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
13  
A d v a n c e I n f o r m a t i o n  
Table 2. Model 00 Sector Addresses (Sheet 1 of 2)  
Address Range  
(in hexadecimal)  
Sector  
A21  
A20  
A19  
A18  
A17  
A16  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
000000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1FFFFF  
200000–20FFFF  
210000–21FFFF  
220000–22FFFF  
230000–23FFFF  
240000–24FFFF  
250000–25FFFF  
260000–26FFFF  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
14  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Table 2. Model 00 Sector Addresses (Sheet 2 of 2)  
Address Range  
(in hexadecimal)  
Sector  
A21  
A20  
A19  
A18  
A17  
A16  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
270000–27FFFF  
280000–28FFFF  
290000–29FFFF  
2A0000–2AFFFF  
2B0000–2BFFFF  
2C0000–2CFFFF  
2D0000–2DFFFF  
2E0000–2EFFFF  
2F0000–2FFFFF  
300000–30FFFF  
310000–31FFFF  
320000–32FFFF  
330000–33FFFF  
340000–34FFFF  
350000–35FFFF  
360000–36FFFF  
370000–37FFFF  
380000–38FFFF  
390000–39FFFF  
3A0000–3AFFFF  
3B0000–3BFFFF  
3C0000–3CFFFF  
3D0000–3DFFFF  
3E0000–3EFFFF  
3F0000–3FFFFF  
Notes:  
1. All sectors are 64 Kbytes in size.  
Table 3. Model 00 Secured Silicon Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(bytes/words)  
(x8)  
(x16)  
Address Range  
Address Range  
111111111  
256/128  
3FFF00h–3FFFFFh  
1FFF80h–1FFFFFh  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
15  
A d v a n c e I n f o r m a t i o n  
Table 4. Model 03 Sector Addresses (Sheet 1 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
SA0  
Address Range  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
000000h–07FFFh  
008000h–0FFFFh  
010000h–17FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
16  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Table 4. Model 03 Sector Addresses (Sheet 2 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Address Range  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3F1FFFh  
3F2000h–3F3FFFh  
3F4000h–3F5FFFh  
3F6000h–3F7FFFh  
3F8000h–3F9FFFh  
3FA000h–3FBFFFh  
3FC000h–3FDFFFh  
3FE000h–3FFFFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH).  
Table 5. Model 03 Secured Silicon Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(bytes/words)  
(x8)  
(x16)  
Address Range  
Address Range  
111111111  
256/128  
3FFF00h–3FFFFFh  
1FFF80h–1FFFFFh  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
17  
A d v a n c e I n f o r m a t i o n  
Table 6. Model 04 Sector Addresses (Sheet 1 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
8/4  
000000h-001FFFh  
002000h-003FFFh  
004000h-005FFFh  
006000h-007FFFh  
008000h-009FFFh  
00A000h-00BFFFh  
00C000h-00DFFFh  
00E000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
8/4  
SA2  
8/4  
SA3  
8/4  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
18  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Table 6. Model 04 Sector Addresses (Sheet 2 of 2)  
Sector Address  
A20–A12  
Sector Size  
(Kbytes/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
111000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH).  
Table 7. Model 04 Secured Silicon Sector Addresses  
Sector Address  
A20–A12  
Sector Size  
(bytes/words)  
(x8)  
(x16)  
Address Range  
Address Range  
000000000  
256/128  
000000h-0000FFh  
00000h-0007Fh  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
19  
A d v a n c e I n f o r m a t i o n  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector protection ver-  
ification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for  
programming equipment to automatically match a device to be programmed with its correspond-  
ing programming algorithm. However, the autoselect codes can also be accessed in-system  
through the command register.  
When using programming equipment, the autoselect mode requires V (11.5 V to 12.5 V) on  
ID  
address pin A9. Address pins A6, A1, and A0 must be as shown in Table 8. In addition, when ver-  
ifying sector protection, the sector address must appear on the appropriate highest order address  
bits (see Table 2 on page 14 and Table 4 on page 16). Table 8 shows the remaining address bits  
that are don’t care. When all necessary bits have been set as required, the programming equip-  
ment may then read the corresponding identifier code on DQ7-DQ0.  
To access the autoselect codes in-system, the host system can issue the autoselect command via  
the command register, as shown in Table 17 on page 38. This method does not require V . See  
ID  
“Command Definitions” for details on using the autoselect mode.  
Table 8. S29AL032D Autoselect Codes (High Voltage Method)  
A19 A11  
to to  
A12 A10  
A8  
to  
A7  
A5  
to  
A4  
A3  
to  
A2  
DQ8  
to  
DQ15  
DQ7  
to  
DQ0  
Description  
Mode  
CE#  
OE#  
WE#  
A9  
A6  
L
A1  
L
A0  
L
Manufacturer ID: Spansion  
L
L
L
L
H
H
X
X
V
V
X
X
L
X
01h  
ID  
ID  
Device ID:  
S29AL032D  
(Model 00)  
Byte  
X
X
X
L
X
L
L
H
N/A  
A3h  
Device ID:  
S29AL032D  
(Model 03)  
Word  
Byte  
Word  
Byte  
L
L
L
L
L
L
L
L
H
H
H
H
22h  
X
F6h  
X
X
X
X
V
V
X
X
L
L
X
X
L
L
L
L
H
H
ID  
ID  
F6h  
F9h  
Device ID:  
S29AL032D  
(Model 04)  
22h  
X
F9h  
X
01h (protected)  
Sector Protection  
Verification  
L
L
L
L
H
H
SA  
X
X
X
V
V
X
X
L
L
X
X
L
L
H
H
L
ID  
ID  
00h  
(unprotected)  
X
X
X
X
X
X
X
85 (factory  
locked)  
Secured Silicon Sector  
Indicator Bit (DQ7)  
(Model 00)  
H
05 (not factory  
locked)  
8D (factory  
locked)  
Secured Silicon Sector  
Indicator Bit (DQ7)  
(Model 03)  
L
L
L
L
H
H
X
X
X
X
V
V
X
X
L
L
X
X
L
L
H
H
H
H
ID  
ID  
0D (not factory  
locked)  
9D (factory  
locked)  
Secured Silicon Sector  
Indicator Bit (DQ7)  
(Model 04)  
1D (not factory  
locked)  
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.  
Note: The autoselect codes may also be accessed in-system via command sequences. See Table 17 on page 38.  
Sector Protection/Unprotection  
The hardware sector protection feature disables both program and erase operations in any sector.  
The hardware sector unprotection feature re-enables both program and erase operations in pre-  
viously protected sectors.  
20  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
The device is shipped with all sectors unprotected. Spansion offers the option of programming  
and protecting sectors at its factory prior to shipping the device through the Spansion Express-  
Flash™ Service. Contact a Spansion representative for further details.  
It is possible to determine whether a sector is protected or unprotected. See “Autoselect Mode”  
for details.  
Sector protection/unprotection can be implemented via two methods.  
The primary method requires V on the RESET# pin only, and can be implemented either in-sys-  
ID  
tem or via programming equipment. Figure 2, on page 25 shows the algorithms and Figure 26,  
on page 59 shows the timing diagram. This method uses standard microprocessor bus cycle tim-  
ing. For sector unprotect, all unprotected sectors must first be protected prior to the first sector  
unprotect write cycle.  
The alternate method intended only for programming equipment requires V on address pin A9  
ID  
and OE#. This method is compatible with programmer routines written for earlier 3.0 volt-only  
Spansion flash devices. Details on this method are provided in a supplement, publication number  
21468. Contact a Spansion representative to request a copy.  
Table 9. Sector Block Addresses for Protection/Unprotection — Model 00  
Sector/Sector Block  
A21–A16  
Sector/Sector Block Size  
SA0  
000000  
64 Kbytes  
000001,000010,  
000011  
SA1-SA3  
SA4-SA7  
192 (3x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
000100, 000101,  
000110, 000111  
001000, 001001,  
001010, 001011  
SA8-SA11  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56-SA59  
001100, 001101,  
001110, 001111  
010000, 010001,  
010010, 010011  
010100, 010101,  
010110, 010111  
011000, 011001,  
011010, 011011  
011100, 011101,  
011110, 011111  
100000, 100001,  
100010, 100011  
100100, 100101,  
100110, 100111  
101000, 101001,  
101010, 101011  
101100, 101101,  
101110, 101111  
110000, 110001,  
110010, 110011  
110100, 110101,  
110110, 110111  
111000, 111001,  
111010, 111011  
111100, 111101,  
111110  
SA60-SA62  
SA63  
192 (4x64) Kbytes  
64 Kbytes  
111111  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
21  
A d v a n c e I n f o r m a t i o n  
Table 10. Sector Block Addresses for Protection/Unprotection — Model 03  
Sector / Sector Block  
A20–A12  
Sector/Sector Block Size  
000000XXX,  
000001XXX,  
000010XXX  
000011XXX  
SA0-SA3  
256 (4x64) Kbytes  
SA4-SA7  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
SA8-SA11  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56-SA59  
111100XXX,  
111101XXX,  
111110XXX  
SA60-SA62  
192 (3x64) Kbytes  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
22  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Table 11. Sector Block Addresses for Protection/Unprotection — Model 04  
Sector / Sector Block  
A20–A12  
Sector/Sector Block Size  
111111XXX,  
111110XXX,  
111101XXX,  
111100XXX  
SA70-SA67  
256 (4x64) Kbytes  
SA66-SA63  
SA62-SA59  
SA58-SA55  
SA54-SA51  
SA50-SA47  
SA46-SA43  
SA42-SA39  
SA38-SA35  
SA34-SA31  
SA30-SA27  
SA26-SA23  
SA22–SA19  
SA18-SA15  
SA14-SA11  
1110XXXXX  
1101XXXXX  
1100XXXXX  
1011XXXXX  
1010XXXXX  
1001XXXXX  
1000XXXXX  
0111XXXXX  
0110XXXXX  
0101XXXXX  
0100XXXXX  
0011XXXXX  
0010XXXXX  
0001XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
000011XXX,  
000010XXX,  
000001XXX  
SA10-SA8  
192 (3x64) Kbytes  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
000000111  
000000110  
000000101  
000000100  
000000011  
000000010  
000000001  
000000000  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
Write Protect (WP#) — Models 03, 04 Only  
The Write Protect function provides a hardware method of protecting certain boot sectors without  
using V . This function is one of two provided by the WP#/ACC pin.  
ID  
If the system asserts V on the WP#/ACC pin, the device disables program and erase functions  
IL  
in the two outermost 8 Kbyte boot sectors independently of whether those sectors were protected  
or unprotected using the method described in Sector Protection/Unprotection on page 20. The  
two outermost 8 Kbyte boot sectors are the two sectors containing the lowest addresses in a bot-  
tom-boot-configured device, or the two sectors containing the highest addresses in a top-boot-  
configured device.  
If the system asserts V on the WP#/ACC pin, the device reverts to whether the two outermost  
IH  
8K Byte boot sectors were last set to be protected or unprotected. That is, sector protection or  
unprotection for these two sectors depends on whether they were last protected or unprotected  
using the method described in Sector Protection/Unprotection on page 20.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the  
device may result.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
23  
A d v a n c e I n f o r m a t i o n  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to change data in-sys-  
tem. The Sector Unprotect mode is activated by setting the RESET# pin to V . During this mode,  
ID  
formerly protected sectors can be programmed or erased by selecting the sector addresses. Once  
V
is removed from the RESET# pin, all the previously protected sectors are protected again.  
ID  
shows the algorithm, and Figure 24, on page 58 shows the timing diagrams, for this feature.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected.  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
24  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
RESET# = VID  
Wait 1 μs  
Wait 1 μs  
unprotect address  
No  
First Write  
Cycle = 60h?  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 2. In-System Sector Protect/Unprotect Algorithms  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
25  
A d v a n c e I n f o r m a t i o n  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a 256 byte Flash memory region that enables per-  
manent part identification through an Electronic Serial Number (ESN). The Secured Silicon Sector  
uses a Secured Silicon Sector Indicator Bit (DQ7) to indicate whether or not the Secured Silicon  
Sector is locked when shipped from the factory. This bit is permanently set at the factory and can-  
not be changed, which prevents cloning of a factory locked part. This ensures the security of the  
ESN once the product is shipped to the field.  
Spansion offers the device with the Secured Silicon Sector either factory locked or customer lock-  
able. The factory-locked version is always protected when shipped from the factory, and has the  
Secured Silicon Sector Indicator Bit permanently set to a 1. The customer-lockable version is  
shipped with the Secured Silicon Sector unprotected, allowing customers to utilize the that sector  
in any manner they choose. The customer-lockable version has the Secured Silicon Sector Indi-  
cator Bit permanently set to a 0. Thus, the Secured Silicon Sector Indicator Bit prevents  
customer-lockable devices from being used to replace devices that are factory locked.  
The system accesses the Secured Silicon Sector through a command sequence (see Enter Se-  
cured Silicon Sector/Exit Secured Silicon Sector Command Sequence on page 32). After the  
system writes the Enter Secured Silicon Sector command sequence, it may read the Secured Sil-  
icon Sector by using the addresses normally occupied by the boot sectors. This mode of operation  
continues until the system issues the Exit Secured Silicon Sector command sequence, or until  
power is removed from the device. On power-up, or following a hardware reset, the device reverts  
to sending commands to the boot sectors.  
Factory Locked: Secured Silicon Sector Programmed  
and Protected at the Factory  
In a factory locked device, the Secured Silicon Sector is protected when the device is shipped from  
the factory. The Secured Silicon Sector cannot be modified in any way. The device is available pre-  
programmed with one of the following:  
„
„
„
A random, secure ESN only  
Customer code through the ExpressFlash service  
Both a random, secure ESN and customer code through the ExpressFlash service.  
In devices that have an ESN, a Bottom Boot device has the 16-byte (8-word) ESN in sector 0 at  
addresses 00000h–0000Fh in byte mode (or 00000h–00007h in word mode). In the Top Boot de-  
vice the ESN is in sector 70 at addresses 3FFF00h–3FFF0Fh in byte mode (or 1FFF80h–1FFF87h  
in word mode). In the Uniform device the ESN is in sector 63 at addresses 3FFF00h-3FFF0Fh in  
byte mode (or 1FFF80h-1FFF87h in word mode).  
Customers may opt to have their code programmed by Spansion through the Spansion Express-  
Flash service. Spansion programs the customer’s code, with or without the random ESN. The  
devices are then shipped from the Spansion factory with the Secured Silicon Sector permanently  
locked. Contact a Spansion representative for details on using the Spansion ExpressFlash service.  
Customer Lockable: Secured Silicon Sector NOT Programmed  
or Protected at the Factory  
The customer lockable version allows the Secured Silicon Sector to be programmed once and then  
permanently locked after it ships from Spansion. Note that the accelerated programming (ACC)  
and unlock bypass functions are not available when programming the Secured Silicon Sector.  
The Secured Silicon Sector area can be protected using the following procedures:  
„
Write the three-cycle Enter Secured Silicon Region command sequence, and then follow the  
in-system sector protect algorithm as shown in Figure 2, on page 25, except that RESET#  
may be at either V or V . This allows in-system protection of the Secured Silicon Sector  
IH  
ID  
26  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
without raising any device pin to a high voltage. Note that this method is only applicable to  
the Secured Silicon Sector.  
„
To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm  
shown in Figure 3, on page 27.  
Once the Secured Silicon Sector is locked and verified, the system must write the Exit Secured  
Silicon Sector Region command sequence to return to reading and writing the remainder of the  
array.  
The Secured Silicon Sector protection must be used with caution since, once protected, there is  
no procedure available for unprotecting the Secured Silicon Sector area and none of the bits in  
the Secured Silicon Sector memory space can be modified in any way.  
START  
If data = 00h,  
RESET# =  
SecSi Sector is  
VIH or VID  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
Wait 1 μs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
Write reset  
with A6 = 0,  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Read from SecSi  
Protect Verify  
Sector address  
complete  
with A6 = 0,  
A1 = 1, A0 = 0  
Figure 3. Secured Silicon Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data  
protection against inadvertent writes (refer to Table 17 on page 38 for command definitions). In  
addition, the following hardware data protection measures prevent accidental erasure or pro-  
gramming, which might otherwise be caused by spurious system level signals during V  
power-up and power-down transitions, or from system noise.  
CC  
Low V  
Write Inhibit  
CC  
When V is less than V  
, the device does not accept any write cycles. This protects data during  
LKO  
CC  
V
power-up and power-down. The command register and all internal program/erase circuits are  
CC  
disabled, and the device resets. Subsequent writes are ignored until V is greater than V  
. The  
CC  
LKO  
system must provide the proper signals to the control pins to prevent unintentional writes when  
is greater than V  
V
.
LKO  
CC  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = V , CE# = V or WE# = V . To initiate  
IL  
IH  
IH  
a write cycle, CE# and WE# must be a logical zero while OE# is a logical one.  
June 13, 2005 S29AL032D_00_A3 S29AL032D  
27  
A d v a n c e I n f o r m a t i o n  
Power-Up Write Inhibit  
If WE# = CE# = V and OE# = V during power up, the device does not accept commands on  
IL  
IH  
the rising edge of WE#. The internal state machine is automatically reset to reading array data  
on power-up.  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software inter-  
rogation handshake, which allows specific vendor-specified software algorithms to be used for  
entire families of devices. Software support can then be device-independent, JEDEC ID-indepen-  
dent, and forward- and backward-compatible for the specified flash device families. Flash vendors  
can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to  
address 55h in word mode (or address AAh in byte mode), any time the device is ready to read  
array data. The system can read CFI information at the addresses given in Tables 1215. In word  
mode, the upper address bits (A7–MSB) must be all zeros. To terminate reading CFI data, the  
system must write the reset command.  
The system can also write the CFI query command when the device is in the autoselect mode.  
The device enters the CFI query mode, and the system can read CFI data at the addresses given  
in Tables 1215. The system must write the reset command to return the device to the autoselect  
mode.  
For further information, please contact a Spansion representative for a copy of this document.  
Table 12. CFI Query Identification String  
Addresses  
(Models03,04  
Byte Mode  
Addresses  
Only)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string QRY  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
28  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Table 13. System Interface String  
Addresses  
(Models03,04  
Byte Mode  
Only)  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
36h  
38h  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
29  
A d v a n c e I n f o r m a t i o n  
Table 14. Device Geometry Definition  
Addresses  
(Models03,04  
Byte Mode  
Only)  
Addresses  
Data  
Description  
27h  
4Eh  
0016h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
000xh  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
(0 = Model 00, 2 = Models 03, 04)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device  
(1 = Model 00, 2 = Models 03, 04)  
2Ch  
58h  
000xh  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
(003F, 0000, 0000, 0001) = Model 00  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
00xxh  
0000h  
00x0h  
000xh  
(0007, 0000, 0020, 0000) = Models 03, 04  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
00xxh  
0000h  
0020h  
000xh  
Erase Block Region 2 Information  
(0000, 0000, 0000, 0000) = Model 00  
(003E, 0000, 0000, 0001) = Models 03, 04  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 3 Information  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
Table 15. Primary Vendor-Specific Extended Query (Sheet 1 of 2)  
Addresses  
(Models03,04  
Byte Mode  
Only)  
Addresses  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0031h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock  
0 = Required (Models 03, 04), 1 = Not Required (Model 00)  
45h  
46h  
47h  
8Ah  
8Ch  
8Eh  
000xh  
0002h  
0001h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
30  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Table 15. Primary Vendor-Specific Extended Query (Sheet 2 of 2)  
Addresses  
(Models03,04  
Byte Mode  
Only)  
Addresses  
Data  
Description  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
48h  
90h  
92h  
0001h  
Sector Protect/Unprotect scheme  
01 = 29F040 mode, 02 = 29F016 mode,  
03 = 29F400 mode, 04 = 29LV800A mode  
49h  
0004h  
Simultaneous Operation  
00 = Not Supported, 01 = Supported  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0000h  
0000h  
0000h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
4Fh  
9Ah  
9Ch  
9Eh  
00B5h  
00C5h  
000xh  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
(0 = Model 00, 2 = Model 03, 3 = Model 04)  
Command Definitions  
Writing specific address and data commands or sequences into the command register initiates  
device operations. Table 17 on page 38 defines the valid register command sequences. Writing  
incorrect address and data values or writing them in the improper sequence resets the de-  
vice to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is  
latched on the rising edge of WE# or CE#, whichever happens first. Refer to the appropriate tim-  
ing diagrams in the “AC Characteristics” section.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are  
required to retrieve data. The device is also ready to read array data after completing an Embed-  
ded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode.  
The system can read array data using the standard read timings, except that if it reads at an ad-  
dress within erase-suspended sectors, the device outputs status data. After completing a  
programming operation in the Erase Suspend mode, the system may once again read array data  
with the same exception. See Erase Suspend/Erase Resume Commands on page 35 for more in-  
formation on this mode.  
The system must issue the reset command to re-enable the device for reading array data if DQ5  
goes high, or while in the autoselect mode. See the Reset Command on page 32 section, next.  
See also Requirements for Reading Array Data on page 11 for more information. The Read  
Operations on page 50 provides the read parameters, and Figure 14, on page 50 shows the timing  
diagram.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
31  
A d v a n c e I n f o r m a t i o n  
Reset Command  
Writing the reset command to the device resets the device to reading array data. Address bits are  
don’t care for this command.  
The reset command may be written between the sequence cycles in an erase command sequence  
before erasing begins. This resets the device to reading array data. Once erasure begins, however,  
the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program command se-  
quence before programming begins. This resets the device to reading array data (also applies to  
programming in Erase Suspend mode). Once programming begins, however, the device ignores  
reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command se-  
quence. Once in the autoselect mode, the reset command must be written to return to reading  
array data (also applies to autoselect during Erase Suspend).  
If DQ5 goes high during a program or erase operation, writing the reset command returns the  
device to reading array data (also applies during Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and de-  
vices codes, and determine whether a sector is protected. Table 17 on page 38 shows the address  
and data requirements. This method is an alternative to that shown in Table 8 on page 20, which  
is intended for PROM programmers and requires V on address bit A9.  
ID  
The autoselect command sequence is initiated by writing two unlock cycles, followed by the au-  
toselect command. The device then enters the autoselect mode, and the system may read at any  
address any number of times, without initiating another command sequence.  
A read cycle at address 0XXX00h retrieves the manufacturer code. A read cycle at address  
0XXX01h returns the device code. A read cycle containing a sector address (SA) and the address  
02h in word mode (or 04h in byte mode) returns 01h if that sector is protected, or 00h if it is  
unprotected. Refer to Table 2 on page 14 and Table 4 on page 16 for valid sector addresses.  
The system must write the reset command to exit the autoselect mode and return to reading  
array data.  
Enter Secured SiliconSector/Exit Secured Silicon Sector  
Command Sequence  
The Secured Silicon Sector region provides a secured data area containing a random, sixteen-  
byte electronic serial number (ESN). The system can access the Secured Silicon Sector region by  
issuing the three-cycle Enter Secured Silicon Sector command sequence. The device continues to  
access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured Sili-  
con Sector command sequence. The Exit Secured Silicon Sector command sequence returns the  
device to normal operation. Table 16. S29AL032D Command Definitions — Model 00 on page 37  
and Table 17. S29AL032D Command Definitions — Models 03, 04 on page 38 show the ad-  
dresses and data requirements for both command sequences. Note that the ACC function and  
unlock bypass modes are not available when the device enters the Secured Silicon Sector. See  
also Secured Silicon Sector Flash Memory Region on page 26 for further information.  
Word/Byte Program Command Sequence  
Models 03, 04 may program the device by word or byte, depending on the state of the BYTE#  
pin. Model 00 may program the device by byte only. Programming is a four-bus-cycle operation.  
The program command sequence is initiated by writing two unlock write cycles, followed by the  
program set-up command. The program address and data are written next, which in turn initiate  
32  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
the Embedded Program algorithm. The system is not required to provide further controls or tim-  
ings. The device automatically generates the program pulses and verifies the programmed cell  
margin. Table 17 on page 38 shows the address and data requirements for the byte program  
command sequence.  
When the Embedded Program algorithm is complete, the device then returns to reading array  
data and addresses are no longer latched. The system can determine the status of the program  
operation by using DQ7, DQ6, or RY/BY#. See Write Operation Status on page 39 for information  
on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note  
that a hardware reset immediately terminates the programming operation. The Byte Program  
command sequence should be reinitiated once the device has reset to reading array data, to en-  
sure data integrity.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be pro-  
grammed from a 0 back to a 1. Attempting to do so may halt the operation and set DQ5 to 1,  
or cause the Data# Polling algorithm to indicate the operation was successful. However, a suc-  
ceeding read will show that the data is still 0. Only erase operations can convert a 0 to a 1.  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program bytes or words to the device faster than  
using the standard program command sequence. The unlock bypass command sequence is initi-  
ated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock  
bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock by-  
pass program command sequence is all that is required to program in this mode. The first cycle  
in this sequence contains the unlock bypass program command, A0h; the second cycle contains  
the program address and data. Additional data is programmed in the same manner. This mode  
dispenses with the initial two unlock cycles required in the standard program command sequence,  
resulting in faster total programming time. Table 17 on page 38 shows the requirements for the  
command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset com-  
mands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock  
bypass reset command sequence. The first cycle must contain the data 90h; the second cycle the  
data 00h. Addresses are don’t care for both cycles. The device then returns to reading array data.  
Figure 4, on page 34 illustrates the algorithm for the program operation. See the Erase/Program  
Operations on page 54 for parameters, and to Figure 18, on page 55 for timing diagrams.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
33  
A d v a n c e I n f o r m a t i o n  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
NOTE: See Table 17 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing  
two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then  
followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The  
device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern prior to  
electrical erase. The system is not required to provide any controls or timings during these oper-  
ations. Table 17 on page 38 shows the address and data requirements for the chip erase  
command sequence.  
Any commands written to the chip during the Embedded Erase algorithm are ignored. Note that  
a hardware reset during the chip erase operation immediately terminates the operation. The  
Chip Erase command sequence should be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#.  
See Write Operation Status on page 39 for information on these status bits. When the Embedded  
Erase algorithm is complete, the device returns to reading array data and addresses are no longer  
latched.  
Figure 5, on page 36 illustrates the algorithm for the erase operation. See Erase/Program  
Operations on page 54 for parameters, and to Figure 19, on page 56 for timing diagrams.  
34  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writ-  
ing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then  
followed by the address of the sector to be erased, and the sector erase command. Table 17 on  
page 38 shows the address and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram the memory prior to erase. The Embedded  
Erase algorithm automatically programs and verifies the sector for an all zero data pattern prior  
to electrical erase. The system is not required to provide any controls or timings during these  
operations.  
After the command sequence is written, a sector erase time-out of 50 µs begins. During the time-  
out period, additional sector addresses and sector erase commands may be written. Loading the  
sector erase buffer may be done in any sequence, and the number of sectors may be from one  
sector to all sectors. The time between these additional cycles must be less than 50 µs, otherwise  
the last address and command might not be accepted, and erasure may begin. It is recommended  
that processor interrupts be disabled during this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector Erase command is written. If the time between  
additional sector erase commands can be assumed to be less than 50 µs, the system need not  
monitor DQ3. Any command other than Sector Erase or Erase Suspend during the time-  
out period resets the device to reading array data. The system must rewrite the command  
sequence and any additional sector addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out. (See the “DQ3:  
Sector Erase Timer” section.) The time-out begins from the rising edge of the final WE# pulse in  
the command sequence.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other  
commands are ignored. Note that a hardware reset during the sector erase operation immedi-  
ately terminates the operation. The Sector Erase command sequence should be reinitiated once  
the device has returned to reading array data, to ensure data integrity.  
When the Embedded Erase algorithm is complete, the device returns to reading array data and  
addresses are no longer latched. The system can determine the status of the erase operation by  
using DQ7, DQ6, DQ2, or RY/BY#. (Refer to “Write Operation Status” for information on these  
status bits.)  
Figure 5, on page 36 illustrates the algorithm for the erase operation. Refer to Erase/Program  
Operations on page 54 for parameters, and to Figure 19, on page 56 for timing diagrams.  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command allows the system to interrupt a sector erase operation and then  
read data from, or program data to, any sector not selected for erasure. This command is valid  
only during the sector erase operation, including the 50 µs time-out period during the sector erase  
command sequence. The Erase Suspend command is ignored if written during the chip erase op-  
eration or Embedded Program algorithm. Writing the Erase Suspend command during the Sector  
Erase time-out immediately terminates the time-out period and suspends the erase operation.  
Addresses are don’t-cares when writing the Erase Suspend command.  
When the Erase Suspend command is written during a sector erase operation, the device requires  
a maximum of 20 µs to suspend the erase operation. However, when the Erase Suspend command  
is written during the sector erase time-out, the device immediately terminates the time-out pe-  
riod and suspends the erase operation.  
After the erase operation has been suspended, the system can read array data from or program  
data to any sector not selected for erasure. (The device erase suspends all sectors selected for  
erasure.) Normal read and write timings and command definitions apply. Reading at any address  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
35  
A d v a n c e I n f o r m a t i o n  
within erase-suspended sectors produces status data on DQ7–DQ0. The system can use DQ7, or  
DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See  
Write Operation Status on page 39 for information on these status bits.  
After an erase-suspended program operation is complete, the system can once again read array  
data within non-suspended sectors. The system can determine the status of the program opera-  
tion using the DQ7 or DQ6 status bits, just as in the standard program operation. See Write  
Operation Status on page 39 for more information.  
The system may also write the autoselect command sequence when the device is in the Erase  
Suspend mode. The device allows reading autoselect codes even at addresses within erasing sec-  
tors, since the codes are not stored in the memory array. When the device exits the autoselect  
mode, the device reverts to the Erase Suspend mode, and is ready for another valid operation.  
See Autoselect Command Sequence on page 32 for more information.  
The system must write the Erase Resume command (address bits are don’t care) to exit the erase  
suspend mode and continue the sector erase operation. Further writes of the Resume command  
are ignored. Another Erase Suspend command can be written after the device has resumed  
erasing.  
START  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 17 for erase command sequence.  
2. See DQ3: Sector Erase Timer on page 44 for more information.  
Figure 5. Erase Operation  
36  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Table 16. S29AL032D Command Definitions — Model 00  
Bus Cycles (Notes 2–4)  
Command Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data  
Data  
Addr  
Data Addr Data Addr Data  
Read (Note 5)  
1
1
4
4
RA  
RD  
F0  
Reset (Note 7)  
XXX  
XXX  
XXX  
Manufacturer ID (Note 8)  
Device ID (Note 8)  
AA  
AA  
XXX  
XXX  
55  
55  
0XXXXX  
0XXXXX  
90  
90  
0XXX00  
0XXX01  
01  
A3  
Secured Silicon Sector Factory  
Protect (Note 15)  
4
4
AAA  
AA  
AA  
555  
55  
55  
AAA  
90  
90  
X06  
85/05  
XXX  
XXX  
XXX  
XXX  
0XXXXX  
or  
2XXXXX  
00  
01  
Sector Protect Verify  
(Note 9)  
SA  
X02  
Enter Secured Silicon Sector Region  
Exit Secured Silicon Sector Region  
Byte Program  
3
4
4
3
XXX  
XXX  
XXX  
XXX  
AA  
AA  
AA  
AA  
XXX  
XXX  
XXX  
XXX  
55  
55  
55  
55  
XXX  
XXX  
XXX  
XXX  
88  
90  
A0  
20  
XXX  
XXX  
PA  
00  
PD  
Unlock Bypass  
Unlock Bypass Program  
(Note 10)  
2
2
XXX  
XXX  
A0  
90  
PA  
PD  
00  
Unlock Bypass Reset  
(Note 11)  
XXX  
Chip Erase  
6
6
1
1
1
XXX  
XXX  
XXX  
XXX  
XXX  
AA  
AA  
B0  
30  
98  
XXX  
XXX  
55  
55  
XXX  
XXX  
80  
80  
XXX  
XXX  
AA  
AA  
XXX  
XXX  
55  
55  
XXX  
SA  
10  
30  
Sector Erase  
Erase Suspend (Note 12)  
Erase Resume (Note 13)  
CFI Query (Note 14)  
Legend:  
X = Don’t care, RA = Address of the memory location to be read, RD = Data read from location RA during read operation,  
PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the WE# or CE#  
pulse. PD = Data to be programmed at location PA. Data is latched on the rising edge of WE# or CE# pulse. SA = Address  
of the sector to be erased or verified. Address bits A21–A16 uniquely select any sector.  
Notes:  
1. See Table 1 on page 11 for descriptions of bus operations.  
2. All values are in hexadecimal.  
3. Except when reading array or autoselect data, all bus cycles are write operations.  
4. Address bits are don’t care for unlock and command cycles, except when PA or SA is required.  
5. No unlock or command cycles required when device is in read mode.  
6. The Reset command is required to return to the read mode when the device is in the autoselect mode or if DQ5 goes high.  
7. The fourth cycle of the autoselect command sequence is a read cycle.  
8. In the third and fourth cycles of the command sequence, set A21 to 0.  
9. In the third cycle of the command sequence, address bit A21 must be set to 0 if verifying sectors 0–31, or to 1 if verifying  
sectors 32–64. The data in the fourth cycle is 00h for an unprotected sector/sector block and 01h for a protected sector/  
sector block.  
10. The Unlock Bypass command is required prior to the Unlock Bypass Program command.  
11. The Unlock Bypass Reset command is required to return to reading array data when the device is in the Unlock Bypass mode.  
12. The system may read and program functions in non-erasing sectors, or enter the autoselect mode, when in the Erase  
Suspend mode. The Erase Suspend command is valid only during a sector erase operation.  
13. The Erase Resume command is valid only during the Erase Suspend mode.  
14. Command is valid when device is ready to read array data or when device is in autoselect mode.  
15. The data is 85h for factory locked and 05h for not factory locked.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
37  
A d v a n c e I n f o r m a t i o n  
Table 17. S29AL032D Command Definitions — Models 03, 04  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Data Addr Data  
Fifth  
Sixth  
Addr Data Addr Data  
Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
RD  
F0  
XXX  
555  
AAA  
555  
AAA  
555  
AAA  
555  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
AAA  
555  
AAA  
555  
AAA  
555  
Manufacturer ID  
4
4
4
AA  
AA  
AA  
55  
55  
55  
90  
90  
90  
X00  
01  
X01  
X02  
X01  
X02  
X03  
22F6  
F6  
Device ID,  
Model 03  
22F9  
F9  
Device ID,  
Model 04  
Secured Silicon Sector  
Factory Protect  
Model 03, (Note 9)  
4
AA  
55  
90  
8D/0D  
9D/1D  
Byte  
Word  
Byte  
AAA  
555  
AAA  
555  
2AA  
555  
AAA  
555  
AAA  
X06  
X03  
X06  
Secured Silicon Sector  
Factory Protect  
Model 04, (Note 9)  
4
AA  
55  
90  
XX00  
XX01  
00  
(SA)  
X02  
Word  
Byte  
555  
AAA  
2AA  
555  
555  
AAA  
Sector Protect Verify  
(Note 10)  
4
AA  
55  
90  
(SA)  
X04  
01  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
AAA  
55  
2AA  
555  
2AA  
555  
555  
AAA  
555  
AAA  
Enter Secured Silicon Sector  
Region  
3
4
1
4
3
AA  
AA  
98  
AA  
AA  
55  
55  
88  
90  
Exit Secured Silicon Sector  
Region  
XXX  
PA  
00  
PD  
CFI Query (Note 11)  
Program  
AA  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
XXX  
XXX  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
AAA  
55  
55  
A0  
20  
Unlock Bypass  
Unlock Bypass Program (Note 12)  
Unlock Bypass Reset (Note 13)  
2
2
A0  
90  
PD  
00  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
2AA  
555  
2AA  
555  
555  
AAA  
Chip Erase  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
Byte  
Word  
Byte  
Sector Erase  
SA  
Erase Suspend (Note 14)  
Erase Resume (Note 15)  
1
1
B0  
30  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever  
happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A19–A12 uniquely select any sector.  
38  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Notes:  
1. See Table 1 on page 11 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles.  
4. Data bits DQ15–DQ8 are don’t cares for unlock and command cycles.  
5. Address bits A19–A11 are don’t cares for unlock and command cycles, unless SA or PA required.  
6. No unlock or command cycles required when reading array data.  
7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high (while the device  
is providing status data).  
8. The fourth cycle of the autoselect command sequence is a read cycle.  
9. For Model 03, the data is 8Dh for factory locked and 0Dh for not factory locked. For Model 04, the data is 9Dh for factory locked and 1Dh  
for not factory locked.  
10. The data is 00h for an unprotected sector and 01h for a protected sector. See “Autoselect Command Sequence” for more information.  
11. Command is valid when device is ready to read array data or when device is in autoselect mode.  
12. The Unlock Bypass command is required prior to the Unlock Bypass Program command.  
13. The Unlock Bypass Reset command is required to return to reading array data when the device is in the unlock bypass mode. F0 is also  
acceptable.  
14. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase  
Suspend command is valid only during a sector erase operation.  
15. The Erase Resume command is valid only during the Erase Suspend mode.  
Write Operation Status  
The device provides several bits to determine the status of a write operation: DQ2, DQ3, DQ5,  
DQ6, DQ7, and RY/BY#. Table 18 on page 44 and the following subsections describe the functions  
of these bits. DQ7, RY/BY#, and DQ6 each offer a method for determining whether a program or  
erase operation is complete or in progress. These three bits are discussed first.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Algorithm is in  
progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the  
rising edge of the final WE# pulse in the program or erase command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend.  
When the Embedded Program algorithm is complete, the device outputs the datum programmed  
to DQ7. The system must provide the program address to read valid status information on DQ7.  
If a program address falls within a protected sector, Data# Polling on DQ7 is active for approxi-  
mately 1 µs, then the device returns to reading array data.  
During the Embedded Erase algorithm, Data# Polling produces a 0 on DQ7. When the Embedded  
Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling pro-  
duces a 1 on DQ7. This is analogous to the complement/true datum output described for the  
Embedded Program algorithm: the erase function changes all the bits in a sector to 1; prior to  
this, the device outputs the complement, or 0. The system must provide an address within any  
of the sectors selected for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
Data# Polling on DQ7 is active for approximately 100 µs, then the device returns to reading array  
data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unpro-  
tected sectors, and ignores the selected sectors that are protected.  
When the system detects DQ7 has changed from the complement to true data, it can read valid  
data at DQ7–DQ0 on the following read cycles. This is because DQ7 may change asynchronously  
with DQ0–DQ6 while Output Enable (OE#) is asserted low. Figure 21, on page 57, Data# Polling  
Timings (During Embedded Algorithms), in the AC Characteristics on page 50 section illustrates  
this.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
39  
A d v a n c e I n f o r m a t i o n  
Figure 18, on page 44 shows the outputs for Data# Polling on DQ7. Figure 7, on page 43 shows  
the Data# Polling algorithm.  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is an address within  
any sector selected for erasure. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = 1 because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin that indicates whether an Embedded Algorithm  
is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse  
in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be  
tied together in parallel with a pull-up resistor to V  
.
CC  
40  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
If the output is low (Busy), the device is actively erasing or programming. (This includes program-  
ming in the Erase Suspend mode.) If the output is high (Ready), the device is ready to read array  
data (including during the Erase Suspend mode), or is in the standby mode.  
Table 18 on page 44 shows the outputs for RY/BY#. Figures Figure 14, on page 50, Figure 15, on  
page 51, Figure 18, on page 55 and Figure 19, on page 56 shows RY/BY# for read, reset, pro-  
gram, and erase operations, respectively.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or  
complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read  
at any address, and is valid after the rising edge of the final WE# pulse in the command sequence  
(prior to the program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any ad-  
dress cause DQ6 to toggle. (The system may use either OE# or CE# to control the read cycles.)  
When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for approximately 100 µs, then returns to reading array data. If not all selected sectors  
are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or  
is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm  
is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops tog-  
gling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling on  
page 39).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the  
program command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embed-  
ded Program algorithm is complete.  
Table 18 on page 44 shows the outputs for Toggle Bit I on DQ6. Figure 7, on page 43 shows the  
toggle bit algorithm in flowchart form, and the section Reading Toggle Bits DQ6/DQ2 on page 42  
explains the algorithm. Figure 22, on page 57 shows the toggle bit timing diagrams. Figure 23,  
on page 58 shows the differences between DQ2 and DQ6 in graphical form. See also the subsec-  
tion on DQ2: Toggle Bit II.  
DQ2: Toggle Bit II  
The Toggle Bit II on DQ2, when used with DQ6, indicates whether a particular sector is actively  
erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-  
suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command  
sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected  
for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot  
distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, in-  
dicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish  
which sectors are selected for erasure. Thus, both status bits are required for sector and mode  
information. Refer to Table 18 on page 44 to compare outputs for DQ2 and DQ6.  
Figure 7, on page 43 shows the toggle bit algorithm in flowchart form, and the section Reading  
Toggle Bits DQ6/DQ2 on page 42 explains the algorithm. See also the DQ6: Toggle Bit I subsec-  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
41  
A d v a n c e I n f o r m a t i o n  
tion. Figure 22, on page 57 shows the toggle bit timing diagram. Figure 23, on page 58 shows  
the differences between DQ2 and DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7, on page 43 for the following discussion. Whenever the system initially begins  
reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a  
toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after  
the first read. After the second read, the system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device has completed the program or erase  
operation. The system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still tog-  
gling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If  
it is, the system should then determine again whether the toggle bit is toggling, since the toggle  
bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the  
device has successfully completed the program or erase operation. If it is still toggling, the device  
did not complete the operation successfully, and the system must write the reset command to  
return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and  
DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through suc-  
cessive read cycles, determining the status as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this case, the system must start at the beginning  
of the algorithm when it returns to determine the status of the operation (top of Figure 7, on page  
43).  
42  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
(Note 1)  
Read DQ7–DQ0  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
(Notes  
1,2)  
Read DQ7–DQ0  
Twice  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Notes:  
1. Read toggle bit twice to determine whether or not it  
is toggling. See text.  
2. Recheck toggle bit because it may stop toggling as  
DQ5 changes to 1. See text.  
Figure 7. Toggle Bit Algorithm  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count  
limit. Under these conditions DQ5 produces a 1. This is a failure condition that indicates the pro-  
gram or erase cycle was not successfully completed.  
The DQ5 failure condition may appear if the system tries to program a 1 to a location that is pre-  
viously programmed to 0. Only an erase operation can change a 0 back to a 1. Under this  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
43  
A d v a n c e I n f o r m a t i o n  
condition, the device halts the operation, and when the operation has exceeded the timing limits,  
DQ5 produces a 1.  
Under both these conditions, the system must issue the reset command to return the device to  
reading array data.  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether  
or not an erase operation has begun. (The sector erase timer does not apply to the chip erase  
command.) If additional sectors are selected for erasure, the entire time-out also applies after  
each additional sector erase command. When the time-out is complete, DQ3 switches from 0 to  
1. The system may ignore DQ3 if the system can guarantee that the time between additional  
sector erase commands will always be less than 50 μs. See also the Sector Erase Command  
Sequence on page 35 section.  
After the sector erase command sequence is written, the system should read the status on DQ7  
(Data# Polling) or DQ6 (Toggle Bit I) to ensure the device has accepted the command sequence,  
and then read DQ3. If DQ3 is 1, the internally controlled erase cycle has begun; all further com-  
mands (other than Erase Suspend) are ignored until the erase operation is complete. If DQ3 is 0,  
the device will accept additional sector erase commands. To ensure the command has been ac-  
cepted, the system software should check the status of DQ3 prior to and following each  
subsequent sector erase command. If DQ3 is high on the second status check, the last command  
might not have been accepted. Table 18 shows the outputs for DQ3.  
Table 18. Write Operation Status  
DQ7  
DQ5  
DQ2  
Operation  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
Reading within Erase  
Suspended Sector  
1
No toggle  
0
N/A  
Toggle  
1
Erase  
Suspend Reading within Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Mode  
Suspended Sector  
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. See DQ5: Exceeded Timing Limits on page 43 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
44  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Storage Temperature  
Plastic Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +125°C  
Voltage with Respect to Ground  
V
(Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
CC  
A9, OE#, and RESET# (Note 2) . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . . . . . . . . . . . . . . . 0.5 V to V +0.5 V  
CC  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot VSS  
to –2.0 V for periods of up to 20 ns. See Figure 8, on page 45. Maximum DC voltage on input or I/O pins is VCC +0.5  
V. During voltage transitions, input or I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 9,  
on page 45.  
2. Minimum DC input voltage on pins A9, OE#, and RESET# is -0.5 V. During voltage transitions, A9, OE#, and  
RESET# may overshoot VSS to –2.0 V for periods of up to 20 ns. See Figure 8, on page 45. Maximum DC input  
voltage on pin A9 is +12.5 V which may overshoot to 14.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or any other conditions above those indicated in the op-  
erational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for  
extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Figure 8. Maximum Negative  
Overshoot Waveform  
Figure 9. Maximum Positive Overshoot Waveform  
Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
A
VCC Supply Voltages  
V
for standard voltage range . . . . . . . . . . . . . . . . . . . . . . . .2.7 V to 3.6 V  
CC  
Operating ranges define those limits between which the functionality of the device is  
guaranteed.  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
45  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
CMOS Compatible  
Parameter  
Description  
Input Load Current (Note 7)  
A9 Input Load Current  
Test Conditions  
= V to V  
Min  
Typ  
Max  
1.0  
35  
Unit  
µA  
V
V
,
CC  
IN  
CC  
SS  
I
I
I
LI  
= V  
CC max  
V
= V  
; A9 = 12.5 V  
µA  
LIT  
LO  
CC  
CC max  
V
V
= V to V  
SS  
CC max  
,
CC  
OUT  
Output Leakage Current  
1.0  
µA  
= V  
CC  
10 MHz  
5 MHz  
1 MHz  
10 MHz  
5 MHz  
1 MHz  
15  
9
30  
16  
4
CE# = V OE#  
IL,  
V
V
=
=
IH,  
IH,  
Byte Mode  
2
V
Active Read Current  
CC  
I
mA  
CC1  
(Notes 1, 2)  
18  
9
35  
16  
4
CE# = V OE#  
IL,  
Word Mode  
2
V
Active Write Current  
CC  
I
I
I
CE# = V OE# = V  
IH  
15  
0.2  
0.2  
35  
5
mA  
µA  
µA  
CC2  
CC3  
CC4  
IL,  
(Notes 2, 3, 5)  
V
Standby Current (Notes 2, 4)  
Standby Current During Reset  
CE#, RESET# = V  
0.3 V  
CC  
CC  
V
CC  
RESET# = V  
0.3 V  
5
SS  
(Notes 2, 4)  
Automatic Sleep Mode  
(Notes 2, 4, 6)  
V
V
= V  
0.3 V;  
0.3 V  
IH  
IL  
CC  
SS  
I
I
0.2  
5
µA  
CC5  
ACC  
= V  
ACC pin  
5
10  
30  
mA  
mA  
V
ACC Accelerated Program Current,  
Word or Byte  
CE# = V , OE# = V  
IL  
IH  
V
pin  
15  
CC  
V
V
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
IL  
0.7 x V  
V + 0.3  
CC  
V
IH  
CC  
Voltage for WP#/ACC Sector Protect/  
Unprotect and Program Acceleration  
V
V
V
V
= 3.0 V 10%  
= 3.3 V  
11.5  
11.5  
12.5  
V
V
HH  
ID  
CC  
Voltage for Autoselect and Temporary  
Sector Unprotect  
12.5  
0.45  
CC  
V
V
V
V
Output Low Voltage  
I
I
I
= 4.0 mA, V = V  
CC min  
V
V
V
V
OL  
OL  
OH  
OH  
CC  
= -2.0 mA, V = V  
2.4  
OH1  
OH2  
LKO  
CC  
CC min  
CC min  
Output High Voltage  
= -100 µA, V = V  
V
–0.4  
CC  
CC  
Low V Lock-Out Voltage (Note 4)  
2.3  
2.5  
CC  
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. Typical VCC is 3.0 V.  
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
4. At extended temperature range (>+85°C), typical current is 5 µA and maximum current is 10 µA.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep  
mode current is 200 nA.  
6. Not 100% tested.  
7. On the ACC pin only, the maximum input load current when ACC = VIL is ±5.0 µA.  
46  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
Zero Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 10. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 11. Typical ICC1 vs. Frequency  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
47  
A d v a n c e I n f o r m a t i o n  
Test Conditions  
3.3 V  
2.7 kΩ  
Device  
Under  
Test  
C
6.2 kΩ  
L
Note: Diodes are IN3064 or equivalent  
Figure 12. Tes t Se tup  
Table 19. Test Specifications  
Speed Option  
Output Load  
70  
90  
Unit  
1 TTL gate  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
100  
5
pF  
Input Rise and Fall Times  
Input Pulse Levels  
ns  
V
0.0 or VCC  
Input timing measurement  
reference levels  
0.5 VCC  
0.5 VCC  
V
V
Output timing measurement  
reference levels  
48  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VCC  
0.0 V  
0.5 VCC  
0.5 VCC  
Input  
Measurement Level  
Output  
Figure 13. Input Waveforms and Measurement Levels  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
49  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
Test Setup  
70  
90  
Unit  
tAVAV  
tRC  
Read Cycle Time (Note 1)  
Min  
70  
90  
ns  
CE# = VIL  
OE# = VIL  
tAVQV  
tACC  
Address to Output Delay  
Max  
70  
90  
ns  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
OE# = VIL  
Max  
Max  
Max  
Max  
Min  
70  
30  
25  
25  
90  
35  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
Read  
0
Output Enable  
tOEH  
Hold Time (Note 1)  
Toggle and Data# Polling  
Min  
10  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First (Note 1)  
tAXQX  
tOH  
Min  
0
ns  
Notes:  
1. Not 100% tested.  
2. See Figure 12, on page 48 and Table 19 on page 48 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 14. Read Operations Timings  
50  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
Test Setup  
Max  
All Speed Options  
Unit  
RESET#Pin Low (During Embedded Algorithms)  
to Read or Write (See Note)  
tREADY  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read or Write (See Note)  
tREADY  
Max  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RESET# High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRH  
tRP  
Figure 15. RESET# Timings  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
51  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Word/Byte Configuration (BYTE#) (Models 03, 04 Only)  
Parameter  
JEDEC Std  
tELFL/ ELFH  
tFLQZ  
tFHQV  
Speed Options  
Description  
70  
90  
Unit  
ns  
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
5
25  
70  
30  
90  
ns  
ns  
CE#  
OE#  
BYTE#  
tELFL  
Data Output  
(DQ0–DQ14)  
Data Output  
(DQ0–DQ7)  
BYTE#  
DQ0–DQ14  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
DQ15/A-1  
BYTE#  
tFLQZ  
tELFH  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ0–DQ7)  
Data Output  
DQ0–DQ14  
DQ15/A-1  
(DQ0–DQ14)  
mode  
Address  
Input  
DQ15  
Output  
tFHQV  
Figure 16. BYTE# Timings for Read Operations  
52  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note: Refer to the Erase/Program Operations table for tAS and tAH specifications.  
Figure 17. BYTE# Timings for Write Operations  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
53  
A d v a n c e I n f o r m a t i o n  
Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
70  
90  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
90  
tAVWL  
tWLAX  
tDVWH  
tWHDX  
0
ns  
tAH  
45  
35  
45  
45  
ns  
tDS  
tDH  
tOES  
ns  
Data Hold Time  
0
0
ns  
Output Enable Setup Time  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHWL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
35  
35  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
30  
20  
9
Byte  
tWHWH1  
tWHWH1 Programming Operation (Note 2)  
µs  
µs  
Word  
11  
Accelerated Programming Operation, Word or Byte (Note  
2)  
tWHWH1  
tWHWH2  
tWHWH1  
Typ  
7
tWHWH2 Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Max  
0.7  
50  
0
sec  
µs  
ns  
tVCS  
tRB  
VCC Setup Time (Note 1)  
Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See Erase and Programming Performance on page 62 for more information.  
54  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 18. Program Operation Timings  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
55  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
VA  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status on  
page 39).  
2. Illustration shows device in word mode.  
Figure 19. Chip/Sector Erase Operation Timings  
t
t
WC  
RC  
Addresses  
PA  
PA  
PA  
PA  
t
t
ACC  
t
AH  
CPH  
t
CE  
CE#  
OE#  
t
CP  
t
OE  
t
GHWL  
t
SR/W  
t
WP  
t
t
WE#  
Data  
DF  
t
WDH  
DS  
t
OH  
t
DH  
Valid  
In  
Valid  
Out  
Valid In  
Valid Out  
Figure 20. Back to Back Read/Write Cycle Timing  
56  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and  
array data read cycle.  
Figure 21. Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
DQ6/DQ2  
RY/BY#  
Valid Status  
(first read)  
Valid Status  
Valid Status  
Valid Data  
(second read)  
(stops toggling)  
tBUSY  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle.  
Figure 22. Toggle Bit Timings (During Embedded Algorithms)  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
57  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase Erase Suspend  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
Read  
DQ6  
DQ2  
Note: The system may use CE# or OE# to toggle DQ2 and DQ6. DQ2 toggles only when read at an address within an  
erase-suspended sector.  
Figure 23. DQ2 vs. DQ6 for Erase and Erase Suspend Operations  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
tVIDR  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
4
µs  
Note: Not 100% tested.  
12 V  
RESET#  
0 or 3 V  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 24. Temporary Sector Unprotect/Timing Diagram  
58  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
Figure 25. Accelerated Program Timing Diagram  
tVHH  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Sector Protect/Unprotect  
60h 60h  
Valid*  
Valid*  
Status  
Verify  
40h  
Data  
Sector Protect: 150 µs  
Sector Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 26. Sector Protect/Unprotect Timing Diagram  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
59  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase/Program Operations  
Parameter  
JEDEC  
Speed Options  
Std  
tWC  
tAS  
Description  
70  
90  
Unit  
ns  
tAVAV  
tAVEL  
tELAX  
tDVEH  
tEHDX  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
90  
0
ns  
tAH  
45  
35  
45  
45  
ns  
tDS  
tDH  
tOES  
ns  
Data Hold Time  
0
0
ns  
Output Enable Setup Time  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
WE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
WE# Hold Time  
tCP  
CE# Pulse Width  
35  
35  
tCPH  
tSR/W  
CE# Pulse Width High  
Latency Between Read and Write Operations  
30  
20  
9
Byte  
Programming Operation (Note 2)  
Word  
tWHWH1  
tWHWH1  
µs  
11  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
Typ  
Typ  
7
µs  
Sector Erase Operation (Note 2)  
0.7  
sec  
Notes:  
1. Not 100% tested.  
2. See the Erase and Programming Performance on page 62 section for more information.  
60  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. PA = program address, PD = program data, DQ7# = complement of the data written to the device, DOUT = data  
written to the device.  
2. Figure indicates the last two bus cycles of the command sequence.  
3. Word mode address used as an example.  
Figure 27. Alternate CE# Controlled Write Operation Timings  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
61  
A d v a n c e I n f o r m a t i o n  
Erase and Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
s
Comments  
Sector Erase Time  
Chip Erase Time  
0.7  
45  
9
10  
Excludes 00h programming  
prior to erasure (Note 4)  
s
Byte Programming Time  
Word Programming Time  
300  
360  
µs  
µs  
11  
Accelerated Byte/Word Programming  
Time  
Excludes system level  
overhead (Note 5)  
7
210  
µs  
Byte Mode  
Word Mode  
36  
24  
108  
72  
s
s
Chip Programming Time  
(Note 3)  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, VCC = 3.0 V, 100,000 cycles, checkerboard  
data pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
bytes program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 17 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles per sector.  
TSOP and BGA Pin Capacitance  
Parameter  
Symbol  
Parameter Description  
Test Setup  
Package  
TSOP  
BGA  
Typ  
6
Max  
7.5  
5.0  
12  
Unit  
pF  
CIN  
Input Capacitance  
VIN = 0  
4.2  
8.5  
5.4  
7.5  
3.9  
pF  
TSOP  
BGA  
pF  
COUT  
Output Capacitance  
VOUT = 0  
VIN = 0  
6.5  
9
pF  
TSOP  
BGA  
pF  
CIN2  
Control Pin Capacitance  
4.7  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
62  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TS040—40-Pin Standard TSOP  
Dwg rev AA; 10/99  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
63  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TS 048—48-Pin Standard TSOP  
2X  
0.10  
STANDARD PIN OUT (TOP VIEW)  
2X (N/2 TIPS)  
0.10  
2X  
2
0.10  
5
A2  
1
N
REVERSE PIN OUT (TOP VIEW)  
3
SEE DETAIL B  
A
B
1
N
E
N
2
N
2
+1  
e
9
5
D1  
A1  
N
+1  
N
2
4
2
D
0.25  
B
C
2X (N/2 TIPS)  
SEATING  
PLANE  
A
B
SEE DETAIL A  
0.08MM (0.0031")  
M
C
A - B S  
b
6
7
WITH PLATING  
c1  
(c)  
7
b1  
BASE METAL  
SECTION B-B  
R
(c)  
e/2  
GAUGE PLANE  
0.25MM (0.0098") BSC  
θ°  
PARALLEL TO  
SEATING PLANE  
X
C
L
X = A OR B  
DETAIL A  
DETAIL B  
NOTES:  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)  
MO-142 (D) DD  
Jedec  
1
2
3
4
MIN  
NOM MAX  
1.20  
Symbol  
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
c1  
c
D
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN), INK OR LASER MARK.  
0.15  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
1.00  
0.20  
1.05  
0.23  
0.27  
0.16  
0.21  
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS DEFINED AS THE PLANE OF  
CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT  
HORIZONTAL SURFACE.  
0.22  
5
6
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTUSION IS  
0.15mm (.0059") PER SIDE.  
19.80 20.00 20.20  
18.30 18.40 18.50  
11.90 12.00 12.10  
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE  
0.08 (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 (0.0028").  
D1  
E
e
7
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10MM (.0039") AND  
0.25MM (0.0098") FROM THE LEAD TIP.  
0.50 BASIC  
L
0
R
N
0.50  
0˚  
0.60  
0.70  
8˚  
8
9
LEAD COPLANARITY SHALL BE WITHIN 0.10mm (0.004") AS MEASURED FROM THE SEATING PLANE.  
DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
0.20  
48  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
64  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
VBN048—48-Ball Fine-Pitch Ball Grid Array (FBGA)  
10.0 x 6.0 mm  
D1  
A
D
e
6
5
4
3
2
1
e
7
SE  
E1  
E
Ø0.50  
H
G
F
E
D
C
B
A
B
A1 CORNER  
+0.20  
-0.50  
7
6
SD  
1.00  
A1 ID.  
Øb  
Ø0.08  
Ø0.15  
M
C
M
C A B  
0.10  
0.08  
C
A2  
A
SEATING PLANE  
C
C
A1  
NOTES:  
PACKAGE  
JEDEC  
VBN 048  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
N/A  
10.00 mm x 6.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.17  
0.62  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.73  
BODY THICKNESS  
BODY SIZE  
10.00 BSC.  
6.00 BSC.  
5.60 BSC.  
4.00 BSC.  
8
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
6
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
48  
φb  
0.35  
---  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
NONE  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3425\ 16-038.25  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
65  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A (January 31, 2005)  
Initial Release.  
Revision A1 (March 16, 2005)  
Distinctive Characteristics  
Revised Secured Silicon Sector with 128-word information  
Common Flash Memory Interface — (CFI)  
Modified Primary Vendor-Specific Extended Query table information for 45h address  
Revision A2 (April 19, 2005)  
Valid Combinations Table  
Clarified available packing types for TSOP and FBGA packages  
Modified note 1  
Device Bus Operations  
Added Secured Silicon Sector Addresses—Model 00 table  
Modified Top Boot Secured Silicon Sector Addresses—Model 03 and Bottom Boot Secured Silicon  
Sector Addresses—Model 04 tables  
S29AL032D Command Definitions Model 00 — table  
Added Secured Silicon Sector Factory Protect information  
Accelerated Program Operation  
Added section  
Write Protect (WP#) — Models 03, 04 Only  
Added section  
Secured Silicon Sector  
Added section  
AC Characteristics  
Added ACC programming timing diagram  
Revision A3 (June 13, 2005)  
Autoselect Mode  
Updated Table 8 to include models 00, 03, and 04.  
Common Flash Memory Interface  
Updated table headings in table 12, 13, 14, and 15.  
Absolute Maximum Rating  
Updated figure 8.  
DC Characteristics  
Updated CMOS Compatible table.  
AC Characteristics  
Updated Erase/Program Operations table.  
Added new figure: Back-to-Back Read/Write Cycle Timing.  
Updated Alternate CE# Controlled Erase/Program Operations table.  
66  
S29AL032D  
S29AL032D_00_A3 June 13, 2005  
A d v a n c e I n f o r m a t i o n  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion LLC will not be liable to you and/or any third party for any claims or damages arising in connection with above-  
mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels  
and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on ex-  
port under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and  
product names used in this publication are for identification purposes only and may be trademarks of their respective companies  
June 13, 2005 S29AL032D_00_A3  
S29AL032D  
67  

相关型号:

S29AL032D70TAE033

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAE040

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAE042

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAE043

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI000

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI002

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI003

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI030

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI032

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI033

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI040

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION

S29AL032D70TAI042

32 Megabit CMOS 3.0 Volt-only Flash Memory
SPANSION