S29NS016J0LBJW002 [SPANSION]

Burst Mode Flash Memories; 突发模式闪存产品
S29NS016J0LBJW002
型号: S29NS016J0LBJW002
厂家: SPANSION    SPANSION
描述:

Burst Mode Flash Memories
突发模式闪存产品

闪存 存储 内存集成电路
文件: 总73页 (文件大小:2691K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29NS-J  
128 Megabit (8 M x 16-Bit), 64 Megabit (4 M x 16-Bit),  
32 Megabit (2 M x 16-Bit), and 16 Megabit (1 M x 16 Bit),  
110 nm CMOS 1.8-Volt only Simultaneous Read/Write,  
Burst Mode Flash Memories  
S29NS-J Cover Sheet  
Data Sheet  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Each product described herein may be designated as Advance Information,  
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S29NS-J_00  
Revision A  
Amendment 11  
Issue Date February 7, 2007  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
S29NS-J  
128 Megabit (8 M x 16-Bit), 64 Megabit (4 M x 16-Bit),  
32 Megabit (2 M x 16-Bit), and 16 Megabit (1 M x 16 Bit),  
110 nm CMOS 1.8-Volt only Simultaneous Read/Write,  
Burst Mode Flash Memories  
Data Sheet  
Features  
„ Single 1.8 volt read, program and erase (1.7 to 1.95 V)  
„ Sector Protection  
– Software command sector locking  
– WP# protects the two highest sectors  
– All sectors locked when A = V  
„ Multiplexed Data and Address for reduced  
I/O count  
– A15–A0 multiplexed as DQ15–DQ0  
– Addresses are latched by AVD# control input when CE# low  
cc  
IL  
„ Handshaking feature  
– Provides host system with minimum possible latency by monitoring  
RDY  
„ Simultaneous Read/Write operation  
– Data can be continuously read from one bank while executing  
erase/program functions in other bank  
„ Supports Common Flash Memory Interface (CFI)  
– Zero latency between read and write operations  
„ Software command set compatible with JEDEC 42.4  
standards  
„ Read access times at 54 MHz (CL=30 pF)  
– Burst access times of 11/13.5 ns  
at industrial temperature range  
– Asynchronous random access times  
of 65/70 ns  
– Synchronous random access times  
of 71/87.5 ns  
– Backwards compatible with Am29F and Am29LV families  
„ Manufactured on 110 nm process technology  
„ Embedded Algorithms  
– Embedded Erase algorithm automatically preprograms and erases  
the entire chip or any combination of designated sectors  
– Embedded Program algorithm automatically writes and verifies data  
at specified addresses  
„ Burst Modes  
– Continuous linear burst  
– 8/16/32 word linear burst with wrap around  
– 8/16/32 word linear burst without wrap around  
„ Data# Polling  
– Provides a software method of detecting program and erase  
operation completion  
„ Power dissipation (typical values, 8 bits switching, CL = 30  
„ Erase Suspend/Resume  
pF)  
– Suspends an erase operation to read data from, or program data to,  
a sector that is not being erased, then resumes the erase operation  
– Burst Mode Read: 25 mA  
– Simultaneous Operation: 40 mA  
– Program/Erase: 15 mA  
– Standby mode: 9 µA  
„ Hardware reset input (RESET#)  
– Hardware method to reset the device for reading array data  
„ CMOS compatible inputs and outputs  
„ Sector Architecture  
„ Package  
– Four 8 Kword sectors  
– 48-ball Very Thin FBGA (S29NS128J)  
– 44-ball Very Thin FBGA (S29NS064J, S29NS032J, S29NS016J)  
Two hundred fifty-five (S29NS128J), one hundred twenty-seven  
(S29NS064J),sixty-three (S29NS032J), or thirty-one (S29NS016J)  
32 Kword sectors  
„ Cycling Endurance: 1 million cycles per sector typical  
„ Data Retention: 20 years typical  
– Four banks (see next page for sector count and size)  
General Description  
The S29NS128J, S29NS064J, S29NS032J and S29NS016J are 128 Mbit, 64 Mbit, 32 Mbit and 16 Mbit 1.8 Volt-only,  
Simultaneous Read/Write, Burst Mode Flash memory devices, organized as 8,388,608, 4,194,304, 2,097,152 and 1,048,576.  
words of 16 bits each. These devices use a single VCC of 1.7 to 1.95 V to read, program, and erase the memory array. A 12.0-  
volt Acc may be used for faster program performance if desired. These devices can also be programmed in standard  
EPROM programmers.  
The devices are offered at the following speeds:  
Clock Speed  
Burst Access (ns)  
Synch. Initial Access (ns)  
Asynchronous Initial Access (ns)  
Output Loading  
54 MHz  
13.5  
87.5  
70  
30 pF  
Publication Number S29NS-J_00  
Revision A  
Amendment 11  
Issue Date February 7, 2007  
D a t a S h e e t  
The devices operate within the temperature range of –25 °C to +85 °C, and are offered Very Thin FBGA  
packages.  
Simultaneous Read/Write Operations with Zero Latency  
The Simultaneous Read/Write architecture divides the memory space into four banks. The device allows a  
host system to program or erase in one bank, then immediately and simultaneously read from another bank,  
with zero latency. This releases the system from waiting for the completion of program or erase operations.  
The devices are structured as shown in the following tables:  
S29NS128J  
Bank A Sectors  
Bank B, C & D Sectors  
Quantity  
Size  
Quantity  
Size  
4
8 Kwords  
32 Kwords  
64  
32 Kwords  
63  
32 Mbits total  
96 Mbits total  
S29NS064J  
S29NS032J  
S29NS016J  
Bank A Sectors  
Bank B, C & D Sectors  
Quantity  
Size  
Quantity  
Size  
4
8 Kwords  
32 Kwords  
32  
32 Kwords  
31  
16 Mbits total  
48 Mbits total  
Bank A Sectors  
Bank B, C & D Sectors  
Quantity  
Size  
Quantity  
Size  
4
8 Kwords  
32 Kwords  
16  
32 Kwords  
15  
8 Mbits total  
24 Mbits total  
Bank A Sectors  
Bank B, C & D Sectors  
Quantity  
Size  
Quantity  
Size  
4
7
8 Kwords  
32 Kwords  
8
32 Kwords  
4 Mbits total  
12 Mbits total  
The devices use Chip Enable (CE#), Write Enable (WE#), Address Valid (AVD#) and Output Enable (OE#) to  
control asynchronous read and write operations. For burst operations, the devices additionally require Ready  
(RDY) and Clock (CLK). This implementation allows easy interface with minimal glue logic to  
microprocessors/microcontrollers for high performance read operations.  
The devices offer complete compatibility with the JEDEC 42.4 single-power-supply Flash command set  
standard. Commands are written to the command register using standard microprocessor write timings.  
Reading data out of the device are similar to reading from other Flash or EPROM devices.  
The host system can detect whether a program or erase operation is complete by using the device status bit  
DQ7 (Data# Polling). After a program or erase cycle has been completed, the device automatically returns to  
reading array data.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the  
data contents of other sectors. The devices are fully erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automatically inhibits write operations  
during power transitions. The devices also offer three types of data protection at the sector level. The sector  
4
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
lock/unlock command sequence disables or re-enables both program and erase operations in any sector.  
When at VIL, WP# locks the highest two sectors. Finally, when Acc is at VIL, all sectors are locked.  
The devices offer two power-saving features. When addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode. The system can also place the device into the standby  
mode. Power consumption is greatly reduced in both modes.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
5
D a t a S h e e t  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.  
2.  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
Block Diagram of Simultaneous Operation Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.  
4.  
5.  
6.  
7.  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input/Output Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Requirements for Asynchronous Read Operation (Non-Burst) . . . . . . . . . . . . . . . . . . . . . . . 19  
Requirements for Synchronous (Burst) Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Programmable Wait State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Simultaneous Read/Write Operations with Zero Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Automatic Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
RESET#: Hardware Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.10 Hardware Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.11 WP# Boot Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.  
Common Flash Memory Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Command Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Reading Array Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Set Configuration Register Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Sector Lock/Unlock Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Autoselect Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Program Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Sector Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.10 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.  
Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
DQ7: Data# Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
RDY: Ready. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DQ6: Toggle Bit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
DQ2: Toggle Bit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Reading Toggle Bits DQ6/DQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DQ5: Exceeded Timing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DQ3: Sector Erase Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.1 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11.1 CMOS Compatible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12. Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13. Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.1 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
14. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
14.1  
VCC Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
14.2 CLK Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
14.3 Synchronous/Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
14.4 Asynchronous Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
14.5 Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
14.6 Erase/Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
15. Erase and Programming Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
16. BGA Ball Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
17. Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
17.1 S29NS128J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
17.2 S29NS064J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
17.3 S29NS032J and S29NS016J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
18. Appendix A: Daisy Chain Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
19. Appendix B: Daisy Chain Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
20. Appendix C: Daisy Chain Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
21. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
7
D a t a S h e e t  
Figures  
Figure 3.1  
Figure 3.2  
Figure 3.3  
Figure 3.4  
Figure 8.1  
Figure 8.2  
Figure 9.1  
Figure 9.2  
S29NS128J—48-Ball Very Thin FBGA (VDC048). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
S29NS064J—44-Ball Very Thin FBGA (VDD044). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
S29NS032J—44-Ball Very Thin FBGA (VDE044). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
S29NS016J—44-Ball Very Thin FBGA (VDE044). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Data# Polling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Toggle Bit Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 10.1 Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 10.2 Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 12.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 13.1 Input Waveforms and Measurement Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 14.1  
VCC Power-up Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 14.2 CLK Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 14.3 Burst Mode Read (54 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 14.4 Burst Mode Read (40 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 14.5 Asynchronous Mode Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 14.6 Reset Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 14.7 Program Operation Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 14.8 Chip/Sector Erase Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 14.9 Accelerated Unlock Bypass Programming Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 14.10 Data# Polling Timings (During Embedded Algorithm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 14.11 Toggle Bit Timings (During Embedded Algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 14.12 8-, 16-, and 32-Word Linear Burst Address Wrap Around. . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 14.13 Latency with Boundary Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 14.14 Initial Access at 3Eh with Address Boundary Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 14.15 Example of Extended Valid Address Reducing Wait State Usage . . . . . . . . . . . . . . . . . . . . 61  
Figure 14.16 Back-to-Back Read/Write Cycle Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 18.1 VDC048 Daisy Chain Layout (Top View, Balls Facing Down). . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 19.1 VDD044 Daisy Chain Layout (Top View, Balls Facing Down). . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 20.1 VDE044 Daisy Chain Layout(Top View, Balls Facing Down) . . . . . . . . . . . . . . . . . . . . . . . . 69  
8
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Tables  
Table 7.1  
Table 7.2  
Table 8.1  
Table 8.2  
Table 8.3  
Table 8.4  
Table 8.5  
Table 8.6  
Table 8.7  
Table 8.8  
Table 8.9  
Table 8.10  
Table 8.11  
Table 8.12  
Table 8.13  
Table 8.14  
Table 8.15  
Table 8.16  
Table 9.1  
Table 9.2  
Table 12.1  
Table 18.1  
Table 18.2  
Table 18.3  
Table 19.1  
Table 19.2  
Table 19.3  
Table 20.1  
Table 20.2  
Table 20.3  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Burst Address Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Sector Address Table, S29NS128J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Sector Address Table, S29NS064J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Sector Address Table, S29NS032J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Sector Address Table, S29NS016J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Burst Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Wait States for Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Autoselect Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Accelerated Sector Erase Groups, S29NS128J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Accelerated Sector Erase Groups, S29NS064J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Accelerated Sector Erase Groups, S29NS032J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Accelerated Sector Erase Groups, S29NS016J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
DQ6 and DQ2 Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Daisy Chain Part for 128Mbit 110 nm Flash Products (VDC048, 10 x 11 mm) . . . . . . . . . . .67  
VDC048 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
VDC048 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Daisy Chain Part for 64Mbit 110 nm Flash Products (VDD044, 9.2 x 8 mm) . . . . . . . . . . . . .68  
VDD044 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
VDD044 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Daisy Chain Part for 32 and 16 Mbit 110 nm Flash Products (VDE044, 7.7 x 6.2 mm) . . . . .69  
VDE044 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
VDE044 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
9
D a t a S h e e t  
1. Product Selector Guide  
Part Number  
S29NS128J, S29NS064J, S29N032J, 29NS016J  
Burst Frequency  
54 MHz  
0L  
Speed Option  
Max Initial Synchronous Access Time, ns (t  
)
87.5  
13.5  
IACC  
Max Burst Access Time, ns (t  
)
BACC  
Max Asynchronous Access Time, ns (t  
)
ACC  
70  
Max CE# Access Time, ns (t  
)
CE  
Max OE# Access Time, ns (t  
)
13.5  
OE  
2. Block Diagram  
VCC  
VSS  
A/DQ15–A/DQ0  
RDY  
Buffer  
RDY  
Erase Voltage  
Generator  
Input/Output  
Buffers  
State  
WE#  
RESET#  
Acc  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Y-Decoder  
Y-Gating  
VCC  
Detector  
Timer  
Cell Matrix  
X-Decoder  
Burst  
State  
Control  
Burst  
Address  
Counter  
AVD#  
CLK  
Amax–A0  
A/DQ15–A/DQ0  
Amax–A16  
Note:  
1.  
A
indicates the highest order address bit.  
max  
10  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
2.1  
Block Diagram of Simultaneous Operation Circuit  
V
CC  
V
SS  
Acc  
Bank A Address  
DQ15–DQ0  
Bank A  
A
–A0  
max  
X-Decoder  
OE#  
Bank B Address  
DQ15–DQ0  
Bank B  
X-Decoder  
A
–A0  
max  
RESET#  
WE#  
OE#  
OE#  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
DQ15–  
DQ0  
CE#  
Status  
AVD#  
CLK  
RDY  
Control  
DQ15–DQ0  
A
–A0  
max  
X-Decoder  
Bank C  
DQ15–DQ0  
Bank C Address  
A
–A0  
max  
A
–A0  
OE#  
max  
X-Decoder  
Bank D  
Bank D Address  
DQ15–DQ0  
Notes:  
1. A15–A0 are multiplexed with DQ15–DQ0.  
2. Amax indicates the highest order address bit.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
11  
D a t a S h e e t  
3. Connection Diagrams  
Figure 3.1 S29NS128J—48-Ball Very Thin FBGA (VDC048)  
Top View, Balls Facing Down  
NC  
NC  
NC  
NC  
A1  
RDY A21 GND CLK VCC WE# VPP A19 A17 A22  
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10  
VCC A16 A20 AVD# NC RESET# WP# A18 CE# GND  
C1 C2 C3 C4 C5 C6? C7 C8 C9 C10  
GND A/DQ7 A/DQ6 A/DQ13 A/DQ12 A/DQ3 A/DQ2 A/DQ9 A/DQ8 OE#  
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10  
A/DQ15 A/DQ14 GND A/DQ5 A/DQ4 A/DQ11A/DQ10 VCC A/DQ1 A/DQ0  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
NC  
NC  
NC  
NC  
12  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 3.2 S29NS064J—44-Ball Very Thin FBGA (VDD044)  
Top View, Balls Facing Down  
NC  
NC  
A1  
RDY A21 GND CLK VCC WE# VPP A19 A17  
B1 B2 B3 B4 B5 B6 B7 B8 B9  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
NC  
B10  
VCC A16 A20 AVD# NC RESET# WP# A18 CE# GND  
C1 C2 C3 C4 C5 C6? C7 C8 C9 C10  
GND A/DQ7 A/DQ6 A/DQ13 A/DQ12 A/DQ3 A/DQ2 A/DQ9 A/DQ8 OE#  
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10  
A/DQ15 A/DQ14 GND A/DQ5 A/DQ4 A/DQ11A/DQ10 VCC A/DQ1 A/DQ0  
NC  
NC  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
13  
D a t a S h e e t  
Figure 3.3 S29NS032J—44-Ball Very Thin FBGA (VDE044)  
Top View, Balls Facing Down  
NC  
NC  
A1  
RDY NC GND CLK VCC WE# VPP A19 A17  
B1 B2 B3 B4 B5 B6 B7 B8 B9  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
NC  
B10  
VCC A16 A20 AVD# NC RESET# WP# A18 CE# GND  
C1 C2 C3 C4 C5 C6? C7 C8 C9 C10  
GND A/DQ7 A/DQ6 A/DQ13 A/DQ12 A/DQ3 A/DQ2 A/DQ9 A/DQ8 OE#  
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10  
A/DQ15 A/DQ14 GND A/DQ5 A/DQ4 A/DQ11A/DQ10 VCC A/DQ1 A/DQ0  
NC  
NC  
14  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 3.4 S29NS016J—44-Ball Very Thin FBGA (VDE044)  
Top View, Balls Facing Down  
NC  
NC  
A1  
RDY NC GND CLK VCC WE# VPP A19 A17  
B1 B2 B3 B4 B5 B6 B7 B8 B9  
VCC A16  
C1 C2  
GND A/DQ7 A/DQ6 A/DQ13 A/DQ12 A/DQ3 A/DQ2 A/DQ9 A/DQ8 OE#  
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
NC  
B10  
NC AVD# NC RESET# WP# A18 CE# GND  
C3 C4 C5 C6? C7 C8 C9 C10  
A/DQ15 A/DQ14 GND A/DQ5 A/DQ4 A/DQ11A/DQ10 VCC A/DQ1 A/DQ0  
NC  
NC  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
15  
D a t a S h e e t  
4. Input/Output Descriptions  
Signal  
Description  
A22–A16  
A21–A16  
A20–A16  
A19–A16  
A/DQ15–A/DQ0  
CE#  
Address Inputs, S29NS128J  
Address Inputs, S29NS064J  
Address Inputs, S29NS032J  
Address Inputs, S29NS016J  
Multiplexed Address/Data input/output  
Chip Enable Input. Asynchronous relative to CLK for the Burst mode.  
Output Enable Input. Asynchronous relative to CLK for the Burst mode.  
Write Enable Input.  
OE#  
WE#  
V
Device Power Supply (1.7 V–1.95 V).  
Ground  
CC  
GND  
NC  
No Connect; not connected internally  
RDY  
Ready output; indicates the status of the Burst read. V = data invalid. V = data valid.  
OL OH  
The first rising edge of CLK in conjunction with AVD# low latches address input and activates burst mode operation.  
After the initial word is output, subsequent rising edges of CLK increment the internal address counter. CLK should  
remain low during asynchronous access.  
CLK  
Address Valid input. Indicates to device that the valid address is present on the address inputs (address bits A15–  
A0 are multiplexed, address bits A22–A16 are address only).  
AVD#  
V = for asynchronous mode, indicates valid address; for burst mode, causes starting address to be latched on  
IL  
rising edge of CLK.  
= device ignores address inputs  
V
IH  
RESET#  
WP#  
Hardware reset input. V = device resets and returns to reading array data  
IL  
Hardware write protect input. V = disables writes to SA257–258 (S29NS128J), SA129–130 (S29NS064J), SA65–  
IL  
66 (S29NS032J), or SA33-34 (S29NS016J). Should be at V for all other conditions.  
IH  
At 12 V, accelerates programming; automatically places device in unlock bypass mode. At V , disables program  
IL  
A
cc  
and erase functions. Should be at V for all other conditions.  
IH  
16  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
5. Logic Symbol  
A
–A16  
max  
16  
A/DQ15–  
A/DQ0  
CLK  
CE#  
OE#  
W’E#  
RESET#  
AVD#  
WP#  
RDY  
A
cc  
A
indicates the highest order address bit.  
max  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
17  
D a t a S h e e t  
6. Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S29NS  
128  
J
0L  
BA  
W
00  
3
Packing Type  
0
2
3
= Tray  
= 7-inch Tape and Reel  
= 13-inch Tape and Reel  
Additional Ordering Options)  
00 = Standard Configuration  
Temperature Range  
W = Wireless (–25°C to +85°C)  
Package Type & Material Set  
BA = Very Thin Fine-Pitch BGA Lead (Pb)-Free Compliant Package  
BF = Very Thin Fine-Pitch BGA Lead (Pb)-Free Package  
BJ = Very Thin Fine-Pitch BGA Lead (Pb)-Free LF35 Package  
Speed Option  
0L = 54 MHz  
Process Technology  
J
= 110 nm Floating Gate Technology  
Flash Density  
128 = 128 Megabit (8 M x 16-Bit)  
064 = 64 Megabit (4 M x 16-Bit)  
032 = 32 Megabit (2 M x 16-Bit)  
016 = 16 Megabit (1 M x 16-Bit)  
Product Family  
S29NS = Simultaneous Read/Write, Burst Mode Flash Memory with  
Multiplexed I/O 1.8-Volt Operation  
Valid Combinations  
The following configurations are planned to be supported for this device. Contact your local Spansion sales  
office to confirm availability of specific valid combinations and to check on newly released combinations.  
Valid Combinations BGA Package  
Order Number  
Packing Type  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
0, 2 or 3  
Package Marking  
NS128J0LBAW00  
NS128J0LBJW00  
NS128J0LBFW00  
NS064J0LBAW00  
NS064J0LBJW00  
NS064J0LBFW00  
NS032J0LBJW00  
NS032J0LBFW00  
NS016J0LBJW00  
NS016J0LBFW00  
Package  
Pb-Free Compliant  
Pb-free, LF35  
Pb-free  
Density  
Speed  
S29NS128J0LBAW00  
S29NS128J0LBJW00  
S29NS128J0LBFW00  
S29NS064J0LBAW00  
S29NS064J0LBJW00  
S29NS064J0LBFW00  
S29NS032J0LBJW00  
S29NS032J0LBFW00  
S29NS016J0LBJW00  
S29NS016J0LBFW00  
128  
Pb-Free Compliant  
Pb-free, LF35  
Pb-free  
64  
54 MHz  
Pb-free, LF35  
Pb-free  
32  
16  
Pb-free, LF35  
Pb-free  
Note  
For industrial temperature range, contact your local sales office.  
18  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
7. Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated through the  
internal command register. The command register itself does not occupy any addressable memory location.  
The register is composed of latches that store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the device. Table 7.1 lists the device bus operations, the  
inputs and control levels they require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 7.1 Device Bus Operations  
Operation  
CE#  
L
OE#  
L
WE#  
H
A
–16  
A/DQ15–0  
I/O  
RESET#  
CLK  
L
AVD#  
max  
Asynchronous Read  
Write  
Addr In  
H
H
H
L
L
H
L
Addr In  
I/O  
H/L  
H/L  
X
Standby (CE#)  
Hardware Reset  
H
X
X
X
X
HIGH Z  
HIGH Z  
X
X
X
X
X
Burst Read Operations  
Load Starting Burst Address  
L
L
H
L
H
H
Addr In  
X
Addr In  
H
H
Advance Burst to next address with appropriate  
Data presented on the Data Bus  
Burst  
Data Out  
H
Terminate current Burst read cycle  
H
X
X
X
H
H
X
X
HIGH Z  
HIGH Z  
H
L
X
X
Terminate current Burst read cycle via RESET#  
X
Terminate current Burst read cycle and start new  
Burst read cycle  
L
H
H
X
I/O  
H
Legend  
L = Logic 0, H = Logic 1, X = Don’t Care.  
7.1  
Requirements for Asynchronous Read Operation (Non-Burst)  
To read data from the memory array, the system must assert a valid address on A/DQ15–A/DQ0 and Amax  
A16, while AVD# and CE# are at VIL. WE# should remain at VIH. Note that CLK must remain at VIL during  
asynchronous read operations. The rising edge of AVD# latches the address, after which the system can  
drive OE# to VIL. The data will appear on A/DQ15–A/DQ0. (See Figure 14.5.) Since the memory array is  
divided into four banks, each bank remains enabled for read access until the command register contents are  
altered.  
Address access time (tACC) is equal to the delay from stable addresses to valid output data. The chip enable  
access time (tCE) is the delay from the stable addresses and stable CE# to valid data at the outputs. The  
output enable access time (tOE) is the delay from the falling edge of OE# to valid data at the output.  
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory content occurs during the power transition.  
7.2  
Requirements for Synchronous (Burst) Read Operation  
The device is capable of seven different burst read modes (see Table 8.9): continuous burst read; 8-, 16-, and  
32-word linear burst reads with wrap around; and 8-, 16-, and 32-word linear burst reads without wrap  
around.  
7.2.1  
Continuous Burst  
When the device first powers up, it is enabled for asynchronous read operation. The device will automatically  
be enabled for burst mode and addresses will be latched on the first rising edge on the CLK input, while  
AVD# is held low for one clock cycle. Prior to activating the clock signal, the system should determine how  
many wait states are desired for the initial word (tIACC) of each burst session. The system would then write the  
Set Configuration Register command sequence.  
The initial word is output tIACC after the rising edge of the first CLK cycle. Subsequent words are output tBACC  
after the rising edge of each successive clock cycle, which automatically increments the internal address  
counter. Note that the device has a fixed internal address boundary that occurs every 64 words,  
starting at address 00003Fh. The transition from the highest address to 000000h is also a boundary  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
19  
D a t a S h e e t  
crossing. During a boundary crossing, there is a two-cycle latency between the valid read at address  
00003Eh and the valid read at address 00003Fh (or between addresses offset from these values by the same  
multiple of 64 words). RDY is deasserted during the two-cycle latency, and it is reasserted in the third cycle to  
indicate that the data at address 00003Fh (or offset from 3Fh by a multiple of 64 words) is ready. See  
Figure 14.13.  
The device will continue to output continuous, sequential burst data, wrapping around to address 000000h  
after it reaches the highest addressable memory location, until the system asserts CE# high, RESET# low, or  
AVD# low in conjunction with a new address. See Table 7.1. The reset command does not terminate the  
burst read operation.  
If the host system crosses the bank boundary while reading in burst mode, and the device is not programming  
or erasing, a two-cycle latency will occur as described above. If the host system crosses the bank boundary  
while the device is programming or erasing, the device will provide asynchronous read status information.  
The clock will be ignored. After the host has completed status reads, or the device has completed the  
program or erase operation, the host can restart a burst operation using a new address and AVD# pulse.  
If the clock frequency is less than 6 MHz during a burst mode operation, additional latencies will occur. RDY  
indicates the length of the latency by pulsing low.  
7.2.2  
8-, 16-, and 32-Word Linear Burst with Wrap Around  
These three modes are of the linear wrap around design, in which a fixed number of words are read from  
consecutive addresses. In each of these modes, the burst addresses read are determined by the group within  
which the starting address falls. The groups are sized according to the number of words read in a single burst  
sequence for a given mode (see Table 7.2.)  
Table 7.2 Burst Address Groups  
Mode  
8-word  
16-word  
32-word  
Group Size  
8 words  
Group Address Ranges  
0-7h, 8-Fh, 10-17h, 18-1Fh...  
16 words  
32 words  
0-Fh, 10-1Fh, 20-2Fh, 30-3Fh...  
00-1Fh, 20-3Fh, 40-5Fh, 60-7Fh...  
As an example: if the starting address in the 8-word mode is 39h, the address range to be read would be 38-  
3Fh, and the burst sequence would be 39-3A-3B-3C-3D-3E-3F-38h. The burst sequence begins with the  
starting address written to the device, but wraps back to the first address in the selected group. In a similar  
fashion, the 16-word and 32-word Linear Wrap modes begin their burst sequence on the starting address  
written to the device, and then wrap back to the first address in the selected address group. Note that in  
these three burst read modes the address pointer does not cross the boundary that occurs every 64  
words; thus, no wait states are inserted (except during the initial access).  
7.2.3  
8-, 16-, and 32-Word Linear Burst without Wrap Around  
In these modes, a fixed number of words (predefined as 8,16,or 32 words) are read from consecutive  
addresses starting with the initial word, which is written to the device. When the number of words has been  
read completely, the burst read operation stops and the RDY output goes low. There is no group limitation  
and is different from the Linear Burst with Wrap Around.  
See Table 8.9 and Table 8.16 for the command of setting the 8-, 16-, and 32- Word Burst without Wrap  
Around.  
As an example, for 8-word length Burst Read, if the starting address written to the device is 39h, the burst  
sequence would be 39-3A-3B-3C-3D-3E-3F-40h, and the read operation will be terminated at 40h. In a  
similar fashion, the 16-word and 32-word modes begin their burst sequence on the starting address written to  
the device, and Continuously Read to the predefined word length, 16 or 32 words.  
The operation is similar to the Continuous Burst, but will stop the operation at fixed word length. It is possible  
the device crosses the fixed internal address boundary that occurs every 64 words during burst read; a  
latency occurs before data appears for the next address and RDY is pulsing low. If the host system crosses  
the bank boundary, the device will react in the same manner as in the Continuous Burst.  
If the clock frequency is less than 6 MHz during a burst mode operation, additional latencies will occur. RDY  
indicates the length of the latency by pulsing low.  
20  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
7.3  
Programmable Wait State  
The programmable wait state feature indicates to the device the number of additional clock cycles that must  
elapse after AVD# is driven active before data will be available. Upon power up, the device defaults to the  
maximum of seven total cycles. The total number of wait states is programmable from two to seven cycles.  
The wait state command sequence requires three cycles; after the two unlock cycles, the third cycle address  
should be written according to the desired wait state as shown in Table 8.9. Address bits A11-A0 should be  
set to 555h, while addresses bits A17-A12 set the wait state. For further details, see Section 8.3, Set  
Configuration Register Command Sequence on page 36.  
7.3.1  
Handshaking Feature  
The handshaking feature allows the host system to simply monitor the RDY signal from the device to  
determine when the initial word of burst data is ready to be read. The host system should use the wait state  
command sequence to set the number of wait states for optimal burst mode operation (03h for 54 MHz clock).  
The initial word of burst data is indicated by the rising edge of RDY after OE# goes low.  
7.4  
7.5  
Simultaneous Read/Write Operations with Zero Latency  
This device is capable of reading data from one bank of memory while programming or erasing in one of the  
other three banks of memory. An erase operation may also be suspended to read from or program to another  
location within the same bank (except the sector being erased). Figure 14.16 shows how read and write  
cycles may be initiated for simultaneous operation with zero latency. Refer to the Section 11., DC  
Characteristics on page 51 table for read-while-program and read-while-erase current specifications.  
Writing Commands/Command Sequences  
The device has inputs/outputs that accept both address and data information. To write a command or  
command sequence (which includes programming data to the device and erasing sectors of memory), the  
system must drive AVD# and CE# to VIL, and OE# to VIH when providing an address to the device, and drive  
WE# and CE# to VIL, and OE# to VIH. when writing commands or data.  
The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the  
Unlock Bypass mode, only two write cycles are required to program a word, instead of four.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table 7 indicates the address  
space that each sector occupies. The device address space is divided into four banks: Bank A contains both  
8 Kword boot sectors in addition to 32 Kword sectors, while Banks B, C, and D contain only 32 Kword sectors.  
A “bank address” is the address bits required to uniquely select a bank. Similarly, a “sector address” is the  
address bits required to uniquely select a sector.  
Refer to the DC Characteristics table for write mode current specifications. The AC Characteristics section  
contains timing specification tables and timing diagrams for write operations.  
7.5.1  
Accelerated Program Operation  
The device offers accelerated program operations through the Acc input. This function is primarily intended to  
allow faster manufacturing throughput at the factory. If the system asserts VID on this input, the device  
automatically enters the aforementioned Unlock Bypass mode and uses the higher voltage on the input to  
reduce the time required for program operations. The system would use a two-cycle program command  
sequence as required by the Unlock Bypass mode. Removing VID from the Acc input returns the device to  
normal operation.  
7.5.2  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect mode. The system  
can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–  
DQ0. Standard read cycle timings apply in this mode. See Section 7.5.2, Autoselect Functions on page 21  
and Section 8.6, Autoselect Command Sequence on page 38 for more information.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
21  
D a t a S h e e t  
7.6  
Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby mode. In this  
mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state,  
independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# inputs are both held at VCC 0.2 V.  
The device requires standard access time (tCE) for read access when the device is in either of these standby  
modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until the operation  
is completed.  
I
CC3 in DC Characteristics represents the standby current specification.  
7.7  
7.8  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enters this  
mode when addresses remain stable for tACC + 60 ns. The automatic sleep mode is independent of the CE#,  
WE#, and OE# control signals. Standard address access timings provide new data when addresses are  
changed. While in sleep mode, output data is latched and always available to the system. ICC4 in DC  
Characteristics represents the automatic sleep mode current specification.  
RESET#: Hardware Reset Input  
The RESET# input provides a hardware method of resetting the device to reading array data. When RESET#  
is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates  
all outputs, and ignores all read/write commands for the duration of the RESET# pulse. The device also  
resets the internal state machine to reading array data. The operation that was interrupted should be  
reinitiated once the device is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS 0.2 V, the device  
draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS 0.2 V, the standby current  
will be greater.  
RESET# may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory,  
enabling the system to read the boot-up firmware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the device requires a time of tREADYW (during  
Embedded Algorithms) before the device is ready to read data again. If RESET# is asserted when a program  
or erase operation is not executing, the reset operation is completed within a time of tREADY (not during  
Embedded Algorithms). The system can read data tRH after RESET# returns to VIH.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 14.6 for the timing diagram.  
7.8.1  
V
Power-up and Power-down Sequencing  
CC  
The device imposes no restrictions on VCC power-up or power-down sequencing. Asserting RESET# to VIL is  
required during the entire VCC power sequence until the respective supplies reach their operating voltages.  
Once VCC attains its operating voltage, de-assertion of RESET# to VIH is permitted.  
7.9  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The outputs are placed in the high  
impedance state.  
7.10 Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data protection  
against inadvertent writes (refer to Table 8.16 for command definitions).  
The device offers three types of data protection at the sector level:  
„ The sector lock/unlock command sequence disables or re-enables both program and erase operations in  
any sector.  
22  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
„ When WP# is at VIL,  
– SA257 and SA258 are locked (S29NS128J)  
– SA129 and SA130 are locked (S29NS064J)  
– SA65 and SA66 are locked (S29NS032J)  
– SA33 and SA34 are locked (S29NS016J)  
„ When Acc is at VIL, all sectors are locked.  
7.11 WP# Boot Sector Protection  
The WP# signal will be latched at a specific time in the embedded program or erase sequence. To prevent a  
write to the top two sectors, WP# must be asserted (WP#=VIL) on the last write cycle of the embedded  
sequence (i.e., 4th write cycle in embedded program, 6th write cycle in embedded erase).  
If using the Unlock Bypass feature: on the 2nd program cycle, after the Unlock Bypass command is written,  
the WP# signal must be asserted on the 2nd cycle.  
If selecting multiple sectors for erasure: The WP# protection status is latched only on the 6th write cycle of the  
embedded sector erase command sequence when the first sector is selected. If additional sectors are  
selected for erasure, they are subject to the WP# status that was latched on the 6th write cycle of the  
command sequence.  
The following hardware data protection measures prevent accidental erasure or programming, which might  
otherwise be caused by spurious system level signals during VCC power-up and power-down transitions, or  
from system noise.  
7.11.1  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC  
power-up and power-down. The command register and all internal program/erase circuits are disabled, and  
the device resets to reading array data. Subsequent writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control inputs to prevent unintentional writes when VCC is  
greater than VLKO  
.
7.11.2  
7.11.3  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,  
CE# and WE# must be a logical zero while OE# is a logical one.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
23  
D a t a S h e e t  
8. Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation  
handshake, which allows specific vendor-specified software algorithms to be used for entire families of  
devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address  
55h any time the device is ready to read array data. The system can read CFI information at the addresses  
given in Tables 8.18.4. To terminate reading CFI data, the system must write the reset command.  
The system can also write the CFI query command when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read CFI data at the addresses given in Tables 8.18.4. The  
system must write the reset command to return the device to the autoselect mode.  
For further information, please refer to the CFI Specification and CFI Publication 100, available through the  
World Wide Web at http://www.amd.com/flash/cfi. Alternatively, Contact your local Spansion sales office for  
copies of these documents.  
Table 8.1 CFI Query Identification String  
Data  
Addresses  
Description  
S29NS128J S29NS064J S29NS032J S29NS016J  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
Alternate OEM Command Set (00h = none exists)  
17h  
18h  
0000h  
0000h  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM  
Extended Table (00h = none exists)  
Table 8.2 System Interface String  
Data  
S29NS032J  
Addresses  
Description  
S29NS128J S29NS064J  
S29NS016J  
V
Min. (write/erase)  
CC  
1Bh  
1Ch  
1Dh  
0017h  
0019h  
0000h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
D7–D4: volt, D3–D0: 100 millivolt  
A
Min. voltage (00h = no A pin present)  
cc  
cc  
Refer to 4Dh  
A
Max. voltage (00h = no A pin present)  
cc  
cc  
1Eh  
1Fh  
20h  
21h  
22h  
0000h  
0003h  
0000h  
0009h  
0000h  
Refer to 4Eh  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs  
(00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms  
(00h = not supported)  
23h  
24h  
25h  
0005h  
0000h  
0004h  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical  
(00h = not supported)  
26h  
0000h  
24  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.3 Device Geometry Definition  
Data  
S29NS064J S29NS032J S29NS016J  
Addresses  
Description  
S29NS128J  
27h  
0018h  
0017h  
0016h  
0015h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication  
100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0002h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
00FEh  
0000h  
0000h  
0001h  
007Eh  
0000h  
0000h  
0001h  
003Eh  
0000h  
0000h  
0001h  
001Eh  
0000h  
0000h  
0001h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
0003h  
0000h  
0040h  
0000h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Table 8.4 Primary Vendor-Specific Extended Query (Sheet 1 of 2)  
Data  
Addresses  
Description  
S29NS128J S29NS064J S29NS032J S29NS016J  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
0000h  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
0002h  
0001h  
0000h  
0005h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
05 = 29BDS/N128 mode  
Simultaneous Operation  
Number of Sectors in all banks except boot bank  
00C0h  
0060h  
0030h  
0018h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
0001h  
0000h  
00B5h  
00C5h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
4Fh  
0003h  
0001h = Top/Middle Boot Device,  
0002h = Bottom Boot Device, 03h = Top Boot Device  
50h  
57h  
0000h  
0004h  
Program Suspend. 00h = not supported  
Bank Organization: X = Number of banks  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
25  
D a t a S h e e t  
Table 8.4 Primary Vendor-Specific Extended Query (Sheet 2 of 2)  
Data  
Addresses  
Description  
S29NS128J S29NS064J S29NS032J S29NS016J  
58h  
59h  
5Ah  
5Bh  
0040h  
0040h  
0040h  
0043h  
0020h  
0020h  
0020h  
0023h  
0010h  
0010h  
0010h  
0013h  
0008h  
0008h  
0008h  
0008h  
Bank D Region Information. X = Number of sectors in bank  
Bank C Region Information. X = Number of sectors in bank  
Bank B Region Information. X = Number of sectors in bank  
Bank A Region Information. X = Number of sectors in bank  
Process Technology. 00h = 230 nm, 01h = 170 nm, 02h = 130  
nm/110 nm  
5Ch  
0002h  
Table 8.5 Sector Address Table, S29NS128J (Sheet 1 of 4)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
Sector  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
26  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.5 Sector Address Table, S29NS128J (Sheet 2 of 4)  
Sector  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
Sector  
SA96  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
27  
D a t a S h e e t  
Table 8.5 Sector Address Table, S29NS128J (Sheet 3 of 4)  
Sector  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
420000h–427FFFh  
438000h–43FFFFh  
430000h–437FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
Sector  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–55FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
28  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.5 Sector Address Table, S29NS128J (Sheet 4 of 4)  
Sector  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
Sector  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
8 Kwords  
Address Range  
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
7F8000h–7F9FFFh  
7FA000h–7FBFFFh  
7FC000h–7FDFFFh  
7FE000h–7FFFFFh  
8 Kwords  
8 Kwords  
8 Kwords  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
29  
D a t a S h e e t  
Table 8.6 Sector Address Table, S29NS064J (Sheet 1 of 4)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
30  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.6 Sector Address Table, S29NS064J (Sheet 2 of 4)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
31  
D a t a S h e e t  
Table 8.6 Sector Address Table, S29NS064J (Sheet 3 of 4)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
32  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.6 Sector Address Table, S29NS064J (Sheet 4 of 4)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
8 Kwords  
Address Range  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F9FFFh  
3FA000h–3FBFFFh  
3FC000h–3FDFFFh  
3FE000h–3FFFFFh  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
8 Kwords  
8 Kwords  
8 Kwords  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
33  
D a t a S h e e t  
Table 8.7 Sector Address Table, S29NS032J (Sheet 1 of 2)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
34  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.7 Sector Address Table, S29NS032J (Sheet 2 of 2)  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
8 Kwords  
Address Range  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F9FFFh  
1FA000h–1FBFFFh  
1FC000h–1FDFFFh  
1FE000h–1FFFFFh  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
8 Kwords  
8 Kwords  
8 Kwords  
Table 8.8 Sector Address Table, S29NS016J (Sheet 1 of 2)  
Sector  
SA0  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Address Range  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
35  
D a t a S h e e t  
Table 8.8 Sector Address Table, S29NS016J (Sheet 2 of 2)  
Sector  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
8 Kwords  
Address Range  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0F9FFFh  
0FA000h–0FBFFFh  
0FC000h–0FDFFFh  
0FE000h–0FFFFFh  
8 Kwords  
8 Kwords  
8 Kwords  
8.1  
8.2  
Command Definitions  
Writing specific address and data commands or sequences into the command register initiates device  
operations. Table 8.16 defines the valid register command sequences. Writing incorrect address and data  
values or writing them in the improper sequence resets the device to reading array data.  
All addresses are latched on the rising edge of AVD#. All data is latched on the rising edge of WE#. Refer to  
the AC Characteristics section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are required to  
retrieve data in asynchronous mode. Each bank is ready to read array data after completing an Embedded  
Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank enters the erase-suspend-  
read mode, after which the system can read data from any non-erase-suspended sector. After completing a  
programming operation in the Erase Suspend mode, the system may once again read array data with the  
same exception. See the Erase Suspend/Erase Resume Commands section for more information.  
The system must issue the reset command to return a bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase operation, or if the bank is in the autoselect mode. See the next  
section, Reset Command, for more information.  
See also Requirements for Asynchronous Read Operation (Non-Burst) and Requirements for Synchronous  
(Burst) Read Operation in the Device Bus Operations section for more information. The Asynchronous Read  
and Synchronous/Burst Read tables provide the read parameters, and Figures 14.3 and 14.5 show the  
timings.  
8.3  
Set Configuration Register Command Sequence  
The configuration register command sequence instructs the device to set a particular number of clock cycles  
for the initial access in burst mode. The number of wait states that should be programmed into the device is  
directly related to the clock frequency. The first two cycles of the command sequence are for unlock  
purposes. On the third cycle, the system should write C0h to the address associated with the intended wait  
state setting (see Table 8.9). Address bits A17–A12 determine the setting. Note that addresses Amax–A18  
are shown as “0” but are actually don’t care.  
Table 8.9 Burst Modes (Sheet 1 of 2)  
Third Cycle Addresses for Wait States  
Burst  
Mode  
Wait States  
0
1
2
3
4
5
Clock Cycles  
2
3
4
5
6
7
Continuous  
00555h  
08555h  
01555h  
09555h  
02555h  
0A555h  
03555h  
0B555h  
04555h  
0C555h  
05555h  
0D555h  
8-word Linear (wrap around)  
36  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 8.9 Burst Modes (Sheet 2 of 2)  
Third Cycle Addresses for Wait States  
Burst  
Mode  
Wait States  
0
1
2
3
4
5
Clock Cycles  
2
3
4
5
6
7
16-word Linear (wrap around)  
32-word Linear (wrap around)  
8-word Linear (no wrap around)  
16-word Linear (no wrap around)  
32-word Linear (no wrap around)  
10555h  
18555h  
28555h  
30555h  
38555h  
11555h  
19555h  
29555h  
31555h  
39555h  
12555h  
1A555h  
2A555h  
32555h  
3A555h  
13555h  
1B555h  
2B555h  
33555h  
3B555h  
14555h  
1C555h  
2C555h  
34555h  
3C555h  
15555h  
1D555h  
2D555h  
35555h  
3D555h  
Note:  
1. The burst mode is set in the third cycle of the Set Wait State command sequence.  
Upon power up, the device defaults to the maximum seven cycle wait state setting. It is recommended that  
the wait state command sequence be written, even if the default wait state value is desired, to ensure the  
device is set as expected. A hardware reset will set the wait state to the default setting.  
8.3.1  
Handshaking Feature  
The host system should set address bits A17–A12 to “000011” for a clock frequency of 54 MHz, assuming  
continuous burst is desired in both cases, for optimal burst operation.  
Table 8.10 describes the typical number of clock cycles (wait states) for various conditions.  
Table 8.10 Wait States for Handshaking  
Typical No. of Clock Cycles after AVD# Low  
Conditions at Address  
40 MHz  
54 MHz  
Initial address is even  
4
5
6
7
5
6
7
8
Initial address is odd  
Initial address is even, and is at boundary crossing (1)  
Initial address is odd, and is at boundary crossing*  
Note:  
1. In the 8-, 16- and 32-word burst read modes, the address pointer does not cross 64-word boundaries when wrap around is enabled (at  
address 3Fh, and at addresses offset from 3Fh by multiples of 64).  
The autoselect function allows the host system to determine whether the flash device is enabled for  
handshaking. See the Autoselect Command Sequence section for more information.  
8.4  
Sector Lock/Unlock Command Sequence  
The sector lock/unlock command sequence allows the system to determine which sectors are protected from  
accidental writes. When the device is first powered up, all sectors are locked. To unlock a sector, the system  
must write the sector lock/unlock command sequence. Two cycles are first written: addresses are don’t care  
and data is 60h. During the third cycle, the sector address (SLA) and unlock command (60h) is written, while  
specifying with address A6 whether that sector should be locked (A6 = VIL) or unlocked (A6 = VIH). After the  
third cycle, the system can continue to lock or unlock additional cycles, or exit the sequence by writing F0h  
(reset command).  
Note that the last two outermost boot sectors can be locked by taking the WP# signal to VIL. Also, if Acc is at  
VIL all sectors are locked; if the Acc input is at VID, all sectors are unlocked.  
8.5  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read mode. Address bits are don’t  
cares for this command.  
The reset command may be written between the sequence cycles in an erase command sequence before  
erasing begins. This resets the bank to which the system was writing to the read mode. Once erasure begins,  
however, the device ignores reset commands until the operation is complete.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
37  
D a t a S h e e t  
The reset command may be written between the sequence cycles in a program command sequence before  
programming begins. This resets the bank to which the system was writing to the read mode. If the program  
command sequence is written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins, however, the device ignores  
reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns that bank  
to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the banks to the  
read mode (or erase-suspend-read mode if that bank was in Erase Suspend).  
8.6  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device codes,  
and determine whether or not a sector is protected. Table 8.16 shows the address and data requirements.  
The autoselect command sequence may be written to an address within a bank that is either in the read or  
erase-suspend-read mode. The autoselect command may not be written while the device is actively  
programming or erasing in the other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the autoselect command. The bank then enters the autoselect  
mode. The system may read at any address within the same bank any number of times without initiating  
another autoselect command sequence. The following table describes the address requirements for the  
various autoselect functions, and the resulting data. BA represents the bank address, and SA represent the  
sector address. The device ID is read in three cycles.  
Table 8.11 Autoselect Device ID  
Read Data  
Description  
Address  
S29NS128J  
S29NS064J  
S29NS032J  
S29NS016J  
Manufacturer ID  
Device ID, Word 1  
Device ID, Word 2  
Device ID, Word 3  
(BA) + 00h  
(BA) + 01h  
(BA) + 0Eh  
(BA) + 0Fh  
0001h  
007Eh  
0016h  
0000h  
277Eh  
2702h  
2700h  
2A7Eh  
2A24h  
2A00h  
297Eh  
2915h  
2900h  
0001h (locked),  
0000h (unlocked)  
Sector Block Lock/Unlock  
Revision ID  
(SA) + 02h  
(BA) + 03h  
TBD, Based on Nokia spec  
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
8.7  
Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up command. The program address and data are written  
next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further  
controls or timings. The device automatically provides internally generated program pulses and verifies the  
programmed cell margin. Table 8.16 shows the address and data requirements for the program command  
sequence.  
When the Embedded Program algorithm is complete, that bank then returns to the read mode and addresses  
are no longer latched. The system can determine the status of the program operation by monitoring DQ7.  
Refer to the Write Operation Status section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program operation. The program command sequence should be  
reinitiated once that bank has returned to the read mode, to ensure data integrity.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from  
“0” back to a “1.Attempting to do so may cause that bank to set DQ5 = 1, or cause the DQ7 status bit to  
38  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
indicate the operation was successful. However, a succeeding read will show that the data is still “0.” Only  
erase operations can convert a “0” to a “1.”  
Note: By default, upon every power up, the sectors will automatically be locked.  
Therefore, everytime after power-up, users need to write unlock command to unlock the sectors before giving  
program/erase command.  
8.7.1  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program to a bank faster than using the standard program  
command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle containing the unlock bypass command, 20h. That bank then enters the  
unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to  
program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h;  
the second cycle contains the program address and data. Additional data is programmed in the same  
manner. This mode dispenses with the initial two unlock cycles required in the standard program command  
sequence, resulting in faster total programming time. Table 8.16 shows the requirements for the unlock  
bypass command sequences.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are  
valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command  
sequence. The first cycle must contain the bank address and the data 90h. The second cycle need only  
contain the data 00h. The bank then returns to the read mode.  
The device offers accelerated program operations through the Acc input. When the system asserts Acc on this  
input, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle  
Unlock Bypass program command sequence. The device uses the higher voltage on the Acc input to  
accelerate the operation.  
Figure 8.1 illustrates the algorithm for the program operation. Refer to the Erase/Program Operations table in  
the AC Characteristics section for parameters, and Figure 14.7 for timing diagrams.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
39  
D a t a S h e e t  
Figure 8.1 Program Operation  
START  
Write Unlock Cycles:  
Address XXX, Data 60  
Address XXX, Data 60  
Address SLA, Data 60  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note  
1. See Table 8.16 for program command sequence.  
8.8  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical erase. The system is not required to provide any  
controls or timings during these operations. Table 8.16 shows the address and data requirements for the chip  
erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and addresses are no  
longer latched. The system can determine the status of the erase operation by using DQ7. Refer to the Write  
Operation Status section for information on these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a hardware reset  
immediately terminates the erase operation. If that occurs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading array data, to ensure data integrity.  
Figure 8.2 illustrates the algorithm for the erase operation. Refer to the Erase/Program Operations table in  
the AC Characteristics section for parameters, and Figure 14.8 section for timing diagrams.  
40  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
8.9  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed  
by the address of the sector to be erased, and the sector erase command. Table 8.16 shows the address and  
data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase.  
The system is not required to provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of no less than tSEA (sector erase accept)  
occurs. During the time-out period, additional sector addresses and sector erase commands may be written.  
Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one  
sector to all sectors. The time between these additional cycles must be less than tSEA, otherwise erasure may  
begin. Any sector erase address and command following the exceeded time-out may or may not be accepted.  
It is recommended that processor interrupts be disabled during this time to ensure all commands are  
accepted. The interrupts can be re-enabled after the last Sector Erase command is written. Any command  
other than Sector Erase or Erase Suspend during the time-out period resets that bank to the read  
mode. The system must rewrite the command sequence and any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3:  
Sector Erase Timer.). The time-out begins from the rising edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded Erase operation is in progress, the system can read data  
from the non-erasing bank. The system can determine the status of the erase operation by reading DQ7in the  
erasing bank. Refer to the Write Operation Status section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands  
are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs,  
the sector erase command sequence should be reinitiated once that bank has returned to reading array data,  
to ensure data integrity.  
Figure 8.2 illustrates the algorithm for the erase operation. Refer to the Erase/Program Operations table in  
the AC Characteristics section for parameters, and Figure 14.8 section for timing diagrams.  
8.9.1  
Accelerated Sector Group Erase  
Under certain conditions, the device can erase sectors in parallel. This method of erasing sectors is faster  
than the standard sector erase command sequence. Table 8.12 lists the sector erase groups.  
The accelerated sector group erase function must not be used more than 100 times per sector. In  
addition, accelerated sector group erase should be performed at room temperature (30 +/- 10°C).  
Table 8.12 Accelerated Sector Erase Groups, S29NS128J  
SA0–SA7  
SA8–SA15  
SA128–SA135  
SA136–SA143  
SA144–SA151  
SA152–SA159  
SA160–SA167  
SA168–SA175  
SA176–SA183  
SA184–SA191  
SA192–SA199  
SA200–SA207  
SA208–SA215  
SA216–SA223  
SA224–SA231  
SA232–SA239  
SA240–SA247  
SA248–SA254  
SA16–SA23  
SA24–SA31  
SA32–SA39  
SA40–SA47  
SA48–SA55  
SA56–SA63  
SA64–SA71  
SA72–SA79  
SA80–SA87  
SA88–SA95  
SA96–SA103  
SA104–SA111  
SA112–SA119  
SA120–SA127  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
41  
D a t a S h e e t  
Table 8.13 Accelerated Sector Erase Groups, S29NS064J  
SA0–SA7  
SA8–SA15  
SA16–SA23  
SA24–SA31  
SA32–SA39  
SA40–SA47  
SA48–SA55  
SA56–SA63  
SA64–SA71  
SA72–SA79  
SA80–SA87  
SA88–SA95  
SA96–SA103  
SA104–SA111  
SA112–SA119  
SA120–SA126  
Table 8.14 Accelerated Sector Erase Groups, S29NS032J  
SA0–SA3  
SA4–SA7  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56–SA59  
SA60–SA62  
SA8–SA11  
SA12-SA15  
Table 8.15 Accelerated Sector Erase Groups, S29NS016J  
SA0–SA1  
SA2–SA3  
SA4–SA5  
SA6–SA7  
SA8-SA9  
SA10-SA11  
SA12-SA13  
SA14-SA15  
SA16-SA17  
SA18-SA19  
SA20-SA21  
SA24-SA25  
SA24-SA25  
SA26-SA27  
SA28-SA29  
SA30  
Use the following procedure to perform accelerated sector group erase:  
1. Unlock all sectors in a sector group to be erased using the sector lock/unlock command sequence.  
All sectors that remain locked will not be erased.  
2. Apply 12 V to the Acc input. This voltage must be applied at least 1 µs before executing Step 3.  
3. Write 80h to any address within a sector group to be erased.  
4. Write 10h to any address within a sector group to be erased.  
5. Monitor status bits DQ2/DQ6 or DQ7 to determine when erasure is complete, just as in the  
standard erase operation. See Write Operation Status for further details.  
6. Lower Acc from 12 V to VCC  
.
7. Relock sectors as required.  
8.10 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read  
data from, program data to, any sector not selected for erasure. The system may also lock or unlock any  
sector while the erase operation is suspended. The system must not write the sector lock/unlock  
command to sectors selected for erasure. The bank address is required when writing this command. This  
command is valid only during the sector erase operation, including the minimum tSEA time-out period during  
the sector erase command sequence. The Erase Suspend command is ignored if written during the chip  
erase operation or Embedded Program algorithm.  
42  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
When the Erase Suspend command is written during the sector erase operation, the device requires tESL  
(erase suspend latency) to suspend the erase operation. However, when the Erase Suspend command is  
written during the sector erase time-out, the device immediately terminates the time-out period and suspends  
the erase operation.  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode. The system  
can read data from or program data to any sector not selected for erasure. (The device “erase suspends” all  
sectors selected for erasure.) The system may also lock or unlock any sector while in the erase-suspend-read  
mode. Reading at any address within erase-suspended sectors produces status information on DQ7–DQ0.  
The system can use DQ7 to determine if a sector is actively erasing or is erase-suspended. Refer to the Write  
Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-read mode.  
The system can determine the status of the program operation using DQ7 , just as in the standard program  
operation. Refer to the Write Operation Status section for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence. Refer to the  
Autoselect Functions and Autoselect Command Sequence sections for details.  
To resume the sector erase operation, the system must write the Erase Resume command. The bank  
address of the erase-suspended bank is required when writing this command. Further writes of the Resume  
command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing.  
Figure 8.2 Erase Operation  
START  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes  
1. See Table 8.16 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Table 8.16 Command Definitions  
Bus Cycles (Notes 16)  
Command Sequence  
(Notes)  
First  
Second  
Third  
Addr  
Fourth  
Addr  
Fifth  
Addr  
Sixth  
Addr Data Addr Data  
Data  
Data  
Data  
Addr  
Data  
Asynchronous Read (7)  
Reset (8)  
1
1
RA  
RD  
F0  
XXX  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
43  
D a t a S h e e t  
Table 8.16 Command Definitions  
Bus Cycles (Notes 16)  
Fourth  
Addr  
Command Sequence  
(Notes)  
First  
Second  
Third  
Addr  
Fifth  
Addr  
Sixth  
Addr Data Addr Data  
Data  
90  
Data  
0001  
(10)  
(13)  
(14)  
Data  
Addr  
Data  
Manufacturer ID  
Device ID  
4
6
4
4
3
2
555  
555  
555  
555  
555  
XXX  
AA  
AA  
AA  
AA  
AA  
A0  
2AA  
2AA  
2AA  
2AA  
2AA  
PA  
55  
55  
55  
55  
55  
PD  
(BA)555  
(BA)555  
(SA)555  
(BA)555  
555  
(BA)X00  
(BA)X01  
(SA)X02  
(BA)X03  
90  
(BA)X0E  
(11)  
(BA) X0F  
(12)  
Sector Lock Verify (13)  
Revision ID (14)  
Mode Entry  
90  
90  
20  
Program (15)  
Reset (16)  
2
BA  
90  
XXX  
00  
Program  
4
6
6
1
1
3
3
1
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
PD  
AA  
AA  
Chip Erase  
555  
555  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase Suspend (17)  
Erase Resume (18)  
Sector Lock/Unlock  
Set Config. Register (19)  
CFI Query (20)  
BA  
XXX  
555  
55  
60  
XXX  
2AA  
60  
55  
SLA  
60  
AA  
98  
(CR)555  
C0  
Legend  
7. No unlock or command cycles required when bank is reading array data.  
X = Don’t care  
8. The Reset command is required to return to reading array data (or to the  
erase-suspend-read mode if previously in Erase Suspend) when a bank is  
in the autoselect mode, or if DQ5 goes high (while the bank is providing  
status information).  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
9. The fourth cycle of the autoselect command sequence is a read cycle. Th  
system must read device IDs across the 4th, 5th, and 6th cycles, The  
system must provide the bank address. See the Autoselect Command  
Sequence section for more information.  
PA = Address of the memory location to be programmed. Addresses latch on  
the falling edge of the WE# or CE# pulse, whichever happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of  
WE# or CE# pulse, whichever happens first.  
10.For S29NS128J, the data is 007Eh. For S29NS064J, the data is 277Eh. Fo  
S29NS032J, the data is 2A7Eh. For S29NS016J, the data is 297Eh.  
11.For S29NS128J, the data is 0016h. For S29NS064J, the data is 2702h, fo  
S29NS032J, the data is 2A24h, for S29NS016J, the data is 2915h.  
SA = Address of the sector to be verified (in autoselect mode) or erased.  
Address bits A  
–A13 uniquely select any sector.  
max  
12.For S29NS128J, the data is 0000h, for S29NS064J, the data is 2700h, for  
S29NS032J, the data is 2A00h for S29NS016J, the data is 2900h.  
BA = Address of the bank (A22–A21 for S29NS128J, A21–A20 for S29NS064J,  
A20–A19 for S29NS032J, A19–A18 for S29NS016J) that is being switched to  
autoselect mode, is in bypass mode, or is being erased.  
13.The data is 0000h for an unlocked sector and 0001h for a locked sector.  
14.The data is TBD, based on Nokia spec.  
15.The Unlock Bypass command sequence is required prior to this command  
sequence.  
SLA = Address of the sector to be locked. Set sector address (SA) and either  
A6 = 1 for unlocked or A6 = 0 for locked.  
16.The Unlock Bypass Reset command is required to return to reading array  
data when the bank is in the unlock bypass mode.  
CR = Configuration Register set by address bits A17–A12.  
17.The system may read and program in non-erasing sectors, or enter the  
autoselect mode, when in the Erase Suspend mode. The Erase Suspend  
command is valid only during a sector erase operation, and requires the  
bank address.  
Notes  
1. See Table 7.1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle and the fourth cycle of the autoselect command  
sequence, all bus cycles are write cycles.  
18.The Erase Resume command is valid only during the Erase Suspend  
mode, and requires the bank address.  
4. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD  
and PD.  
19.The addresses in the third cycle must contain, on A17–A12, the additiona  
wait counts to be set. See Set Configuration Register Command Sequenc  
5. Unless otherwise noted, address bits A  
–A12 are don’t cares.  
20.Command is valid when device is ready to read array data or when device  
in autoselect mode.  
max  
6. Writing incorrect address and data values or writing them in the improper  
sequence may place the device in an unknown state. The system must  
write the reset command to return the device to reading array data.  
44  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
9. Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5  
and DQ7. Table 9.2 and the following subsections describe the function of these bits. DQ7 a method for  
determining whether a program or erase operation is complete or in progress.  
9.1  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm  
is in progress or completed, or whether a bank is in Erase Suspend. Data# Polling is valid after the rising  
edge of the final WE# pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum  
programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the  
Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for approximately tPSP, then that bank returns to the read  
mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the sectors selected for erasure to read valid status  
information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling  
on DQ7 is active for approximately tASP (all sectors protected toggle time), then the bank returns to the read  
mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address  
within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously  
with DQ6–DQ0 while Output Enable (OE#) is asserted low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device has completed the program or erase operation and DQ7 has valid  
data, the data outputs on DQ6–DQ0 may be still invalid. Valid data on DQ7–DQ0 will appear on successive  
read cycles.  
Table 9.2 shows the outputs for Data# Polling on DQ7. Figure 9.1 shows the Data# Polling algorithm.  
Figure 14.10 in the AC Characteristics section shows the Data# Polling timing diagram.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
45  
D a t a S h e e t  
Figure 9.1 Data# Polling Algorithm  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes  
1. VA = Valid Address for programming. During a sector erase operation, a valid address is any sector address within the sector being  
erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.  
9.2  
RDY: Ready  
The RDY pin is a dedicated status output that indicates valid output data on A/DQ15–A/DQ0 during burst  
(synchronous) reads. When RDY is asserted (RDY = VOH), the output data is valid and can be read. When  
RDY is de-asserted (RDY = VOL), the system should wait until RDY is re-asserted before expecting the next  
word of data.  
In synchronous (burst) mode with CE# = OE# = VIL, RDY is de-asserted under the following conditions:  
during the initial access; after crossing the internal boundary between addresses 3Eh and 3Fh (and  
addresses offset from these by a multiple of 64); and when the clock frequency is less than 6 MHz (in which  
case RDY is de-asserted every third clock cycle). The RDY pin will also switch during status reads when a  
clock signal drives the CLK input. In addition, RDY = VOH when CE# = VIL and OE# = VIH, and RDY is Hi-Z  
when CE# = VIH.  
In asynchronous (non-burst) mode, the RDY pin does not indicate valid or invalid output data. Instead, RDY =  
VOH when CE# = VIL, and RDY is Hi-Z when CE# = VIH.  
46  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
9.3  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete,  
or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address in the  
same bank, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause  
DQ6 to toggle. Note that OE# must be low during toggle bit status reads. When the operation is complete,  
DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for  
approximately tASP, then returns to reading array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use  
DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately after tPSP the program  
command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program  
algorithm is complete.  
See the following for additional information: (toggle bit flowchart), DQ6: Toggle Bit I (description),  
Figure 14.11 (toggle bit timing diagram), and Table 9.1 (compares DQ2 and DQ6).  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
47  
D a t a S h e e t  
Figure 9.2 Toggle Bit Algorithm  
START  
Read Byte  
(DQ0-DQ7)  
Address = VA  
Read Byte  
(DQ0-DQ7)  
Address = VA  
No  
DQ6 = Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ?0-DQ7)  
Adrdess = VA  
No  
DQ6 = Toggle?  
Yes  
FAIL  
PASS  
Note  
1. The system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5 changes to “1.See the  
subsections on DQ6 and DQ2 for more information.  
9.4  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that  
is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is  
valid after the rising edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure.  
Note that OE# must be low during toggle bit status reads. But DQ2 cannot distinguish whether the sector is  
actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing,  
or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits  
are required for sector and mode information. Refer to Table 9.2 to compare outputs for DQ2 and DQ6.  
See the following for additional information: (toggle bit flowchart), DQ6: Toggle Bit I (description),  
Figure 14.11 (toggle bit timing diagram), and Table 9.1 (compares DQ2 and DQ6).  
48  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Table 9.1 DQ6 and DQ2 Indications  
If device is  
and the system reads  
then DQ6  
and DQ2  
programming,  
at any address,  
toggles,  
does not toggle.  
at an address within a sector selected  
for erasure,  
toggles,  
toggles,  
also toggles.  
does not toggle.  
toggles.  
actively erasing,  
at an address within sectors not  
selected for erasure,  
at an address within a sector selected  
for erasure,  
does not toggle,  
returns array data,  
toggles,  
erase suspended,  
at an address within sectors not  
returns array data. The system can read from  
any sector not selected for erasure.  
selected for erasure,  
programming in  
erase suspend  
at any address,  
is not applicable.  
9.5  
Reading Toggle Bits DQ6/DQ2  
Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row  
to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the  
toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the  
system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as  
DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or  
erase operation. If it is still toggling, the device did not completed the operation successfully, and the system  
must write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not  
gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles,  
determining the status as described in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algorithm when it returns to  
determine the status of the operation.  
9.6  
9.7  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a “1,” indicating that the program or erase cycle was not successfully  
completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a location that was previously  
programmed to “0.” Only an erase operation can change a “0” back to a “1.” Under this condition, the  
device halts the operation, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return to the read mode (or to the  
erase-suspend-read mode if a bank was previously in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors  
are selected for erasure, the entire time-out also applies after each additional sector erase command. When  
the time-out period is complete, DQ3 switches from a “0” to a “1.” If the time between additional sector erase  
commands from the system can be assumed to be less than tSEA, the system need not monitor DQ3. See  
also the Sector Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is  
“1,” the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,” the device will accept additional sector erase commands.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
49  
D a t a S h e e t  
To ensure the command has been accepted, the system software should check the status of DQ3 prior to and  
following each subsequent sector erase command. If DQ3 is high on the second status check, the last  
command might not have been accepted.  
Table 9.2 shows the status of DQ3 relative to the other status bits.  
Table 9.2 Write Operation Status  
Status  
DQ7 (2)  
DQ7#  
0
DQ6  
DQ5 (1)  
DQ3  
N/A  
1
DQ2 (2)  
No toggle  
Toggle  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Toggle  
Toggle  
0
0
Standard  
Mode  
Erase Suspended  
Sector  
1
No toggle  
0
N/A  
Toggle  
Erase Suspend  
Read (4)  
Erase  
Suspend  
Mode  
Non-Erase Suspended  
Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
Erase Suspend Program  
DQ7#  
Toggle  
Notes  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the  
section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm is in  
progress. The device outputs array data if the system addresses a non-busy bank.  
4. The system may read either asynchronously or synchronously (burst) while in erase suspend. RDY will function exactly as in non-erase-  
suspended mode.  
10. Absolute Maximum Ratings  
Storage Temperature  
Ambient Temperature with Power Applied  
Voltage with Respect to Ground, All Inputs and I/Os except A (Note 1)  
–65°C to +150°C  
–65°C to +125°C  
–0.5 V to V + 0.5 V  
CC  
cc  
V
A
(1)  
–0.5 V to +2.5 V  
–0.5 V to +12.5 V  
100 mA  
CC  
(2)  
cc  
Output Short Circuit Current (3)  
Notes  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, input at I/Os may undershoot V to –2.0 V for periods of up to  
SS  
20 ns during voltage transitions inputs might overshooot to V +0.5 V for periods up to 20 ns. See Figure 10.1. Maximum DC voltage on  
CC  
output and I/Os is V + 0.5 V. During voltage transitions outputs may overshoot to V + 2.0 V for periods up to 20 ns. See Figure 10.2.  
CC  
CC  
2. Minimum DC input voltage on A is –0.5 V. During voltage transitions, A may undershoot V to –2.0 V for periods of up to 20 ns. See  
cc  
cc  
SS  
Figure 10.1. Maximum DC input voltage on A is +12.5 V which may overshoot to +13.5 V for periods up to 20 ns.  
cc  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not  
implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.  
Figure 10.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.9 V  
–2.0 V  
20 ns  
50  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 10.2 Maximum Positive Overshoot Waveform  
20 ns  
V
+2.0 V  
2.0 V  
CC  
20 ns  
20 ns  
10.1 Operating Ranges  
Ambient Temperature (T )  
–25°C to +85°C  
A
V
Supply Voltages  
CC  
V
min  
+1.7 V  
CC  
V
max  
+1.95 V  
CC  
Note  
1. Operating ranges define those limits between which the functionality of the device is guaranteed.  
11. DC Characteristics  
11.1 CMOS Compatible  
Parameter  
Description  
Input Load Current  
Output Leakage Current  
Test Conditions (1)  
= V to V , V = V  
CC max  
Min  
Typ  
Max  
1
Unit  
µA  
I
V
IN  
LI  
SS  
CC CC  
I
V
= V to V , V = V  
CC max  
1
µA  
LO  
OUT  
SS  
CC CC  
I
V
Active Burst Read Current (5)  
CE# = V , OE# = V  
25  
12  
3.5  
15  
9
30  
16  
5
mA  
mA  
mA  
mA  
µA  
CCB  
CC  
IL  
IL  
5 MHz  
1 MHz  
I
V
Active Asynchronous Read Current (2)  
CE# = V , OE# = V  
IL  
CC1  
CC  
IH  
I
I
I
V
V
V
V
Active Write Current (3)  
Standby Current (4)  
Reset Current  
CE# = V , OE# = V , A = V  
40  
40  
40  
CC2  
CC3  
CC4  
CC  
CC  
CC  
CC  
IL  
IH  
cc  
IH  
CE# = V , RESET# = V  
IH  
IH  
RESET# = V CLK = V  
9
µA  
IL,  
IL  
Active Current  
I
CE# = V , OE# = V  
IL  
40  
60  
mA  
mA  
CC5  
IL  
(Read While Write)  
I
7
5
7
5
15  
10  
15  
10  
0.4  
PPW  
Accelerated Program Current (6)  
A
= 12 V  
= 12 V  
cc  
cc  
I
CCW  
I
PPE  
Accelerated Erase Current (6)  
A
mA  
I
CCE  
V
Input Low Voltage  
–0.5  
V
V
V
V
V
V
IL  
V
Input High Voltage  
V
V
– 0.4  
V
+ 0.2  
CC  
IH  
CC  
V
Output Low Voltage  
I
I
= 100 µA, V = V  
CC min  
0.1  
OL  
OH  
OL  
CC  
V
Output High Voltage  
Voltage for Accelerated Program  
= –100 µA, V = V  
CC min  
– 0.1  
OH  
CC  
CC  
V
11.5  
1.0  
12.5  
1.4  
ID  
V
Low V Lock-out Voltage  
CC  
LKO  
Notes  
1. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
2. The I current listed is typically less than 2 mA/MHz, with OE# at V  
.
CC  
IH  
3.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Device enters automatic sleep mode when addresses are stable for t  
5. Specifications assume 8 I/Os switching and continuous burst length.  
+ 60 ns. Typical sleep mode current is equal to I  
.
ACC  
CC3  
6. Not 100% tested. A is not a power supply pin.  
cc  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
51  
D a t a S h e e t  
12. Test Conditions  
Figure 12.1 Test Setup  
Device  
Under  
Test  
CL  
Table 12.1 Test Specifications  
Test Condition  
All Speeds  
Unit  
pF  
ns  
V
Output Load Capacitance, C (including jig capacitance)  
L
30  
5
Input Rise and Fall Times  
Input Pulse Levels  
0.0–V  
CC  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
/2  
V
CC  
CC  
/2  
V
13. Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State  
(High Z)  
13.1 Switching Waveforms  
Figure 13.1 Input Waveforms and Measurement Levels  
VCC  
VCC/2  
VCC/2  
Input  
Measurement Level  
Output  
0.0 V  
52  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
14. AC Characteristics  
14.1  
V
Power-up  
CC  
Parameter  
Description  
Test Setup  
Min  
Speed  
50  
Unit  
µs  
t
V
Setup Time  
CC  
VCS  
t
RESET# Low Hold Time  
Min  
50  
µs  
RSTH  
Figure 14.1 VCC Power-up Diagram  
tVCS  
VCC  
tRSTH  
RESET#  
14.2 CLK Characterization  
Parameter  
Description  
0L (54 MHz)  
Unit  
f
CLK Frequency  
CLK Period  
Max  
Min  
54  
MHz  
ns  
CLK  
CLK  
t
18.5  
t
CLK High Time  
CLK Low Time  
CLK Rise Time  
CLK Fall Time  
CH  
Min  
4.5  
3
ns  
ns  
t
CL  
t
CR  
Max  
t
CF  
Figure 14.2 CLK Characterization  
t
CLK  
t
CL  
t
CF  
t
CH  
t
CR  
CLK  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
53  
D a t a S h e e t  
14.3 Synchronous/Burst Read  
Parameter  
0L  
(54 MHz)  
Description  
Unit  
JEDEC  
Standard  
t
Initial Access Time  
Max  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Min  
Min  
Max  
87.5  
13.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IACC  
t
Burst Access Time Valid Clock to Output Delay  
AVD# Setup Time to CLK  
BACC  
t
AVDS  
AVDH  
AVDO  
t
AVD# Hold Time from CLK  
7
t
AVD# High to OE# Low  
0
t
Address Setup Time to CLK  
Address Hold Time from CLK  
Data Hold Time from Next Clock Cycle (1))  
Output Enable to Data, PS, or RDY Valid  
Chip Enable to High Z  
5
ACS  
ACH  
BDH  
t
7
t
3
t
13.5  
10  
10  
5
OE  
t
CEZ  
OEZ  
CES  
t
t
Output Enable to High Z  
CE# Setup Time to CLK  
t
RDY Setup Time to CLK  
5
RDYS  
RACC  
t
Ready access time from CLK  
13.5  
Note:  
1. Not 100% tested  
Figure 14.3 Burst Mode Read (54 MHz)  
5 cycles for initial access shown.  
Programmable wait state function is set to 03h.  
tCEZ  
tCES  
18.5 ns typ. (54 MHz)  
CE#  
CLK  
tAVDS  
AVD#  
tAVDH  
tAVDO  
tACS  
tBDH  
A
max  
A16  
Aa  
tBACC  
tACH  
Hi-Z  
A/DQ15–  
A/DQ0  
Aa  
Da  
Da + 1  
tIACC  
Da + 2  
Da + n  
tOEZ  
OE#  
RDY  
tRACC  
tOE  
Hi-Z  
Hi-Z  
tRYDS  
Notes:  
1. Figure shows total number of clock set to five.  
2. If any burst address occurs at a 64-word boundary, two additional clock cycles are inserted and are indicated by RDY.  
54  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 14.4 Burst Mode Read (40 MHz)  
4 cycles for initial access shown.  
Programmable wait state function is set to 02h.  
tCEZ  
tCES  
25 ns typ.  
CE#  
CLK  
tAVDS  
AVD#  
tAVDH  
tAVDO  
tACS  
tBDH  
A
A16  
max  
Aa  
tBACC  
tACH  
Hi-Z  
A/DQ15–  
A/DQ0  
Aa  
Da  
Da + 1  
tIACC  
Da + 2  
Da + n  
tOEZ  
OE#  
RDY  
tRACC  
tOE  
Hi-Z  
Hi-Z  
tRYDS  
Notes  
1. Figure shows total number of clock cycles set to four.  
2. If any burst address occurs at a 64-word boundary, two additional clock cycle are inserted, and are indicated by RDY.  
14.4 Asynchronous Read  
Parameter  
JEDEC Standard  
0L  
(54 MHz)  
Description  
Unit  
t
Access Time from CE# Low  
Asynchronous Access Time  
AVD# Low Time  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
70  
70  
12  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CE  
t
ACC  
t
AVDP  
AAVDS  
AAVDH  
t
Address Setup Time to Rising Edge of AVD  
Address Hold Time from Rising Edge of AVD  
Output Enable to Output Valid  
t
3.7  
13.5  
0
t
OE  
Read  
t
Output Enable Hold Time  
OEH  
Data# Polling  
10  
10  
t
Output Enable to High Z (1)  
OEZ  
Note  
1. Not 100% tested.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
55  
D a t a S h e e t  
Figure 14.5 Asynchronous Mode Read  
CE#  
OE#  
WE#  
tOE  
tOEH  
tCE  
tOEZ  
A/DQ15–  
A/DQ0  
RA  
tACC  
Valid RD  
RA  
A
A16  
max  
tAAVDH  
AVD#  
tAVDP  
tAAVDS  
Note  
1. RA = Read Address, RD = Read Data.  
14.5 Hardware Reset (RESET#)  
Parameter  
Description  
All Speed Options  
Unit  
JEDEC  
Std  
RESET# Pin Low (During Embedded Algorithms) to  
Read Mode (1)  
t
Max  
Max  
35  
µs  
ns  
Readyw  
RESET# Pin Low (NOT During Embedded Algorithms)  
to Read Mode (1)  
t
500  
Ready  
t
RESET# Pulse Width  
Min  
Min  
Min  
500  
200  
20  
ns  
ns  
µs  
RP  
t
Reset High Time Before Read (1)  
RESET# Low to Standby Mode  
RH  
t
RPD  
Note  
1. Not 100% tested.  
56  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 14.6 Reset Timings  
CE#, OE#  
RESET#  
t
RH  
t
RP  
t
Ready  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
CE#, OE#  
RESET#  
t
Ready  
t
RP  
14.6 Erase/Program Operations  
Parameter  
0L  
(54 MHz)  
Description  
Unit  
JEDEC  
Standard  
t
t
Write Cycle Time (1)  
Address Setup Time  
Address Hold Time  
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Typ  
Min  
Min  
Min  
Min  
Max  
Max  
Typ  
Typ  
80  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
AVAV  
WC  
t
t
AVWL  
WLAX  
AS  
t
t
7
AH  
t
12  
45  
0
AVDP  
t
t
Data Setup Time  
Data Hold Time  
DVWH  
DS  
t
t
WHDX  
DH  
t
t
Read Recovery Time Before Write  
CE# Setup Time  
0
GHWL  
GHWL  
t
t
0
ELWL  
WHEH  
WLWH  
WHWL  
CS  
t
t
CE# Hold Time  
0
CH  
t
t
/t  
Write Pulse Width  
50  
30  
0
WP WRL  
t
t
Write Pulse Width High  
Latency Between Read and Write Operations  
WPH  
t
SR/W  
t
A
A
V
Rise and Fall Time  
500  
1
Acc  
cc  
t
Setup Time (During Accelerated Programming)  
VPS  
VCS  
cc  
t
Setup Time  
50  
50  
35  
100  
1
CC  
t
Sector Erase Accept Time-out  
SEA  
t
Erase Suspend Latency  
ESL  
ASP  
PSP  
t
t
Toggle Time During Sector Protection  
Toggle Time During Programming Within a Prot  
Notes  
1. Not 100% tested.  
2. See the Erase and Programming Performance section for more information.  
3. Does not include the preprogramming time.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
57  
D a t a S h e e t  
Figure 14.7 Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data  
tAS  
AVD#  
tAH  
tAVDP  
PA  
PA  
VA  
VA  
VA  
A
A16  
max  
In  
A/DQ15–  
A/DQ0  
555h  
Complete  
A0h  
PD  
tDS  
tDH  
VA  
Progress  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tWC  
V
IH  
CLK  
VCC  
V
IL  
tVCS  
Notes  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3.  
A
–A16 are don’t care during command sequence unlock cycles.  
max  
Figure 14.8 Chip/Sector Erase Operations  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
AVD#  
tAH  
tAVDP  
SA  
555h for  
chip erase  
VA  
VA  
VA  
A
A16  
max  
10h for  
chip erase  
In  
A/DQ15–  
A/DQ0  
2AAh  
Complete  
55h  
SA  
30h  
VA  
Progress  
tDS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH2  
tCS  
tWPH  
tWC  
V
IH  
CLK  
VCC  
V
IL  
tVCS  
Notes  
1. SA is the sector address for Sector Erase.  
2. Address bits A  
–A16 are don’t cares during unlock cycles in the command sequence.  
max  
58  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 14.9 Accelerated Unlock Bypass Programming Timing  
CE#  
AVD#  
WE#  
A
A16  
PA  
max  
A/DQ15  
A/DQ0  
Don't Care  
A0h  
PA  
PD  
Don't Care  
CE#  
tVPS  
V
V
ID  
VPP  
tVPP  
or V  
IL  
IH  
Notes  
1.  
A
can be left high for subsequent programming pulses.  
cc  
2. Use setup and hold times from conventional program operation.  
Figure 14.10 Data# Polling Timings (During Embedded Algorithm)  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
High Z  
A
A16  
VA  
VA  
VA  
max  
High Z  
A/DQ15–  
A/DQ0  
VA  
Status Data  
Status Data  
Notes  
1. All status reads are asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is completeData# Polling  
will output true data.  
Figure 14.11 Toggle Bit Timings (During Embedded Algorithm)  
AVD#  
tCEZ  
tCE  
CE#  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
High Z  
High Z  
A
A16  
VA  
VA  
VA  
max  
A/DQ15–  
A/DQ0  
VA  
Status Data  
Status Data  
Notes  
1. All status reads are asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, .  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
59  
D a t a S h e e t  
Figure 14.12 8-, 16-, and 32-Word Linear Burst Address Wrap Around  
Address wraps back to beginning of address group.  
Initial Access  
39  
CLK  
39  
3A  
3B  
3C  
3D  
3E  
3F  
38  
Address (hex)  
A/DQ15–  
A/DQ0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
V
IH  
AVD#  
OE#  
V
IL  
V
V
IH  
IL  
(stays low)  
V
IL  
CE#  
Note  
1. 8-word linear burst mode shown. 16- and 32-word linear burst read modes behave similarly. D0 represents the first word of the linear  
burst.  
Figure 14.13 Latency with Boundary Crossing  
Address boundary occurs every 64 words, beginning at address  
00003Fh: 00007Fh, 0000BFh, etc. Address 000000h is also a boundary crossing.  
C60  
C61  
C62  
C63  
C63  
C63  
C64  
C65  
C66  
C67  
CLK  
3C  
(stays high)  
3D  
3E  
3F  
40  
41  
42  
43  
Address (hex)  
V
IH  
AVD#  
RDY  
V
IL  
tRACC  
latency  
A/DQ15–  
A/DQ0  
D60  
D61  
D62  
D63  
D64  
D65  
D66  
D67  
V
IH  
OE#,  
CE#  
(stays low)  
V
IL  
Note  
1. Cxx indicates the clock that triggers data Dxx on the outputs; for example, C60 triggers D60.  
60  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Figure 14.14 Initial Access at 3Eh with Address Boundary Latency  
AVD# low with clock  
present enables  
burst read mode  
device is programmable from 2 to 7 total cycles  
during initial access (here, programmable wait state  
function is set to 04h; 6 cycles total)  
2 additional  
wait states if  
address is  
at boundary  
CLK  
AVD#  
RDY  
A/DQ15–  
A/DQ0  
High-Z  
D0  
D1  
Address  
Address  
D2  
A
A16  
OE#  
max  
tOE  
Note  
1. Devices should be programmed with wait states as discussed in Programmable Wait State on page 21.  
Figure 14.15 Example of Extended Valid Address Reducing Wait State Usage  
CE#  
A/DQ  
Addresses  
D0  
D1  
D2  
tIACC  
AVD#  
CLK  
OE#  
RDY  
tAVDSM  
Hi-Z  
Note  
1. If t  
> 1 CLK cycle, wait state usage is reduced. Figure shows 40 MHz clock, handshaking enabled. Wait state usage is 4 clock  
AVDSM  
cycles instead of 5. Note that t  
must be less than 76 µs for burst operation to begin.  
AVDSM  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
61  
D a t a S h e e t  
Figure 14.16 Back-to-Back Read/Write Cycle Timings  
Last Cycle in  
Program or  
Sector Erase  
Read status (at least two cycles) in same bank  
and/or array data from other bank  
Begin another  
write or program  
command sequence  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE#  
OE#  
tOE  
tOEH  
tGHWL  
WE#  
tWPH  
tOEZ  
tWP  
tDS  
tACC  
tOEH  
tDH  
RA  
A/DQ15–  
A/DQ0  
RA  
RA  
PA/SA  
PD/30h  
RD  
RD  
555h  
AAh  
tSR/W  
RA  
A
A16  
max  
PA/SA  
tAS  
AVD#  
tAH  
Note  
1. Breakpoints in waveforms indicate that system may alternately read array data from the “non-busy bank” while checking the status of the  
program or erase operation in the “busy” bank. The system should read status twice to ensure valid information.  
62  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
15. Erase and Programming Performance  
Parameter  
Typ (1)  
Max (2)  
Unit  
Comments  
32 Kword  
8 Kword  
0.4  
0.2  
108  
54  
27  
13.5  
9
5
5
Sector Erase Time  
s
128 Mb  
64 Mb  
32 Mb  
16 Mb  
Excludes 00h programming  
prior to erasure (4)  
s
Chip Erase Time  
Word Programming Time  
210  
120  
288  
144  
72  
µs  
µs  
Excludes system level  
overhead (5)  
Accelerated Word Programming Time  
4
128 Mb  
64 Mb  
32 Mb  
16 Mb  
128 Mb  
64 Mb  
32 Mb  
16 Mb  
128 Mb  
64 Mb  
32 Mb  
16 Mb  
96  
48  
24  
12  
32  
16  
8
s
Chip Programming Time (3)  
36  
96  
s
s
48  
Excludes system level  
overhead (5)  
Accelerated Chip Programming Time  
24  
4
12  
50  
25  
12.5  
6.25  
Accelerated Chip Erase Time  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V V , 100,000 cycles. Additionally, programming typicals  
CC  
assume checkerboard pattern.  
2. Under worst case conditions of 90°C, V = 1.7 V, 1,000,000 cycles.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 8.16 for  
further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
16. BGA Ball Capacitance  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
= 0  
Typ  
4.2  
5.4  
3.9  
Max  
5.0  
6.5  
4.7  
Unit  
pF  
C
V
IN  
IN  
C
Output Capacitance  
Control Pin Capacitance  
V
= 0  
pF  
OUT  
OUT  
C
V
= 0  
IN  
pF  
IN2  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
63  
D a t a S h e e t  
17. Physical Dimensions  
17.1 S29NS128J  
VDC048—48-Ball Very Thin Fine-Pitch Ball Grid Array (FBGA) 10 x 11 mm Package  
A
D
D1  
A1 CORNER  
INDEX MARK  
A1 CORNER  
10  
10  
9
8
7
6
5
4
3
2
1
NF2  
NF1  
NF3  
NF4  
A
B
C
D
e
E1  
E
SE  
1.00  
7
NF5  
NF6  
1.00  
NF7  
NF8  
B
SD  
1.00 1.00  
7
φb  
6
0.10  
0.08  
C
A2  
φ 0.15 M  
φ 0.05 M  
C
C
A B  
A
A1  
C
C
SEATING PLANE  
NOTES:  
PACKAGE  
JEDEC  
VDC 048  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
9.95 mm x 10.95 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
0.86  
0.20  
0.66  
9.85  
10.85  
NOM  
---  
MAX  
1.00  
---  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
0.71  
9.95  
10.95  
4.50  
1.50  
10  
0.76  
BODY THICKNESS  
10.05 BODY SIZE  
11.05 BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
4
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
48  
φb  
0.25  
0.30  
0.50  
0.25  
0.35  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3241 \ 16-038.9h.aa01  
Note  
1. For reference only. BSC is an ANSI standard for Basic Space Centering.  
64  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
17.2 S29NS064J  
VDD044—44-Ball Very Thin Fine-Pitch Ball Grid Array (FBGA) 9.2 x 8 mm Package  
A
D
D1  
A1 CORNER  
INDEX MARK  
A1 CORNER  
10  
10  
9
8
7
6
5
4
3
2
1
NF2  
NF1  
A
B
C
D
e
E
E1  
SE  
1.00  
7
NF4  
NF3  
1.00  
SD  
B
7
B
TOP VIEW  
SIDE VIEW  
φb  
6
φ 0.15  
φ 0.05  
M
C A  
C
M
0.10  
0.08  
C
C
A2  
A
BOTTOM VIEW  
A1  
SEATING PLANE  
C
NOTES:  
PACKAGE  
JEDEC  
VDD 044  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
N/A  
8.00 mm x 9.20 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
0.86  
0.20  
0.66  
NOM  
---  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
0.71  
8.00  
9.20  
4.50  
1.50  
10  
0.76  
8.10  
9.30  
BODY THICKNESS  
BODY SIZE  
7.90  
9.10  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
4
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
44  
φb  
0.25  
0.30  
0.50  
0.25  
0.35  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3239 \ 16-038.9h.aa01  
Note  
1. For reference only. BSC is an ANSI standard for Basic Space Centering.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
65  
D a t a S h e e t  
17.3 S29NS032J and S29NS016J  
VDE044—44-Ball Very Thin Fine-Pitch Ball Grid Array (FBGA) 7.7 x 6.2 mm Package  
D1  
A
D
A1 CORNER  
INDEX MARK  
A1 CORNER  
10  
9
8
7
6
5
4
3
2
1
10  
NF2  
NF1  
e
A
B
C
D
E
B
E1  
SE  
1.00  
7
NF4  
NF3  
1.00  
SD  
B
7
TOP VIEW  
φb  
6
φ 0.05  
φ 0.15  
M
M
C
C A  
0.10  
C
A2  
A
BOTTOM VIEW  
0.08  
C
A1  
SEATING PLANE  
C
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VDE 044  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
7.70 mm x 6.20 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
0.86  
0.20  
0.66  
7.65  
6.15  
NOM  
---  
MAX  
1.00  
---  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
0.71  
7.7  
0.76  
7.75  
6.25  
BODY THICKNESS  
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
6.2  
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
4.50  
1.50  
10  
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
4
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
44  
φb  
0.25  
0.30  
0.50 BSC.  
0.25 BSC.  
0.35  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3308.1 \ 16-038.9L  
Note  
1. For reference only. BSC is an ANSI standard for Basic Space Centering.  
66  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
18. Appendix A: Daisy Chain Information  
Table 18.1 Daisy Chain Part for 128Mbit 110 nm Flash Products (VDC048, 10 x 11 mm)  
Package  
Marking  
Daisy Chain  
Connection  
Spansion 128Mb Flash  
Part Number  
Daisy Chain Part Number  
Flash Description  
Lead (Pb) - Free Compliant:  
AM29N128HVCD21CT  
N128HD21C  
Die Level  
S29NS128J  
128Mbit 110nm  
Lead (Pb) - Free:  
Am29N128HVCD21CFT  
N128HD21CF  
Table 18.2 VDC048 Package Information  
Component Type/Name  
VDC048  
Solder resist opening  
Daisy Chain Connection Level  
Lead-Free Compliant  
Quantity per Reel  
0.25 + 0.05 mm  
On die  
Yes  
550 (300 units per reel by special request to factory)  
Table 18.3 VDC048 Connections  
C1–D1  
C2–D2  
C3–D3  
C4–D4  
C5–D5  
C6–D6  
C7–D7  
A10–B10  
A9–B9  
A8–B8  
A7–B7  
A6–B6  
A5–B5  
A4–B4  
A3–B3  
A2–B2  
A1–B1  
C8–D8  
C9–D9  
C10–D10  
On substrate  
NF1–NF4  
NF16-NF19  
NF2–NF5  
NF17-NF20  
Figure 18.1 VDC048 Daisy Chain Layout (Top View, Balls Facing Down)  
NF2  
NF1  
NF4  
NF5  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
NF16  
NF17  
NF19  
NF20  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
67  
D a t a S h e e t  
19. Appendix B: Daisy Chain Information  
Table 19.1 Daisy Chain Part for 64Mbit 110 nm Flash Products (VDD044, 9.2 x 8 mm)  
Daisy Chain  
Connection  
Spansion 64Mb Flash  
Part Number  
Daisy Chain Part Number  
Package Marking  
Description  
Lead (Pb) - Free Compliant:  
AM29N643GVAD21CT  
N643GD21C  
Die Level  
S29NS064J  
64Mbit 110nm  
Lead (Pb)- Free:  
AM29N643GVAD21CFT  
N643GD21CF  
Table 19.2 VDD044 Package Information  
Component Type/Name  
VDD044  
Solder resist opening  
Daisy Chain Connection Level  
Lead-Free Compliant  
Quantity per Reel  
0.25 + 0.05 mm  
On die  
Yes  
600 (300 units per reel by special request to factory)  
Table 19.3 VDD044 Connections  
C1–D1  
C2–D2  
C3–D3  
C4–D4  
C5–D5  
C6–D6  
C7–D7  
A10–B10  
A9–B9  
A8–B8  
A7–B7  
A6–B6  
A5–B5  
A4–B4  
A3–B3  
A2–B2  
A1–B1  
C8–D8  
C9–D9  
C10–D10  
On substrate  
NF1–NF3  
NF2–NF4  
Figure 19.1 VDD044 Daisy Chain Layout (Top View, Balls Facing Down)  
NF1  
NF2  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
NF3  
NF4  
68  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
20. Appendix C: Daisy Chain Information  
Table 20.1 Daisy Chain Part for 32 and 16 Mbit 110 nm Flash Products (VDE044, 7.7 x 6.2 mm)  
Daisy Chain  
Connection  
Spansion 64Mb Flash  
Part Number  
Daisy Chain Part Number  
Package Marking  
Description  
Lead (Pb) - Free Compliant:  
S99DCVDE044SDA002  
99DCVDE044SDA00  
S29NS032J  
S29NS016J  
64Mbit 110nm  
32Mbit 110nm  
Die Level  
Lead (Pb)- Free:  
S99DCVDE044SDF002  
99DCVDE044SDF00  
Table 20.2 VDE044 Package Information  
Component Type/Name  
VDE044  
Solder resist opening  
0.25 + 0.05 mm  
On die  
Daisy Chain Connection Level  
Lead-Free Compliant  
Yes  
Quantity per 7-inch Reel  
600 (300 units per reel by special request to factory)  
Table 20.3 VDE044 Connections  
C1–D1  
C2–D2  
C3–D3  
C4–D4  
C5–D5  
C6–D6  
C7–D7  
A10–B10  
A9–B9  
A8–B8  
A7–B7  
A6–B6  
A5–B5  
A4–B4  
A3–B3  
A2–B2  
A1–B1  
C8–D8  
C9–D9  
C10–D10  
On substrate  
NF1–NF3  
NF2–NF4  
Figure 20.1 VDE044 Daisy Chain Layout(Top View, Balls Facing Down)  
NF1  
NF2  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
NF3  
NF4  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
69  
D a t a S h e e t  
21. Revision History  
Section  
Description  
Revision A (May 16, 2003)  
Initial release  
Revision A1 (August 11, 2003)  
Connection Diagram  
Modified Connection Diagrams for Am29N129J and S29NS064J.  
Changed VSS to GND, removed VCCQ and VSSQ.  
Input/Output Descriptions  
Requirements for Synchronous  
(Burst) Read Operation, Continuous First paragraph, bold text, second sentence: the highest address changed to 000000h.  
Burst  
RESET#: Hardware Reset Input  
Autoselect Command Sequence  
Fourth paragraph: tREADY changed to tREADYW  
Added Table 11 title, Autoselect Device ID  
WP# Boot Sector Protection, Low  
VCC Write Inhibit, Table immediately  
preceding Program Command  
Sequence section  
Modified Read Data for Device ID, Word 1, Device ID, Word 2 for S29NS064J only,  
Device ID, Word 3  
Added Notes 10 and 12; changed BA = Address of the bank from A22-A20 to A22-A21 for  
S29NS128J, A21-A19 to A21-A20 for S29NS064J.  
Table 14, Command Definitions  
Added ICCW, Typ and Max values for IPPW and ICCW; added ICCE, Typ and Max values for IPPE and  
AC Characteristics CMOS  
Compatible  
ICCE  
.
AC Characteristics, Figure 15, 16, 18,  
and 19  
Changed AVD to AVD#  
Revision A2 (August 19, 2003)  
Requirements for Synchronous  
(Burst) Read Operation  
Modified bold text to indicate “highest address to 00000h”  
Revision A3 (September 10, 2003)  
DC Characteristics, CMOS  
Compatible  
Changed ICC3 and ICC4 Max values  
Converted to Spansion format  
Revision A4 (November 13, 2003)  
Global  
Revision A5 (February 5, 2004)  
Added 0L Clock rate/asynchronous speed.  
Updated Valid combinations to reflect addition  
Ordering Information  
Appendix C and D  
Added these sections  
Revision A6 (April 7, 2004)  
Removed Pb-Free Compliant options from 32 Megabit and 16 Megabit combinations for both 66  
MHz and 54 MHz  
Ordering Information  
Global  
Corrected figure references  
AC Characteristics  
Modified the t  
timing in Figure 14 in Hardware Reset (RESET#)  
READY  
Erase and Programming  
Performance  
Added density and typical values to Accelerated Chip Erase Time parameter.  
Removed section  
Data Retention  
Revision A7 (August 4, 2004)  
Changed all instances of “FASLto “Spansion”.  
Added Colophon text.  
Global  
Sector Erase Command Sequence  
Replaced “” with “  
70  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Section  
Description  
Replaced “SA0–SA7” with “SA0–SA3”.  
Replaced “SA8–SA15” with “SA4–SA7”.  
Replaced “SA16–SA23” with “SA8–SA11”.  
Replaced “SA24–SA31” with “SA56–SA59”.  
Deleted “SA40–SA47”.  
Accelerated Sector Erase Groups,  
S29NS032J  
Deleted “SA48–SA55”.  
Deleted “SA48–SA55”.  
Replaced “SA56–SA62” with “SA60–SA62”.  
Replaced “SA0–SA7” with “SA0–SA1”.  
Replaced “SA8–SA15” with  
Replaced “SA16–SA23” with  
Replaced “SA24–SA30” with  
Accelerated Sector Erase Groups,  
S29NS016J  
Added the following: SA8-SA9; SA10-SA11; SA12-SA13; SA14-SA15; SA16-SA17; SA18-SA19;  
SA20-SA21; SA22-SA23; SA24-SA25; SA26-SA27; SA28-SA29; SA30  
Replaced “  
Replaced “  
Erase Suspend/Erase Resume  
Commands  
Replaced “  
Replaced “  
DQ7: Data# Polling  
Replaced “  
DQ6: Toggle Bit I  
Replaced “µ  
DQ3: Sector Erase Timer  
Replaced “  
Updated “Accelerated Chip Erase Time” as per the following:  
Original  
45  
Updated  
50  
128Mb  
64Mb  
32Mb  
16Mb  
Erase and Programming  
Performance  
30  
25  
TBD  
TBD  
12.5  
6.25  
Deleted the following:  
“Minimum 100,000 erase cycle guarantee per sector”.  
“20-year data retention”.  
Distinctive Characteristics  
“Reliable operation for the life of the system”  
Erase and Programming  
Performance  
In Note 2 changed “100,000” to “1,000,000”  
Updated drawing.  
8-, 16-, and 32-Word Linear Burst  
Address Wrap Around  
Removed “The host system may also initiate the chip erase and sector erase sequences in the  
Unlock Bypass Command Sequence unlock bypass mode. The erase command sequences are four cycles in length instead of six  
cycles.”  
Command Definitions  
Removed the Unlock Bypass “sector erase” and “chip erase” rows.  
Removed Unlock Bypass Sector Erase section.  
Removed Chip Erase section  
Table 18, “Command Definitions”  
Updated 2nd paragraph as follows: “If using the Unlock Bypass feature: on the 2nd program cycle,  
after the Unlock Bypass command is written, the WP# signal must be asserted on the 2nd cycle.”  
WP# Boot Sector Protection  
Global  
Replaced all “AMD” references with “contact your local Spansion sales office”  
Removed “The host system may also initiate the chip erase command sequence while the device is  
in the unlock bypass mode. The command sequence is two cycles in length instead of six cycles  
Chip Erase Command Sequence  
Replaced “50 µs” with “Removed the following “The host system may also initiate the sector erase  
command sequence while the device is in the unlock bypass mode. The command sequence is four  
cycles in length instead of six cycles.  
Sector Erase Command Sequence  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
71  
D a t a S h e e t  
Section  
Description  
Removed the following rows from table:  
tWHWH1 tWHWH1  
tWHWH1 tWHWH1  
tWHWH2 tWHWH2  
Programming Operation  
Typ  
Typ  
9
4
µs  
µs  
Erase/Program Operations  
Accelerated Programming Operation  
Sector Erase Operation  
Typ 0.4 sec  
Revision A8 (September 14, 2004)  
Ordering Information  
Added packing types 0 and 2.  
Added Packing Type information  
Valid Combinations  
Revision A9 (November 11, 2005)  
Ordering Information  
Added LF35 package ordering option  
Revision A10 (March 22, 2006)  
Global  
Changed VPP to ACC.  
AC Characteristics  
Asynchronous Read table: updated the values of tAAVDH for both speed bins.  
Revision A11 (February 7, 2007)  
Updated document to new template.  
Removed 66 MHz option  
Global  
72  
S29NS-J  
S29NS-J_00_A11 February 7, 2007  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2003-2007 Spansion Inc. All Rights Reserved. Spansion, the Spansion logo, MirrorBit, ORNAND, HD-SIM, and combinations  
thereof are trademarks of Spansion Inc. Other names are for informational purposes only and may be trademarks of their respective owners.  
February 7, 2007 S29NS-J_00_A11  
S29NS-J  
73  

相关型号:

S29NS016J0LBJW003

Burst Mode Flash Memories
SPANSION

S29NS016J0PBAW000

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBAW002

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBAW003

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBFW00

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBFW000

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBFW002

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBFW003

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBJW00

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBJW000

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBJW002

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBJW003

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION