S71GL128NB0 [SPANSION]

Stacked Multi-chip Product (MCP); 堆叠式多芯片产品( MCP )
S71GL128NB0
型号: S71GL128NB0
厂家: SPANSION    SPANSION
描述:

Stacked Multi-chip Product (MCP)
堆叠式多芯片产品( MCP )

文件: 总147页 (文件大小:3510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71GL512NB0/S71GL256NB0/  
S71GL128NB0  
Stacked Multi-chip Product (MCP)  
512/256/128 Megabit (32/16/8 M x 16-bit) CMOS 3.0 Volt-only  
MirrorBitTM Page-mode Flash Memory with  
32 Megabit (2M x 16-bit) pSRAM  
ADVANCE  
INFORMATION  
Distinctive Characteristics  
MCP Features  
„
Power supply voltage of 2.7 to 3.1V  
High Performance  
„
„
„
„
90 ns access time (S71GL128N, S71GL256N)  
100 ns access time (S71GL512N)  
25 ns page read times  
Packages:  
— 9.0 x 12.0 mm x 1.2 mm FBGA (TLD084) (S71GL512N)  
— 8.0 x 11.6 mm x 1.2 mm FBGA (TLA084) (S71GL128N, S71GL256N)  
Operating Temperature  
„
— -25°C to +85°C (Wireless)  
— -40°C to +85°C (Industrial)  
General Description  
The S71GL Series is a product line of stacked Multi-chip Product (MCP) packages  
and consists of  
„ One Flash memory die  
„ one pSRAM  
The products covered by this document are listed in the table below. For details  
about their specifications, please refer to the individual constituent datasheets  
for further details.  
Flash Memory Density  
512 Mb  
256 Mb  
128 Mb  
128 Mb  
64 Mb  
32 Mb  
16 Mb  
pSRAM Density  
S71GL512NB0  
S71GL256NB0  
S71GL128NB0  
Publication Number S71GL512_256_128NB0_00 Revision A Amendment 1 Issue Date December 7, 2004  
This document contains information on a product under development at Spansion LLC. The information is intended to help you evaluate this product. Spansion LLC  
reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
Logical Inhibit ................................................................................................... 45  
Power-Up Write Inhibit ...............................................................................45  
S71GL512NB0/S71GL256NB0/S71GL128NB0  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4  
MCP Block Diagram (128Mb Flash + 32Mb pSRAM) ..................................5  
MCP Block Diagram (256Mb Flash + 32Mb pSRAM) .................................5  
MCP Block Diagram (512Mb Flash + 32Mb pSRAM) ..................................6  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 7  
512 Mb Flash + 32 Mb pSRAM Pinout .............................................................7  
256 Mb Flash + 32 Mb pSRAM Pinout ............................................................8  
128 Mb Flash + 32 Mb pSRAM Pinout .............................................................9  
128 Mb Flash + 32 Mb pSRAM Pinout (S71GL128NB0 Only) ..................10  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . 11  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 12  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . 16  
Common Flash Memory Interface (CFI) . . . . . . . 45  
Table 6. CFI Query Identification String ................................ 47  
Table 7. System Interface String.......................................... 47  
Table 8. Device Geometry Definition..................................... 48  
Table 9. Primary Vendor-Specific Extended Query.................. 49  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 49  
Reading Array Data ...........................................................................................50  
Reset Command .................................................................................................50  
Autoselect Command Sequence ...................................................................50  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence .............................................................................51  
Word Program Command Sequence ...........................................................51  
Unlock Bypass Command Sequence ........................................................ 52  
Write Buffer Programming ......................................................................... 52  
Accelerated Program .....................................................................................53  
Figure 1. Write Buffer Programming Operation....................... 54  
Figure 2. Program Operation ............................................... 55  
Program Suspend/Program Resume Command Sequence .................... 55  
Figure 3. Program Suspend/Program Resume........................ 56  
Chip Erase Command Sequence ................................................................... 56  
Sector Erase Command Sequence ................................................................ 57  
Figure 4. Erase Operation ................................................... 58  
Erase Suspend/Erase Resume Commands ..................................................58  
Lock Register Command Set Definitions .................................................... 59  
Password Protection Command Set Definitions ......................................59  
Non-Volatile Sector Protection Command Set Definitions ...................61  
Global Volatile Sector Protection Freeze Command Set .......................61  
Volatile Sector Protection Command Set ..................................................62  
Secured Silicon Sector Entry Command .....................................................62  
Secured Silicon Sector Exit Command ........................................................ 63  
Command Definitions ........................................................................................64  
Table 10. S29GL512N, S29GL256N, S29GL128N Command  
S29GLxxxN MirrorBitTM Flash Family  
Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
General Description . . . . . . . . . . . . . . . . . . . . . . . 20  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . .23  
Table 1. Device Bus Operations ........................................... 23  
Word/Byte Configuration ................................................................................23  
Requirements for Reading Array Data .........................................................23  
Page Mode Read ............................................................................................. 24  
Writing Commands/Command Sequences ................................................ 24  
Write Buffer .................................................................................................... 24  
Accelerated Program Operation ...............................................................25  
Autoselect Functions .....................................................................................25  
Standby Mode .......................................................................................................25  
Automatic Sleep Mode ......................................................................................25  
RESET#: Hardware Reset Pin .........................................................................25  
Output Disable Mode ....................................................................................... 26  
Table 2. Sector Address Table–S29GL256N ........................... 26  
Table 3. Sector Address Table–S29GL128N ........................... 33  
Sector Protection ................................................................................................37  
Persistent Sector Protection .......................................................................37  
Password Sector Protection ........................................................................37  
WP# Hardware Protection .........................................................................37  
Selecting a Sector Protection Mode .........................................................37  
Advanced Sector Protection ...........................................................................38  
Lock Register ........................................................................................................38  
Table 4. Lock Register ........................................................ 39  
Persistent Sector Protection ...........................................................................39  
Dynamic Protection Bit (DYB) ...................................................................39  
Persistent Protection Bit (PPB) .................................................................40  
Persistent Protection Bit Lock (PPB Lock Bit) ...................................... 41  
Table 5. Sector Protection Schemes ..................................... 41  
Persistent Protection Mode Lock Bit ........................................................... 41  
Password Sector Protection ........................................................................... 42  
Password and Password Protection Mode Lock Bit ............................... 42  
64-bit Password ...................................................................................................43  
Persistent Protection Bit Lock (PPB Lock Bit) ...........................................43  
Secured Silicon Sector Flash Memory Region ............................................43  
Write Protect (WP#) ........................................................................................45  
Hardware Data Protection ..............................................................................45  
Low VCC Write Inhibit ................................................................................45  
Write Pulse “Glitch” Protection ................................................................45  
Definitions, x16 .................................................................64  
Table 11. S29GL512N, S29GL256N, S29GL128N Command  
Definitions, x8 ...................................................................67  
Write Operation Status ...................................................................................69  
DQ7: Data# Polling ...........................................................................................70  
Figure 5. Data# Polling Algorithm ........................................ 71  
RY/BY#: Ready/Busy# ........................................................................................ 71  
DQ6: Toggle Bit I ...............................................................................................72  
Figure 6. Toggle Bit Algorithm ............................................. 73  
DQ2: Toggle Bit II ...............................................................................................73  
Reading Toggle Bits DQ6/DQ2 .....................................................................74  
DQ5: Exceeded Timing Limits ........................................................................74  
DQ3: Sector Erase Timer ................................................................................ 75  
DQ1: Write-to-Buffer Abort ........................................................................... 75  
Table 12. Write Operation Status .........................................76  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 76  
Figure 7. Maximum Negative Overshoot Waveform................. 77  
Figure 8. Maximum Positive  
Overshoot Waveform.......................................................... 77  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 78  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 9. Test Setup........................................................... 79  
Table 13. Test Specifications ...............................................79  
Key to Switching Waveforms . . . . . . . . . . . . . . . . 79  
Figure 10. Input Waveforms and Measurement Levels ............ 79  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 80  
2
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
Figure 28. Mode Register .................................................. 122  
Read-Only Operations–S29GL512N Only ..................................................80  
Read-Only Operations–S29GL256N Only .................................................. 81  
Read-Only Operations–S29GL128N Only ..................................................82  
Figure 11. Read Operation Timings....................................... 83  
Figure 12. Page Read Timings.............................................. 83  
Hardware Reset (RESET#) .............................................................................. 84  
Figure 13. Reset Timings..................................................... 84  
Erase and Program Operations–S29GL512N Only .................................. 85  
Figure 29. Mode Register UpdateTimings (UB#, LB#, OE# are Don’t  
Care) ............................................................................. 122  
Figure 30. Deep Sleep Mode - Entry/Exit Timings (for 64M)... 123  
Figure 31. Deep Sleep Mode - Entry/Exit Timings  
(for 32M and 16M)........................................................... 123  
pSRAM Type 7  
Erase and Program Operations–S29GL256N Only .................................86  
Erase and Program Operations–S29GL128N Only .................................. 87  
Figure 14. Program Operation Timings.................................. 88  
Figure 15. Accelerated Program Timing Diagram .................... 88  
Figure 16. Chip/Sector Erase Operation Timings..................... 89  
Figure 17. Data# Polling Timings  
(During Embedded Algorithms)............................................ 90  
Figure 18. Toggle Bit Timings (During Embedded Algorithms) .. 91  
Figure 19. DQ2 vs. DQ6...................................................... 91  
Alternate CE# Controlled Erase and Program Operations–  
S29GL512N Only ................................................................................................ 92  
Alternate CE# Controlled Erase and Program Operations–  
S29GL256N Only ................................................................................................93  
Alternate CE# Controlled Erase and Program Operations–  
S29GL128N Only ................................................................................................ 94  
Figure 20. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings.............................................................. 95  
Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 95  
Erase And Programming Performance . . . . . . . 96  
TSOP Pin and BGA Package Capacitance . . . . . 96  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Functional Description . . . . . . . . . . . . . . . . . . . . 128  
Power Down ......................................................................................................128  
Power Down Program Sequence ................................................................129  
Address Key ........................................................................................................129  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 130  
Package Capacitance . . . . . . . . . . . . . . . . . . . . . 130  
Read Operation .................................................................................................132  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . .134  
Write Operation ...............................................................................................134  
Power Down Parameters ...............................................................................135  
Other Timing Parameters ............................................................................... 135  
AC Test Conditions .........................................................................................136  
AC Measurement Output Load Circuit .....................................................136  
Figure 32. AC Output Load Circuit ...................................... 136  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Read Timings ....................................................................................................... 137  
Figure 33. Read Timing #1 (Baisc Timing)........................... 137  
Figure 34. Read Timing #2 (OE# Address Access................. 137  
Figure 35. Read Timing #3 (LB#/UB# Byte Access).............. 138  
Figure 36. Read Timing #4 (Page Address Access after CE1# Control  
Access for 32M and 64M Only)........................................... 138  
Figure 37. Read Timing #5 (Random and Page Address Access for  
32M and 64M Only).......................................................... 139  
Write Timings ....................................................................................................139  
Figure 38. Write Timing #1 (Basic Timing) .......................... 139  
Figure 39. Write Timing #2 (WE# Control).......................... 140  
Figure 40. Write Timing #3-1  
pSRAM Type 1  
Functional Description . . . . . . . . . . . . . . . . . . . . . 97  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 97  
Timing Test Conditions . . . . . . . . . . . . . . . . . . . 103  
Output Load Circuit ........................................................................................104  
Figure 21. Output Load Circuit ........................................... 104  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . 104  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 105  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 116  
(WE#/LB#/UB# Byte Write Control)................................... 140  
Figure 41. Write Timing #3-2  
Read Cycle ...........................................................................................................116  
Figure 22. Timing of Read Cycle (CE# = OE# = VIL, WE# = ZZ# =  
VIH)................................................................................ 116  
Figure 23. Timing Waveform of Read Cycle  
(WE#/LB#/UB# Byte Write Control)................................... 141  
Figure 42. Write Timing #3-3  
(WE#/LB#/UB# Byte Write Control)................................... 141  
Figure 43. Write Timing #3-4  
(WE# = ZZ# = VIH) ......................................................... 117  
Figure 24. Timing Waveform of Page Mode Read Cycle (WE# = ZZ#  
= VIH) ............................................................................ 118  
Write Cycle .........................................................................................................119  
Figure 25. Timing Waveform of Write Cycle (WE# Control, ZZ# =  
VIH)................................................................................ 119  
Figure 26. Timing Waveform of Write Cycle (CE# Control, ZZ# =  
(WE#/LB#/UB# Byte Write Control)................................... 142  
Read/Write Timings .........................................................................................142  
Figure 44. Read/Write Timing #1-1 (CE1# Control).............. 142  
Figure 45. Read / Write Timing #1-2  
(CE1#/WE#/OE# Control) ................................................ 143  
Figure 46. Read / Write Timing #2 (OE#, WE# Control)........ 143  
Figure 47. Read / Write Timing #3  
(OE#, WE#, LB#, UB# Control)......................................... 144  
Figure 48. Power-up Timing #1 ......................................... 144  
Figure 49. Power-up Timing #2 ......................................... 145  
Figure 50. Power Down Entry and Exit Timing...................... 145  
Figure 51. Standby Entry Timing after Read or Write............ 145  
Figure 52. Power Down Program Timing (for 32M/64M Only). 146  
VIH)................................................................................ 119  
Figure 27. Timing Waveform of Page Mode  
Write Cycle (ZZ# = VIH) ................................................... 120  
Partial Array Self Refresh (PAR) ...................................................................120  
Temperature Compensated Refresh (for 64Mb) .....................................121  
Deep Sleep Mode ...............................................................................................121  
Reduced Memory Size (for 32M and 16M) ..................................................121  
Other Mode Register Settings (for 64M) ....................................................121  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 147  
December 7, 2004 S71GL512_256_128NB0_00_A1  
3
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
S71GL512NB0  
Access Times at V = 2.7 - 3.1 V  
Flash  
pSRAM  
65  
CC  
Max. Access Time (ns)  
Max. CE# Access Time (ns)  
Max. Page Access Time (tPACC  
Max. OE# Access Time (ns)  
100  
100  
105  
105  
65  
)
25  
25  
25  
25  
S71GL256NB0  
Access Times at V = 2.7 - 3.1 V  
Flash  
pSRAM  
65  
CC  
Max. Access Time (ns)  
90  
90  
100  
100  
Max. CE# Access Time (ns)  
65  
Max. Page Access Time (tPACC  
)
25  
25  
25  
Max. OE# Access Time (ns)  
25  
S71GL128NB0  
Access Times at V = 2.7 - 3.1 V  
Flash  
pSRAM  
65  
CC  
Max. Access Time (ns)  
90  
90  
100  
100  
Max. CE# Access Time (ns)  
65  
Max. Page Access Time (tPACC  
)
25  
25  
25  
Max. OE# Access Time (ns)  
25  
4
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram (128Mb Flash + 32Mb pSRAM)  
V
f
CC  
2
Flash-only Address  
Shared Address  
V
V
ID  
CC  
DQ15 to DQ0  
21  
16  
DQ15 to DQ0  
WP#/ACC  
WP#/ACC  
Flash  
CE#F1  
OE#  
CE#  
OE#  
WE#  
WE#  
RESET#  
RESET#  
RY/BY#  
RY/BY#  
V
SS  
V
s
CC  
21  
V
CCQ  
V
CC  
16  
I/O15 to I/O0  
WE#  
OE#  
pSRAM  
UB#s  
LB#s  
CE2s  
UB#  
LB#  
CE2s  
CE1#s  
V
SSQ  
CE1#s  
MCP Block Diagram (256Mb Flash + 32Mb pSRAM)  
V
f
CC  
3
Flash-only Address  
Shared Address  
V
V
CC ID  
DQ15 to DQ0  
21  
16  
DQ15 to DQ0  
WP#/ACC  
WP#/ACC  
Flash  
CE#F1  
OE#  
CE#  
OE#  
WE#  
WE#  
RESET#  
RESET#  
RY/BY#  
RY/BY#  
V
SS  
V
s
CC  
21  
V
V
CCQ  
CC  
16  
I/O15 to I/O0  
WE#  
OE#  
pSRAM  
UB#s  
LB#s  
CE2s  
UB#  
LB#  
CE2s  
CE1#s  
V
SSQ  
CE1#s  
December 7, 2004 S71GL512_256_128NB0_00_A1  
5
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram (512Mb Flash + 32Mb pSRAM)  
V
f
CC  
4
Flash-only Address  
Shared Address  
V
V
ID  
CC  
DQ15 to DQ0  
21  
16  
DQ15 to DQ0  
WP#/ACC  
WP#/ACC  
Flash  
CE#F1  
OE#  
CE#  
OE#  
WE#  
WE#  
RESET#  
RESET#  
RY/BY#  
RY/BY#  
V
SS  
V
s
CC  
21  
V
CCQ  
V
CC  
16  
I/O15 to I/O0  
WE#  
OE#  
pSRAM  
UB#s  
LB#s  
CE2s  
UB#  
LB#  
CE2s  
CE1#s  
V
SSQ  
CE1#s  
6
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
Connection Diagrams  
512 Mb Flash + 32 Mb pSRAM Pinout  
84-ball Fine-Pitch Ball Grid Array  
512 Mb Flash + 32 Mb pSRAM  
Pinout  
(Top View, Balls Facing Down)  
Legend  
A10  
NC  
A1  
NC  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
RFU  
C4  
B5  
RFU  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
Shared  
RFU  
C2  
RFU  
D2  
A3  
Flash only  
RFU  
D9  
LB#  
D4  
WP/ACC WE#  
A8  
A11  
D8  
D5  
RST#f  
E5  
D6  
CE2s  
E6  
D7  
RAM only  
UB#  
E4  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
Reserved for  
Future Use  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A18  
F4  
RY/BY#  
F5  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F7  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
A23  
G6  
G3  
VSS  
DQ1  
RFU  
RFU  
DQ6  
A24  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
CE#f1  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
CE1#s  
DQ0  
VCC  
f
VCC  
s
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
DQ11  
L5  
K7  
K6  
RFU  
L6  
K9  
DQ14  
DQ8  
DQ2  
DQ5  
RFU  
RFU  
L2  
L3  
L4  
L7  
L8  
L9  
RFU  
RFU  
RFU  
VCC  
f
RFU  
RFU  
RFU  
RFU  
M10  
NC  
M1  
NC  
December 7, 2004 S71GL512_256_128NB0_00_A1  
7
A d v a n c e I n f o r m a t i o n  
256 Mb Flash + 32 Mb pSRAM Pinout  
84-ball Fine-Pitch Ball Grid Array  
256 Mb Flash + 32 Mb pSRAM  
Pinout  
(Top View, Balls Facing Down)  
Legend  
A10  
NC  
A1  
NC  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
RFU  
C4  
B5  
RFU  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
Shared  
RFU  
C2  
RFU  
D2  
A3  
Flash only  
RFU  
D9  
LB#  
D4  
WP/ACC WE#  
A8  
A11  
D8  
D5  
RST#f  
E5  
D6  
CE2s  
E6  
D7  
RAM only  
UB#  
E4  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
Reserved for  
Future Use  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A18  
F4  
RY/BY#  
F5  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F7  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
A23  
G6  
G3  
VSS  
DQ1  
RFU  
RFU  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
CE#f1  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
CE1#s  
DQ0  
VCC  
f
VCC  
s
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
DQ11  
L5  
K7  
K6  
RFU  
L6  
K9  
DQ14  
DQ8  
DQ2  
DQ5  
RFU  
RFU  
L2  
L3  
L4  
L7  
L8  
L9  
RFU  
RFU  
RFU  
VCC  
f
RFU  
RFU  
RFU  
RFU  
M10  
NC  
M1  
NC  
8
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
128 Mb Flash + 32 Mb pSRAM Pinout  
84-ball Fine-Pitch Ball Grid Array  
128 Mb Flash + 32 Mb pSRAM  
Pinout  
(Top View, Balls Facing Down)  
Legend  
A10  
NC  
A1  
NC  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
RFU  
C4  
B5  
RFU  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
Shared  
RFU  
C2  
RFU  
D2  
A3  
Flash only  
RFU  
D9  
LB#  
D4  
WP/ACC WE#  
A8  
A11  
D8  
D5  
RST#f  
E5  
D6  
CE2s  
E6  
D7  
RAM only  
UB#  
E4  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
Reserved for  
Future Use  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A18  
F4  
RY/BY#  
F5  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F7  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
RFU  
G6  
G3  
VSS  
DQ1  
RFU  
RFU  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
CE#f1  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
CE1#s  
DQ0  
VCC  
f
VCC  
s
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
DQ11  
L5  
K7  
K6  
RFU  
L6  
K9  
DQ14  
DQ8  
DQ2  
DQ5  
RFU  
RFU  
L2  
L3  
L4  
L7  
L8  
L9  
RFU  
RFU  
RFU  
VCC  
f
RFU  
RFU  
RFU  
RFU  
M10  
NC  
M1  
NC  
December 7, 2004 S71GL512_256_128NB0_00_A1  
9
A d v a n c e I n f o r m a t i o n  
128 Mb Flash + 32 Mb pSRAM Pinout (S71GL128NB0 Only)  
64-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
A1  
A10  
NC  
NC  
B5  
RFU  
B6  
RFU  
C6  
Legend  
Shared  
C3  
A7  
C4  
LB#  
D4  
C5  
C7  
A8  
C8  
A11  
D8  
WP/ACC  
D5  
WE#  
D6  
D2  
A3  
D9  
A15  
E9  
D3  
D7  
A6  
UB#  
E4  
RST#f  
E5  
CE2s  
E6  
A19  
E7  
A12  
E8  
E2  
A2  
E3  
Flash only  
RAM only  
A5  
A18  
F4  
RY/BY#  
A20  
A9  
A13  
F8  
A21  
F9  
F2  
F3  
F7  
A1  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
G2  
G3  
VSS  
H3  
A0  
DQ1  
H4  
DQ6  
H7  
RFU  
H8  
A16  
H9  
Reserved for  
Future Use  
H2  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
CE#f  
J2  
OE#  
J3  
DQ9  
J4  
DQ13  
J7  
DQ15  
J8  
RFU  
J9  
CE1#s  
DQ0  
K3  
DQ10  
K4  
VCCf  
K5  
VCCs  
K6  
DQ12  
K7  
DQ7  
K8  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
L5  
L6  
RFU*  
RFU  
M1  
NC  
M10  
NC  
Note: Ball L5 (RFU) is a VCC on an 84-ball package; therefore, it is recommended that L5 not be connected to VSS  
.
10  
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
Input/Output Descriptions  
A24-A0  
A23-A0  
A22-A0  
DQ15-DQ0  
OE#  
=
=
=
=
=
25 Address inputs (512 Mb)  
24 Address inputs (256 Mb)  
23 Address inputs (128 Mb)  
Data input/output  
Output Enable input. Asynchronous relative to CLK  
for the Burst mode.  
WE#  
=
=
=
=
Write Enable input.  
Ground  
No Connect; not connected internally  
Hardware reset input. Low = device resets and  
returns to reading array data  
V
SS  
NC  
RESET#  
WP#/ACC  
=
Hardware write protect input / programming  
acceleration input.  
CE1#s, CE2s  
CE#f1  
=
=
=
=
=
=
=
=
Chip-enable input for pSRAM.  
Chip-enable input for Flash 1.  
Flash 3.0 Volt-only single power supply.  
pSRAM Power Supply.  
Upper Byte Control (pSRAM).  
Lower Byte Control (pSRAM).  
Reserved for future use.  
V
V
f
s
CC  
CC  
UB#s  
LB#s  
RFU  
RY/BY#  
Ready/Busy output.  
Logic Symbol  
Max+1  
AMax*–A0  
16  
DQ15–DQ0  
CE1#s  
CE2s  
OE#  
WE#  
WP#/ACC  
WE#  
RY/BY#  
RESET#  
UB#  
LB#  
CE#f1  
*Max = A24  
December 7, 2004 S71GL512_256_128NB0_00_A1  
11  
A d v a n c e I n f o r m a t i o n  
Ordering Information  
The order number (Valid Combination) is formed by the following:  
S71GL  
512  
N
B0 BA  
W
A
B
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
Refer to the Valid Combinations Table  
B
=
PACKAGE MODIFIER  
A
E
9
=
=
=
1.2 mm height, 8 x 11.6 mm, 84 balls FBGA  
1.2 mm height, 9 x 12.0 mm, 84 balls FBGA  
1.2 mm height, 8 x 11.6 mm, 64 balls FBGA  
TEMPERATURE RANGE  
W
I
=
=
Wireless (-25  
Industrial (-40  
°
C to +85  
°
C)  
°C to +85  
°C)  
PACKAGE TYPE  
BA  
BF  
=
=
Very Thin Fine-pitch BGA Lead (Pb)-free compliant package  
Very Thin Fine-pitch BGA Lead (Pb)-free package  
pSRAM DENSITY  
B0 32 Mb pSRAM  
=
PROCESS TECHNOLOGY  
110 nm, MirrorBitTM Technology  
N
=
FLASH DENSITY  
512  
256  
128  
=
=
=
512 Mb  
256 Mb  
128 Mb  
PRODUCT FAMILY  
S71GL Multi-chip Product (MCP)  
3.0 Volt-only Uniform Sector Page Mode Flash Memory  
12  
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
S71GL512NB0 Valid Combinations  
Package  
Modifier/  
Model  
(p)SRAM  
Type/  
Access  
Base  
Ordering  
Part Number  
Package &  
Temperature  
Flash  
Address  
Sector  
Protection  
Packing Initial/Page  
(p)SRAM  
Package  
Type  
Package  
Marking  
Number  
Type  
Speed (ns)  
Supplier Time (ns)  
EK  
EP  
EU  
EZ  
EJ  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Type 1  
105/25  
Type 7  
65/25  
Type 1  
9mmx12mm  
84-ball Lead  
(Pb)-free  
0, 2, 3  
(Note 1)  
S71GL512NB0  
BAW  
Compliant  
EN  
ET  
EY  
EK  
EP  
EU  
EZ  
EJ  
100/25  
105/25  
100/25  
Type 7  
Type 1  
(Note 2)  
Type 7  
65/25  
Type 1  
9mmx12mm  
84-ball Lead  
(Pb)-free  
0, 2, 3  
(Note 1)  
S71GL512NB0  
BFW  
EN  
ET  
EY  
Type 7  
Notes:  
Valid Combinations  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
December 7, 2004 S71GL512_256_128NB0_00_A1  
13  
A d v a n c e I n f o r m a t i o n  
S71GL256NB0 Valid Combinations  
Package  
Flash  
Initial/  
Page  
(p)SRAM  
Base  
Package &  
Modifier/  
Model  
Address  
Sector  
Protection  
Type/  
Ordering  
Part Number  
Temperature  
Packing  
Type  
(p)SRAM  
Supplier  
Access  
Package  
Number  
Speed (ns)  
Time (ns) Package Type Marking  
AK  
AP  
AU  
AZ  
AJ  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
100/25  
90/25  
8mmx11.6mm  
0, 2, 3  
(Note 1)  
84-ball Lead  
S71GL256NB0  
BAW  
65/25  
(Pb)-free  
Compliant  
AN  
AT  
AY  
AK  
AP  
AU  
AZ  
AJ  
(Note 2)  
100/25  
90/25  
8mmx11.6mm  
84-ball Lead  
(Pb)-free  
0, 2, 3  
(Note 1)  
S71GL256NB0  
BFW  
65/25  
AN  
AT  
AY  
Notes:  
Valid Combinations  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
14  
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
S71GL128NB0 Valid Combinations  
Flash  
Initial/  
Page  
Speed  
(ns)  
Package  
Modifier/  
Model  
(p)SRAM  
Type/  
Access  
Base  
Ordering  
Part Number  
Package &  
Temperature  
Address  
Sector  
Protection  
Packing  
Type  
(p)SRAM  
Package  
Marking  
Number  
Supplier Time (ns) Package Type  
9K  
9P  
9U  
9Z  
9J  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Lowest Add  
Highest Add  
Type 1  
100/25  
90/25  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
Type 1  
Type 7  
8mmx11.6mm  
64-ball Lead  
(Pb)-free  
Compliant  
9N  
9T  
9Y  
AK  
AP  
AU  
AZ  
AJ  
0, 2, 3  
S71GL128NB0  
BAW  
65/25  
(Note 1)  
100/25  
90/25  
8mmx11.6mm  
84-ball Lead  
(Pb)-free  
Compliant  
AN  
AT  
AY  
9K  
9P  
9U  
9Z  
9J  
(Note 2)  
100/25  
90/25  
8mmx11.6mm  
64-ball Lead  
(Pb)-free  
Compliant  
9N  
9T  
9Y  
AK  
AP  
AU  
AZ  
AJ  
0, 2, 3  
(Note 1)  
S71GL128NB0  
BFW  
65/25  
100/25  
90/25  
8mmx11.6mm  
84-ball Lead  
(Pb)-free  
AN  
AT  
AY  
Notes:  
Valid Combinations  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
December 7, 2004 S71GL512_256_128NB0_00_A1  
15  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TLD084—84-ball Fine-Pitch Ball Grid Array (FBGA) 9.0 x 12.0 x1.2 mm MCP  
Compatible Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
TLD 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
12.00 mm x 9.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
12.00 BSC.  
9.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MD  
ME  
n
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
b
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
eD  
SD / SE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10  
E1,E10,F1,F10,G1,G10  
H1,H10,J1,J10,K1,K10  
L1,L10,M2,M3,M4,M5,M6,  
M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3367\ 16-038.22a  
Note: BSC is an ANSI standard for Basic Space Centering  
16  
S71GL512_256_128NB0_00_A1 December 7, 2004  
A d v a n c e I n f o r m a t i o n  
TLA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 8.0 x 11.6 x1.2 mm MCP  
Compatible Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
TLA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Ø b  
eE  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SD / SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10,  
E1,E10,F1,F10,G1,G10,  
H1,H10,J1,J10,K1,K10,L1,L10,  
M2,M3,M4,M5,M6,M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3372-2 \ 16-038.22a  
Note: BSC is an ANSI standard for Basic Space Centering  
December 7, 2004 S71GL512_256_128NB0_00_A1  
17  
A d v a n c e I n f o r m a t i o n  
TLA064—64-ball Fine-Pitch Ball Grid Array (FBGA) 8.0 x 11.6 x1.2 mm MCP  
Compatible Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
PIN A1  
CORNER  
B
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
64X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
PACKAGE  
JEDEC  
TLA 064  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.20  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
64  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B2,B3,B4,B7,B8,B9,B10  
C1,C2,C9,C10,D1,D10,E1,E10,  
F1,F5,F6,F10,G1,G5,G6,G10  
H1,H10,J1,J10,K1,K2,K9,K10  
L1,L2,L3,L4,L7,L8,L9,L10  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
M2,M3,M4,M5,M6,M7,M8,M9  
3352 \ 16-038.22a  
Note: BSC is an ANSI standard for Basic Space Centering.  
18  
S71GL512_256_128NB0_00_A1 December 7, 2004  
S29GLxxxN MirrorBitTM Flash Family  
S29GL512N, S29GL256N, S29GL128N  
512 Megabit, 256 Megabit, and 128 Megabit,  
3.0 Volt-only Page Mode Flash Memory featuring  
110 nm MirrorBit process technology  
ADVANCE  
INFORMATION  
Datasheet  
Distinctive Characteristics  
80 ns access time (S29GL128N, S29GL256N),  
90 ns access time (S29GL512N)  
8-word/16-byte page read buffer  
25 ns page read times  
16-word/32-byte write buffer reduces overall  
programming time for multiple-word updates  
Architectural Advantages  
„
„
Single power supply operation  
3 volt read, erase, and program operations  
Enhanced VersatileI/Ocontrol  
All input levels (address, control, and DQ input levels)  
and outputs are determined by voltage on VIO input.  
„
Low power consumption (typical values at 3.0 V, 5  
MHz)  
V
IO range is 1.65 to VCC  
„
„
Manufactured on 110 nm MirrorBit process  
technology  
25 mA typical active read current;  
50 mA typical erase/program current  
1 µA typical standby mode current  
Secured Silicon Sector region  
128-word/256-byte sector for permanent, secure  
identification through an 8-word/16-byte random  
Electronic Serial Number, accessible through a  
command sequence  
May be programmed and locked at the factory or by  
the customer  
Software & Hardware Features  
„
Software features  
Program Suspend & Resume: read other sectors  
before programming operation is completed  
Erase Suspend & Resume: read/program other  
sectors before an erase operation is completed  
Data# polling & toggle bits provide status  
Unlock Bypass Program command reduces overall  
multiple-word or byte programming time  
CFI (Common Flash Interface) compliant: allows host  
system to identify and accommodate multiple flash  
devices  
„
Flexible sector architecture  
S29GL512N: Five hundred twelve 64 Kword (128  
Kbyte) sectors  
S29GL256N: Two hundred fifty-six 64 Kword (128  
Kbyte) sectors  
S29GL128N: One hundred twenty-eight 64 Kword  
(128 Kbyte) sectors  
„
Hardware features  
„
Compatibility with JEDEC standards  
Advanced Sector Protection  
Provides pinout and software compatibility for single-  
power supply flash, and superior inadvertent write  
protection  
WP#/ACC input accelerates programming time  
(when high voltage is applied) for greater throughput  
during system production. Protects first or last sector  
regardless of sector protection settings  
Hardware reset input (RESET#) resets device  
Ready/Busy# output (RY/BY#) detects program or  
erase cycle completion  
„
„
100,000 erase cycles per sector typical  
20-year data retention typical  
Performance Characteristics  
„
High performance  
Publication Number S29GLxxxN_00 Revision A Amendment 4 Issue Date June 14, 2004  
This document contains information on a product under development at Spansion LLC. The information is intended to help you evaluate this product. Spansion LLC  
reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
General Description  
The GL512/256/128N family of devices are 3.0V single power flash memory man-  
ufactured using 110 nm MirrorBit technology. The GL512N is a 512 Mbit,  
organized as 33,554,432 words or 67,108,864 bytes. The GL256N is a 256 Mbit,  
organized as 16,777,216 words or 33,554,432 bytes. The GL128N is a 128 Mbit,  
organized as 8,388,608 words or 16,777,216 bytes. The devices have a 16-bit  
wide data bus that can also function as an 8-bit wide data bus by using the BYTE#  
input. The device can be programmed either in the host system or in standard  
EPROM programmers.  
Access times as fast as 90 ns (GL128N, GL256N) or 100 ns (GL512N) are  
available.  
Each device requires only a single 3.0 volt power supply for both read and  
write functions. In addition to a V input, a high-voltage accelerated program  
CC  
(WP#/ACC) input provides shorter programming times through increased cur-  
rent. This feature is intended to facilitate factory throughput during system  
production, but may also be used in the field if desired.  
The devices are entirely command set compatible with the JEDEC single-  
power-supply Flash standard. Commands are written to the device using  
standard microprocessor write timing. Write cycles also internally latch addresses  
and data needed for the programming and erase operations.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Device programming and erasure are initiated through command sequences.  
Once a program or erase operation has begun, the host system need only poll the  
DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy#  
(RY/BY#) output to determine whether the operation is complete. To facilitate  
programming, an Unlock Bypass mode reduces command sequence overhead  
by requiring only two write cycles to program data instead of four.  
Hardware data protection measures include a low V detector that automat-  
CC  
ically inhibits write operations during power transitions. Persistent Sector  
Protection provides in-system, command-enabled protection of any combina-  
tion of sectors using a single power supply at V . Password Sector Protection  
CC  
prevents unauthorized write and erase operations in any combination of sectors  
through a user-defined 64-bit password.  
The Erase Suspend/Erase Resume feature allows the host system to pause an  
erase operation in a given sector to read or program any other sector and then  
complete the erase operation. The Program Suspend/Program Resume fea-  
ture enables the host system to pause a program operation in a given sector to  
read any other sector and then complete the program operation.  
The hardware RESET# pin terminates any operation in progress and resets the  
device, after which it is then ready for a new operation. The RESET# pin may be  
tied to the system reset circuitry. A system reset would thus also reset the device,  
enabling the host system to read boot-up firmware from the Flash memory  
device.  
The device reduces power consumption in the standby mode when it detects  
specific voltage levels on CE# and RESET#, or when addresses have been stable  
for a specified period of time.  
20  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
The Secured Silicon Sector provides a 128-word/256-byte area for code or  
data that can be permanently protected. Once this sector is protected, no further  
changes within the sector can occur.  
The Write Protect (WP#/ACC) feature protects the first or last sector by as-  
serting a logic low on the WP# pin.  
MirrorBit flash technology combines years of Flash memory manufacturing expe-  
rience to produce the highest levels of quality, reliability and cost effectiveness.  
The device electrically erases all bits within a sector simultaneously via hot-hole  
assisted erase. The data is programmed using hot electron injection.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
21  
A d v a n c e I n f o r m a t i o n  
Block Diagram  
DQ15DQ0 (A-1)  
RY/BY#  
VCC  
VSS  
VIO  
Sector Switches  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
WE#  
WP#/ACC  
BYTE#  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
AMax**–A0  
June 14, 2004 S29GLxxxN_00A4  
S29GLxxxN MirrorBitTM Flash Family  
22  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. Device Bus Operations  
DQ8–DQ15  
BYTE# BYTE#  
WE  
#
Addresses  
(Note 2)  
DQ0–  
DQ7  
Operation  
CE# OE#  
RESET#  
WP#  
ACC  
= V = V  
IH  
IL  
Read  
L
L
L
H
L
H
X
X
AIN  
AIN  
DOUT  
DOUT  
(Note  
3)  
DQ8–DQ14  
= High-Z,  
DQ15 = A-1  
Write (Program/Erase)  
Accelerated Program  
Standby  
H
H
H
(Note 2)  
X
(Note 3)  
(Note  
3)  
L
H
X
L
(Note 2) VHH  
AIN  
X
(Note 3)  
VCC  
0.3 V  
±
VCC  
0.3 V  
±
X
X
H
High-Z High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
X
X
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 11.5–12.5V, X = Don’t Care, SA = Sector  
Address, AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Addresses are AMax:A0 in word mode; AMax:A-1 in byte mode. Sector addresses are AMax:A16 in both modes.  
2. If WP# = V , the first or last sector group remains protected. If WP# = V , the first or last sector will be  
IL  
IH  
protected or unprotected as determined by the method described in “Write Protect (WP#)”. All sectors are  
unprotected when shipped from the factory (The Secured Silicon Sector may be factory protected depending  
on version ordered.)  
3. DIN or DOUT as required by command sequence, data polling, or sector protect algorithm (see Figure 2).  
Word/Byte Configuration  
The BYTE# pin controls whether the device data I/O pins operate in the byte or  
word configuration. If the BYTE# pin is set at logic ‘1, the device is in word con-  
figuration, DQ0–DQ15 are active and controlled by CE# and OE#.  
If the BYTE# pin is set at logic ‘0, the device is in byte configuration, and only  
data I/O pins DQ0–DQ7 are active and controlled by CE# and OE#. The data I/  
O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the  
LSB (A-1) address function.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE#  
pins to V . CE# is the power control and selects the device. OE# is the output  
IL  
control and gates array data to the output pins. WE# should remain at V .  
IH  
June 14, 2004 S29GLxxxN_00A4  
S29GLxxxN MirrorBitTM Flash Family  
23  
A d v a n c e I n f o r m a t i o n  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. The device remains enabled for read access until the command register  
contents are altered.  
See “Reading Array Data” for more information. Refer to the AC Read-Only Op-  
erations table for timing specifications and to Figure 11 for the timing diagram.  
Refer to the DC Characteristics table for the active current specification on read-  
ing array data.  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. The page size of the device is 8 words/16 bytes.  
The appropriate page is selected by the higher address bits A(max)–A3. Address  
bits A2–A0 in word mode (A2–A-1 in byte mode) determine the specific word  
within a page. This is an asynchronous operation; the microprocessor supplies  
the specific word location.  
The random or initial page access is equal to t  
or t and subsequent page  
CE  
ACC  
read accesses (as long as the locations specified by the microprocessor falls  
within that page) is equivalent to t . When CE# is de-asserted and reasserted  
PACC  
for a subsequent access, the access time is t  
or t . Fast page mode accesses  
CE  
ACC  
are obtained by keeping the “read-page addresses” constant and changing the  
“intra-read page” addresses.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to V , and OE# to V .  
IL  
IH  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once the device enters the Unlock Bypass mode, only two write cycles are re-  
quired to program a word or byte, instead of four. The “Word/Byte Program  
Command Sequence” section has details on programming data to the device  
using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 2 indicates the address space that each sector occupies.  
Refer to the DC Characteristics table for the active current specification for the  
write mode. The AC Characteristics section contains timing specification tables  
and timing diagrams for write operations.  
Write Buffer  
Write Buffer Programming allows the system write to a maximum of 16 words/32  
bytes in one programming operation. This results in faster effective programming  
time than the standard programming algorithms. See “Write Buffer” for more  
information.  
24  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
is one of two functions provided by the WP#/ACC pin. This function is primarily  
intended to allow faster manufacturing throughput at the factory.  
If the system asserts V  
on this pin, the device automatically enters the afore-  
HH  
mentioned Unlock Bypass mode, temporarily unprotects any protected sector  
groups, and uses the higher voltage on the pin to reduce the time required for  
program operations. The system would use a two-cycle program command se-  
quence as required by the Unlock Bypass mode. Removing V  
from the WP#/  
HH  
ACC pin returns the device to normal operation. Note that the WP#/ACC pin must  
not be at V for operations other than accelerated programming, or device dam-  
HH  
age may result. WP# has an internal pullup; when unconnected, WP# is at V  
.
IH  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ7–DQ0. Standard read  
cycle timings apply in this mode. Refer to the “Autoselect Command Sequence”  
section on page 50 sections for more information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at V ± 0.3 V. (Note that this is a more restricted voltage range than  
IO  
V .) If CE# and RESET# are held at V , but not within V ± 0.3 V, the device  
IH  
IH  
IO  
will be in the standby mode, but the standby current will be greater. The device  
requires standard access time (t ) for read access when the device is in either  
CE  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
Refer to the “DC Characteristics” section on page 78 for the standby current  
specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for t  
+
ACC  
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. Refer to the “DC Characteristics” section on page 78 for the  
automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of t , the  
RP  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
25  
A d v a n c e I n f o r m a t i o n  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at V ±0.3 V, the device draws CMOS standby current (I  
). If RESET# is held  
SS  
CC5  
at V but not within V ±0.3 V, the standby current will be greater.  
IL  
SS  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 13  
for the timing diagram.  
Output Disable Mode  
When the OE# input is at V , output from the device is disabled. The output pins  
IH  
are placed in the high impedance state.  
Table 2. Sector Address Table–S29GL256N  
8-bit  
16-bit  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
Address Range  
Sector  
A23–A16  
(in hexadecimal)  
(in hexadecimal)  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–001FFFF  
0020000–003FFFF  
0040000–005FFFF  
0060000–007FFFF  
0080000–009FFFF  
00A0000–00BFFFF  
00C0000–00DFFFF  
00E0000–00FFFFF  
0100000–011FFFF  
0120000–013FFFF  
0140000–015FFFF  
0160000–017FFFF  
0180000–019FFFF  
01A0000–01BFFFF  
01C0000–01DFFFF  
01E0000–01FFFFF  
0200000–021FFFF  
0220000–023FFFF  
0240000–025FFFF  
0260000–027FFFF  
0280000–029FFFF  
02A0000–02BFFFF  
02C0000–02DFFFF  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
0070000–007FFFF  
0080000–008FFFF  
0090000–009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
26  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
02E0000–02FFFFF  
0300000–031FFFF  
0320000–033FFFF  
0340000–035FFFF  
0360000–037FFFF  
0380000–039FFFF  
03A0000–03BFFFF  
03C0000–03DFFFF  
03E0000–03FFFFF  
0400000–041FFFF  
0420000–043FFFF  
0440000–045FFFF  
0460000–047FFFF  
0480000–049FFFF  
04A0000–04BFFFF  
04C0000–04DFFFF  
04E0000–04FFFFF  
0500000–051FFFF  
0520000–053FFFF  
0540000–055FFFF  
0560000–057FFFF  
0580000–059FFFF  
05A0000–05BFFFF  
05C0000–05DFFFF  
05E0000–05FFFFF  
0600000–061FFFF  
0620000–063FFFF  
0640000–065FFFF  
0660000–067FFFF  
0680000–069FFFF  
06A0000–06BFFFF  
06C0000–06DFFFF  
06E0000–06FFFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
0350000–035FFFF  
0360000–036FFFF  
0370000–037FFFF  
SA56  
SA57  
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
128/64  
128/64  
0380000–038FFFF  
0390000–039FFFF  
0700000–071FFFF  
0720000–073FFFF  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
27  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0740000–075FFFF  
0760000–077FFFF  
0780000–079FFFF  
07A0000–7BFFFF  
07C0000–07DFFFF  
07E0000–07FFFFF0  
0800000–081FFFF  
0820000–083FFFF  
0840000–085FFFF  
0860000–087FFFF  
0880000–089FFFF  
08A0000–08BFFFF  
08C0000–08DFFFF  
08E0000–08FFFFF  
0900000–091FFFF  
0920000–093FFFF  
0940000–095FFFF  
0960000–097FFFF  
0980000–099FFFF  
09A0000–09BFFFF  
09C0000–09DFFFF  
09E0000–09FFFFF  
0A00000–0A1FFFF  
0A20000–0A3FFFF  
0A40000–045FFFF  
0A60000–0A7FFFF  
0A80000–0A9FFFF  
0AA0000–0ABFFFF  
0AC0000–0ADFFFF  
0AE0000–AEFFFFF  
0B00000–0B1FFFF  
0B20000–0B3FFFF  
0B40000–0B5FFFF  
0B60000–0B7FFFF  
0B80000–0B9FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
28  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA93  
SA94  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0BA0000–0BBFFFF  
0BC0000–0BDFFFF  
0BE0000–0BFFFFF  
0C00000–0C1FFFF  
0C20000–0C3FFFF  
0C40000–0C5FFFF  
0C60000–0C7FFFF  
0C80000–0C9FFFF  
0CA0000–0CBFFFF  
0CC0000–0CDFFFF  
0CE0000–0CFFFFF  
0D00000–0D1FFFF  
0D20000–0D3FFFF  
0D40000–0D5FFFF  
0D60000–0D7FFFF  
0D80000–0D9FFFF  
0DA0000–0DBFFFF  
0DC0000–0DDFFFF  
0DE0000–0DFFFFF  
0E00000–0E1FFFF  
0E20000–0E3FFFF  
0E40000–0E5FFFF  
0E60000–0E7FFFF  
0E80000–0E9FFFF  
0EA0000–0EBFFFF  
0EC0000–0EDFFFF  
0EE0000–0EFFFFF  
0F00000–0F1FFFF  
0F20000–0F3FFFF  
0F40000–0F5FFFF  
0F60000–0F7FFFF  
0F80000–0F9FFFF  
0FA0000–0FBFFFF  
0FC0000–0FDFFFF  
0FE0000–0FFFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
0620000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
29  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1000000–101FFFF  
1020000–103FFFF  
1040000–105FFFF  
1060000–107FFFF  
1080000–109FFFF  
10A0000–10BFFFF  
10C0000–10DFFFF  
10E0000–10FFFFF  
1100000–111FFFF  
1120000–113FFFF  
1140000–115FFFF  
1160000–117FFFF  
1180000–119FFFF  
11A0000–11BFFFF  
11C0000–11DFFFF  
11E0000–11FFFFF  
1200000–121FFFF  
1220000–123FFFF  
1240000–125FFFF  
1260000–127FFFF  
1280000–129FFFF  
12A0000–12BFFFF  
12C0000–12DFFFF  
12E0000–12FFFFF  
1300000–131FFFF  
1320000–133FFFF  
1340000–135FFFF  
1360000–137FFFF  
1380000–139FFFF  
13A0000–13BFFFF  
13C0000–13DFFFF  
13E0000–13FFFFF  
1400000–141FFFF  
1420000–143FFFF  
1440000–145FFFF  
0800000–080FFFF  
0810000–081FFFF  
0820000–082FFFF  
0830000–083FFFF  
0840000–084FFFF  
0850000–085FFFF  
0860000–086FFFF  
0870000–087FFFF  
0880000–088FFFF  
0890000–089FFFF  
08A0000–08AFFFF  
08B0000–08BFFFF  
08C0000–08CFFFF  
08D0000–08DFFFF  
08E0000–08EFFFF  
08F0000–08FFFFF  
0900000–090FFFF  
0910000–091FFFF  
0920000–092FFFF  
0930000–093FFFF  
0940000–094FFFF  
0950000–095FFFF  
0960000–096FFFF  
0970000–097FFFF  
0980000–098FFFF  
0990000–099FFFF  
09A0000–09AFFFF  
09B0000–09BFFFF  
09C0000–09CFFFF  
09D0000–09DFFFF  
09E0000–09EFFFF  
09F0000–09FFFFF  
0A00000–0A0FFFF  
0A10000–0A1FFFF  
0A20000–0A2FFFF  
30  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1460000–147FFFF  
1480000–149FFFF  
14A0000–14BFFFF  
14C0000–14DFFFF  
14E0000–14FFFFF  
1500000–151FFFF  
1520000–153FFFF  
1540000–155FFFF  
1560000–157FFFF  
1580000–159FFFF  
15A0000–15BFFFF  
15C0000–15DFFFF  
15E0000–15FFFFF  
1600000–161FFFF  
1620000–163FFFF  
1640000–165FFFFF  
1660000–167FFFF  
1680000–169FFFF  
16A0000–16BFFFF  
16C0000–16DFFFF  
16E0000–16FFFFF  
1700000–171FFFF  
1720000–173FFFF  
1740000–175FFFF  
1760000–177FFFF  
1780000–179FFFF  
17A0000–17BFFFF  
17C0000–17DFFFF  
17E0000–17FFFFF  
1800000–181FFFF  
1820000–183FFFF  
1840000–185FFFF  
1860000–187FFFF  
1880000–189FFFF  
18A0000–18BFFFF  
0A30000–0A3FFFF  
0A40000–0A4FFFF  
0A50000–0A5FFFF  
0A60000–0A6FFFF  
0A70000–0A7FFFF  
0A80000–0A8FFFF  
0A90000–0A9FFFF  
0AA0000–0AAFFFF  
0AB0000–0ABFFFF  
0AC0000–0ACFFFF  
0AD0000–0ADFFFF  
0AE0000–0AEFFFF  
0AF0000–0AFFFFF  
0B00000–0B0FFFF  
0B10000–0B1FFFF  
0B20000–0B2FFFF  
0B30000–0B3FFFF  
0B40000–0B4FFFF  
0B50000–0B5FFFF  
0B60000–0B6FFFF  
0B70000–0B7FFFF  
0B80000–0B8FFFF  
0B90000–0B9FFFF  
0BA0000–0BAFFFF  
0BB0000–0BBFFFF  
0BC0000–0BCFFFF  
0BD0000–0BDFFFF  
0BE0000–0BEFFFF  
0BF0000–0BFFFFF  
0C00000–0C0FFFF  
0C10000–0C1FFFF  
0C20000–0C2FFFF  
0C30000–0C3FFFF  
0C40000–0C4FFFF  
0C50000–0C5FFFF  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
31  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
18C0000–18DFFFF  
18E0000–18FFFFF  
1900000–191FFFF  
1920000–193FFFF  
1940000–195FFFF  
1960000–197FFFF  
1980000–199FFFF  
19A0000–19BFFFF  
19C0000–19DFFFF  
19E0000–19FFFF  
1A00000–1A1FFFF  
1A20000–1A3FFFF  
1A40000–1A5FFFF  
1A60000–1A7FFFF  
1A80000–1A9FFFF  
1AA0000–1ABFFFF  
1AC0000–1ADFFFF  
1AE0000–1AFFFFF  
1B00000–1B1FFFF  
1B20000–1B3FFFF  
1B40000–1B5FFFF  
1B60000–1B7FFFF  
1B80000–1B9FFFF  
1BA0000–1BBFFFF  
1BC0000–1BDFFFF  
1BE0000–1BFFFFF  
1C00000–1C1FFFF  
1C20000–1C3FFFF  
1C40000–1C5FFFF  
1C60000–1C7FFFF  
1C80000–1C9FFFF  
1CA0000–1CBFFFF  
1CC0000–1CDFFFF  
1CE0000–1CFFFFF  
1D00000–1D1FFFF  
0C60000–0C6FFFF  
0C70000–0C7FFFF  
0C80000–0C8FFFF  
0C90000–0C9FFFF  
0CA0000–0CAFFFF  
0CB0000–0CBFFFF  
0CC0000–0CCFFFF  
0CD0000–0CDFFFF  
0CE0000–0CEFFFF  
0CF0000–0CFFFFF  
0D00000–0D0FFFF  
0D10000–0D1FFFF  
0D20000–0D2FFFF  
0D30000–0D3FFFF  
0D40000–0D4FFFF  
0D50000–0D5FFFF  
0D60000–0D6FFFF  
0D70000–0D7FFFF  
0D80000–0D8FFFF  
0D90000–0D9FFFF  
0DA0000–0DAFFFF  
0DB0000–0DBFFFF  
0DC0000–0DCFFFF  
0DD0000–0DDFFFF  
0DE0000–0DEFFFF  
0DF0000–0DFFFFF  
0E00000–0E0FFFF  
0E10000–0E1FFFF  
0E20000–0E2FFFF  
0E30000–0E3FFFF  
0E40000–0E4FFFF  
0E50000–0E5FFFF  
0E60000–0E6FFFF  
0E70000–0E7FFFF  
0E80000–0E8FFFF  
32  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL256N (Continued)  
8-bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A23–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1D20000–1D3FFFF  
1D40000–1D5FFFF  
1D60000–1D7FFFF  
1D80000–1D9FFFF  
1DA0000–1DBFFFF  
1DC0000–1DDFFFF  
1DE0000–1DFFFFF  
1E00000–1E1FFFF  
1E20000–1E3FFFF  
1E40000–1E5FFFF  
1E60000–137FFFF  
1E80000–1E9FFFF  
1EA0000–1EBFFFF  
1EC0000–1EDFFFF  
1EE0000–1EFFFFF  
1F00000–1F1FFFF  
1F20000–1F3FFFF  
1F40000–1F5FFFF  
1F60000–1F7FFFF  
1F80000–1F9FFFF  
1FA0000–1FBFFFF  
1FC0000–1FDFFFF  
1FE0000–1FFFFFF  
0E90000–0E9FFFF  
0EA0000–0EAFFFF  
0EB0000–0EBFFFF  
0EC0000–0ECFFFF  
0ED0000–0EDFFFF  
0EE0000–0EEFFFF  
0EF0000–0EFFFFF  
0F00000–0F0FFFF  
0F10000–0F1FFFF  
0F20000–0F2FFFF  
0F30000–0F3FFFF  
0F40000–0F4FFFF  
0F50000–0F5FFFF  
0F60000–0F6FFFF  
0F70000–0F7FFFF  
0F80000–0F8FFFF  
0F90000–0F9FFFF  
0FA0000–0FAFFFF  
0FB0000–0FBFFFF  
0FC0000–0FCFFFF  
0FD0000–0FDFFFF  
0FE0000–0FEFFFF  
0FF0000–0FFFFFF  
Table 3. Sector Address Table–S29GL128N  
8-Bit  
16-bit  
Address Range  
(in hexadecimal)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
Sector  
A22–A16  
(in hexadecimal)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–001FFFF  
0020000–003FFFF  
0040000–005FFFF  
0060000–007FFFF  
0080000–009FFFF  
00A0000–00BFFFF  
00C0000–00DFFFF  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
33  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL128N (Continued)  
8-Bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A22–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
00E0000–00FFFFF  
0100000–011FFFF  
0120000–013FFFF  
0140000–015FFFF  
0160000–017FFFF  
0180000–019FFFF  
01A0000–01BFFFF  
01C0000–01DFFFF  
01E0000–01FFFFF  
0200000–021FFFF  
0220000–023FFFF  
0240000–025FFFF  
0260000–027FFFF  
0280000–029FFFF  
02A0000–02BFFFF  
02C0000–02DFFFF  
02E0000–02FFFFF  
0300000–031FFFF  
0320000–033FFFF  
0340000–035FFFF  
0360000–037FFFF  
0380000–039FFFF  
03A0000–03BFFFF  
03C0000–03DFFFF  
03E0000–03FFFFF  
0400000–041FFFF  
0420000–043FFFF  
0440000–045FFFF  
0460000–047FFFF  
0480000–049FFFF  
04A0000–04BFFFF  
04C0000–04DFFFF  
04E0000–04FFFFF  
0500000–051FFFF  
0520000–053FFFF  
0070000–007FFFF  
0080000–008FFFF  
0090000–009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
34  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL128N (Continued)  
8-Bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A22–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0540000–055FFFF  
0560000–057FFFF  
0580000–059FFFF  
05A0000–05BFFFF  
05C0000–05DFFFF  
05E0000–05FFFFF  
0600000–061FFFF  
0620000–063FFFF  
0640000–065FFFF  
0660000–067FFFF  
0680000–069FFFF  
06A0000–06BFFFF  
06C0000–06DFFFF  
06E0000–06FFFFF  
0700000–071FFFF  
0720000–073FFFF  
0740000–075FFFF  
0760000–077FFFF  
0780000–079FFFF  
07A0000–07BFFFF  
07C0000–07DFFFF  
07E0000–07FFFFF  
0800000–081FFFF  
0820000–083FFFF  
0840000–085FFFF  
0860000–087FFFF  
0880000–089FFFF  
08A0000–08BFFFF  
08C0000–08DFFFF  
08E0000–08FFFFF  
0900000–091FFFF  
0920000–093FFFF  
0940000–095FFFF  
0960000–097FFFF  
0980000–099FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
0350000–035FFFF  
0360000–036FFFF  
0370000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
35  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL128N (Continued)  
8-Bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A22–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
09A0000–09BFFFF  
09C0000–09DFFFF  
09E0000–09FFFFF  
0A00000–0A1FFFF  
0A20000–0A3FFFF  
0A40000–0A5FFFF  
0A60000–0A7FFFF  
0A80000–0A9FFFF  
0AA0000–0ABFFFF  
0AC0000–0ADFFFF  
0AE0000–0AFFFFF  
0B00000–0B1FFFF  
0B20000–0B3FFFF  
0B40000–0B5FFFF  
0B60000–0B7FFFF  
0B80000–0B9FFFF  
0BA0000–0BBFFFF  
0BC0000–0BDFFFF  
0BE0000–0BFFFFF  
0C00000–0C1FFFF  
0C20000–0C3FFFF  
0C40000–0C5FFFF  
0C60000–0C7FFFF  
0C80000–0C9FFFF  
0CA0000–0CBFFFF  
0CC0000–0CDFFFF  
0CE0000–0CFFFFF  
0D00000–0D1FFFF  
0D20000–0D3FFFF  
0D40000–0D5FFFF  
0D60000–0D7FFFF  
0D80000–0D9FFFF  
0DA0000–0DBFFFF  
0DC0000–0DDFFFF  
0DE0000–0DFFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
0620000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
36  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL128N (Continued)  
8-Bit  
Sector Size  
16-bit  
Address Range  
(in hexadecimal)  
Address Range  
(Kbytes/  
Sector  
A22–A16  
(in hexadecimal)  
Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0E00000–0E1FFFF  
0E20000–0E3FFFF  
0E40000–0E5FFFF  
0E60000–0E7FFFF  
0E80000–0E9FFFF  
0EA0000–0EBFFFF  
0EC0000–0EDFFFF  
0EE0000–0EFFFFF  
0F00000–0F1FFFF  
0F20000–0F3FFFF  
0F40000–0F5FFFF  
0F60000–0F7FFFF  
0F80000–0F9FFFF  
0FA0000–0FBFFFF  
0FC0000–0FDFFFF  
0FE0000–0FFFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
Sector Protection  
The device features several levels of sector protection, which can disable both the  
program and erase operations in certain sectors or sector groups:  
Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled pro-  
tection method.  
Password Sector Protection  
A highly sophisticated protection method that requires a password before  
changes to certain sectors or sector groups are permitted  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in the outermost  
sectors.  
The WP# Hardware Protection feature is always available, independent of the  
software managed protection method chosen.  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method will be used. If the customer decides to continue  
using the Persistent Sector Protection method, they must set the Persistent  
Sector Protection Mode Locking Bit. This will permanently set the part to op-  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
37  
A d v a n c e I n f o r m a t i o n  
erate only using Persistent Sector Protection. If the customer decides to use the  
password method, they must set the Password Mode Locking Bit. This will  
permanently set the part to operate only using password sector protection.  
It is important to remember that setting either the Persistent Sector Protec-  
tion Mode Locking Bit or the Password Mode Locking Bit permanently  
selects the protection mode. It is not possible to switch between the two methods  
once a locking bit has been set. It is important that one mode is explicitly  
selected when the device is first programmed, rather than relying on the  
default mode alone. This is so that it is not possible for a system program or  
virus to later set the Password Mode Locking Bit, which would cause an unex-  
pected shift from the default Persistent Sector Protection Mode into the Password  
Protection Mode.  
The device is shipped with all sectors unprotected. The factory offers the option  
of programming and protecting sectors at the factory prior to shipping the device  
through the ExpressFlash™ Service. Contact your sales representative for details.  
It is possible to determine whether a sector is protected or unprotected. See “Au-  
toselect Command Sequence” section on page 50 for details.  
Advanced Sector Protection  
Advanced Sector Protection features several levels of sector protection, which can  
disable both the program and erase operations in certain sectors.  
Persistent Sector Protection is a method that replaces the old 12V controlled  
protection method.  
Password Sector Protection is a highly sophisticated protection method that  
requires a password before changes to certain sectors are permitted.  
Advanced Sector Protection is available when ACC = V  
.
HH  
Lock Register  
The Lock Register consists of 3 bits (DQ2, DQ1, and DQ0). These DQ2, DQ1, DQ0  
bits of the Lock Register are programmable by the user. Users are not allowed to  
program both DQ2 and DQ1 bits of the Lock Register to the 00 state. If the user  
tries to program DQ2 and DQ1 bits of the Lock Register to the 00 state, the device  
will abort the Lock Register back to the default 11 state. The programming time  
of the Lock Register is same as the typical word programming time without uti-  
lizing the Write Buffer of the device. During a Lock Register programming  
sequence execution, the DQ6 Toggle Bit I will toggle until the programming of the  
Lock Register has completed to indicate programming status. All Lock Register  
bits are readable to allow users to verify Lock Register statuses. Initial access  
delay is required to read the Lock Register.  
The Customer Secured Silicon Sector Protection Bit is DQ0, Persistent Protection  
Mode Lock Bit is DQ1, and Password Protection Mode Lock Bit is DQ2 are acces-  
sible by all users. Each of these bits are non-volatile. DQ15-DQ3 are reserved and  
must be 1's when the user tries to program the DQ2, DQ1, and DQ0 bits of the  
Lock Register. The user is not required to program DQ2, DQ1 and DQ0 bits of the  
Lock Register at the same time. This allows users to lock the Secured Silicon Sec-  
tor and then set the device either permanently into Password Protection Mode or  
Persistent Protection Mode and then lock the Secured Silicon Sector at separate  
instances and time frames.  
„ Secured Silicon Sector Protection allows the user to lock the Secured Silicon  
Sector area  
38  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
„ Persistent Protection Mode Lock Bit allows the user to set the device perma-  
nently to operate in the Persistent Protection Mode  
„ Password Protection Mode Lock Bit allows the user to set the device perma-  
nently to operate in the Password Protection Mode  
Table 4. Lock Register  
DQ15-3  
DQ2  
DQ1  
DQ0  
Secured Silicon  
Sector Protection  
Bit  
Password Protection PersistentProtection  
Mode Lock Bit Mode Lock Bit  
Don’t Care  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the old 12 V controlled protec-  
tion method while at the same time enhancing flexibility by providing three  
different sector protection states:  
„
Dynamically Locked-The sector is protected and can be changed by a sim-  
ple command  
„
„
Persistently Locked-A sector is protected and cannot be changed  
Unlocked-The sector is unprotected and can be changed by a simple com-  
mand  
In order to achieve these states, three types of “bits” are going to be used:  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware  
reset, the contents of all DYB bits are in the “unprotected state” if the DYB Lock  
Bit of the “Lock Register” is not programmed. If the DYB Lock Bit of the “Lock  
Register” is programmed, all DYB bits will power-up or hardware reset to the  
“protected state. Each DYB is individually modifiable through the DYB Set Com-  
mand and DYB Clear Command. When the parts are first shipped, all of the  
Persistent Protect Bits (PPB) are cleared into the unprotected state. The DYB bits  
and PPB Lock bit are defaulted to power up in the cleared state or unprotected  
state - meaning the all PPB bits are changeable.  
The Protection State for each sector is determined by the logical OR of the PPB  
and the DYB related to that sector. For the sectors that have the PPB bits cleared,  
the DYB bits control whether or not the sector is protected or unprotected. By is-  
suing the DYB Set and DYB Clear command sequences, the DYB bits will be  
protected or unprotected, thus placing each sector in the protected or unpro-  
tected state. These are the so-called Dynamic Locked or Unlocked states. They  
are called dynamic states because it is very easy to switch back and forth be-  
tween the protected and un-protected conditions. This allows software to easily  
protect sectors against inadvertent changes yet does not prevent the easy re-  
moval of protection when changes are needed.  
The DYB bits maybe set or cleared as often as needed. The PPB bits allow for a  
more static, and difficult to change, level of protection. The PPB bits retain their  
state across power cycles because they are Non-Volatile. Individual PPB bits are  
set with a program command but must all be cleared as a group through an erase  
command.  
The PPB Lock Bit adds an additional level of protection. Once all PPB bits are pro-  
grammed to the desired settings, the PPB Lock Bit may be set to the “freeze  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
39  
A d v a n c e I n f o r m a t i o n  
state. Setting the PPB Lock Bit to the “freeze state” disables all program and  
erase commands to the Non-Volatile PPB bits. In effect, the PPB Lock Bit locks the  
PPB bits into their current state. The only way to clear the PPB Lock Bit to the  
“unfreeze state” is to go through a power cycle, or hardware reset. The Software  
Reset command will not clear the PPB Lock Bit to the “unfreeze state. System  
boot code can determine if any changes to the PPB bits are needed e.g. to allow  
new system code to be downloaded. If no changes are needed then the boot code  
can set the PPB Lock Bit to disable any further changes to the PPB bits during  
system operation.  
The WP# write protect pin adds a final level of hardware protection. When this  
pin is low it is not possible to change the contents of the WP# protected sectors.  
These sectors generally hold system boot code. So, the WP# pin can prevent any  
changes to the boot code that could override the choices made while setting up  
sector protection during system initialization.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Set command sequence  
is all that is necessary. The DYB Set and DYB Clear commands for the dynamic  
sectors switch the DYB bits to signify protected and unprotected, respectively. If  
there is a need to change the status of the persistently locked sectors, a few more  
steps are required. First, the PPB Lock Bit must be disabled to the “unfreeze  
state” by either putting the device through a power-cycle, or hardware reset. The  
PPB bits can then be changed to reflect the desired settings. Setting the PPB Lock  
Bit once again to the “freeze state” will lock the PPB bits, and the device operates  
normally again.  
Note: to achieve the best protection, it's recommended to execute the PPB Lock  
Bit Set command early in the boot code, and protect the boot code by holding  
WP# = V .  
IL  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to each sector. If a PPB  
is programmed to the protected state through the “PPB Program” command, that  
sector will be protected from program or erase operations will be read-only. If a  
PPB requires erasure, all of the sector PPB bits must first be erased in parallel  
through the “All PPB Erase” command. The “All PPB Erase” command will prepro-  
grammed all PPB bits prior to PPB erasing. All PPB bits erase in parallel, unlike  
programming where individual PPB bits are programmable. The PPB bits have the  
same endurance as the flash memory.  
Programming the PPB bit requires the typical word programming time without uti-  
lizing the Write Buffer. During a PPB bit programming and A11 PPB bit erasing  
sequence execution, the DQ6 Toggle Bit I will toggle until the programming of the  
PPB bit or erasing of all PPB bits has completed to indicate programming and  
erasing status. Erasing all of the PPB bits at once requires typical sector erase  
time. During the erasing of all PPB bits, the DQ3 Sector Erase Timer bit will output  
a 1 to indicate the erasure of all PPB bits are in progress. When the erasure of all  
PPB bits has completed, the DQ3 Sector Erase Timer bit will output a 0 to indicate  
that all PPB bits have been erased. Reading the PPB Status bit requires the initial  
access time of the device.  
40  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. When set to the “freeze state, the PPB bits cannot be  
changed. When cleared to the “unfreeze state, the PPB bits are changeable.  
There is only one PPB Lock Bit per device. The PPB Lock Bit is cleared to the “un-  
freeze state” after power-up or hardware reset. There is no command sequence  
to unlock or “unfreeze” the PPB Lock Bit.  
Configuring the PPB Lock Bit to the freeze state requires approximately 100ns.  
Reading the PPB Lock Status bit requires the initial access time of the device.  
Table 5. Sector Protection Schemes  
Protection States  
Sector State  
DYB Bit  
PPB Bit  
PPB Lock Bit  
Unprotect  
Unprotect  
Unfreeze  
Unprotected – PPB and DYB are changeable  
Unprotected – PPB not changeable, DYB is  
changeable  
Unprotect  
Unprotect  
Freeze  
Unprotect  
Unprotect  
Protect  
Protect  
Protect  
Unfreeze  
Freeze  
Protected – PPB and DYB are changeable  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Unprotect  
Unprotect  
Protect  
Unfreeze  
Freeze  
Protect  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Protect  
Unfreeze  
Freeze  
Protect  
Protect  
Protected – PPB not changeable, DYB is changeable  
Table 7 contains all possible combinations of the DYB bit, PPB bit, and PPB Lock  
Bit relating to the status of the sector. In summary, if the PPB bit is set, and the  
PPB Lock Bit is set, the sector is protected and the protection cannot be removed  
until the next power cycle or hardware reset clears the PPB Lock Bit to “unfreeze  
state. If the PPB bit is cleared, the sector can be dynamically locked or unlocked.  
The DYB bit then controls whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program command to a protected sec-  
tor enables status polling for approximately 1 µs before the device returns to read  
mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs  
after which the device returns to read mode without having erased the protected  
sector. The programming of the DYB bit, PPB bit, and PPB Lock Bit for a given sec-  
tor can be verified by writing a DYB Status Read, PPB Status Read, and PPB Lock  
Status Read commands to the device.  
The Autoselect Sector Protection Verification outputs the OR function of the DYB  
bit and PPB bit per sector basis. When the OR function of the DYB bit and PPB bit  
is a 1, the sector is either protected by DYB or PPB or both. When the OR function  
of the DYB bit and PPB bit is a 0, the sector is unprotected through both the DYB  
and PPB.  
Persistent Protection Mode Lock Bit  
Like the Password Protection Mode Lock Bit, a Persistent Protection Mode Lock Bit  
exists to guarantee that the device remain in software sector protection. Once  
programmed, the Persistent Protection Mode Lock Bit prevents programming of  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
41  
A d v a n c e I n f o r m a t i o n  
the Password Protection Mode Lock Bit. This guarantees that a hacker could not  
place the device in Password Protection Mode. The Password Protection Mode  
Lock Bit resides in the “Lock Register.  
Password Sector Protection  
The Password Sector Protection method allows an even higher level of security  
than the Persistent Sector Protection method. There are two main differences be-  
tween the Persistent Sector Protection and the Password Sector Protection  
methods:  
„ When the device is first powered on, or comes out of a reset cycle, the PPB  
Lock Bit is set to the locked state, or the freeze state, rather than cleared to  
the unlocked state, or the unfreeze state.  
„ The only means to clear and unfreeze the PPB Lock Bit is by writing a unique  
64-bit Password to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
The password is stored in a one-time programmable (OTP) region outside of the  
flash memory. Once the Password Protection Mode Lock Bit is set, the password  
is permanently set with no means to read, program, or erase it. The password is  
used to clear and unfreeze the PPB Lock Bit. The Password Unlock command must  
be written to the flash, along with a password. The flash device internally com-  
pares the given password with the pre-programmed password. If they match, the  
PPB Lock Bit is cleared to the “unfreezed state, and the PPB bits can be altered.  
If they do not match, the flash device does nothing. There is a built-in 2 µs delay  
for each “password check” after the valid 64-bit password has been entered for  
the PPB Lock Bit to be cleared to the “unfreezed state. This delay is intended to  
thwart any efforts to run a program that tries all possible combinations in order  
to crack the password.  
Password and Password Protection Mode Lock Bit  
In order to select the Password Sector Protection method, the customer must first  
program the password. The factory recommends that the password be somehow  
correlated to the unique Electronic Serial Number (ESN) of the particular flash de-  
vice. Each ESN is different for every flash device; therefore each password should  
be different for every flash device. While programming in the password region,  
the customer may perform Password Read operations. Once the desired pass-  
word is programmed in, the customer must then set the Password Protection  
Mode Lock Bit. This operation achieves two objectives:  
1. It permanently sets the device to operate using the Password Protection Mode.  
It is not possible to reverse this function.  
2. It also disables all further commands to the password region. All program, and  
read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Sector Protec-  
tion method is desired when programming the Password Protection Mode Lock  
Bit. More importantly, the user must be sure that the password is correct when  
the Password Protection Mode Lock Bit is programmed. Due to the fact that read  
operations are disabled, there is no means to read what the password is after-  
wards. If the password is lost after programming the Password Protection Mode  
42  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Lock Bit, there will be no way to clear and unfreeze the PPB Lock Bit. The Pass-  
word Protection Mode Lock Bit, once programmed, prevents reading the 64-bit  
password on the DQ bus and further password programming. The Password Pro-  
tection Mode Lock Bit is not erasable. Once Password Protection Mode Lock Bit is  
programmed, the Persistent Protection Mode Lock Bit is disabled from program-  
ming, guaranteeing that no changes to the protection scheme are allowed.  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Password Read commands. The password  
function works in conjunction with the Password Protection Mode Lock Bit, which  
when programmed, prevents the Password Read command from reading the con-  
tents of the password on the pins of the device.  
Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. The PPB Lock Bit is a volatile bit that reflects the state of the  
Password Protection Mode Lock Bit after power-up reset. If the Password Protec-  
tion Mode Lock Bit is also programmed after programming the Password, the  
Password Unlock command must be issued to clear and unfreeze the PPB Lock Bit  
after a hardware reset (RESET# asserted) or a power-up reset. Successful exe-  
cution of the Password Unlock command clears and unfreezes the PPB Lock Bit,  
allowing for sector PPB bits to be modified. Without issuing the Password Unlock  
command, while asserting RESET#, taking the device through a power-on reset,  
or issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a the “freeze  
state.  
If the Password Protection Mode Lock Bit is not programmed, the device defaults  
to Persistent Protection Mode. In the Persistent Protection Mode, the PPB Lock Bit  
is cleared to the “unfreeze state” after power-up or hardware reset. The PPB Lock  
Bit is set to the “freeze state” by issuing the PPB Lock Bit Set command. Once set  
to the “freeze state” the only means for clearing the PPB Lock Bit to the “unfreeze  
state” is by issuing a hardware or power-up reset. The Password Unlock com-  
mand is ignored in Persistent Protection Mode.  
Reading the PPB Lock Bit requires a 200ns access time.  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables  
permanent part identification through an Electronic Serial Number (ESN). The  
Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector  
Indicator Bit (DQ7) to indicate whether or not the Secured Silicon Sector is locked  
when shipped from the factory. This bit is permanently set at the factory and can-  
not be changed, which prevents cloning of a factory locked part. This ensures the  
security of the ESN once the product is shipped to the field.  
The factory offers the device with the Secured Silicon Sector either customer  
lockable (standard shipping option) or factory locked (contact an AMD sales rep-  
resentative for ordering information). The customer-lockable version is shipped  
with the Secured Silicon Sector unprotected, allowing customers to program the  
sector after receiving the device. The customer-lockable version also has the Se-  
cured Silicon Sector Indicator Bit permanently set to a “0.The factory-locked  
version is always protected when shipped from the factory, and has the Secured  
Silicon Sector Indicator Bit permanently set to a “1.Thus, the Secured Silicon  
Sector Indicator Bit prevents customer-lockable devices from being used to re-  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
43  
A d v a n c e I n f o r m a t i o n  
place devices that are factory locked. Note that the ACC function and unlock  
bypass modes are not available when the Secured Silicon Sector is enabled.  
The Secured Silicon sector address space in this device is allocated as follows:  
Secured Silicon Sector  
Address Range  
ExpressFlash  
Factory Locked  
Customer Lockable  
ESN Factory Locked  
ESN  
ESN or determined by  
customer  
000000h–000007h  
000008h–00007Fh  
Determined by customer  
Unavailable  
Determined by customer  
The system accesses the Secured Silicon Sector through a command sequence  
(see “Write Protect (WP#)”). After the system has written the Enter Secured Sil-  
icon Sector command sequence, it may read the Secured Silicon Sector by using  
the addresses normally occupied by the first sector (SA0). This mode of operation  
continues until the system issues the Exit Secured Silicon Sector command se-  
quence, or until power is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands to sector SA0.  
Customer Lockable: Secured Silicon Sector NOT Programmed or  
Protected At the Factory  
Unless otherwise specified, the device is shipped such that the customer may  
program and protect the 256-byte Secured Silicon sector.  
The system may program the Secured Silicon Sector using the write-buffer, ac-  
celerated and/or unlock bypass methods, in addition to the standard  
programming command sequence. See Command Definitions.  
Programming and protecting the Secured Silicon Sector must be used with cau-  
tion since, once protected, there is no procedure available for unprotecting the  
Secured Silicon Sector area and none of the bits in the Secured Silicon Sector  
memory space can be modified in any way.  
The Secured Silicon Sector area can be protected using one of the following  
procedures:  
„ Write the three-cycle Enter Secured Silicon Sector Region command se-  
quence, and then follow the in-system sector protect algorithm as shown in  
Figure 2, except that RESET# may be at either V or V . This allows in-sys-  
IH  
ID  
tem protection of the Secured Silicon Sector without raising any device pin to  
a high voltage. Note that this method is only applicable to the Secured Silicon  
Sector.  
„ To verify the protect/unprotect status of the Secured Silicon Sector, follow the  
algorithm shown in Figure 1.  
Once the Secured Silicon Sector is programmed, locked and verified, the system  
must write the Exit Secured Silicon Sector Region command sequence to return  
to reading and writing within the remainder of the array.  
Factory Locked: Secured Silicon Sector Programmed and  
Protected At the Factory  
In devices with an ESN, the Secured Silicon Sector is protected when the device  
is shipped from the factory. The Secured Silicon Sector cannot be modified in any  
way. An ESN Factory Locked device has an 16-byte random ESN at addresses  
000000h–000007h. Please contact your sales representative for details on order-  
ing ESN Factory Locked devices.  
Customers may opt to have their code programmed by the factory through the  
ExpressFlash service (Express Flash Factory Locked). The devices are then  
44  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
shipped from the factory with the Secured Silicon Sector permanently locked.  
Contact your sales representative for details on using the ExpressFlash service.  
Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting the first or  
last sector group without using V . Write Protect is one of two functions provided  
ID  
by the WP#/ACC input.  
If the system asserts V on the WP#/ACC pin, the device disables program and  
IL  
erase functions in the first or last sector group independently of whether those  
sector groups were protected or unprotected using the method described in“Ad-  
vanced Sector Protection” section on page 38. Note that if WP#/ACC is at V  
IL  
when the device is in the standby mode, the maximum input load current is in-  
creased. See the table in “DC Characteristics” section on page 78.  
If the system asserts V  
on the WP#/ACC pin, the device reverts to  
IH  
whether the first or last sector was previously set to be protected or un-  
protected using the method described in “Sector Group Protection and  
Unprotection”. Note that WP# has an internal pullup; when uncon-  
nected, WP# is at V  
.
IH  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes (refer to Tables 16 and 17 for  
command definitions). In addition, the following hardware data protection mea-  
sures prevent accidental erasure or programming, which might otherwise be  
caused by spurious system level signals during V  
transitions, or from system noise.  
power-up and power-down  
CC  
Low V  
Write Inhibit  
CC  
When V is less than V  
, the device does not accept any write cycles. This pro-  
LKO  
CC  
tects data during V power-up and power-down. The command register and all  
CC  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until V is greater than V  
. The system  
LKO  
CC  
must provide the proper signals to the control pins to prevent unintentional writes  
when V is greater than V  
.
LKO  
CC  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write  
cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = V , CE# = V or WE# =  
IL  
IH  
V . To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
IH  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = V and OE# = V during power up, the device does not accept  
IL  
IH  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to the read mode on power-up.  
Common Flash Memory Interface (CFI)  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
45  
A d v a n c e I n f o r m a t i o n  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Tables 8-11. To  
terminate reading CFI data, the system must write the reset command.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 8–11. The system must write the reset  
command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100, available via the World Wide Web at http://www.amd.com/flash/cfi. Alter-  
natively, contact your sales representative for copies of these documents.  
46  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 6. CFI Query Identification String  
Addresses (x16)  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 7. System Interface String  
Addresses (x16)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0007h  
0007h  
000Ah  
0000h  
0001h  
0005h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
47  
A d v a n c e I n f o r m a t i o n  
Table 8. Device Geometry Definition  
Addresses (x16)  
Data  
Description  
001Ah  
0019h  
0018h  
Device Size = 2N byte  
27h  
1A = 512 Mb, 19 = 256 Mb, 18 = 128 Mb  
28h  
29h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device, 02h = boot  
device)  
2Ch  
0001h  
Erase Block Region 1 Information  
2Dh  
2Eh  
2Fh  
30h  
00xxh  
000xh  
0000h  
000xh  
(refer to the CFI specification or CFI publication 100)  
00FFh, 001h, 0000h, 0002h = 512 Mb  
00FFh, 0000h, 0000h, 0002h = 256 Mb  
007Fh, 0000h, 0000h, 0002h = 128 Mb  
31h  
32h  
33h  
34h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 2 Information (refer to CFI publication 100)  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
35h  
36h  
37h  
38h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
48  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 9. Primary Vendor-Specific Extended Query  
Addresses (x16)  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
0010h  
Process Technology (Bits 7-2) 0100b = 110 nm MirrorBit  
Erase Suspend  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
0002h  
0001h  
0000h  
0008h  
0000h  
0000h  
0002h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
0008h = Advanced Sector Protection  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
0004h/  
0005h  
00h = Uniform Device without WP# protect, 02h = Bottom Boot Device, 03h =  
Top Boot Device, 04h = Uniform sectors bottom WP# protect, 05h = Uniform  
sectors top WP# protect  
4Fh  
50h  
Program Suspend  
0001h  
00h = Not Supported, 01h = Supported  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 10 and Table 11 define the valid register  
command sequences. Writing incorrect address and data values or writing them  
in the improper sequence may place the device in an unknown state. A reset com-  
mand is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristics section for timing diagrams.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
49  
A d v a n c e I n f o r m a t i o n  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. The device is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the  
erase-suspend-read mode, after which the system can read data from any non-  
erase-suspended sector. After completing a programming operation in the Erase  
Suspend mode, the system may once again read array data with the same ex-  
ception. See the Erase Suspend/Erase Resume Commands section for more  
information.  
The system must issue the reset command to return the device to the read (or  
erase-suspend-read) mode if DQ5 goes high during an active program or erase  
operation, or if the device is in the autoselect mode. See the next section, Reset  
Command, for more information.  
See also Requirements for Reading Array Data in the Device Bus Operations sec-  
tion for more information. The Read-Only Operations–“AC Characteristics”  
section on page 80 provides the read parameters, and Figure 11 shows the timing  
diagram.  
Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the device to the read  
mode. Once erasure begins, however, the device ignores reset commands until  
the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the device to the  
read mode. If the program command sequence is written while the device is in  
the Erase Suspend mode, writing the reset command returns the device to the  
erase-suspend-read mode. Once programming begins, however, the device ig-  
nores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If the device entered the autoselect mode  
while in the Erase Suspend mode, writing the reset command returns the device  
to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the device to the read mode (or erase-suspend-read mode if the device  
was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Programming operation, the sys-  
tem must write the Write-to-Buffer-Abort Reset command sequence to reset the  
device for the next operation.  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
Table 10 and Table 11 show the address and data requirements. This method re-  
quires V on address pin A9. The autoselect command sequence may be written  
ID  
50  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
to an address that is either in the read or erase-suspend-read mode. The autose-  
lect command may not be written while the device is actively programming or  
erasing.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the autoselect command. The  
device then enters the autoselect mode. The system may read at any address any  
number of times without initiating another autoselect command sequence:  
„ A read cycle at address XX00h returns the manufacturer code.  
„ Three read cycles at addresses 01h, 0Eh, and 0Fh return the device code.  
„ A read cycle to an address containing a sector address (SA), and the address  
02h on A7–A0 in word mode returns 01h if the sector is protected, or 00h if  
it is unprotected.  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the device was previously in Erase Suspend).  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing an 8-  
word/16-byte random Electronic Serial Number (ESN). The system can access  
the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon  
Sector command sequence. The device continues to access the Secured Silicon  
Sector region until the system issues the four-cycle Exit Secured Silicon Sector  
command sequence. The Exit Secured Silicon Sector command sequence returns  
the device to normal operation. Table 10 and Table 11 show the address and data  
requirements for both command sequences. See also “Secured Silicon Sector  
Flash Memory Region” for further information. Note that the ACC function and un-  
lock bypass modes are not available when the Secured Silicon Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 10 and Table 11 show the  
address and data requirements for the word program command sequence.  
When the Embedded Program algorithm is complete, the device then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7 or DQ6. Refer to the Write Op-  
eration Status section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that the Secured Silicon Sector, autoselect, and CFI  
functions are unavailable when a program operation is in progress. Note  
that a hardware reset immediately terminates the program operation. The pro-  
gram command sequence should be reinitiated once the device has returned to  
the read mode, to ensure data integrity.  
Programming is allowed in any sequence and across sector boundaries. Program-  
ming to the same word address multiple times without intervening erases is  
limited. For such application requirements, please contact your local Spansion  
representative. Any word cannot be programmed from “0” back to a “1.”  
Attempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
51  
A d v a n c e I n f o r m a t i o n  
DQ6 status bits to indicate the operation was successful. However, a succeeding  
read will show that the data is still “0.” Only erase operations can convert a “0”  
to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program words to the device  
faster than using the standard program command sequence. The unlock bypass  
command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the unlock bypass command, 20h. The device  
then enters the unlock bypass mode. A two-cycle unlock bypass program com-  
mand sequence is all that is required to program in this mode. The first cycle in  
this sequence contains the unlock bypass program command, A0h; the second  
cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required  
in the standard program command sequence, resulting in faster total program-  
ming time. Table 10 and Table 11 show the requirements for the command  
sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (See Table 10  
and Table 11).  
Write Buffer Programming  
Write Buffer Programming allows the system write to a maximum of 16 words/32  
bytes in one programming operation. This results in faster effective programming  
time than the standard programming algorithms. The Write Buffer Programming  
command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the Write Buffer Load command written at the  
Sector Address in which programming will occur. The fourth cycle writes the sec-  
tor address and the number of word locations, minus one, to be programmed. For  
example, if the system will program 6 unique address locations, then 05h should  
be written to the device. This tells the device how many write buffer addresses  
will be loaded with data and therefore when to expect the Program Buffer to Flash  
command. The number of locations to program cannot exceed the size of the  
write buffer or the operation will abort.  
The fifth cycle writes the first address location and data to be programmed. The  
write-buffer-page is selected by address bits A  
–A . All subsequent address/  
4
MAX  
data pairs must fall within the selected-write-buffer-page. The system then  
writes the remaining address/data pairs into the write buffer. Write buffer loca-  
tions may be loaded in any order.  
The write-buffer-page address must be the same for all address/data pairs loaded  
into the write buffer. (This means Write Buffer Programming cannot be performed  
across multiple write-buffer pages. This also means that Write Buffer Program-  
ming cannot be performed across multiple sectors. If the system attempts to load  
programming data outside of the selected write-buffer page, the operation will  
abort.)  
Note that if a Write Buffer address location is loaded multiple times, the address/  
data pair counter will be decremented for every data load operation. The host  
system must therefore account for loading a write-buffer location more than  
once. The counter decrements for each data load operation, not for each unique  
write-buffer-address location. Note also that if an address location is loaded more  
52  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
than once into the buffer, the final data loaded for that address will be  
programmed.  
Once the specified number of write buffer locations have been loaded, the system  
must then write the Program Buffer to Flash command at the sector address. Any  
other address and data combination aborts the Write Buffer Programming oper-  
ation. The device then begins programming. Data polling should be used while  
monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5,  
and DQ1 should be monitored to determine the device status during Write Buffer  
Programming.  
The write-buffer programming operation can be suspended using the standard  
program suspend/resume commands. Upon successful completion of the Write  
Buffer Programming operation, the device is ready to execute the next command.  
The Write Buffer Programming Sequence can be aborted in the following ways:  
„ Load a value that is greater than the page buffer size during the Number of  
Locations to Program step.  
„ Write to an address in a sector different than the one specified during the  
Write-Buffer-Load command.  
„ Write an Address/Data pair to a different write-buffer-page than the one se-  
lected by the Starting Address during the write buffer data loading stage of  
the operation.  
„ Write data other than the Confirm Command after the specified number of  
data load cycles.  
The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address  
location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset com-  
mand sequence must be written to reset the device for the next operation. Note  
that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is required  
when using Write-Buffer-Programming features in Unlock Bypass mode.  
Write buffer programming is allowed in any sequence. Note that the Secured Sil-  
icon sector, autoselect, and CFI functions are unavailable when a program  
operation is in progress. This flash device is capable of handling multiple write  
buffer programming operations on the same write buffer address range without  
intervening erases. For applications requiring an excessive number of such re-  
peated write buffer programming operations, please contact your local Spansion  
representative. Any bit in a write buffer address range cannot be pro-  
grammed from “0” back to a “1.” Attempting to do so may cause the device  
to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation  
was successful. However, a succeeding read will show that the data is still “0.”  
Only erase operations can convert a “0” to a “1.”  
Accelerated Program  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts V  
on the WP#/ACC pin, the device automatically en-  
HH  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
be at V  
for operations other than accelerated programming, or device damage  
HH  
may result. WP# has an internal pullup; when unconnected, WP# is at V  
.
IH  
Figure 3 illustrates the algorithm for the program operation. Refer to the Erase  
and Program Operations–“AC Characteristics” section on page 80 section for pa-  
rameters, and Figure 14 for timing diagrams.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
53  
A d v a n c e I n f o r m a t i o n  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC = 31)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Notes:  
1. When Sector Address is specified, any  
address in the selected sector is acceptable.  
However, when loading Write-Buffer  
address locations with data, all addresses  
must fall within the selected Write-Buffer  
Page.  
Read DQ15 - DQ0 at  
Last Loaded Address  
2. DQ7 may change simultaneously with DQ5.  
Therefore, DQ7 should be verified.  
3. If this flowchart location was reached  
because DQ5= “1”, then the device FAILED.  
If this flowchart location was reached  
because DQ1= “1”, then the Write to Buffer  
operation was ABORTED. In either case, the  
proper reset command must be written  
before the device can begin another  
operation. If DQ1=1, write the Write-  
Buffer-Programming-Abort-Reset  
Yes  
DQ7 = Data?  
No  
No  
No  
DQ1 = 1?  
Yes  
DQ5 = 1?  
Yes  
command. if DQ5=1, write the Reset  
command.  
Read DQ15 - DQ0 with  
address = Last Loaded  
Address  
4. See Tables 16 and 17 for command  
sequences required for write buffer  
programming.  
Yes  
DQ7 = Data?  
No  
FAIL or ABORT  
PASS  
Figure 1. Write Buffer Programming Operation  
54  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 10 and Table 11 for program com-  
mand sequence.  
Figure 2. Program Operation  
Program Suspend/Program Resume Command Sequence  
The Program Suspend command allows the system to interrupt a programming  
operation or a Write to Buffer programming operation so that data can be read  
from any non-suspended sector. When the Program Suspend command is written  
during a programming process, the device halts the program operation within 15  
µs maximum (5µs typical) and updates the status bits. Addresses are not re-  
quired when writing the Program Suspend command.  
After the programming operation has been suspended, the system can read array  
data from any non-suspended sector. The Program Suspend command may also  
be issued during a programming operation while an erase is suspended. In this  
case, data may be read from any addresses not in Erase Suspend or Program  
Suspend. If a read is needed from the Secured Silicon Sector area (One-time Pro-  
gram area), then user must use the proper command sequences to enter and exit  
this region.  
The system may also write the autoselect command sequence when the device  
is in the Program Suspend mode. The system can read as many autoselect codes  
as required. When the device exits the autoselect mode, the device reverts to the  
Program Suspend mode, and is ready for another valid operation. See Autoselect  
Command Sequence for more information.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
55  
A d v a n c e I n f o r m a t i o n  
After the Program Resume command is written, the device reverts to program-  
ming. The system can determine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard program operation. See Write Op-  
eration Status for more information.  
The system must write the Program Resume command (address bits are don’t  
care) to exit the Program Suspend mode and continue the programming opera-  
tion. Further writes of the Resume command are ignored. Another Program  
Suspend command can be written after the device has resume programming.  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 µs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
No  
reading?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/3030h  
Device reverts to  
operation prior to  
Program Suspend  
Figure 3. Program Suspend/Program Resume  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 10 and Table 11 show the address and data  
requirements for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, or DQ2. Refer to the Write Operation  
Status section for information on these status bits.  
56  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Any commands written during the chip erase operation are ignored, including  
erase suspend commands. However, note that a hardware reset immediately  
terminates the erase operation. If that occurs, the chip erase command sequence  
should be reinitiated once the device has returned to reading array data, to en-  
sure data integrity.  
Figure 4 illustrates the algorithm for the erase operation. Note that the Secured  
Silicon Sector, autoselect, and CFI functions are unavailable when an  
erase operation in is progress. Refer to the Erase and Program Operations  
table in the AC Characteristics section for parameters, and Figure 16 section for  
timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 10 and Table 11 shows  
the address and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. Any com-  
mand other than Sector Erase or Erase Suspend during the time-out  
period resets the device to the read mode. Note that the Secured Silicon  
Sector, autoselect, and CFI functions are unavailable when an erase op-  
eration in is progress. The system must rewrite the command sequence and  
any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading  
array data and addresses are no longer latched. The system can determine the  
status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector.  
Refer to the Write Operation Status section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
Figure 4 illustrates the algorithm for the erase operation. Refer to the Erase and  
Program Operations table in the AC Characteristics section for parameters, and  
Figure 16 section for timing diagrams.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
57  
A d v a n c e I n f o r m a t i o n  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 10 and Table 11 for program command  
sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 4. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. This command is valid only during the sector erase operation, includ-  
ing the 50 µs time-out period during the sector erase command sequence. The  
Erase Suspend command is ignored if written during the chip erase operation or  
Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a typical of 5 µs (maximum of 20 µs) to suspend the erase  
operation. However, when the Erase Suspend command is written during the sec-  
tor erase time-out, the device immediately terminates the time-out period and  
suspends the erase operation.  
After the erase operation has been suspended, the device enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the Write Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the device returns to  
the erase-suspend-read mode. The system can determine the status of the pro-  
58  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
gram operation using the DQ7 or DQ6 status bits, just as in the standard word  
program operation. Refer to the Write Operation Status section for more  
information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. Refer to the “Autoselect Command Sequence” section on page  
50 sections for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command. The address of the erase-suspended sector is required when writing  
this command. Further writes of the Resume command are ignored. Another  
Erase Suspend command can be written after the chip has resumed erasing.  
Lock Register Command Set Definitions  
The Lock Register Command Set permits the user to one-time program the Se-  
cured Silicon Sector Protection Bit, Persistent Protection Mode Lock Bit, and  
Password Protection Mode Lock Bit. The Lock Register bits are all readable after  
an initial access delay.  
The Lock Register Command Set Entry command sequence must be issued  
prior to any of the following commands listed, to enable proper command  
execution.  
Note that issuing the Lock Register Command Set Entry command disables  
reads and writes for the flash memory.  
„ Lock Register Program Command  
„ Lock Register Read Command  
The Lock Register Command Set Exit command must be issued after the ex-  
ecution of the commands to reset the device to read mode. Otherwise the device  
will hang. If this happens, the flash device must be reset. Please refer to RESET#  
for more information. It is important to note that the device will be in either Per-  
sistent Protection mode or Password Protection mode depending on the mode  
selected prior to the device hang.  
For either the Secured Silicon Sector to be locked, or the device to be perma-  
nently set to the Persistent Protection Mode or the Password Protection Mode, the  
associated Lock Register bits must be programmed. Note that the Persistent  
Protection Mode Lock Bit and Password Protection Mode Lock Bit can  
never be programmed together at the same time. If so, the Lock Register  
Program operation will abort.  
The Lock Register Command Set Exit command must be initiated to re-  
enable reads and writes to the main memory.  
Password Protection Command Set Definitions  
The Password Protection Command Set permits the user to program the 64-bit  
password, verify the programming of the 64-bit password, and then later unlock  
the device by issuing the valid 64-bit password.  
The Password Protection Command Set Entry command sequence must be  
issued prior to any of the following commands listed, to enable proper command  
execution.  
Note that issuing the Password Protection Command Set Entry command  
disables reads and writes for the main memory.  
„ Password Program Command  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
59  
A d v a n c e I n f o r m a t i o n  
The Password Program command permits programming the password that is  
used as part of the hardware protection scheme. The actual password is 64-bits  
long. There is no special addressing order required for programming the pass-  
word. The password is programmed in 8-bit or 16-bit portions. Each  
portion requires a Password Program Command.  
Once the Password is written and verified, the Password Protection Mode Lock Bit  
in the “Lock Register” must be programmed in order to prevent verification. The  
Password Program command is only capable of programming “0”s. Programming  
a “1” after a cell is programmed as a “0” results in a time-out by the Embedded  
Program Algorithm™ with the cell remaining as a “0. The password is all F's when  
shipped from the factory. All 64-bit password combinations are valid as a  
password.  
„ Password Read Command  
The Password Read command is used to verify the Password. The Password is  
verifiable only when the Password Protection Mode Lock Bit in the “Lock Register”  
is not programmed. If the Password Protection Mode Lock Bit in the “Lock Regis-  
ter” is programmed and the user attempts to read the Password, the device will  
always drive all F's onto the DQ data bus.  
The lower two address bits (A1-A0) for word mode and (A1-A-1) for by byte mode  
are valid during the Password Read, Password Program, and Password Unlock  
commands. Writing a “1” to any other address bits (A  
-A2) will abort  
MAX  
the Password Read, Password Program, and Password Unlock com-  
mands and return the device to reading memory array. The address bits  
(A1-A0) for word mode and (A1-A-1) for byte mode must be entered into  
the device sequentially for Password Read and Password Unlock  
commands.  
„ Password Unlock Command  
The Password Unlock command is used to clear the PPB Lock Bit to the “unfreeze  
state” so that the PPB bits can be modified. The exact password must be entered  
in order for the unlocking function to occur. This 64-bit Password Unlock com-  
mand sequence will take at least 2 µs to process each time to prevent a  
hacker from running through the all 64-bit combinations in an attempt  
to correctly match a password. If another password unlock is issued be-  
fore the 64-bit password check execution window is completed, the  
command will be ignored.  
The Password Unlock function is accomplished by writing Password Unlock com-  
mand and data to the device to perform the clearing of the PPB Lock Bit to the  
“unfreeze state. The password is 64 bits long. A1 and A0 are used for matching  
in word mode and A1, A0, A-1 in byte mode. Writing the Password Unlock com-  
mand does not need to be address order specific. An example sequence is  
starting with the lower address A1-A0= 00, followed by A1-A0= 01, A1-A0= 10,  
and A1-A0= 11 if device is configured to operate in word mode.  
Approximately 2 µs is required for unlocking the device after the valid  
64-bit password is given to the device. It is the responsibility of the mi-  
croprocessor to keep track of the entering the portions of the 64-bit  
password with the Password Unlock command, the order, and when to  
read the PPB Lock bit to confirm successful password unlock. In order to  
re-lock the device into the Password Protection Mode, the PPB Lock Bit Set com-  
mand can be re-issued.  
60  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
The Password Protection Command Set Exit command must be issued after  
the execution of the commands listed previously to reset the device to read  
mode. Otherwise the device will hang.  
Note that issuing the Password Protection Command Set Exit command re-  
enables reads and writes for the main memory.  
Non-Volatile Sector Protection Command Set Definitions  
The Non-Volatile Sector Protection Command Set permits the user to program the  
Persistent Protection Bits (PPB bits), erase all of the Persistent Protection Bits  
(PPB bits), and read the logic state of the Persistent Protection Bits (PPB bits).  
The Non-Volatile Sector Protection Command Set Entry command se-  
quence must be issued prior to any of the commands listed following to enable  
proper command execution.  
Note that issuing the Non-Volatile Sector Protection Command Set Entry  
command disables reads and writes for the main memory.  
„ PPB Program Command  
The PPB Program command is used to program, or set, a given PPB bit. Each PPB  
bit is individually programmed (but is bulk erased with the other PPB bits). The  
specific sector address (A24-A16 for S29GL512N, A23-A16 for S29GL256N, A22-  
A16 for S29GL128N) is written at the same time as the program command. If the  
PPB Lock Bit is set to the “freeze state, the PPB Program command will not exe-  
cute and the command will time-out without programming the PPB bit.  
„ All PPB Erase Command  
The All PPB Erase command is used to erase all PPB bits in bulk. There is no  
means for individually erasing a specific PPB bit. Unlike the PPB program, no spe-  
cific sector address is required. However, when the All PPB Erase command is  
issued, all Sector PPB bits are erased in parallel. If the PPB Lock Bit is set to  
“freeze state, the ALL PPB Erase command will not execute and the command  
will time-out without erasing the PPB bits.  
The device will preprogram all PPB bits prior to erasing when issuing the All PPB  
Erase command. Also note that the total number of PPB program/erase cycles has  
the same endurance as the flash memory array.  
„ PPB Status Read Command  
The programming state of the PPB for a given sector can be verified by writing a  
PPB Status Read Command to the device. This requires an initial access time  
latency.  
The Non-Volatile Sector Protection Command Set Exit command must be  
issued after the execution of the commands listed previously to reset the device  
to read mode.  
Note that issuing the Non-Volatile Sector Protection Command Set Exit  
command re-enables reads and writes for the main memory.  
Global Volatile Sector Protection Freeze Command Set  
The Global Volatile Sector Protection Freeze Command Set permits the user to set  
the PPB Lock Bit and reading the logic state of the PPB Lock Bit.  
The Global Volatile Sector Protection Freeze Command Set Entry com-  
mand sequence must be issued prior to any of the commands listed following to  
enable proper command execution.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
61  
A d v a n c e I n f o r m a t i o n  
Reads and writes from the main memory are allowed.  
„ PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the PPB Lock Bit to the “freeze state”  
if it is cleared either at reset or if the Password Unlock command was successfully  
executed. There is no PPB Lock Bit Clear command. Once the PPB Lock Bit is set  
to the “freeze state, it cannot be cleared unless the device is taken through a  
power-on clear (for Persistent Protection Mode) or the Password Unlock command  
is executed (for Password Protection Mode). If the Password Protection Mode Lock  
Bit is programmed, the PPB Lock Bit status is reflected as set to the “freeze state,  
even after a power-on reset cycle.  
„ PPB Lock Bit Status Read Command  
The programming state of the PPB Lock Bit can be verified by executing a PPB  
Lock Bit Status Read command to the device.  
The Global Volatile Sector Protection Freeze Command Set Exit command  
must be issued after the execution of the commands listed previously to reset the  
device to read mode.  
Volatile Sector Protection Command Set  
The Volatile Sector Protection Command Set permits the user to set the Dynamic  
Protection Bit (DYB) to the “protected state, clear the Dynamic Protection Bit  
(DYB) to the “unprotected state, and read the logic state of the Dynamic Protec-  
tion Bit (DYB).  
The Volatile Sector Protection Command Set Entry command sequence  
must be issued prior to any of the commands listed following to enable proper  
command execution.  
Note that issuing the Volatile Sector Protection Command Set Entry com-  
mand disables reads for the bank selected with the command. Reads and  
Writes for other banks excluding that bank are allowed.  
„ DYB Set Command  
„ DYB Clear Command  
The DYB Set and DYB Clear commands are used to protect or unprotect a DYB for  
a given sector. The high order address bits are issued at the same time as the  
code 00h or 01h on DQ7-DQ0. All other DQ data bus pins are ignored during the  
data write cycle. The DYB bits are modifiable at any time, regardless of the state  
of the PPB bit or PPB Lock Bit. The DYB bits are cleared to the “unprotected state”  
at power-up or hardware reset.  
—DYB Status Read Command  
The programming state of the DYB bit for a given sector can be verified by writing  
a DYB Status Read command to the device. This requires an initial access delay.  
The Volatile Sector Protection Command Set Exit command must be issued  
after the execution of the commands listed previously to reset the device to read  
mode.  
Note that issuing the Volatile Sector Protection Command Set Exit com-  
mand re-enables reads and writes to the main memory.  
Secured Silicon Sector Entry Command  
The Secured Silicon Sector Entry command allows the following commands to be  
executed  
62  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
„ Read from Secured Silicon Sector  
„ Program to Secured Silicon Sector  
Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon  
Sector Exit command has to be issued to exit Secured Silicon Sector Mode.  
Secured Silicon Sector Exit Command  
The Secured Silicon Sector Exit command may be issued to exit the Secured Sil-  
icon Sector Mode.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
63  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Table 10. S29GL512N, S29GL256N, S29GL128N Command Definitions, x16  
Bus Cycles (Notes 2–5)  
Command (Notes)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (6)  
1
1
4
RA  
RD  
F0  
Reset (7)  
XXX  
555  
Manufacturer ID  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X00  
X01  
01  
Note  
17  
Note  
17  
Device ID  
4
4
4
555  
555  
555  
AA  
AA  
AA  
227E  
X0E  
X0F  
XX00  
XX01  
(SA)  
X02  
Sector Protect Verify  
Secure Device Verify (9)  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
Note  
10  
X03  
CFI Query (11)  
1
4
3
1
3
3
2
2
2
2
6
6
1
1
555  
555  
555  
SA  
98  
AA  
AA  
29  
AA  
AA  
A0  
80  
80  
90  
AA  
AA  
B0  
30  
Program  
2AA  
2AA  
55  
55  
555  
SA  
A0  
25  
PA  
SA  
PD  
Write to Buffer  
WC  
PA  
PD  
WBL  
PD  
Program Buffer to Flash (confirm)  
Write-to-Buffer-Abort Reset (16)  
Unlock Bypass  
555  
555  
XXX  
XXX  
XXX  
XXX  
555  
555  
XXX  
XXX  
2AA  
2AA  
PA  
55  
55  
PD  
30  
10  
00  
55  
55  
555  
555  
F0  
20  
Unlock Bypass Program (12)  
Unlock Bypass Sector Erase (12)  
Unlock Bypass Chip Erase (12)  
Unlock Bypass Reset (13)  
Chip Erase  
SA  
XXX  
XXX  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase Suspend/Program Suspend (14)  
Erase Resume/Program Resume (15)  
Sector Command Definitions  
Secured Silicon Sector Entry  
3
4
555  
AA  
2AA  
55  
555  
88  
90  
Secured Silicon Sector Exit (18)  
555  
AA  
2AA  
55  
555  
XX  
00  
Lock Register Command Set Definitions  
Lock Register Command Set Entry  
Lock Register Bits Program (22)  
Lock Register Bits Read (22)  
3
2
1
2
555  
XXX  
00  
AA  
A0  
2AA  
XXX  
55  
555  
40  
Data  
Data  
90  
Lock Register Command Set Exit (18, 23)  
XXX  
XXX  
00  
Password Protection Command Set Definitions  
64  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Bus Cycles (Notes 2–5)  
Third Fourth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command (Notes)  
First  
Second  
Fifth  
Sixth  
Password Protection Command Set Entry  
Password Program (20)  
3
2
555  
XXX  
AA  
A0  
2AA  
55  
555  
60  
PWA  
x
PWD  
x
PWD  
0
PWD  
1
PWD  
2
PWD  
3
Password Read (19)  
Password Unlock (19)  
4
7
2
XXX  
01  
00  
02  
00  
03  
01  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
00  
00  
25  
29  
90  
03  
02  
03  
Password Protection Command Set Exit  
(18, 23)  
XXX  
XXX  
00  
Non-Volatile Sector Protection Command Set Definitions  
Nonvolatile Sector Protection Command  
Set Entry  
3
555  
AA  
2AA  
55  
555  
C0  
PPB Program (24, 25)  
All PPB Erase  
2
2
XXX  
XXX  
A0  
80  
SA  
00  
00  
30  
RD  
(0)  
PPB Status Read (25)  
1
2
SA  
Non-Volatile Sector Protection Command  
Set Exit (18)  
XXX  
90  
XXX  
00  
Global Non-Volatile Sector Protection Freeze Command Set Definitions  
Global Non-Volatile Sector Protection  
Freeze Command Set Entry  
3
2
1
555  
XXX  
XXX  
AA  
A0  
2AA  
XXX  
55  
00  
555  
50  
PPB Lock Bit Set (25)  
RD  
(0)  
PPB Lock Status Read (25)  
Global Non-Volatile Sector Protection  
Freeze Command Set Exit (18)  
2
XXX  
90  
XXX  
00  
Volatile Sector Protection Command Set Definitions  
Volatile Sector Protection Command Set  
Entry  
3
555  
AA  
2AA  
55  
555  
E0  
DYB Set (24, 25)  
DYB Clear (25)  
2
2
XXX  
XXX  
A0  
A0  
SA  
SA  
00  
01  
RD  
(0)  
DYB Status Read (25)  
1
2
SA  
Volatile Sector Protection Command Set  
Exit (18)  
XXX  
90  
XXX  
00  
Legend:  
X = Don’t care  
RA = Address of the memory to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever  
happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of the WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits Amax–A16 uniquely select any sector.  
WBL = Write Buffer Location. The address must be within the same write buffer page as PA.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
65  
A d v a n c e I n f o r m a t i o n  
WC = Word Count is the number of write buffer locations to load minus 1.  
PWD = Password  
PWDx = Password word0, word1, word2, and word3.  
DATA = Lock Register Contents: PD(0) = Secured Silicon Sector Protection Bit, PD(1) = Persistent Protection Mode Lock Bit, PD(2)  
= Password Protection Mode Lock Bit.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle, and the 4th, 5th, and 6th cycle of the autoselect command sequence, all bus cycles are write  
cycles.  
4. Data bits DQ15-DQ8 are don't cares for unlock and command cycles.  
5. Address bits AMAX:A16 are don't cares for unlock and command cycles, unless SA or PA required. (AMAX is the Highest  
Address pin.).  
6. No unlock or command cycles required when reading array data.  
7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high  
(while the device is providing status data).  
8. The fourth, fifth, and sixth cycle of the autoselect command sequence is a read cycle.  
9. The data is 00h for an unprotected sector and 01h for a protected sector. See “Autoselect Command Sequence” for more  
information. This is same as PPB Status Read except that the protect and unprotect statuses are inverted here.  
10. The data value for DQ7 is “1” for a serialized and protected OTP region and “0” for an unserialized and unprotected Secured  
Silicon Sector region. See “Secured Silicon Sector Flash Memory Region” for more information. For Am29LVxxxMH: XX18h/  
18h = Not Factory Locked. XX98h/98h = Factory Locked. For Am29LVxxxML: XX08h/08h = Not Factory Locked. XX88h/88h  
= Factory Locked.  
11. Command is valid when device is ready to read array data or when device is in autoselect mode.  
12. The Unlock-Bypass command is required prior to the Unlock-Bypass-Program command.  
13. The Unlock-Bypass-Reset command is required to return to reading array data when the device is in the unlock bypass  
mode.  
14. The system may read and program/program suspend in non-erasing sectors, or enter the autoselect mode, when in the  
Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation.  
15. The Erase Resume/Program Resume command is valid only during the Erase Suspend/Program Suspend modes.  
16. Issue this command sequence to return to READ mode after detecting device is in a Write-to-Buffer-Abort state. NOTE: the  
full command sequence is required if resetting out of ABORT while using Unlock Bypass Mode.  
17. S29GL512NH/L = 2223h/23h, 220h/01h; S29GL256NH/L = 2222h/22h, 2201h/01h; S29GL128NH/L = 2221h/21h, 2201h/  
01h.  
18. The Exit command returns the device to reading the array.  
19. Note that the password portion can be entered or read in any order as long as the entire 64-bit password is entered or read.  
20. For PWDx, only one portion of the password can be programmed per each “A0” command.  
21. The All PPB Erase command embeds programming of all PPB bits before erasure.  
22. All Lock Register bits are one-time programmable. Note that the program state = “0” and the erase state = “1”. Also note  
that of both the Persistent Protection Mode Lock Bit and the Password Protection Mode Lock Bit cannot be programmed at the  
same time or the Lock Register Bits Program operation will abort and return the device to read mode. Lock Register bits that  
are reserved for future use will default to “1's”. The Lock Register is shipped out as “FFFF's” before Lock Register Bit program  
execution.  
23. If any of the Entry command was initiated, an Exit command must be issued to reset the device into read mode. Otherwise  
the device will hang.  
24. If ACC = VHH, sector protection will match when ACC = VIH  
25. Protected State = “00h”, Unprotected State = “01h”.  
66  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Table 11. S29GL512N, S29GL256N, S29GL128N Command Definitions, x8  
Bus Cycles (Notes 2–5)  
Command (Notes)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (6)  
1
1
4
RA  
RD  
F0  
Reset (7)  
XXX  
AAA  
Manufacturer ID  
AA  
555  
555  
55  
55  
AAA  
AAA  
90  
9
X00  
X02  
01  
Note  
17  
Note  
17  
Device ID  
4
4
4
AAA  
AAA  
AAA  
AA  
AA  
AA  
XX7E  
X1C  
X1E  
00  
01  
(SA)  
X04  
Sector Protect Verify  
Secure Device Verify (9)  
555  
555  
55  
55  
AAA  
AAA  
90  
90  
Note  
10  
X06  
SA  
CFI Query (11)  
1
3
1
3
2
6
6
1
1
AAA  
AAA  
SA  
98  
AA  
29  
AA  
90  
AA  
AA  
B0  
30  
Write to Buffer  
555  
55  
SA  
25  
F0  
WC  
PA  
PD  
WBL  
PD  
Program Buffer to Flash (confirm)  
Write-to-Buffer-Abort Reset (16)  
Unlock Bypass Reset (13)  
Chip Erase  
AAA  
XXX  
AAA  
AAA  
XXX  
XXX  
PA  
55  
00  
55  
55  
555  
XXX  
555  
555  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
SA  
10  
30  
Sector Erase  
Erase Suspend/Program Suspend (14)  
Erase Resume/Program Resume (15)  
Secured Silicon Sector Command Definitions  
Secured Silicon Sector Entry  
3
AAA  
AA  
555  
55  
AAA  
88  
Secured Silicon Sector Exit (18)  
4
AAA  
AA  
555  
55  
AAA  
90  
XX  
00  
Lock Register Command Set Definitions  
Lock Register Command Set Entry  
Lock Register Bits Program (22)  
Lock Register Bits Read (22)  
3
2
1
2
AAA  
XXX  
00  
AA  
A0  
555  
XXX  
55  
AAA  
40  
Data  
Data  
90  
Lock Register Command Set Exit (18, 23)  
XXX  
XXX  
00  
Password Protection Command Set Definitions  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
67  
A d v a n c e I n f o r m a t i o n  
Bus Cycles (Notes 2–5)  
Command (Notes)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Password Protection Command Set Entry  
Password Program (20)  
3
2
AAA  
XXX  
AA  
A0  
555  
55  
AAA  
02  
60  
PWA PWD  
x
x
PWD  
0
PWD  
1
00  
06  
01  
PWD  
2
PWD  
3
PWD  
4
PWD  
5
Password Read (19)  
Password Unlock (19)  
8
03  
04  
05  
03  
PWD  
6
PWD  
7
07  
00  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
00  
25  
03  
00  
06  
01  
07  
02  
00  
11  
2
PWD  
4
PWD  
5
PWD  
6
PWD  
7
04  
05  
29  
Password Protection Command Set Exit  
(18, 23)  
XXX  
90  
XXX  
00  
Non-Volatile Sector Protection Command Set Definitions  
Nonvolatile Sector Protection Command  
Set Entry  
3
AAA  
AA  
55  
55  
AAA  
C0  
PPB Program (24, 25)  
All PPB Erase  
2
2
XXX  
XXX  
A0  
80  
SA  
00  
00  
30  
RD  
(0)  
PPB Status Read (25)  
1
2
SA  
Non-Volatile Sector Protection Command  
Set Exit (18)  
XXX  
90  
XXX  
00  
Global Non-Volatile Sector Protection Freeze Command Set Definitions  
Global Non-Volatile Sector Protection  
Freeze Command Set Entry  
3
2
1
AAA  
XXX  
XXX  
AA  
A0  
555  
XXX  
55  
00  
AAA  
50  
PPB Lock Bit Set (25)  
RD  
(0)  
PPB Lock Status Read (25)  
Global Non-Volatile Sector Protection  
Freeze Command Set Exit (18)  
2
XXX  
90  
XXX  
00  
Volatile Sector Protection Command Set Definitions  
Volatile Sector Protection Command Set  
Entry  
3
AAA  
AA  
555  
55  
AAA  
E0  
DYB Set (24, 25)  
DYB Clear (25)  
2
2
XXX  
XXX  
A0  
A0  
SA  
SA  
00  
01  
RD  
(0)  
DYB Status Read (25)  
1
2
SA  
Volatile Sector Protection Command Set  
Exit (18)  
XXX  
90  
XXX  
00  
Legend:  
X = Don’t care  
RA = Address of the memory to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever  
happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of the WE# or CE# pulse, whichever happens first.  
68  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits Amax–A16 uniquely select any sector.  
WBL = Write Buffer Location. The address must be within the same write buffer page as PA.  
WC = Word Count is the number of write buffer locations to load minus 1.  
PWD = Password  
PWDx = Password word0, word1, word2, word3. word 4, word 5, word 6, and word 7.  
DATA = Lock Register Contents: PD(0) = Secured Silicon Sector Protection Bit, PD(1) = Persistent Protection Mode Lock Bit, PD(2)  
= Password Protection Mode Lock Bit.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle, and the 4th, 5th, and 6th cycle of the autoselect command sequence, all bus cycles are write  
cycles.  
4. Data bits DQ15-DQ8 are don't cares for unlock and command cycles.  
5. Address bits AMAX:A16 are don't cares for unlock and command cycles, unless SA or PA required. (AMAX is the Highest  
Address pin.).  
6. No unlock or command cycles required when reading array data.  
7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high  
(while the device is providing status data).  
8. The fourth, fifth, and sixth cycle of the autoselect command sequence is a read cycle.  
9. The data is 00h for an unprotected sector and 01h for a protected sector. See “Autoselect Command Sequence” for more  
information. This is same as PPB Status Read except that the protect and unprotect statuses are inverted here.  
10. The data value for DQ7 is “1” for a serialized and protected OTP region and “0” for an unserialized and unprotected Secured  
Silicon Sector region. See “Secured Silicon Sector Flash Memory Region” for more information. For Am29LVxxxMH: XX18h/  
18h = Not Factory Locked. XX98h/98h = Factory Locked. For Am29LVxxxML: XX08h/08h = Not Factory Locked. XX88h/88h  
= Factory Locked.  
11. Command is valid when device is ready to read array data or when device is in autoselect mode.  
12. The Unlock-Bypass command is required prior to the Unlock-Bypass-Program command.  
13. The Unlock-Bypass-Reset command is required to return to reading array data when the device is in the unlock bypass  
mode.  
14. The system may read and program/program suspend in non-erasing sectors, or enter the autoselect mode, when in the  
Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation.  
15. The Erase Resume/Program Resume command is valid only during the Erase Suspend/Program Suspend modes.  
16. Issue this command sequence to return to READ mode after detecting device is in a Write-to-Buffer-Abort state. NOTE: the  
full command sequence is required if resetting out of ABORT while using Unlock Bypass Mode.  
17. S29GL512NH/L = 2223h/23h, 220h/01h; S29GL256NH/L = 2222h/22h, 2201h/01h; S29GL128NH/L = 2221h/21h, 2201h/  
01h.  
18. The Exit command returns the device to reading the array.  
19. Note that the password portion can be entered or read in any order as long as the entire 64-bit password is entered or read.  
20. For PWDx, only one portion of the password can be programmed per each “A0” command.  
21. The All PPB Erase command embeds programming of all PPB bits before erasure.  
22. All Lock Register bits are one-time programmable. Note that the program state = “0” and the erase state = “1”. Also note  
that of both the Persistent Protection Mode Lock Bit and the Password Protection Mode Lock Bit cannot be programmed at the  
same time or the Lock Register Bits Program operation will abort and return the device to read mode. Lock Register bits that  
are reserved for future use will default to “1's”. The Lock Register is shipped out as “FFFF's” before Lock Register Bit program  
execution.  
23. If any of the Entry command was initiated, an Exit command must be issued to reset the device into read mode. Otherwise  
the device will hang.  
24. If ACC = VHH, sector protection will match when ACC = VIH  
Protected State = “00h”, Unprotected State = “01h”.  
Write Operation Status  
The device provides several bits to determine the status of a program or erase  
operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 19 and the following subsec-  
tions describe the function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is complete or in progress.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
69  
A d v a n c e I n f o r m a t i o n  
The device also provides a hardware-based output signal, RY/BY#, to determine  
whether an Embedded Program or Erase operation is in progress or has been  
completed.  
Note that all Write Operation Status DQ bits are valid only after 4 µs delay.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded  
Program or Erase algorithm is in progress or completed, or whether the device is  
in Erase Suspend. Data# Polling is valid after the rising edge of the final WE#  
pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the com-  
plement of the datum programmed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to DQ7. The system must  
provide the program address to read valid status information on DQ7. If a pro-  
gram address falls within a protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the device enters the  
Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must  
provide an address within any of the sectors selected for erasure to read valid  
status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the  
device returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7  
may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is as-  
serted low. That is, the device may change from providing status information to  
valid data on DQ7. Depending on when the system samples the DQ7 output, it  
may read the status or valid data. Even if the device has completed the program  
or erase operation and DQ7 has valid data, the data outputs on DQ0–DQ6 may  
be still invalid. Valid data on DQ0–DQ7 will appear on successive read cycles.  
Table 12 shows the outputs for Data# Polling on DQ7. Figure 5 shows the Data#  
Polling algorithm. Figure 17 in the AC Characteristics section shows the Data#  
Polling timing diagram.  
70  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 5. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to V  
.
CC  
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or in the erase-suspend-read  
mode. Table 12 shows the outputs for RY/BY#.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
71  
A d v a n c e I n f o r m a t i o n  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 12 shows the outputs for Toggle Bit I on DQ6. Figure 6 shows the toggle bit  
algorithm. Figure 18 in the “AC Characteristics” section shows the toggle bit tim-  
72  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
ing diagrams. Figure 19 shows the differences between DQ2 and DQ6 in graphical  
form. See also the subsection on DQ2: Toggle Bit II.  
START  
Read Byte  
(DQ0-DQ7)  
Address = VA  
Read Byte  
(DQ0-DQ7)  
Address = VA  
No  
DQ6 = Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ 0-DQ7)  
Adrdess = VA  
No  
DQ6 = Toggle?  
Yes  
FAIL  
PASS  
Note: The system should recheck the toggle bit even if DQ5  
= “1” because the toggle bit may stop toggling as DQ5  
changes to “1.” See the subsections on DQ6 and DQ2 for  
more information.  
Figure 6. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
73  
A d v a n c e I n f o r m a t i o n  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 12 to compare outputs for DQ2 and DQ6.  
Figure 6 shows the toggle bit algorithm in flowchart form, and the section “DQ2:  
Toggle Bit II” explains the algorithm. See also the RY/BY#: Ready/Busy# subsec-  
tion. Figure 18 shows the toggle bit timing diagram. Figure 19 shows the  
differences between DQ2 and DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 6 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 6).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or write-to-buffer time has ex-  
ceeded a specified internal pulse count limit. Under these conditions DQ5  
produces a “1,” indicating that the program or erase cycle was not successfully  
completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
In all these cases, the system must write the reset command to return the device  
to the reading the array (or to erase-suspend-read if the device was previously  
in the erase-suspend-program mode).  
74  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.If the  
time between additional sector erase commands from the system can be as-  
sumed to be less than 50 µs, the system need not monitor DQ3. See also the  
Sector Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 12 shows the status of DQ3 relative to the other status bits.  
DQ1: Write-to-Buffer Abort  
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these  
conditions DQ1 produces a “1. The system must issue the Write-to-Buffer-Abort-  
Reset command sequence to return the device to reading array data. See Write  
Buffer section for more details.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
75  
A d v a n c e I n f o r m a t i o n  
Table 12. Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1) DQ3  
DQ2  
(Note 2)  
RY/  
BY#  
Status  
DQ6  
DQ1  
0
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A  
1
No toggle  
Toggle  
0
0
Standard  
Mode  
N/A  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Suspend  
Read  
Sector  
Non-Program  
Suspended Sector  
Erase-Suspended  
Sector  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Suspend  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the  
maximum timing limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for  
further details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to ‘1’ when the device has aborted the write-to-buffer operation  
Absolute Maximum Ratings  
Storage Temperature, Plastic Packages. . . . . . . . . . . . . . . . 65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
V
(Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
CC  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +4.0 V  
IO  
A9, OE#, ACC and RESET# (Note 2) . . . . . . . . . . . . .0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . . . . . . . . . . . . . . 0.5 V to V +12.5 V  
CC  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs  
or I/Os may overshoot VSS to –2.0 V for periods of up to 20 ns. See Figure 7.  
Maximum DC voltage on input or I/Os is VCC + 0.5 V. During voltage transitions,  
input or I/O pins may overshoot to VCC + 2.0 V for periods up to 20 ns. See Figure  
8.  
2. Minimum DC input voltage on pins A9, OE#, ACC, and RESET# is –0.5 V. During  
voltage transitions, A9, OE#, ACC, and RESET# may overshoot VSS to –2.0 V for  
periods of up to 20 ns. See Figure 7. Maximum DC input voltage on pin A9, OE#,  
ACC, and RESET# is +12.5 V which may overshoot to +14.0V for periods up to 20  
ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short  
circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only; functional operation  
76  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
of the device at these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure of the device to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 7. Maximum Negative  
Overshoot Waveform  
Figure 8. Maximum Positive  
Overshoot Waveform  
Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
A
Supply Voltages  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.7 V to +3.6 V  
(Note 2) . . . . . . . . . . . . . . . . . . . . +1.65 V to +1.95 V or +2.7 to 3.6 V  
CC  
IO  
Notes:  
1. Operating ranges define those limits between which the functionality of the device is guaranteed.  
2. The I/Os will not operate at 3 V when VIO=1.8 V.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
77  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
(Notes)  
Input Load Current (1)  
A9 Input Load Current  
Output Leakage Current  
V
V
= V to V  
,
CC  
IN  
CC  
SS  
I
±1.0  
35  
µA  
µA  
µA  
LI  
= V  
CC max  
; A9 = 12.5 V  
CC max  
I
V
= V  
LIT  
CC  
V
V
= V to V  
SS  
,
CC  
OUT  
CC  
I
±1.0  
LO  
= V  
CC max  
V
Active Read Current  
V
= 1.8 V, CE# = V , OE# = V , WE# = V ,  
IL IL IL  
IO  
IO  
I
I
5
10  
10  
30  
µA  
IO1  
IO2  
(Switching Current)  
f = 5 MHz  
CE# = V OE# = V  
IH  
V
Non-Active Output  
0.2  
25  
mA  
IO  
IL,  
CE# = V OE# = V , V = V  
f = 5 MHz, Byte Mode  
,
,
IL,  
IH  
CC  
CCmax  
CCmax  
I
V
Active Read Current (1)  
mA  
CC1  
CC  
CE# = V OE# = V , V = V  
f = 5 MHz, Word Mode  
IL,  
IH  
CC  
25  
30  
I
I
I
V
V
V
Initial Page Read Current (1)  
CE# = V OE# = V  
V
= V  
= V  
= V  
50  
10  
50  
60  
20  
60  
mA  
mA  
mA  
CC2  
CC3  
CC4  
CC  
CC  
CC  
IL,  
IH, CC  
CCmax  
CCmax  
CCmax  
Intra-Page Read Current (1)  
CE# = V OE# = V  
V
IL,  
IH, CC  
Active Erase/Program Current (2, 3) CE# = V OE# = V  
V
IL,  
IH, CC  
CE#, RESET# = V ± 0.3 V, OE# = V  
SS  
IH,  
I
V
V
Standby Current  
Reset Current  
1
1
5
5
µA  
µA  
CC5  
CC6  
CC  
CC  
V
= V  
CC  
CCmax  
V
= V  
CC  
CCmax;  
I
RESET# = V ± 0.3 V  
SS  
= V  
CCmax  
V
V
V
CC  
IH  
IL  
= V ± 0.3 V,  
CC  
I
Automatic Sleep Mode (4)  
1
5
µA  
CC7  
= V ± 0.3 V,  
SS  
WP#/ACC = V  
IH  
WP#/ACC  
pin  
10  
30  
20  
CE# = V OE# = V  
V
= V  
IL,  
IH, CC CCmax,  
I
ACC Accelerated Program Current  
mA  
ACC  
WP#/ACC = V  
IH  
V
pin  
60  
CC  
Input Low Voltage (5)  
Input High Voltage (5)  
–0.5  
0.3 x V  
VIL  
V
V
IO  
0.7 x V  
V
+ 0.3  
VIH  
IO  
IO  
Voltage for ACC Erase/Program  
Acceleration  
V
V
V
I
= 2.7 –3.6 V  
11.5  
12.5  
V
V
V
HH  
CC  
Voltage for Autoselect and Temporary  
Sector Unprotect  
V
= 2.7 –3.6 V  
11.5  
12.5  
ID  
CC  
0.15 x  
Output Low Voltage (5)  
Output High Voltage (5)  
= 100 µA  
= 100 µA  
VOL  
VOH  
OL  
V
IO  
I
0.85 x V  
2.3  
V
V
OH  
IO  
V
Low V Lock-Out Voltage (3)  
2.5  
LKO  
CC  
Notes:  
1. The ICC current listed is typically less than TBD mA/MHz, with OE# at VIH  
.
2. ICC active while Embedded Erase or Embedded Program or Write Buffer Programming is in progress.  
3. Not 100% tested.  
4. Automatic sleep mode enables the lower power mode when addresses remain stable tor tACC + 30 ns.  
5. VIO = 1.65–3.6 V  
6. VCC = 3 V and VIO = 3V or 1.8V. When VIO is at 1.8V, I/O pins cannot operate at 3V.  
78  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
Test Conditions  
3.3 V  
Table 13. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
Unit  
2.7 kΩ  
Device  
Under  
Test  
Output Load  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
C
L
6.2 kΩ  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
0.0–VIO  
Input timing measurement  
reference levels (See Note)  
0.5VIO  
V
V
Note: Diodes are IN3064 or equivalent.  
Output timing measurement  
reference levels  
0.5 VIO  
Figure 9. Test Setup  
Note: Diodes are IN3064 or equivalent  
Note: If V < V , the reference level is 0.5 V .  
IO  
IO  
CC  
Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VIO  
0.5 VIO  
0.5 VIO V  
Input  
Measurement Level  
Output  
0.0 V  
Note: If V < V , the input measurement reference level is 0.5 V .  
IO  
IO  
CC  
Figure 10. Input Waveforms and Measurement Levels  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
79  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read-Only Operations–S29GL512N Only  
Parameter  
Speed Options  
JEDEC Std. Description  
Test Setup  
90 100 100 110 Unit  
VIO = VCC = 3 V  
90 100  
ns  
tAVAV  
tRC Read Cycle Time  
VIO = 2.5 V, VCC = 3 V (Note 1) Min 100 110  
VIO = 1.8 V, VCC = 3 V  
100 110 ns  
ns  
VIO = VCC = 3 V  
90 100  
Address to Output Delay  
tAVQV tACC  
(Note 2)  
VIO = 2.5 V, VCC = 3 V (Note 1) Max 100 110  
VIO = 1.8 V, VCC = 3 V  
100 110 ns  
ns  
VIO = VCC = 3 V  
90 105  
Chip Enable to Output Delay  
(Note 3)  
tELQV  
tCE  
VIO = 2.5 V, VCC = 3 V (Note 1) Max 100 110  
VIO = 1.8 V, VCC = 3 V  
100 110 ns  
tPAC  
Page Access Time  
Max 25  
25  
25  
35  
35  
35  
35  
ns  
C
tGLQV  
tEHQZ  
tGHQZ  
tOE Output Enable to Output Delay  
Max 25  
Max  
ns  
ns  
ns  
tDF Chip Enable to Output High Z (Note 1)  
tDF Output Enable to Output High Z (Note 1)  
20  
20  
Max  
Output Hold Time From Addresses, CE#  
or OE#, Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold  
tOEH  
Toggle and  
Data# Polling  
Time (Note 1)  
10  
Notes:  
1. Not 100% tested.  
2. CE#, OE# = VIL  
3. OE# = VIL  
4. See Figure 9 and Table 13 for test specifications.  
5. Unless otherwise indicated, AC specifications for 90 ns and 100 ns speed options are tested with VIO = VCC = 3 V. AC  
specifications for 100 ns and 110 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
80  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read-Only Operations–S29GL256N Only  
Parameter  
Speed Options  
JEDEC Std. Description  
Test Setup  
80 90 90 100 Unit  
VIO = VCC = 3 V  
80 90  
ns  
tAVAV  
tRC Read Cycle Time  
VIO = 2.5 V, VCC = 3 V (Note 1)  
VIO = 1.8 V, VCC = 3 V  
Min 90 100  
90 100  
90 100  
90 100  
ns  
ns  
V
IO = VCC = 3 V  
80 90  
tAVQV tACC Address to Output Delay (Note 2)  
Chip Enable to Output Delay  
VIO = 2.5 V, VCC = 3 V (Note 1)  
VIO = 1.8 V, VCC = 3 V  
Max 90 100  
ns  
ns  
VIO = VCC = 3 V  
80 90  
tELQV  
tCE  
VIO = 2.5 V, VCC = 3 V (Note 1)  
VIO = 1.8 V, VCC = 3 V  
Max 90 100  
(Note 3)  
ns  
ns  
ns  
ns  
tPAC  
Page Access Time  
Max 25 25 35  
Max 25 25 35  
35  
35  
C
tGLQV  
tEHQZ  
tOE Output Enable to Output Delay  
Chip Enable to Output High Z  
tDF  
Max  
Max  
20  
20  
(Note 1)  
Output Enable to Output High Z  
(Note 1)  
tGHQZ  
tDF  
ns  
ns  
Output Hold Time From Addresses,  
tOH CE# or OE#, Whichever Occurs  
First  
tAXQX  
Min  
0
Read  
Min  
Min  
0
ns  
ns  
Output Enable  
tOEH Hold Time  
Toggle and  
Data# Polling  
10  
(Note 1)  
Notes:  
1. Not 100% tested.  
2. CE#, OE# = VIL  
3. OE# = VIL  
4. See Figure 9 and Table 13 for test specifications.  
5. Unless otherwise indicated, AC specifications for 80 ns and 90 ns speed options are tested with VIO = VCC = 3 V. AC  
specifications for 90 ns and 100 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
81  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read-Only Operations–S29GL128N Only  
Parameter  
Speed Options  
JEDEC Std. Description  
Test Setup  
IO = VCC = 3 V  
80 90 90 100 Unit  
V
80  
90  
ns  
tAVAV  
tRC Read Cycle Time  
VIO = 2.5 V, VCC = 3 V (Note 1) Min  
VIO = 1.8 V, VCC = 3 V  
90 100  
90 100  
90 100  
90 100  
ns  
ns  
V
IO = VCC = 3 V  
80  
90  
tAVQV tACC Address to Output Delay (Note 2)  
VIO = 2.5 V, VCC = 3 V (Note 1) Max 90 100  
VIO = 1.8 V, VCC = 3 V  
ns  
ns  
VIO = VCC = 3 V  
80  
90  
tELQV  
tCE Chip Enable to Output Delay (Note 3)  
VIO = 2.5 V, VCC = 3 V (Note 1) Max 90 100  
VIO = 1.8 V, VCC = 3 V  
ns  
ns  
tPAC  
Page Access Time  
Max 25  
25 35 35  
C
tGLQV  
tEHQZ  
tGHQZ  
tOE Output Enable to Output Delay  
Max 25  
Max  
25 35 35  
ns  
ns  
ns  
tDF Chip Enable to Output High Z (Note 1)  
tDF Output Enable to Output High Z (Note 1)  
20  
20  
Max  
Output Hold Time From Addresses, CE#  
or OE#, Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold  
tOEH  
Toggle and  
Data# Polling  
Time (Note 1)  
10  
Notes:  
1. Not 100% tested.  
2. CE#, OE# = VIL  
3. OE# = VIL  
4. See Figure 9 and Table 13 for test specifications.  
5. Unless otherwise indicated, AC specifications for 80 ns and 90 ns speed options are tested with VIO = VCC = 3 V. AC  
specifications for 90 ns and 100 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
82  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 11. Read Operation Timings  
Same Page  
A23-A2  
A1-A0*  
Ad  
Aa  
Ab  
Ac  
tPACC  
tPACC  
tPACC  
tACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Note:Figure shows word mode. Addresses are A2–A-1 for byte mode.  
Figure 12. Page Read Timings  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
83  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
1
ms  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
1
ms  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
1
50  
20  
0
ms  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested. If ramp rate is equal to or faster than 1V/100µs with a falling edge of the RESET# pin initiated,  
the RESET# pin needs to be held low only for 100µs for power-up.  
RY/BY#  
CE#, OE#  
tRH  
RESET#  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 13. Reset Timings  
84  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase and Program Operations–S29GL512N Only  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std. Description  
tWC Write Cycle Time (Note 1)  
tAS  
90  
100  
100  
110  
Unit  
ns  
Min  
Min  
90  
100  
100  
110  
tAVWL  
Address Setup Time  
0
15  
45  
0
ns  
Address Setup Time to OE# low during toggle  
bit polling  
tASO  
tAH  
Min  
Min  
Min  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
45  
0
ns  
ns  
ns  
tOEPH Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
tGHWL  
tGHWL  
Min  
0
ns  
(OE# High to WE# Low)  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
tWP  
CE# Setup Time  
CE# Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
35  
30  
TBD  
tWPH Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Effective Write Buffer Program  
Per Word  
Typ  
TBD  
µs  
Operation (Notes 2, 4)  
Accelerated Effective Write Buffer  
Program Operation (Notes 2, 4)  
tWHWH1 tWHWH1  
Per Word  
Word  
Typ  
Typ  
Typ  
TBD  
TBD  
TBD  
µs  
µs  
µs  
Program Operation (Note 2)  
Accelerated Programming  
Operation (Note 2)  
Word  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
tVHH VHH Rise and Fall Time (Note 1)  
Typ  
Min  
Min  
TBD  
250  
50  
sec  
ns  
tVCS  
VCC Setup Time (Note 1)  
µs  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 90 ns and 100 ns speed options are tested with VIO = VCC = 3 V.  
AC specifications for 100 ns and 110 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
85  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase and Program Operations–S29GL256N Only  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std. Description  
tWC Write Cycle Time (Note 1)  
tAS  
80  
90  
90  
100  
Unit  
ns  
Min  
Min  
80  
90  
90  
100  
tAVWL  
Address Setup Time  
0
15  
45  
0
ns  
Address Setup Time to OE# low during toggle  
bit polling  
tASO  
tAH  
Min  
Min  
Min  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
45  
0
ns  
ns  
ns  
tOEPH Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
tGHWL  
tGHWL  
Min  
0
ns  
(OE# High to WE# Low)  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
tWP  
CE# Setup Time  
CE# Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
35  
30  
TBD  
tWPH Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Effective Write Buffer Program  
Per Word  
Typ  
TBD  
µs  
Operation (Notes 2, 4)  
Accelerated Effective Write Buffer  
Program Operation (Notes 2, 4)  
tWHWH1 tWHWH1  
Per Word  
Word  
Typ  
Typ  
Typ  
TBD  
TBD  
TBD  
µs  
µs  
µs  
Program Operation (Note 2)  
Accelerated Programming  
Operation (Note 2)  
Word  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
tVHH VHH Rise and Fall Time (Note 1)  
Typ  
Min  
Min  
TBD  
250  
50  
sec  
ns  
tVCS  
VCC Setup Time (Note 1)  
µs  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 80 ns and 90 ns speed options are tested with VIO = VCC = 3 V.  
AC specifications for 90 ns and 100 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
86  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase and Program Operations–S29GL128N Only  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std. Description  
tWC Write Cycle Time (Note 1)  
tAS  
80  
90  
90  
100  
Unit  
ns  
Min  
Min  
80  
90  
90  
100  
tAVWL  
Address Setup Time  
0
15  
45  
0
ns  
Address Setup Time to OE# low during toggle  
bit polling  
tASO  
tAH  
Min  
Min  
Min  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
45  
0
ns  
ns  
ns  
tOEPH Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
tGHWL  
tGHWL  
Min  
0
ns  
(OE# High to WE# Low)  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
tWP  
CE# Setup Time  
CE# Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
35  
30  
TBD  
tWPH Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Effective Write Buffer Program  
Per Word  
Typ  
TBD  
µs  
Operation (Notes 2, 4)  
Accelerated Effective Write Buffer  
Program Operation (Notes 2, 4)  
tWHWH1 tWHWH1  
Per Word  
Word  
Typ  
Typ  
Typ  
TBD  
TBD  
TBD  
µs  
µs  
µs  
Program Operation (Note 2)  
Accelerated Programming  
Operation (Note 2)  
Word  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
tVHH VHH Rise and Fall Time (Note 1)  
Typ  
Min  
Min  
TBD  
250  
50  
sec  
ns  
tVCS  
VCC Setup Time (Note 1)  
µs  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 80 ns and 90 ns speed options are tested with VIO = VCC = 3 V.  
AC specifications for 90 ns and 100 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
87  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0A0h  
Status  
Data  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 14. Program Operation Timings  
VHH  
VIL or VIH  
ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 15. Accelerated Program Timing Diagram  
Notes:  
1. Not 100% tested.  
2. CE#, OE# = VIL  
3. OE# = VIL  
4. See Figure 9 and Table 13 for test specifications.  
88  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
5555h  
3030h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.  
2. These waveforms are for the word mode.  
Figure 16. Chip/Sector Erase Operation Timings  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
89  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#  
tCH  
tOE  
OE#  
tOEH  
tDF  
tOH  
WE#  
High Z  
High Z  
DQ15 and DQ7  
Valid Data  
Complement  
Complement  
Status Data  
True  
DQ14–DQ8, DQ6–DQ0  
Status Data  
True  
Valid Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle,  
and array data read cycle.  
Figure 17. Data# Polling Timings  
(During Embedded Algorithms)  
90  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6 & DQ14/  
DQ2 & DQ10  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command  
sequence, last status read cycle, and array data read cycle  
Figure 18. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Erase  
Erase Suspend  
Suspend  
Program  
Complete  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE#  
or CE# to toggle DQ2 and DQ6.  
Figure 19. DQ2 vs. DQ6  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
91  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations–S29GL512N Only  
Parameter  
JEDEC Std. Description  
tAVAV tWC Write Cycle Time (Note 1)  
Speed Options  
90  
100  
100  
110  
Unit  
ns  
Min  
Min  
Min  
Min  
Min  
90  
100  
100  
110  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tAS  
tAH  
tDS  
tDH  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
0
45  
45  
0
ns  
ns  
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
45  
30  
tCPH  
Write Buffer Program Operation (Notes 2,  
3)  
Typ  
Typ  
TBD  
TBD  
µs  
µs  
Effective Write Buffer  
Program Operation (Notes  
2, 4)  
Per Word  
Per Word  
tWHWH1 tWHWH1 Effective Accelerated Write  
Buffer Program Operation  
(Notes 2, 4)  
Typ  
TBD  
µs  
Program Operation (Note 2)  
Word  
Word  
Typ  
Typ  
Typ  
TBD  
TBD  
TBD  
µs  
µs  
Accelerated Programming  
Operation (Note 2)  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
sec  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 90 ns and 100 ns speed options are tested with VIO = VCC = 3 V.  
AC specifications for 100 ns and 110 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
92  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations–S29GL256N Only  
Parameter  
JEDEC Std. Description  
tAVAV tWC Write Cycle Time (Note 1)  
Speed Options  
80  
90  
90  
100  
Unit  
ns  
Min  
Min  
Min  
Min  
Min  
80  
90  
90  
100  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tAS  
tAH  
tDS  
tDH  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
0
45  
45  
0
ns  
ns  
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
45  
30  
tCPH  
Write Buffer Program Operation (Notes 2,  
3)  
Typ  
Typ  
TBD  
TBD  
µs  
µs  
Effective Write Buffer  
Program Operation (Notes  
2, 4)  
Per Word  
Per Word  
tWHWH1 tWHWH1 Effective Accelerated Write  
Buffer Program Operation  
(Notes 2, 4)  
Typ  
TBD  
µs  
Program Operation (Note 2)  
Word  
Word  
Typ  
Typ  
Typ  
TBD  
TBD  
TBD  
µs  
µs  
Accelerated Programming  
Operation (Note 2)  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
sec  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 80 ns and 90 ns speed options are tested with VIO = VCC = 3 V. AC  
specifications for 90 ns and 100 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
93  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations–S29GL128N Only  
Parameter  
JEDEC Std. Description  
tAVAV tWC Write Cycle Time (Note 1)  
Speed Options  
80  
90  
90  
100  
Unit  
ns  
Min  
Min  
Min  
Min  
Min  
80  
90  
90  
100  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tAS  
tAH  
tDS  
tDH  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
0
45  
45  
0
ns  
ns  
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
45  
30  
tCPH  
Write Buffer Program Operation (Notes 2,  
3)  
Typ  
Typ  
TBD  
TBD  
µs  
µs  
Effective Write Buffer  
Program Operation (Notes  
2, 4)  
Per Word  
Per Word  
tWHWH1 tWHWH1 Effective Accelerated Write  
Buffer Program Operation  
(Notes 2, 4)  
Typ  
TBD  
µs  
Program Operation (Note 2)  
Word  
Word  
Typ  
Typ  
Typ  
TBD  
TBD  
TBD  
µs  
µs  
Accelerated Programming  
Operation (Note 2)  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
sec  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 80 ns and 90 ns speed options are tested with VIO = VCC = 3 V. AC  
specifications for 90 ns and 100 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
94  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 20. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings  
Latchup Characteristics  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
VCC Current  
–1.0 V  
VCC + 1.0 V  
+100 mA  
–100 mA  
Note: Includes all pins except V . Test conditions: V = 3.0 V, one pin at a time.  
CC  
CC  
June 14, 2004 S29GLxxxN_00_A4  
S29GLxxxN MirrorBitTM Flash Family  
95  
A d v a n c e I n f o r m a t i o n  
Erase And Programming Performance  
Typ  
Max  
Parameter  
(Note 1)  
(Note 2)  
Unit  
Comments  
Sector Erase Time  
TBD  
TBD  
TBD  
TBD  
TBD  
sec  
Excludes 00h  
programming  
prior to erasure (Note 5)  
S29GL128N  
S29GL256N  
S29GL512N  
TBD  
Chip Erase Time  
TBD  
sec  
TBD  
Total Write Buffer Time  
(Note 3)  
TBD  
TBD  
TBD  
TBD  
µs  
µs  
Total Accelerated Effective  
Write Buffer Programming  
Time (Note 3)  
Excludes system level  
overhead (Note 6)  
S29GL128N  
S29GL256N  
S29GL512N  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Chip Program Time  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 10,000 cycles, 25°C, 3.0 V VCC, checkerboard  
pattern.  
2. Under worst case conditions of 100,000 cycles, 90°C, VCC = 3.0 V.  
3. Effective write buffer specification is based upon a 16-word write buffer operation.  
4. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
words program faster than the maximum program times listed.  
5. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
6. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 17 for further information on command definitions.  
TSOP Pin and BGA Package Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
Typ  
6
Max  
7.5  
12  
Unit  
pF  
CIN  
COUT  
CIN2  
Input Capacitance  
VIN = 0  
TSOP  
TSOP  
TSOP  
Output Capacitance  
Control Pin Capacitance  
VOUT = 0  
VIN = 0  
8.5  
7.5  
pF  
9
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
96  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_00_A4 June 14, 2004  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 1  
4Mbit (256K Word x 16-bit)  
8Mbit (512K Word x 16-bit)  
16Mbit (1M Word x 16-bit)  
32Mbit (2M Word x 16-bit)  
64Mbit (4M Word x 16-bit)  
Functional Description  
Mode  
CE#  
CE2/ZZ#  
OE#  
L
WE# UB#  
LB#  
L
Addresses  
I/O 1-8  
Dout  
I/O 9-16  
Dout  
Power  
Read (word)  
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
L
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
I
I
I
I
I
I
I
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Read (lower byte)  
Read (upper byte)  
Write (word)  
L
L
Dout  
High-Z  
Dout  
L
H
L
High-Z  
Din  
X
L
Din  
Write (lower byte)  
Write (upper byte)  
Outputs disabled  
Standby  
X
L
H
L
L
Din  
Invalid  
Din  
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
X
I
STANDBY  
Deep power down  
X
X
I
DEEP SLEEP  
Absolute Maximum Ratings  
Item  
Voltage on any pin relative to VSS  
Voltage on VCC relative to VSS  
Power dissipation  
Symbol  
Vin, Vout  
VCC  
Ratings  
Units  
V
-0.2 to VCC +0.3  
-0.2 to 3.6  
1
V
PD  
W
Storage temperature  
TSTG  
-55 to 150  
-25 to 85  
°C  
°C  
Operating temperature  
TA  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
97  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (4Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
2.7  
Units  
V
Power Supply  
3.3  
V
V
V
CC  
V
Input High Level  
Input Low Level  
0.8 Vccq  
-0.3  
V
+ 0.3  
CC  
IH  
V
0.4  
IL  
Input Leakage  
Current  
I
Vin = 0 to V  
0.5  
0.5  
µA  
µA  
IL  
CC  
Output Leakage  
Current  
OE = V or  
IH  
Chip Disabled  
I
LO  
I
I
I
= -1.0 mA  
= -0.2 mA  
= -0.5 mA  
= 2.0 mA  
= 0.2 mA  
= 0.5 mA  
OH  
OH  
OH  
Output High  
Voltage  
V
0.8 Vccq  
V
V
OH  
I
OL  
OL  
OL  
Output Low  
Voltage  
V
I
0.2  
OL  
I
Operating  
Current  
I
V
= 3.3 V  
25  
70  
mA  
µA  
ACTIVE  
CC  
V
= 3.0 V  
= 3.3 V  
CC  
I
Standby Current  
STANDBY  
V
CC  
I
Deep Power  
Down Current  
DEEP  
x
x
x
µA  
µA  
µA  
SLEEP  
1/4 Array PAR  
Current  
I
PAR 1/4  
1/2 Array PAR  
Current  
I
PAR 1/2  
98  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (8Mb pSRAM Asynchronous)  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
2.7  
Units  
Min  
2.7  
Units  
Min  
2.7  
Units  
V
Power Supply  
3.3  
V
V
V
3.6  
V
V
V
3.3  
V
V
V
CC  
V
Input High Level  
Input Low Level  
2.2  
V
+ 0.3  
2.2  
V
+ 0.3  
0.8  
V
+0.3  
CC  
IH  
CC  
CC  
V
-0.3  
0.6  
-0.3  
0.6  
-0.3  
0.4  
IL  
Input Leakage  
Current  
I
Vin = 0 to V  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
IL  
CC  
Output Leakage  
Current  
OE = V or  
IH  
Chip Disabled  
I
LO  
I
I
I
= -1.0 mA  
= -0.2 mA  
= -0.5 mA  
= 2.0 mA  
= 0.2 mA  
= 0.5 mA  
V
-0.4  
V
-0.4  
CC  
OH  
OH  
OH  
CC  
V
Output High Voltage  
Output Low Voltage  
V
V
V
V
0.8 V  
V
V
OH  
CCQ  
I
0.4  
0.4  
OL  
OL  
OL  
V
I
0.2  
OL  
I
I
Operating Current  
Standby Current  
V
= 3.3 V  
= 3.0 V  
= 3.3 V  
25  
60  
mA  
µA  
23  
60  
mA  
µA  
25  
70  
mA  
µA  
ACTIVE  
CC  
V
CC  
CC  
I
STANDBY  
V
I
Deep Power Down  
Current  
DEEP  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
SLEEP  
1/4 Array PAR  
Current  
I
PAR 1/4  
1/2 Array PAR  
Current  
I
PAR 1/2  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
99  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (16Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-55  
16Mb pSRAM  
-70  
16Mb pSRAM  
Symbol  
Parameter  
Power Supply  
Conditions  
Minimum Maximum  
Units  
V
Minimum Maximum Units  
V
2.7  
2.2  
3.6  
+ 0.3  
2.7  
2.2  
3.6  
+ 0.3  
V
V
CC  
V
Input High Level  
V
V
V
CC  
IH  
CC  
V
Input Low Level  
-0.3  
0.6  
0.5  
0.5  
V
-0.3  
0.6  
0.5  
0.5  
V
IL  
IL  
I
Input Leakage Current  
Output Leakage Current  
Vin = 0 to V  
µA  
µA  
µA  
µA  
CC  
I
OE = V or Chip Disabled  
IH  
LO  
I
I
I
= -1.0 mA  
= -0.2 mA  
= -0.5 mA  
= 2.0 mA  
= 0.2 mA  
= 0.5 mA  
V
-0.4  
V
-0.4  
CC  
OH  
OH  
OH  
CC  
V
Output High Voltage  
Output Low Voltage  
V
V
V
V
OH  
I
0.4  
0.4  
OL  
OL  
OL  
V
I
OL  
I
I
Operating Current  
Standby Current  
V
= 3.3 V  
= 3.0 V  
= 3.3 V  
25  
mA  
µA  
25  
mA  
µA  
ACTIVE  
CC  
V
100  
100  
CC  
CC  
I
STANDBY  
V
I
Deep Power Down Current  
1/4 Array PAR Current  
1/2 Array PAR Current  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
DEEP SLEEP  
I
I
PAR 1/4  
PAR 1/2  
100  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (16Mb pSRAM Page Mode)  
Page Mode  
-65  
Performance Grade  
Density  
-60  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
16Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
Units  
Min  
Units  
Min  
Units  
V
Power Supply  
2.7  
3.3  
V
2.7  
3.3  
V
2.7  
3.3  
V
CC  
Input High  
Level  
V
0.8 Vccq  
-0.2  
V
+ 0.2  
V
V
0.8 Vccq  
-0.2  
V
+ 0.2  
V
V
0.8 Vccq  
-0.2  
V + 0.2  
CC  
V
V
IH  
CC  
CC  
Input Low  
Level  
V
0.2 Vccq  
1
0.2 Vccq  
1
0.2 Vccq  
1
IL  
Input Leakage  
Current  
I
Vin = 0 to V  
µA  
µA  
µA  
IL  
CC  
Output  
Leakage  
Current  
OE = V or  
IH  
I
1
µA  
V
1
µA  
V
1
µA  
V
LO  
Chip Disabled  
I
I
I
= -1.0 mA  
= -0.2 mA  
OH  
OH  
OH  
Output High  
Voltage  
V
OH  
= -0.5 mA 0.8 Vccq  
= 2.0 mA  
0.8 Vccq  
0.8 Vccq  
I
OL  
OL  
OL  
Output Low  
Voltage  
V
I
= 0.2 mA  
V
V
V
OL  
I
= 0.5 mA  
0.2 Vccq  
25  
0.2 Vccq  
25  
0.2 Vccq  
25  
Operating  
Current  
I
V
= 3.3 V  
mA  
µA  
mA  
µA  
mA  
µA  
ACTIVE  
CC  
V
V
= 3.0 V  
= 3.3 V  
CC  
Standby  
Current  
I
STANDBY  
100  
10  
100  
10  
100  
10  
CC  
I
Deep Power  
Down Current  
DEEP  
SLEEP  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
1/4 Array PAR  
Current  
I
65  
80  
65  
80  
65  
80  
PAR 1/4  
1/2 Array PAR  
Current  
I
PAR 1/2  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
101  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (32Mb pSRAM Page Mode)  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
32Mb pSRAM  
-65  
32Mb pSRAM  
Min Max Units  
-70  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
Symbol Parameter  
Conditions  
Min  
Max  
Units  
Min  
Max  
Units  
Power  
Supply  
V
2.7  
1.4  
3.6  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
3.3  
V
V
CC  
V
+
0.2  
CC  
Input High  
Level  
V
0.2  
+
V
V
CC  
+ 0.2  
0.8  
Vccq  
CC  
CC  
V
IH  
+ 0.2  
Input Low  
Level  
0.2  
Vccq  
0.2  
Vccq  
0.2  
Vccq  
V
-0.2  
0.4  
0.5  
V
V
V
-0.2  
V
IL  
IL  
Input  
Leakage  
Current  
I
Vin = 0 to V  
µA  
1
1
µA  
1
1
µA  
1
1
µA  
CC  
Output  
Leakage  
Current  
OE = V or  
IH  
Chip Disabled  
I
0.5  
µA  
V
µA  
V
µA  
V
µA  
V
LO  
I
I
= -1.0 mA  
= -0.2 mA  
OH  
OH  
0.8  
Vccq  
Output High  
Voltage  
V
OH  
0.8  
Vccq  
I
= -0.5 mA  
0.8 Vccq  
0.8 Vccq  
OH  
I
= 2.0 mA  
= 0.2 mA  
OL  
OL  
Output Low  
Voltage  
I
0.2  
25  
V
V
V
V
V
OL  
0.2  
Vccq  
0.2  
Vccq  
0.2  
Vccq  
I
= 0.5 mA  
OL  
Operating  
Current  
I
V
= 3.3 V  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
ACTIVE  
CC  
V
V
= 3.0 V  
= 3.3 V  
CC  
Standby  
Current  
I
STANDBY  
100  
10  
120  
10  
120  
10  
120  
10  
CC  
Deep Power  
Down  
Current  
I
DEEP  
µA  
µA  
µA  
µA  
SLEEP  
1/4 Array  
PAR Current  
I
65  
80  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
PAR 1/4  
PAR 1/2  
1/2 Array  
PAR Current  
I
102  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (64Mb pSRAM Page Mode)  
Page Mode  
-70  
Performance Grade  
Density  
64Mb pSRAM  
Max  
Symbol  
Parameter  
Power Supply  
Conditions  
Min  
2.7  
Units  
V
3.3  
V
V
V
CC  
V
Input High Level  
Input Low Level  
0.8 Vccq  
-0.2  
V
+ 0.2  
CC  
IH  
V
0.2 Vccq  
1
IL  
Input Leakage  
Current  
I
Vin = 0 to V  
µA  
µA  
IL  
CC  
Output Leakage  
Current  
OE = V or  
IH  
Chip Disabled  
I
1
LO  
I
I
I
= -1.0 mA  
= -0.2 mA  
= -0.5 mA  
= 2.0 mA  
= 0.2 mA  
= 0.5 mA  
OH  
OH  
OH  
Output High  
Voltage  
V
V
V
OH  
0.8 Vccq  
I
OL  
OL  
OL  
Output Low  
Voltage  
V
I
OL  
I
0.2 Vccq  
25  
Operating  
Current  
I
V
= 3.3 V  
mA  
µA  
ACTIVE  
CC  
V
= 3.0 V  
= 3.3 V  
CC  
I
Standby Current  
STANDBY  
V
120  
10  
CC  
I
Deep Power  
Down Current  
DEEP  
µA  
µA  
µA  
SLEEP  
1/4 Array PAR  
Current  
I
65  
80  
PAR 1/4  
1/2 Array PAR  
Current  
I
PAR 1/2  
Timing Test Conditions  
Item  
Input Pulse Level  
0.1 VCC to 0.9 VCC  
5ns  
Input Rise and Fall Time  
Input and Output Timing Reference Levels  
Operating Temperature  
0.5 VCC  
-25°C to +85°C  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
103  
A d v a n c e I n f o r m a t i o n  
Output Load Circuit  
VCC  
14.5K  
I/O  
14.5K  
30 pF  
Output Load  
Figure 21. Output Load Circuit  
Power Up Sequence  
After applying power, maintain a stable power supply for a minimum of 200 µs  
after CE# > V .  
IH  
104  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(4Mb pSRAM Page Mode)  
Asynchronous  
-70  
Performance Grade  
Density  
4Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
trc  
Read cycle time  
70  
ns  
ns  
Address Access  
Time  
taa  
70  
70  
20  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
Output hold from  
Address Change  
10  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
105  
A d v a n c e I n f o r m a t i o n  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
twc  
tcw  
Write cycle time  
70  
ns  
Chipselect to end  
of write  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
20  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
Data hold from  
write time  
End write to  
output Low-Z  
tow  
tow  
5
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
x
Page address  
access time  
x
twpc  
tcp  
Page write cycle  
x
x
Chip select high  
pulse width  
106  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(8Mb pSRAM Asynchronous)  
Asynchronous  
Version  
B
C
-70  
Performance Grade  
Density  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Max  
Units  
Min  
Units  
trc  
Read cycle time  
55  
ns  
70  
ns  
ns  
70  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
35  
70  
70  
70  
20  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
20  
20  
20  
25  
25  
25  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
10  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
107  
A d v a n c e I n f o r m a t i o n  
Asynchronous  
B
Version  
Performance Grade  
Density  
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Units  
Min  
Units  
twc  
tcw  
Write cycle time  
55  
ns  
70  
ns  
70  
ns  
Chip select to  
end of write  
45  
0
ns  
ns  
ns  
55  
0
ns  
ns  
ns  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
45  
55  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
45  
45  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
20  
ns  
ns  
ns  
Data to write  
time overlap  
40  
0
40  
0
ns  
ns  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
x
x
Chip select high  
pulse width  
108  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(16Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
Parameter  
-55  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
3 Volt  
Symbol  
Min  
Units  
Min  
Units  
trc  
Read cycle time  
55  
ns  
70  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
35  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
25  
25  
25  
25  
25  
25  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
109  
A d v a n c e I n f o r m a t i o n  
Asynchronous  
Performance Grade  
Density  
Parameter  
-55  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Min  
Max  
Units  
Min  
Max  
Units  
twc  
Write cycle time  
55  
ns  
ns  
70  
ns  
ns  
Chipselect to end  
of write  
tcw  
tas  
50  
0
55  
0
Address set up  
Time  
ns  
ns  
ns  
ns  
Address valid to  
end of write  
taw  
50  
55  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
25  
0
Data hold from  
write time  
End write to  
output Low-Z  
tow  
tow  
5
5
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
Chip select high  
pulse width  
110  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(16Mb pSRAM Page Mode)  
Page Mode  
-65  
Performance Grade  
Density  
Parameter  
-60  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
16Mb pSRAM  
Max  
3 Volt  
Symbol  
Min  
Units  
Min  
Units  
Min  
Units  
trc  
Read cycle time  
60  
20k  
ns  
65  
20k  
ns  
70  
20k  
ns  
Address Access  
Time  
taa  
tco  
toe  
tba  
tlz  
60  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
65  
65  
25  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
111  
A d v a n c e I n f o r m a t i o n  
Page Mode  
Performance Grade  
Density  
-60  
16Mb pSRAM  
Max  
-65  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Units  
Min  
Units  
twc  
tcw  
Write cycle time  
60  
20k  
ns  
65  
20k  
ns  
70  
20k  
ns  
Chipselect to end  
of write  
50  
0
ns  
ns  
ns  
60  
0
ns  
ns  
ns  
60  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
output Low-Z  
tow  
tow  
5
5
5
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
112  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(32Mb pSRAM Page Mode)  
Page Mode  
Version  
C
-65  
E
Performance Grade  
Density  
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
trc  
Read cycle time  
65  
20k  
65  
ns  
ns  
60  
20k  
60  
ns  
ns  
65  
20k  
65  
ns  
ns  
70  
20k  
70  
ns  
ns  
Address Access  
Time  
taa  
Chip select to  
output  
tco  
toe  
tba  
tlz  
65  
20  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
65  
25  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
113  
A d v a n c e I n f o r m a t i o n  
Page Mode  
E
Version  
Performance Grade  
Density  
C
-65  
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
twc  
tcw  
Write cycle time  
65  
55  
20k  
ns  
ns  
60  
50  
20k  
ns  
ns  
65  
60  
20k  
ns  
ns  
70  
60  
20k  
ns  
ns  
Chipselect to end  
of write  
Address set up  
Time  
tas  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Address valid to  
end of write  
taw  
55  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
55  
55  
0
ns  
ns  
ns  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
114  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(64Mb pSRAM Page Mode)  
Page Mode  
-70  
Performance Grade  
Density  
64Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
trc  
Read cycle time  
70  
20k  
ns  
Address Access  
Time  
taa  
70  
70  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
Output hold from  
Address Change  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
115  
A d v a n c e I n f o r m a t i o n  
Page Mode  
Performance Grade  
Density  
-70  
64Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
twc  
tcw  
Write cycle time  
70  
20k  
ns  
Chipselect to end  
of write  
60  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
Data hold from  
write time  
End write to  
output Low-Z  
tow  
tow  
5
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
20  
20k  
20  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
20  
10  
20k  
Chip select high  
pulse width  
Timing Diagrams  
Read Cycle  
tRC  
Address  
tAA  
tOH  
Previous Data Valid  
Figure 22. Timing of Read Cycle (CE# = OE# = VIL, WE# = ZZ# = VIH  
pSRAM Type 1 pSRAM_Type01_12_A1 August 30, 2004  
Data Valid  
Data Out  
)
116  
A d v a n c e I n f o r m a t i o n  
tRC  
Address  
tAA  
CE#  
tCO  
tLZ  
tHZ  
tOE  
OE#  
tOLZ  
tOHZ  
tLB, UB  
t
LB#, UB#  
Data Out  
tBHZ  
Data Valid  
tBLZ  
High-Z  
Figure 23. Timing Waveform of Read Cycle (WE# = ZZ# = VIH  
)
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
117  
A d v a n c e I n f o r m a t i o n  
tPGMAX  
Page Address (A4 - A20)  
tRC  
tPC  
Word Address (A0 - A3)  
tAA  
tPA  
tHZ  
CE#  
tCO  
tOE  
tOHZ  
OE#  
tOLZ  
tBHZ  
tLB, UB  
t
LB#, UB#  
tBLZ,  
High-Z  
Data Out  
Figure 24. Timing Waveform of Page Mode Read Cycle (WE# = ZZ# = VIH  
)
118  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Write Cycle  
tWC  
Address  
tWR  
tAW  
CE#  
tCW  
tBW  
LB#, UB#  
tAS  
tWP  
WE#  
tDW  
tDH  
High-Z  
Data Valid  
Data In  
Data Out  
tWHZ  
tOW  
High-Z  
Figure 25. Timing Waveform of Write Cycle (WE# Control, ZZ# = VIH  
)
tWC  
Address  
CE#  
tAW  
tWR  
tCW  
tAS  
tBW  
LB#, UB#  
WE#  
tWP  
tDW  
tDH  
Data Valid  
Data In  
tWHZ  
High-Z  
Figure 26. Timing Waveform of Write Cycle (CE# Control, ZZ# = VIH  
August 30, 2004 pSRAM_Type01_12_A1 pSRAM Type 1  
Data Out  
)
119  
A d v a n c e I n f o r m a t i o n  
tPGMAX  
Page Address  
(A4 - A20)  
tWC  
tPWC  
Wor d Address  
(A0 - A3 )  
tAS  
tCW  
CE#  
tWP  
WE#  
tLBW, UBW  
t
LB#, UB#  
tDW  
tDH tPDW tPDH  
tPDW tPDH  
High-Z  
Data Out  
Figure 27. Timing Waveform of Page Mode Write Cycle (ZZ# = VIH  
)
Power Savings Modes (For 16M Page Mode, 32M and 64M Only)  
There are several power savings modes.  
„ Partial Array Self Refresh  
„ Temperature Compensated Refresh (64M)  
„ Deep Sleep Mode  
„ Reduced Memory Size (32M, 16M)  
The operation of the power saving modes ins controlled by the settings of bits  
contained in the Mode Register. This definition of the Mode Register is shown in  
Figure 28 and the various bits are used to enable and disable the various low  
power modes as well as enabling Page Mode operation. The Mode Register is set  
by using the timings defined in Figure xxx.  
Partial Array Self Refresh (PAR)  
In this mode of operation, the internal refresh operation can be restricted to a  
16Mb, 32Mb, or 48Mb portion of the array. The array partition to be refreshed is  
determined by the respective bit settings in the Mode Register. The register set-  
tings for the PASR operation are defined in Table xxx. In this PASR mode, when  
ZZ# is active low, only the portion of the array that is set in the register is re-  
120  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
freshed. The data in the remainder of the array will be lost. The PASR operation  
mode is only available during standby time (ZZ# low) and once ZZ# is returned  
high, the device resumes full array refresh. All future PASR cycles will use the  
contents of the Mode Register that has been previously set. To change the ad-  
dress space of the PASR mode, the Mode Register must be reset using the  
previously defined procedures. For PASR to be activated, the register bit, A4 must  
be set to a one (1) value, “PASR Enabled. If this is the case, PASR will be acti-  
vated 10 µs after ZZ# is brought low. If the A4 register bit is set equal to zero  
(0), PASR will not be activated.  
Temperature Compensated Refresh (for 64Mb)  
In this mode of operation, the internal refresh rate can be optimized for the op-  
eration temperature used and this can then lower standby current. The DRAM  
array in the PSRAM must be refreshed internally on a regular basis. At higher  
temperatures, the DRAM cell must be refreshed more often than at lower tem-  
peratures. By setting the temperature of operation in the Mode Register, this  
refresh rate can be optimized to yield the lowest standby current at the given op-  
erating temperature. There are four different temperature settings that can be  
programmed in to the PSRAM. These are defined in Figure 28.  
Deep Sleep Mode  
In this mode of operation, the internal refresh is turned off and all data integrity  
of the array is lost. Deep Sleep is entered by bringing ZZ# low with the A4 reg-  
ister bit set to a zero (0), “Deep Sleep Enabled. If this is the case, Deep Sleep  
will be entered 10 µs after ZZ# is brought low. The device will remain in this mode  
as long as ZZ# remains low. If the A4 register bit is set equal to one (1), Deep  
Sleep will not be activated.  
Reduced Memory Size (for 32M and 16M)  
In this mode of operation, the 32Mb PSRAM can be operated as a 8Mb or 16Mb  
device. The mode and array size are determined by the settings in the VA register.  
The VA register is set according to the following timings and the bit settings in  
the table “Address Patterns for RMS. The RMS mode is enabled at the time of  
ZZ transitioning high and the mode remains active until the register is updated.  
To return to the full 32Mb address space, the VA register must be reset using the  
previously defined procedures. While operating in the RMS mode, the unselected  
portion of the array may not be used.  
Other Mode Register Settings (for 64M)  
The Page Mode operation can also be enabled and disabled using the Mode Reg-  
ister. Register bit A7 controls the operation of Page Mode and setting this bit to a  
one (1), enables Page Mode. If the register bit A7 is set to a zero (0), Page Mode  
operation is disabled.  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
121  
A d v a n c e I n f o r m a t i o n  
64 Mb  
32 Mb / 16 Mb  
A21 - A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Array Mode  
for ZZ#  
Reserved  
Must set to all 0  
Temp  
Compensated  
Refresh  
0 = PAR (default)  
1 = RMS  
PAR Section  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1 = Top 1/4 array  
0 = Top 1/2 array  
1 = Top 3/4 array  
0 = No PAR  
1 = Bottom 1/4 array  
0 = Bottom 1/2 array  
1 = Bottom 3/4 array  
0 = Full array (default)  
1
0
0
1
0 = 15oC  
1 = 45oC  
0 = 70oC  
1 = 85oC (default)  
Page Mode  
0 = Page Mode Disabled (default)  
1 = Page Mode Enabled  
Deep Sleep Enable/Disable  
0 = Deep Sleep Enabled  
1 = Deep Sleep Disabled (default)  
Figure 28. Mode Register  
t
WC  
Address  
t
AW  
t
AS  
t
WR  
CE#  
t
WP  
WE#  
ZZ#  
t
ZZWE  
t
CDZZ  
Figure 29. Mode Register UpdateTimings (UB#, LB#, OE# are Don’t Care)  
122  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
t
ZZMIN  
ZZ#  
CE#  
t
t
R
CDZZ  
Figure 30. Deep Sleep Mode - Entry/Exit Timings (for 64M)  
t
WC  
A4  
t
t
AS  
AW  
CE#  
t
WR  
t
WP  
WE#  
t
t
BW  
LB#, UB#  
R
t
ZZWE  
t
ZZMIN  
ZZ#  
Figure 31. Deep Sleep Mode - Entry/Exit Timings (for 32M and 16M)  
Mode Register Update and Deep Sleep Timings  
Item  
Chip deselect to ZZ# low  
ZZ# low to WE# low  
Symbol  
tCDZZ  
tZZWE  
tWC  
Min  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Note  
10  
500  
Write register cycle time  
Chip enable to end of write  
Address valid to end of write  
Write recovery time  
70/85  
70/85  
70/85  
0
1
1
1
tCW  
tAW  
tWR  
Address setup time  
tAS  
0
Write pulse width  
tWR  
40  
Deep Sleep Pulse Width  
Deep Sleep Recovery  
tZZMIN  
tR  
10  
200  
Notes:  
1. Minimum cycle time for writing register is equal to speed grade of product.  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
123  
A d v a n c e I n f o r m a t i o n  
Address Patterns for PASR (A4=1) (64M)  
A2 A1 A0  
Active Section  
Top quarter of die  
Top half of die  
Reserved  
Address Space  
300000h-3FFFFFh  
200000h-3FFFFFh  
Size  
Density  
16Mb  
32Mb  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1Mb x 16  
2Mb x 16  
No PASR  
None  
0
0
Bottom quarter of die  
Bottom half of die  
Reserved  
000000h-0FFFFFh  
000000h-1FFFFFh  
1Mb x 16  
2Mb x 16  
16Mb  
32Mb  
Full array  
000000h-3FFFFFh  
4Mb x 16  
64Mb  
Deep ICC Characteristics (for 64Mb)  
Item  
Symbol  
Te st  
Array Partition Typ Max Unit  
None  
10  
60  
1/4 Array  
1/2 Array  
Full Array  
PASR Mode Standby Current  
IPASR  
VIN = VCC or 0V, Chip Disabled, tA = 85°C  
µA  
80  
120  
Item  
Symbol  
Max Temperature  
15°C  
Typ  
Max  
50  
Unit  
45°C  
60  
Temperature Compensated Refresh Current  
ITCR  
µA  
70°C  
80  
85°C  
120  
Item  
Symbol  
Te s t  
Typ  
Max  
10  
Unit  
Deep Sleep Current  
IZZ  
VIN = VCC or 0V, Chip in ZZ# mode, tA = 25°C  
µA  
Address Patterns for PAR (A3= 0, A4=1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
512Kb x 16  
1Mb x 16  
2Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
000000h - 0FFFFFh  
000000h - 1FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
32Mb  
8Mb  
One-quarter of die  
One-half of die  
16Mb  
124  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Address Patterns for RMS (A3 = 1, A4 = 1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
1
1
1
1
1
1
1
0
1
0
512Kb x 16  
1Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
One-quarter of die  
One-half of die  
000000h - 0FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
8Mb  
16Mb  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
125  
A d v a n c e I n f o r m a t i o n  
Low Power ICC Characteristics (32M)  
Item  
Symbol  
Te s t  
Array Partition  
1/4 Array  
Typ  
Max  
75  
Unit  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current IPAR  
RMS Mode Standby Current IRMSSB  
1/2 Array  
90  
µA  
8Mb Device  
16Mb Device  
75  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
90  
µA  
VIN = VCC or 0V,  
Chip in ZZ mode, tA= 85oC  
Deep Sleep Current  
IZZ  
10  
µA  
Address Patterns for PAR (A3= 0, A4=1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
256Kb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
00000h - 7FFFFh  
00000h - FFFFFh  
C0000h - FFFFh  
80000h - 1FFFFFh  
8Mb  
16Mb  
4Mb  
One-quarter of die  
One-half of die  
256Kb x 16  
512Kb x 16  
8Mb  
Address Patterns for RMS (A3 = 1, A4 = 1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
1
1
1
1
1
1
1
0
1
0
256Kb x 16  
512Kb x 16  
256Kb x 16  
512Kb x 16  
One-half of die  
One-quarter of die  
One-half of die  
00000h - 7FFFFh  
C0000h - FFFFFh  
80000h - FFFFFh  
8Mb  
4Mb  
8Mb  
Low Power ICC Characteristics (16M)  
Item  
Symbol  
Te s t  
Array Partition  
1/4 Array  
Typ  
Max  
Unit  
65  
80  
65  
80  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current  
IPAR  
µA  
1/2 Array  
4Mb Device  
8Mb Device  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
RMS Mode Standby Current  
Deep Sleep Current  
IRMSSB  
µA  
µA  
VIN = VCC or 0V,  
Chip in ZZ# mode, tA= 85oC  
IZZ  
10  
126  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 7  
16Mb (1M word x 16-bit)  
32Mb (2M word x 16-bit)  
64Mb (4M word x 16-bit)  
CMOS 1M/2M/4M-Word x 16 bit Fast Cycle Random Access Memory with Low  
Power SRAM Interface  
Features  
„ Asynchronous SRAM Interface  
„ Fast Access Time  
— tCE = tAA = 60ns max (16M)  
— tCE = tAA = 65ns max (32M/64M)  
„ 8 words Page Access Capability  
— tPAA = 20ns max (32M/64M)  
„ Low Voltage Operating Condition  
— VDD = +2.7V to +3.1V  
„ Wide Operating Temperature  
— TA = -30°C to +85°C  
„ Byte Control by LB and UB  
„ Low Power Consumption  
— IDDA1 = 20mA max (16M)  
— IDDA1 = 30mA max (32M)  
— IDDA1 =TBDmA max (64M)  
— IDDS1 = 100µA max (16M)  
— IDDS1 = 80µA max (32M)  
— IDDS1 = TBDµA max (64M)  
„ Various Power Down mode  
— Sleep, 4M-bit Partial or 8M-bit Partial (32M)  
— Sleep, 8M-bit Partial or 16M-bit Partial (64M  
Pin Description  
Pin Name  
A21 to A0  
CE1#  
CE2#  
WE#  
Description  
Address Input : A19 to A0 for 16M, A20 to A0 for 32M, A21 to A0 for 64M  
Chip Enable (Low Active)  
Chip Enable (High Active)  
Write Enable (Low Active)  
OE#  
Output Enable (Low Active)  
UB#  
Upper Byte Control (Low Active)  
Lower Byte Control (Low Active)  
Upper Byte Data Input/Output  
Lower Byte Data Input/Output  
Power Supply  
LB#  
DQ16-9  
DQ8-1  
VDD  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
127  
A d v a n c e I n f o r m a t i o n  
Pin Name  
Description  
VSS  
Ground  
Functional Description  
Mode  
Standby (Deselect)  
CE2#  
CE1#  
H
WE#  
OE#  
X
LB#  
X
UB#  
X
A
DQ  
DQ  
16-9  
21-0  
8-1  
H
H
L
X
H
X
High-Z  
High-Z  
High-Z  
High-Z  
Output Disable (Note 1)  
Output Disable (No Read)  
Read (Upper Byte)  
Read (Lower Byte)  
Read (Word)  
H
X
X
Note 3  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
X
H
H
L
H
L
High-Z  
High-Z  
High-Z  
Output Valid  
High-Z  
H
L
H
L
Output Valid  
L
L
Output Valid Output Valid  
No Write  
H
H
L
H
L
Invalid  
Invalid  
Invalid  
Input Valid  
Invalid  
Write (Upper Byte)  
Write (Lower Byte)  
Write (Word)  
L
H (Note 4)  
H
L
Input Valid  
Input Valid  
High-Z  
L
Input Valid  
High-Z  
Power Down  
X
X
X
X
X
Legend:L = V , H = V , X can be either V or V , High-Z = High Impedence.  
IL  
IH  
IL  
IH  
Notes:  
1. Should not be kept this logic condition longer than 1ms. Please contact local Spansion representative for the relaxation of  
1ms limitation.  
2. Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the  
selection of Power Down Program, 16M has data retetion in all modes except Power Down. Refer to POWER DOWN for the  
detail.  
3. Can be either VIL or VIH but must be valid before Read or Write.  
4. OE# can be VIL during Write operation if the following conditions are satisfied:  
(1) Write pulse is initiated by CE1# (refer to CE1# Controlled Write timing), or cycle time of the previous operation cycle is  
satisfied.  
(2) OE# stays VIL during Write cycle  
Power Down (for 32M, 64M Only)  
Power Down  
The Power Down is low power idle state controlled by CE2. CE2 Low drives the  
device in power down mode and maintains low power idle state as long as CE2 is  
kept Low. CE2 High resumes the device from power down mode. These devices  
have three power down mode. These can be proammed by series of read/write  
operation. Each mode has follwoing features.  
32M  
Retention Data  
No  
64M  
Retention Data  
No  
Mode  
Retention Address  
N/A  
Mode  
Retention Address  
N/A  
Sleep (default)  
4M Partial  
Sleep (default)  
8M Partial  
4M bit  
00000h to 3FFFFh  
00000h to 7FFFFh  
8M bit  
00000h to 7FFFFh  
00000h to FFFFFh  
8M Partial  
8M bit  
16M Partial  
16M bit  
128  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
The default state is Sleep and it is the lowest power consumption but all data will  
be lost once CE2 is brought to Low for Power Down. It is not required to program  
to Sleep mode after power-up.  
Power Down Program Sequence  
The program requires total 6 read/write operation with unique address. Between  
each read/write operation requires that device be in standby mode. Following  
table shows the detail sequence.  
Cycle #  
1st  
Operation  
Read  
Address  
3FFFFFh (MSB)  
3FFFFFh  
Data  
Read Data (RDa)  
RDa  
2nd  
3rd  
Write  
Write  
Write  
Write  
Read  
3FFFFFh  
RDa  
4th  
3FFFFFh  
Don’t Care (X)  
X
5th  
3FFFFFh  
6th  
Address Key  
Read Data (RDb)  
The first cycle is to read from most significient address (MSB).  
The second and third cycle are to write back the data (RDa) read by first cycle.  
If the second or third cycle is written into the different address, the program is  
cancelled and the data written by the second or third cycle is valid as a normal  
write operation.  
The forth and fifth cycle is to write to MSB. The data of forth and fifth cycle is  
don’t-care. If the forth or fifth cycle is written into different address, the program  
is also cancelled but write data may not be wrote as normal write operation.  
The last cycle is to read from specific address key for mode selection.  
Once this program sequence is performed from a Partial mode to the other Partial  
mode, the written data stored in memory cell array may be lost. So, it should per-  
form this program prior to regular read/write operation if Partial mode is used.  
Address Key  
The address key has following format.  
Mode  
Address  
32M  
Sleep (default)  
4M Partial  
8M Partial  
N/A  
64M  
Sleep (default)  
N/A  
A21  
1
A20  
1
A19  
1
A18 - A0  
Binary  
1
1
1
1
3FFFFFh  
37FFFFh  
2FFFFFh  
27FFFFh  
1
1
0
8M Partial  
16M Partial  
1
0
1
1
0
0
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
129  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Item  
Voltage of VDD Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Storage temperature  
Symbol  
VDD  
Value  
Unit  
V
-0.5 to +3.6  
-0.5 to +3.6  
±50  
VIN, VOUT  
IOUT  
V
mA  
°C  
TSTG  
-55 to +125  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions (See Warning Below)  
Parameter  
Symbol  
VDD  
VSS  
VIH  
Min  
2.7  
Max  
3.1  
Unit  
V
Supply Voltage  
0
0
V
High Level Input Voltage (Note 1)  
High Level Input Voltage (Note 1)  
Ambient Temperature  
VDD 0.8  
-0.3  
-30  
VDD+0.2  
VDD 0.2  
85  
V
VIL  
V
TA  
°C  
Notes:  
1. Maximum DC voltage on input and I/O pins are VDD+0.2V. During voltage transitions, inputs may positive overshoot to  
VDD+1.0V for periods of up to 5 ns.  
2. Minimum DC voltage on input or I/O pins are -0.3V. During voltage transitions, inputs may negative overshoot VSS to -1.0V  
for periods of up to 5ns.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the de-  
vice’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may  
adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their FUJITSU representative before-  
hand.  
Package Capacitance  
Test conditions: T = 25°C, f = 1.0 MHz  
A
Symbol  
Description  
Te st Se tup  
VIN = 0V  
VIN = 0V  
VIO = 0V  
Typ  
Max  
5
Unit  
pF  
CIN1  
CIN2  
CIO  
Address Input Capacitance  
Control Input Capacitance  
Data Input/Output Capacitance  
5
pF  
8
pF  
130  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (Under Recommended Conditions Unless Otherwise  
Noted)  
16M  
32M  
64M  
Parameter  
Symbol  
Test Conditions  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Input Leakage  
Current  
ILI  
VIN = VSS to VDD  
-1.0  
+1.0  
-1.0  
+1.0  
-1.0  
+1.0  
µ
A
A
Output Leakage  
Current  
VOUT = VSS to VDD, Output  
Disable  
ILO  
VOH  
VOL  
-1.0  
2.2  
+1.0  
-1.0  
2.4  
+1.0  
-1.0  
2.4  
+1.0  
µ
Output High  
Voltage Level  
VDD = VDD(min), IOH = –  
0.5mA  
V
Output Low  
Voltage Level  
IOL = 1mA  
0.4  
10  
0.4  
0.4  
V
IDDPS  
IDDP4  
IDDP8  
SLEEP  
10  
40  
50  
TBD  
µ
A
A
A
VDD = VDD(26)  
max.,  
VIN = VIH or VIL,  
4M Partial  
8M Partial  
N/A  
N/A  
N/A  
µ
µ
VDD Power Down  
Current  
TBD  
TBD  
CE2  
0.2V  
16M  
Partial  
IDDP16  
N/A  
N/A  
µA  
VDD = VDD(26) max.,  
VIN = VIH or VIL  
CE1 = CE2 = VIH  
IDDS  
1
100  
20  
3
1.5  
80  
30  
3
TBD  
TBD  
TBD  
TBD  
mA  
VDD Standby  
Current  
VDD = VDD(26) max.,  
IDDS1  
IDDA1  
IDDA2  
VIN  
CE1 = CE2  
0.2V or VIN  
VDD – 0.2V,  
µA  
VDD – 0.2V  
tRC / tWC  
=
minimum  
VDD = VDD(26)  
max.,  
VIN = VIH or VIL,  
CE1 = VIL and  
CE2= VIH,  
mA  
mA  
VDD Active  
Current  
tRC / tWC  
=
1µs  
IOUT=0mA  
VDD = VDD(26) max., VIN = VIH  
or VIL,  
CE1 = VIL and CE2= VIH,  
IOUT=0mA, tPRC = min.  
VDD Page Read  
Current  
IDDA3  
N/A  
10  
TBD  
mA  
Notes:  
1. All voltages are referenced to VSS  
2. DC Characteristics are measured after following POWER-UP timing.  
3. OUT depends on the output load conditions.  
.
I
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
131  
A d v a n c e I n f o r m a t i o n  
AC Characteristics (Under Recommended Operating Conditions Unless  
Otherwise Noted)  
Read Operation  
16M  
32M  
64M  
Parameter  
Read Cycle Time  
Symbol  
tRC  
Min.  
65  
20  
5
Max.  
1000  
65  
Min.  
65  
20  
5
Max.  
1000  
65  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
70  
1000  
60  
1, 2  
CE1# Access Time  
tCE  
3
OE# Access Time  
tOE  
40  
40  
40  
3
3, 5  
3
Address Access Time  
LB# / UB# Access Time  
Page Address Access Time  
Page Read Cycle Time  
Output Data Hold Time  
CE1# Low to Output Low-Z  
OE# Low to Output Low-Z  
tAA  
60  
65  
65  
tBA  
30  
30  
30  
tPAA  
tPRC  
tOH  
N/A  
N/A  
20  
20  
3,6  
1, 6, 7  
3
1000  
1000  
5
5
0
tCLZ  
tOLZ  
5
5
4
0
0
4
LB# / UB# Low to Output  
Low-Z  
tBLZ  
0
0
0
ns  
4
CE1# High to Output High-Z  
OE# High to Output High-Z  
tCHZ  
tOHZ  
20  
20  
20  
15  
20  
20  
ns  
ns  
3
3
LB# / UB# High to Output  
High-Z  
tBHZ  
-5  
20  
20  
20  
ns  
ns  
3
Address Setup Time to CE1#  
Low  
tASC  
–5  
–5  
Address Setup Time to OE#  
Low  
tASO  
tAX  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
Address Invalid Time  
5, 8  
9
Address Hold Time from CE1#  
High  
tCHAH  
-6  
–6  
–6  
Address Hold Time from OE#  
High  
tOHAH  
-6  
–6  
–6  
ns  
WE# High to OE# Low Time  
for Read  
tWHOL  
tCP  
10  
10  
1000  
12  
12  
12  
12  
ns  
ns  
10  
CE1# High Pulse Width  
Notes:  
1. Maximum value is applicable if CE#1 is kept at Low without change of address input of A3 to A21. If needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Address should not be changed within minimum tRC  
.
3. The output load 50pF.  
4. The output load 5pF.  
132  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
5. Applicable to A3 to A21 (32M and 64M) when CE1# is kept at Low.  
6. Applicable only to A0, A1 and A2 (32M and 64M) when CE1# is kept at Low for the page address access.  
7. In case Page Read Cycle is continued with keeping CE1# stays Low, CE1# must be brought to High within 4µs. In other  
words, Page Read Cycle must be closed within 4µs.  
8. Applicable when at least two of address inputs among applicable are switched from previous state.  
9. tRC(min) and tPRC(min) must be satisfied.  
10. If actual value of tWHOL is shorter than specified minimum values, the actual tAA of following Read may become longer by the  
amount of subtracting actual value from specified minimum value.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
133  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Write Operation  
16M  
32M  
64M  
Parameter  
Write Cycle Time  
Symbol  
tWC  
Min.  
70  
0
Max.  
1000  
Min.  
65  
0
Max.  
1000  
Min.  
65  
0
Max.  
1000  
Unit  
ns  
Notes  
1,2  
3
Address Setup Time  
CE1# Write Pulse Width  
WE# Write Pulse Width  
LB#/UB# Write Pulse Width  
tAS  
ns  
tCW  
45  
45  
45  
40  
40  
40  
40  
40  
40  
ns  
3
tWP  
ns  
3
tBW  
ns  
3
LB#/UB# Byte Mask Setup  
Time  
tBS  
-5  
-5  
–5  
–5  
–5  
–5  
ns  
ns  
4
LB#/UB# Byte Mask Hold  
Time  
tBH  
5
6
Write Recovery Time  
CE1# High Pulse Width  
WE# High Pulse Width  
LB#/UB# High Pulse Width  
Data Setup Time  
tWR  
tCP  
0
10  
7.5  
10  
15  
0
0
12  
7.5  
12  
12  
0
0
12  
7.5  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
tWHP  
tBHP  
tDS  
1000  
1000  
1000  
1000  
1000  
1000  
7
Data Hold Time  
tDH  
OE# High to CE1# Low Setup  
Time for Write  
tOHCL  
-5  
0
–5  
0
–5  
0
ns  
ns  
ns  
8
9
OE# High to Address Setup  
Time for Write  
tOES  
LB# and UB# Write Pulse  
Overlap  
tBWO  
30  
30  
30  
Notes:  
1. Maximum value is applicable if CE1# is kept at Low without any address change. If the relaxation is needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Minimum value must be equal or greater than the sum of write pulse (tCW, tWP or tBW) and write recovery time (tWR).  
3. Write pulse is defined from High to Low transition of CE1#, WE#, or LB#/UB#, whichever occurs last.  
4. Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of CE1# or WE# whichever  
occurs last.  
5. Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1# or WE# whichever  
occurs first.  
6. Write recovery is defined from Low to High transition of CE1#, WE#, or LB#/UB#, whichever occurs first.  
7. tWPH minimum is absolute minimum value for device to detect High level. And it is defined at minimum VIH level.  
8. If OE# is Low after minimum tOHCL, read cycle is initiated. In other words, OE# must be brought to High within 5ns after  
CE1# is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tRC is met.  
9. If OE# is Low after new address input, read cycle is initiated. In other word, OE# must be brought to High at the same time  
or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tRC is met and data  
bus is in High-Z.  
134  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Power Down Parameters  
16M  
Symbol Min.  
32M  
64M  
Parameter  
Max.  
Min. Max. Min.  
Max.  
Unit  
ns  
Note  
CE2 Low Setup Time for Power Down Entry  
CE2 Low Hold Time after Power Down Entry  
tCSP  
10  
80  
10  
65  
10  
65  
tC2LP  
ns  
CE1# High Hold Time following CE2 High after Power  
Down Exit [SLEEP mode only]  
tCHH  
tCHHP  
tCHS  
300  
300  
1
300  
1
µ
µ
s
s
1
2
1
CE1# High Hold Time following CE2 High after Power  
Down Exit [not in SLEEP mode]  
N/A  
CE1# High Setup Time following CE2 High after  
Power Down Exit  
0
0
0
ns  
Notes:  
1. Applicable also to power-up.  
2. Applicable when 4M and 8M Partial mode is programmed.  
Other Timing Parameters  
16M  
32M  
64M  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Note  
CE1# High to OE# Invalid Time  
for Standby Entry  
tCHOX  
10  
10  
10  
10  
50  
ns  
ns  
CE1# High to WE# Invalid  
Time for Standby Entry  
tCHWX  
10  
10  
50  
1
CE2 Low Hold Time after  
Power-up  
tC2LH  
N/A  
µ
s
s
CE1# High Hold Time following  
CE2 High after Power-up  
tCHH  
tT  
300  
1
300  
1
300  
1
µ
Input Transition Time  
25  
25  
25  
ns  
2
Notes:  
1. Some data might be written into any address location if tCHWX(min) is not satisfied.  
2. The Input Transition Time (tT) at AC testing is 5ns as shown in below. If actual tT is longer than 5ns, it may violate AC  
specification of some timing parameters.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
135  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
AC Test Conditions  
Symbol  
VIH  
Description  
Tes t Se tup  
Value  
VDD * 0.8  
VDD * 0.2  
VDD * 0.5  
5
Unit  
V
Note  
Input High Level  
VIL  
Input Low Level  
V
VREF  
tT  
Input Timing Measurement Level  
Input Transition Time  
V
Between VIL and VIH  
ns  
AC Measurement Output Load Circuit  
V
DD  
DEVICE  
UNDER  
TEST  
OUT  
0.1µF  
V
SS  
50pF  
Figure 32. AC Output Load Circuit  
136  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
Timing Diagrams  
Read Timings  
tRC  
ADDRESS VALID  
ADDRESS  
tASC  
tCE  
tCHAH  
tASC  
CE1#  
OE#  
tCP  
tCHZ  
tOE  
tOHZ  
tBHZ  
tBA  
LB#/UB#  
tBLZ  
tOLZ  
DQ  
(Output)  
tCLZ  
VALID DATA OUTPUT  
Figure 33. Read Timing #1 (Baisc Timing)  
tOH  
Note: This timing diagram assumes CE2=H and WE#=H.  
tAx  
tRC  
tRC  
ADDRESS  
ADDRESS VALID  
ADDRESS VALID  
tAA  
tAA  
tOHAH  
CE1#  
Low  
tASO  
tOE  
OE#  
LB#/UB#  
tOLZ  
tOH  
tOHZ  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
Figure 34. Read Timing #2 (OE# Address Access  
VALID DATA OUTPUT  
Note: This timing digaram assumes CE2=H and WE#=H.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
137  
A d v a n c e I n f o r m a t i o n  
tAX  
tRC  
tAx  
ADDRESS  
ADDRESS VALID  
tAA  
Low  
CE1#, OE#  
tBA  
tBA  
LB#  
tBA  
UB#  
tBHZ  
tBHZ  
tOH  
tOH  
tBLZ  
tBLZ  
DQ1-8  
(Output)  
VALID DATA  
OUTPUT  
tBHZ  
VALID DATA  
OUTPUT  
tOH  
tBLZ  
DQ9-16  
(Output)  
VALID DATA OUTPUT  
Figure 35. Read Timing #3 (LB#/UB# Byte Access)  
Note: This timing diagram assumes CE2=H and WE#=H.  
tRC  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
tRC  
tPRC  
tPRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS VALID  
tASC  
tCHAH  
tPAA  
tPAA  
tPAA  
CE1#  
OE#  
tCHZ  
tCE  
LB#/UB#  
tOH  
tCLZ  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Figure 36. Read Timing #4 (Page Address Access after CE1# Control Access  
for 32M and 64M Only)  
Note: This timing diagram assumes CE2=H and WE#=H.  
138  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
tRC  
tAX  
tRC  
tAx  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
ADDRESS VALID  
tRC  
tPRC  
tRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAA  
tPAA  
tAA  
tPAA  
CE1#  
Low  
tASO  
tOE  
OE#  
tBA  
LB#/UB#  
tOLZ  
tBLZ  
tOH  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Figure 37. Read Timing #5 (Random and Page Address Access for 32M and  
64M Only)  
Notes:  
1. This timing diagram assumes CE2=H and WE#=H.  
2. Either or both LB# and UB# must be Low when both CE1# and OE# are Low.  
Write Timings  
tWC  
ADDRESS  
CE1#  
ADDRESS VALID  
tAS  
tCW  
tWR  
tWR  
tWR  
tAS  
tCP  
tAS  
tWP  
tAS  
WE#  
tWHP  
tAS  
tBW  
tAS  
LB#, UB#  
tBHP  
tOHCL  
OE#  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Figure 38. Write Timing #1 (Basic Timing)  
Note: This timing diagram assumes CE2=H.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
139  
A d v a n c e I n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
tOHAH  
Low  
tAS  
tWP  
tWR  
tAS  
tWP  
tWR  
WE#  
tWHP  
LB#, UB#  
OE#  
tOES  
tOHZ  
tDS  
tDH  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Figure 39. Write Timing #2 (WE# Control)  
VALID DATA INPUT  
Note:This timing diagram assumes CE2=H.  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tAS  
tWP  
tAS  
tWP  
tWHP  
tBS  
WE#  
LB#  
tBH  
tWR  
tWR  
tBS  
tBH  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
Figure 40. Write Timing #3-1 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
140  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tWR  
tWR  
WE#  
LB#  
tWHP  
tAS  
tBW  
tBS  
tBH  
tAS  
tBW  
tBH  
tBS  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 41. Write Timing #3-2 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tWHP  
tAS  
tBW  
tWR  
tBS  
tBH  
tAS  
tBW  
tWR  
tBS  
tBH  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 42. Write Timing #3-3 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
141  
A d v a n c e I n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tAS  
tBW  
tWR  
tAS  
tBW  
tWR  
tDH  
tBHP  
tBWO  
tDS  
tDH  
tDS  
DQ1-8  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
tAS  
tBW  
tWR  
tAS  
tWR  
tBWO  
tBW  
UB#  
tBHP  
tDS  
tDH  
tDS  
tDH  
DQ9-16  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
Figure 43. Write Timing #3-4 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
Read/Write Timings  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tCW  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tCHZ  
tOH  
tDS  
tDH  
tCLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 44. Read/Write Timing #1-1 (CE1# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. Write address is valid from either CE1# or WE# of last falling edge.  
142  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
tWP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tOE  
tCHZ  
tOH  
tDS  
tDH  
tOLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
READ DATA OUTPUT  
Figure 45. Read / Write Timing #1-2 (CE1#/WE#/OE# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. OE# can be fixed Low during write operation if it is CE1# controlled write at Read-Write-Read sequence.  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tOHAH  
tOHAH  
tAA  
Low  
tAS  
tWR  
tWP  
WE#  
UB#, LB#  
OE#  
tOES  
tASO  
tOE  
tWHOL  
tOHZ  
tOH  
tOHZ  
tOH  
tDS  
tDH  
tOLZ  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 46. Read / Write Timing #2 (OE#, WE# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
143  
A d v a n c e I n f o r m a t i o n  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tAA  
tOHAH  
tOHAH  
Low  
WE#  
tOES  
tAS  
tBW  
tWR  
tBA  
UB#, LB#  
OE#  
tBHZ  
tASO  
tWHOL  
tBHZ  
tOH  
tDS  
tDH  
tBLZ  
tOH  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 47. Read / Write Timing #3 (OE#, WE#, LB#, UB# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
CE1#  
tCHS  
tC2LH  
tCHH  
CE2  
VDD  
VDD min  
0V  
Figure 48. Power-up Timing #1  
Note: The tC2LH specifies after VDD reaches specified minimum level.  
144  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
CE1#  
CE2  
VDD  
tCHH  
VDD min  
0V  
Figure 49. Power-up Timing #2  
Note: The tCHH specifies after VDD reaches specified minimum level and applicable to both CE1# and CE2.  
CE1#  
t
CHS  
CE2  
DQ  
t
CSP  
t
C2LP  
tCHH (tCHHP)  
High-Z  
Power Down Entry  
Power Down Mode  
Power Down Exit  
Figure 50. Power Down Entry and Exit Timing  
Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and  
Power-Down program was not performed prior to this reset.  
CE1#  
t
CHOX  
t
CHWX  
OE#  
WE#  
Active (Read)  
Standby  
Active (Write)  
Standby  
Figure 51. Standby Entry Timing after Read or Write  
Note: Both tCHOX and tCHWX define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes  
tRC (min) period for Standby mode from CE1# Low to High transition.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
145  
A d v a n c e I n f o r m a t i o n  
tRC  
tWC  
tWC  
tWC  
tWC  
tRC  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
Key*2  
ADDRESS  
CE1#  
tCP*3  
tCP  
tCP  
tCP  
tCP  
tCP  
OE#  
WE#  
LB#, UB#  
DQ*3  
RDa  
Cycle #1  
RDa  
Cycle #2  
RDa  
Cycle #3  
X
X
RDb  
Cycle #6  
Cycle #4  
Cycle #5  
Figure 52. Power Down Program Timing (for 32M/64M Only)  
Notes:  
1. The all address inputs must be High from Cycle #1 to #5.  
2. The address key must confirm the format specified in page 129. If not, the operation and data are not guaranteed.  
3. After tCP following Cycle #6, the Power Down Program is completed and returned to the normal operation.  
146  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A (August 24, 2004)  
Initial release.  
Revision A1 (December 7, 2004)  
Connection Diagrams.  
Added 64-ball pinout.  
Ordering Information  
Updated the OPN table.  
Valid Combinations tables  
Updated all tables.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable ( i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by  
Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright © 2004 Spansion LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of Span-  
sion LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective compa-  
nies.  
December 7, 2004 S71GL512_256_128NB0_00_A1  
147  

相关型号:

S71GL128NB0BAW9J2

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9K3

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9N0

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9N2

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9N3

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9P3

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9T3

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9U0

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9Y3

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9Z0

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9Z2

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION

S71GL128NB0BAW9Z3

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HIEGHT, FBGA-64
SPANSION