S71JL064H80BFI020 [SPANSION]

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73;
S71JL064H80BFI020
型号: S71JL064H80BFI020
厂家: SPANSION    SPANSION
描述:

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73

文件: 总153页 (文件大小:3659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71JL128HC0/128HB0/064HB0/  
064HA0/064H80  
Stacked Multi-Chip Product (MCP) Flash Memory  
and pSRAM CMOS 3.0 Volt-only,  
Simultaneous Operation Flash Memories and  
Static RAM/Pseudo-static RAM  
PRELIMINARY  
DISTINCTIVE CHARACTERISTICS  
GENERAL DESCRIPTION  
The S71JLxxxH Series is a product line of stacked Multi-Chip  
Products (MCP) and consists of  
MCP Features  
„
Operating Voltage Range of 2.7 to 3.3 V  
„
„
One or more S29JL064H Flash devices  
„
High Performance  
SRAM or pSRAM options  
— 8Mb x 8/x 16 SRAM  
— 16Mb x 16-only SRAM  
— pSRAM x 16 only:  
8Mb pSRAM  
— Access time as fast as 55 ns  
„
„
Packages  
— 73-ball FBGA—8 x 11.6 mm  
— 88-ball FBGA—8 x 11.6 mm  
Operating Temperatures  
— Wireless: –25°C to +85°C  
— Industrial: –40°C to +85°C  
16Mb pSRAM  
32Mb pSRAM  
64Mb pSRAM  
The products covered by this document are listed below. For  
details about their specifications, please refer to the individual  
constituent data sheets for further details.  
MCP  
Number of S29JL064H  
Tot a l Fl as h De ns i t y  
64Mb  
SRAM/pSRAM Density  
S71JL064H80  
S71JL064HA0  
S71JL064HB0  
S71JL128HB0  
S71JL128HC0  
1
1
1
2
2
8Mb  
64Mb  
16Mb  
32Mb  
32Mb  
64Mb  
64Mb  
128Mb  
128Mb  
Notes:  
1. This MCP is only guaranteed to operate @ 2.7 - 3.3 V regardless of component operating ranges.  
2. BYTE# operation is only supported on the S71JL064H80xx0x.  
Publication Number S71JLxxxHxx_00 Revision A Amendment 3 Issue Date May 25, 2004  
P r e l i m i n a r y  
Product Selector Guide  
FlashAccess RAMAccess  
Device-Model #  
SRAM/pSRAM Density  
SRAM/pSRAM Type  
Supplier  
Time (ns)  
Time (ns)  
Packages  
FLB073  
FLB073  
FLJ073  
FLJ073  
FLJ073  
S71JL064H80Bxx01  
S71JL064H80Bxx02  
S71JL064H80Bxx10  
S71JL064H80Bxx11  
S71JL064H80Bxx12  
8Mb  
8Mb  
8Mb  
8Mb  
8Mb  
SRAM - x8/x16  
SRAM - x8/x16  
pSRAM - x16  
pSRAM - x16  
pSRAM - x16  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
70  
85  
55  
70  
85  
70  
85  
55  
70  
85  
S71JL064HA0Bxx01  
S71JL064HA0Bxx02  
S71JL064HA0Bxx10  
S71JL064HA0Bxx11  
S71JL064HA0Bxx12  
S71JL064HA0Bxx62  
16Mb  
16Mb  
16Mb  
16Mb  
16Mb  
16Mb  
SRAM - x16  
SRAM - x16  
pSRAM - x16  
pSRAM - x16  
pSRAM - x16  
pSRAM - x16  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 4  
70  
85  
55  
70  
85  
70  
70  
85  
55  
70  
85  
70  
FLB073  
FLB073  
FLJ073  
FLJ073  
FLJ073  
FLJ073  
S71JL128HB0Bxx01  
S71JL128HB0Bxx02  
32Mb  
32Mb  
pSRAM - x16  
pSRAM - x16  
Supplier 3  
Supplier 3  
70  
85  
70  
85  
FTA073  
FTA073  
S71JL128HC0Bxx01  
S71JL128HC0Bxx02  
64Mb  
64Mb  
pSRAM - x16  
pSRAM - x16  
Supplier 3  
Supplier 3  
70  
85  
70  
85  
FTA088  
FTA088  
2
S71JL128HC0/128HB0/064HB0/064HA0/064H80  
S71JLxxxHxx_00A3 May 25, 2004  
A d v a n c e I n f o r m a t i o n  
TABLE OF CONTENTS  
Accelerated Program Operation .................................................................8  
Autoselect Functions .......................................................................................8  
Simultaneous Read/Write Operations with Zero Latency .....................8  
Standby Mode .........................................................................................................9  
Automatic Sleep Mode ....................................................................................... 9  
RESET#: Hardware Reset Pin ........................................................................... 9  
Output Disable Mode ........................................................................................10  
Table 2. S29JL064H Sector Architecture ............................... 11  
Table 3. Bank Address ........................................................ 14  
Table 4. SecSiTM Sector Addresses....................................... 14  
Autoselect Mode .................................................................................................14  
Sector/Sector Block Protection and Unprotection ..................................15  
Table 5. S29JL064H Boot Sector/Sector Block Addresses for  
Protection/Unprotection ...................................................... 15  
Write Protect (WP#) ........................................................................................17  
Table 6. WP#/ACC Modes ................................................... 17  
Temporary Sector Unprotect .........................................................................17  
Figure 1. Temporary Sector Unprotect Operation ................... 18  
Figure 2. In-System Sector Protect/Unprotect Algorithms ....... 19  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region ........................................................................................20  
Figure 3. SecSi Sector Protect Verify .................................... 21  
Hardware Data Protection ..............................................................................21  
Low VCC Write Inhibit .................................................................................21  
Write Pulse “Glitch” Protection ...............................................................22  
Logical Inhibit ...................................................................................................22  
Power-Up Write Inhibit ...............................................................................22  
Common Flash Memory Interface (CFI) . . . . . . .22  
Table 1. CFI Query Identification String................................ 23  
Table 7. System Interface String ......................................... 23  
Table 2. Device Geometry Definition .................................... 24  
Table 3. Primary Vendor-Specific Extended Query.................. 25  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 26  
Reading Array Data ...........................................................................................26  
Reset Command .................................................................................................26  
Autoselect Command Sequence .................................................................... 27  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence ..........................................................................................27  
Byte/Word Program Command Sequence ................................................. 27  
Unlock Bypass Command Sequence ........................................................28  
Figure 4. Program Operation............................................... 29  
Chip Erase Command Sequence ...................................................................29  
Sector Erase Command Sequence ................................................................30  
Figure 5. Erase Operation ................................................... 31  
Erase Suspend/Erase Resume Commands ................................................... 31  
Table 4. S29JL064H Command Definitions ............................ 33  
Write Operation Status . . . . . . . . . . . . . . . . . . . . . 34  
DQ7: Data# Polling ............................................................................................ 34  
Figure 6. Data# Polling Algorithm ........................................ 35  
RY/BY#: Ready/Busy# ........................................................................................36  
DQ6: Toggle Bit I ............................................................................................... 36  
Figure 7. Toggle Bit Algorithm............................................. 37  
DQ2: Toggle Bit II .............................................................................................. 37  
Reading Toggle Bits DQ6/DQ2 .....................................................................38  
DQ5: Exceeded Timing Limits ........................................................................38  
DQ3: Sector Erase Timer ................................................................................38  
Table 8. Write Operation Status ........................................... 39  
S71JL128HC0/128HB0/064HB0/064HA0/064H80  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . . 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .2  
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
MCP Block Diagram of S71JL064H80, Model Numbers 01/02 ................7  
MCP Block Diagram of S71JL064H80, Model Numbers 10/11/12 ..............7  
MCP Block Diagram of S71JL064HA0, Model Numbers 01/02 ................8  
MCP Block Diagram of S71JL064HA0, Model Numbers 10/11/12/62 .......8  
MCP Block Diagram of S71JL064HB0, Model Numbers 00/01/02 ..........9  
MCP Block Diagram of S71JL128HB0, Model Numbers 00/01/02 ......... 10  
MCP Block Diagram of S71JL128HC0, Model Numbers 00/01/02 ......... 11  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . 12  
Connection Diagram of S71JL064H80, Model Numbers 01/02 ............. 12  
Special Package Handling Instructions .......................................................13  
Pin Description .................................................................................................13  
Logic Symbol .................................................................................................... 14  
Connection Diagram of S71JL064H80, Model Numbers 10/11/12 ............15  
Pin Description ................................................................................................ 16  
Logic Symbol .................................................................................................... 16  
Connection Diagram of S71JL064HA0, Model Numbers 01/02 ..............17  
Pin Description ................................................................................................ 18  
Logic Symbol .................................................................................................... 19  
Connection Diagram of S71JL064HA0, Model Numbers 10/11/12/62 ... 20  
Pin Description ................................................................................................ 21  
Logic Symbol .................................................................................................... 21  
Connection Diagram of S71JL064HB0, Model Numbers 00/01/02 ...... 22  
Pin Description ................................................................................................23  
Logic Symbol ....................................................................................................23  
Connection Diagram of S71JL128HB0, Model Numbers 00/01/02 ....... 24  
Pin Description ................................................................................................25  
Logic Symbol ....................................................................................................25  
Connection Diagram of S71JL128HC0, Model Numbers 00/01/02 ...... 26  
Special Package Handling Instructions ..................................................... 26  
Pin Description ................................................................................................27  
Logic Symbol ....................................................................................................27  
Look-ahead Connection Diagram ................................................................. 28  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . .30  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . 34  
FLB073 ....................................................................................................................34  
FLJ073 ......................................................................................................................35  
FTA073 ...................................................................................................................36  
FTA088 ..................................................................................................................37  
S29JL064H  
General Description 2  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . .6  
Table 1. S29JL064H Device Bus Operations ............................ 6  
Word/Byte Configuration .................................................................................. 7  
Requirements for Reading Array Data ...........................................................7  
Writing Commands/Command Sequences ...................................................7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . .40  
Figure 8. Maximum Negative Overshoot Waveform ................ 40  
Figure 9. Maximum Positive Overshoot Waveform.................. 40  
May 25, 2004 S71JLxxxHxx_00A3  
3
A d v a n c e I n f o r m a t i o n  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8 Mb pSRAM (supplier 2)  
Wireless (W) Devices ..................................................................................40  
Industrial (I) Devices .....................................................................................40  
VCC Supply Voltages .....................................................................................40  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 41  
CMOS Compatible ............................................................................................. 41  
Zero-Power Flash ........................................................................................... 42  
Figure 10. ICC1 Current vs. Time (Showing Active and  
Automatic Sleep Currents)................................................... 42  
Figure 11. Typical ICC1 vs. Frequency.................................... 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
General Description . . . . . . . . . . . . . . . . . . . . . . . 67  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 34. Functional Block Diagram .................................... 68  
Table 9. Functional Description ............................................ 68  
Absolute Maximum Ratings (See Note) . . . . . . . 68  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 69  
Operating Characteristics (Over Specified Temperature Range) .......69  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Figure 12. Test Setup ........................................................ 43  
Key To Switching Waveforms . . . . . . . . . . . . . . . .43  
Figure 13. Input Waveforms and Measurement Levels............. 43  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .44  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 10. Timing Test Conditions ......................................... 69  
Table 11. Timings .............................................................. 70  
Timing Diagrams ..................................................................................................71  
Figure 35. Timing of Read Cycle (CE1# = OE# = VIL, WE# = CE2  
= VIH).............................................................................. 71  
Figure 36. Timing Waveform of Read Cycle (WE# = VIH) ........ 71  
Figure 37. Timing Waveform of Write Cycle (WE# Control) ..... 72  
Figure 38. Timing Waveform of Write Cycle (CE1# Control)..... 72  
Read-Only Operations .................................................................................... 44  
Figure 14. Read Operation Timings....................................... 44  
Hardware Reset (RESET#) ...............................................................................45  
Figure 15. Reset Timings..................................................... 45  
Word/Byte Configuration (BYTE#) ............................................................. 46  
Figure 16. BYTE# Timings for Read Operations ...................... 47  
Figure 17. BYTE# Timings for Write Operations...................... 47  
Erase and Program Operations ..................................................................... 48  
Figure 18. Program Operation Timings .................................. 49  
Figure 19. Accelerated Program Timing Diagram .................... 49  
Figure 20. Chip/Sector Erase Operation Timings..................... 50  
Figure 21. Back-to-back Read/Write Cycle Timings ................. 51  
Figure 22. Data# Polling Timings (During Embedded Algorithms) .  
51  
16 Mb pSRAM (supplier 2)  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
General Description . . . . . . . . . . . . . . . . . . . . . . . 73  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 39. Functional Block Diagram .................................... 74  
Table 12. Functional Description .......................................... 74  
Absolute Maximum Ratings (See Note) . . . . . . . 75  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 75  
Operating Characteristics (Over Specified Temperature Range) ....... 75  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 76  
Timing Test Conditions ....................................................................................76  
Timings ...................................................................................................................76  
Figure 23. Toggle Bit Timings (During Embedded Algorithms) .. 52  
Figure 24. DQ2 vs. DQ6 ...................................................... 52  
Temporary Sector Unprotect .........................................................................53  
Figure 25. Temporary Sector Unprotect Timing Diagram.......... 53  
Figure 26. Sector/Sector Block Protect and  
Timings ................................................................................................................... 77  
Figure 40. Timing of Read Cycle (CE1# = OE# = VIL, WE# = CE2  
= VIH).............................................................................. 77  
Figure 41. Timing Waveform of Read Cycle (WE# = VIH) ........ 77  
Figure 42. Timing Waveform of Write Cycle (WE# Control) ..... 78  
Figure 43. Timing Waveform of Write Cycle (CE1# Control, CE2 =  
High) ............................................................................... 78  
Unprotect Timing Diagram................................................... 54  
Alternate CE# Controlled Erase and Program Operations ..................55  
Figure 27. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings.............................................................. 56  
Erase And Programming Performance . . . . . . . .57  
16 Mb SRAM (supplier 1)  
16 Mb pSRAM (supplier 4)  
Functional Description . . . . . . . . . . . . . . . . . . . . . 59  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 59  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 60  
Recommended DC Operating Conditions (Note 1) ............................... 60  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Absolute Maxumum Ratings (see Note) . . . . . . 80  
Capacitance (f=1MHz, TA=25°C) ................................................................... 60  
DC Operating Characteristics .......................................................................60  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Read/Write Charcteristics (VCC=2.7-3.3V) ................................................. 61  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 13. DC Recommended Operating Conditions ................. 80  
Data Retention Characteristics ...................................................................... 61  
Timing Diagrams ................................................................................................. 62  
Figure 28. Timing Waveform of Read Cycle(1) (address controlled,  
CD#1=OE#=VIL, CS2=WE#=VIH, UB# and/or LB#=VIL)......... 62  
Figure 29. Timing Waveform of Read Cycle(2) (WE#=VIH)....... 62  
Figure 30. Timing Waveform of Write Cycle(1) (WE# controlled) ..  
63  
Figure 31. Timing Waveform of Write Cycle(2) (CS# controlled)...  
63  
Figure 32. Timing Waveform of Write Cycle(3) (UB#, LB#  
controlled) ........................................................................ 64  
Figure 33. Data Retention Waveform .................................... 65  
Table 14. DC Characteristics (TA = -25°C to 85°C, VDD = 2.6 to  
3.3V) ............................................................................... 81  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 15. AC Characteristics and Operating Conditions (TA = -25°C  
to 85°C, VDD = 2.6 to 3.3V) ................................................ 81  
Table 16. AC Test Conditions ............................................... 82  
Figure 44. AC Test Loads.................................................... 82  
Figure 45. State Diagram ................................................... 83  
Table 17. Standby Mode Characteristics ................................ 83  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 46. Read Cycle 1—Addressed Controlled ..................... 83  
Figure 47. Read Cycle 2—CS1# Controlled............................ 84  
4
S71JLxxxHxx_00A3 May 25, 2004  
A d v a n c e I n f o r m a t i o n  
Figure 48. Write Cycle 1—WE# Controlled ............................. 84  
3.3V) ............................................................................... 99  
Table 25. Capacitance (TA = 25 C, f = 1 MHz) ....................... 99  
Figure 49. Write Cycle 2—CS1# Controlled............................ 85  
Figure 50. Write Cycle3—UB#, LB# Controlled....................... 85  
Figure 51. Deep Power-down Mode....................................... 86  
Figure 52. Power-up Mode................................................... 86  
Figure 53. Abnormal Timing................................................. 86  
°
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 99  
Table 26. AC Characteristics and Operating Conditions (TA = -25  
°C  
to 85 C, VDD = 2.6 to 3.3V) ................................................ 99  
°
Table 27. AC Test Conditions ............................................. 100  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 62. Read Cycle ...................................................... 101  
Figure 63. Page Read Cycle (8 words access) ...................... 102  
Figure 64. Write Cycle 1 (WE# controlled) .......................... 103  
Figure 65. Write Cycle 2 (CE# controlled)........................... 104  
Figure 66. Deep Power-down Timing.................................. 104  
Figure 67. Power-on Timing .............................................. 104  
Figure 68. Read Address Skew Provisions ........................... 105  
Figure 69. Write Address Skew Provisions........................... 105  
32 Mb pSRAM (Supplier 3)  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Absolute Maxumum Ratings . . . . . . . . . . . . . . . . 88  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 18. DC Recommended Operating Conditions (TA = -40  
85 C) ............................................................................... 88  
Table 19. DC Characteristics (TA = -40 C to 85 C, VDD = 2.6 to  
3.3V) ............................................................................... 89  
Table 20. Capacitance (TA = 25 C, f = 1 MHz) ....................... 89  
°C to  
8 Mb SRAM (supplier 1)  
°
°
°
Functional Description . . . . . . . . . . . . . . . . . . . . . 107  
Table 28. Word Mode ....................................................... 107  
Table 29. Byte Mode ........................................................ 107  
Absolute Maximum Ratings . . . . . . . . . . . . . . . 108  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 108  
Recommended DC Operating Conditions ............................................... 108  
°
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 21. AC Characteristics and Operating Conditions (TA = -40  
°C  
to 85 C, VDD = 2.6 to 3.3V) ................................................ 89  
Table 22. AC Test Conditions .............................................. 90  
°
Capacitance (f=1MHz, TA=25°C) ................................................................. 108  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 54. Read Cycle......................................................... 91  
Figure 55. Page Read Cycle (8 words access)......................... 92  
Figure 56. Write Cycle 1 (WE# controlled)............................. 93  
Figure 57. Write Cycle 2 (CE# controlled).............................. 94  
Figure 58. Deep Power-down Timing..................................... 94  
Figure 59. Power-on Timing................................................. 94  
Figure 60. Read Address Skew Provisions.............................. 95  
Figure 61. Write Address Skew Provisions.............................. 95  
DC and Operating Characteristics ............................................................. 109  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 110  
Read/Write Charcteristics (VCC=2.7-3.3V) ................................................110  
Data Retention Characteristics .....................................................................110  
Timing Diagrams ..................................................................................................111  
Figure 70. Timing Waveform of Read Cycle(1) (address controlled,  
CD#1=OE#=VIL, CS2=WE#=VIH, UB# and/or LB#=VIL)...... 111  
Figure 71. Timing Waveform of Read Cycle(2) (WE#=VIH, if BYTE#  
is low, ignore UB#/LB# timing)......................................... 111  
Figure 72. Timing Waveform of Write Cycle(1) (WE# controlled, if  
BYTE# is low, ignore UB#/LB# timing)............................... 111  
Figure 73. Timing Waveform of Write Cycle(2) (CE1# controlled, if  
BYTE# is low, ignore UB#/LB# timing)............................... 112  
Figure 74. Timing Waveform of Write Cycle(3) (UB#, LB#  
64 Mb pSRAM (supplier 3)  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Absolute Maxumum Ratings . . . . . . . . . . . . . . . . 98  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 98  
controlled, BYTE# must be high) ....................................... 112  
Data Retention Waveforms ............................................................................113  
Figure 75. CE1# Controlled............................................... 113  
Figure 76. CS2 Controlled................................................. 113  
Table 23. DC Recommended Operating Conditions (TA = -25  
°C to  
85 C) ............................................................................... 98  
Table 24. DC Characteristics (TA = -25°C to 85°C, VDD = 2.6 to  
°
Revision Summary  
May 25, 2004 S71JLxxxHxx_00A3  
5
A d v a n c e I n f o r m a t i o n  
6
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Block Diagrams  
MCP Block Diagram of S71JL064H80, Model Numbers 01/02  
VCC  
f
VSS  
A21 to A0  
RY/BY#  
A21 to A0  
A1  
WP#/ACC  
RESET#  
CE#f  
64 MBit  
Flash Memory  
DQ15/A-1 to DQ0  
CIOf  
DQ15/A1 to DQ0  
VCCs  
VSS  
A18 to A0  
SA  
8 MBit  
SRAM  
LB#  
UB#  
WE#  
DQ15/A-1 to DQ0  
OE#  
CE1#s  
CE2s  
CIOs  
MCP Block Diagram of S71JL064H80, Model Numbers 10/11/12  
VCC  
f
VSS  
RY/BY#  
A21 to A0  
A21 to A0  
WP#/ACC  
RESET#  
CE#f  
64 MBit  
Flash Memory  
DQ15 to DQ0  
DQ15 to DQ0  
VCCs  
VSS  
RY/BY#  
A18 to A0  
8 MBit  
PSRAM  
LB#  
DQ15 to DQ0  
UB#  
WE#  
OE#  
CE1#s  
CE2s  
May 25, 2004 S71JLxxxHxx_00A3  
7
P r e l i m i n a r y  
MCP Block Diagram of S71JL064HA0, Model Numbers 01/02  
VCC  
f
VSS  
A21 to A0  
RY/BY#  
A21 to A0  
WP#/ACC  
RESET#  
CE#f  
64 MBit  
Flash Memory  
DQ15 to DQ0  
DQ15 to DQ0  
VCCs  
VSS  
A19 to A0  
16 MBit  
SRAM  
LB#  
DQ15 to DQ0  
UB#  
WE#  
OE#  
CE1#s  
CE2s  
MCP Block Diagram of S71JL064HA0, Model Numbers 10/11/12/62  
VCC  
f
VSS  
A21 to A0  
RY/BY#  
A21 to A0  
WP#/ACC  
RESET#  
CE#f  
64 MBit  
Flash Memory  
DQ15 to DQ0  
DQ15 to DQ0  
VCCs  
VSS  
A19 to A0  
16 MBit  
pSRAM  
LB#  
DQ15 to DQ0  
UB#  
WE#  
OE#  
CE1#s  
CE2s  
8
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
MCP Block Diagram of S71JL064HB0, Model Numbers 00/01/02  
VCC  
f
VSS  
A21 to A0  
RY/BY#  
A21 to A0  
WP#/ACC  
RESET#  
CE#f  
64 MBit  
Flash Memory  
DQ15 to DQ0  
DQ15 to DQ0  
VCCs  
VSS  
A20 to A0  
16 MBit  
pSRAM  
LB#  
DQ15 to DQ0  
UB#  
WE#  
OE#  
CE1#s  
CE2s  
May 25, 2004 S71JLxxxHxx_00A3  
9
P r e l i m i n a r y  
MCP Block Diagram of S71JL128HB0, Model Numbers 00/01/02  
VCC  
f
VSS  
A21 to A0  
64 MBit  
Flash Memory  
#1  
DQ15 to DQ0  
CE#f1  
VCC  
f
VSS  
A21 to A0  
A21 to A0  
RY/BY#  
WP#/ACC  
RESET#  
64 MBit  
Flash Memory  
#2  
DQ15 to DQ0  
CE#f2  
DQ15 to DQ0  
VCCs  
VSS  
A20 to A0  
32 MBit  
pSRAM  
LB#  
UB#  
WE#  
DQ15 to DQ0  
OE#  
CE1#s  
CE2s  
10  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
MCP Block Diagram of S71JL128HC0, Model Numbers 00/01/02  
VCC  
f
VSS  
A21 to A0  
RY/BY#1  
RESET#1  
CE#f1  
64 MBit  
Flash Memory  
#1  
DQ15 to DQ0  
VCC  
f
VSS  
A21 to A0  
A21 to A0  
RY/BY#2  
WP#/ACC  
RESET#2  
CE#f2  
64 MBit  
Flash Memory  
#2  
DQ15 to DQ0  
DQ15 to DQ0  
VCCs  
VSS  
A21 to A0  
64 MBit  
pSRAM  
LB#  
UB#  
WE#  
DQ15 to DQ0  
OE#  
CE1#ps  
CE2ps  
May 25, 2004 S71JLxxxHxx_00A3  
11  
P r e l i m i n a r y  
Connection Diagrams  
Connection Diagram of S71JL064H80, Model Numbers 01/02  
73-Ball FBGA  
Top View  
Flash only  
SRAM only  
A1  
A10  
NC  
NC  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
NC  
UB# RESET# CE2s  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
SA  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
NC  
H2  
CE#f  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
H9  
DQ13 DQ15/A-1 CIOf  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
J9  
V
CC  
f
V
s
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
K6  
DQ8  
DQ2  
DQ11 CIOs  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L5  
L6  
L10  
NC  
NC  
NC  
M10  
NC  
12  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(FBGA). The package and/or data integrity may be compromised if the package  
body is exposed to temperatures above 150°C for prolonged periods of time.  
Pin Description  
A18–A0  
A21–A19, A-1  
SA  
DQ15–DQ0  
CE#f  
CE#s  
OE#  
WE#  
RY/BY#  
UB#  
=
=
=
=
=
=
=
=
=
=
=
=
19 Address Inputs (Common)  
4 Address Inputs (Flash)  
Highest Order Address Pin (SRAM) Byte mode  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable (SRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output  
Upper Byte Control (SRAM)  
Lower Byte Control (SRAM)  
LB#  
CIOf  
I/O Configuration (Flash)  
CIOf = VIH = Word mode (x16),  
CIOf = VIL = Byte mode (x8)  
CIOs  
=
I/O Configuration (SRAM)  
CIOs = VIH = Word mode (x16),  
CIOs = VIL = Byte mode (x8)  
RESET#  
WP#/ACC  
=
=
=
Hardware Reset Pin, Active Low  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
VCCf  
VCC  
VSS  
NC  
s
=
=
=
SRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
May 25, 2004 S71JLxxxHxx_00A3  
13  
P r e l i m i n a r y  
Logic Symbol  
19  
A18–A0  
A21–A19, A-1  
SA  
16 or 8  
CE#f  
DQ15–DQ0  
RY/BY#  
CE1#s  
CE2s  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
CIOf  
CIOs  
14  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Connection Diagram of S71JL064H80, Model Numbers 10/11/12  
73-Ball FBGA  
Top View  
Flash only  
SRAM only  
A1  
A10  
NC  
NC  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
NC  
UB# RESET# CE2s  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
s
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ11  
L5  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
May 25, 2004 S71JLxxxHxx_00A3  
15  
P r e l i m i n a r y  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be com-  
promised if the package body is exposed to temperatures above 150°C for  
prolonged periods of time.  
Pin Description  
A18–A0  
A21–A19  
DQ15–DQ0  
CE#f  
CE1#s  
CE2s  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
19 Address Inputs (Common)  
2 Address Inputs (Flash)  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
RESET#  
WP#/ACC  
VCCf  
VCC  
VSS  
NC  
s
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
19  
A18–A0  
A21, A19  
SA  
16  
CE#f  
DQ15–DQ0  
RY/BY#  
CE1#s  
CE2s  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
16  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Connection Diagram of S71JL064HA0, Model Numbers 01/02  
73-Ball FBGA  
Top View  
Flash only  
SRAM only  
A1  
A10  
NC  
NC  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
NC  
UB# RESET# CE2s  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
s
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ11  
L5  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
May 25, 2004 S71JLxxxHxx_00A3  
17  
P r e l i m i n a r y  
Special Package Handling Instructions for FBGA Package  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic  
cleaning methods. The package and/or data integrity may be compromised if the  
package body is exposed to temperatures above 150°C for prolonged periods of  
time.  
Pin Description  
A19–A0  
A21–A20  
DQ15–DQ0  
CE#f  
CE#s  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
RESET#  
WP#/ACC  
=
=
=
=
=
=
=
=
=
=
=
=
=
20 Address Inputs (Common)  
2 Address Inputs (Flash)  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable (SRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output  
Upper Byte Control (SRAM)  
Lower Byte Control (SRAM)  
Hardware Reset Pin, Active Low  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
VCCf  
VCC  
VSS  
NC  
s
=
=
=
SRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
18  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Logic Symbol  
20  
A19–A0  
A21–A20  
16  
CE#f  
DQ15–DQ0  
RY/BY#  
CE1#s  
CE2s  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
May 25, 2004 S71JLxxxHxx_00A3  
19  
P r e l i m i n a r y  
Connection Diagram of S71JL064HA0, Model Numbers 10/11/12/62  
73-Ball FBGA  
Top View  
Flash only  
SRAM only  
A1  
A10  
NC  
NC  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
NC  
UB# RESET# CE2s  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
s
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ11  
L5  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
20  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be com-  
promised if the package body is exposed to temperatures above 150°C for  
prolonged periods of time.  
Pin Description  
A19–A0  
A21–A20  
DQ15–DQ0  
CE#f  
CE1#s  
CE2s  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
20 Address Inputs (Common)  
2 Address Inputs (Flash)  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
RESET#  
WP#/ACC  
VCCf  
VCC  
VSS  
NC  
s
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
20  
A19–A0  
SA  
16  
CE#f  
DQ15–DQ0  
RY/BY#  
CE1#s  
CE2s  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
May 25, 2004 S71JLxxxHxx_00A3  
21  
P r e l i m i n a r y  
Connection Diagram of S71JL064HB0, Model Numbers 00/01/02  
73-Ball FBGA  
Top View  
Flash only  
SRAM only  
A1  
A10  
NC  
NC  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
NC  
UB# RESET# CE2s  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
s
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ11  
L5  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
22  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be com-  
promised if the package body is exposed to temperatures above 150°C for  
prolonged periods of time.  
Pin Description  
A20–A0  
A21  
DQ15–DQ0  
CE#f  
CE1#s  
CE2s  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
RESET#  
WP#/ACC  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
20 Address Inputs (Common)  
1 Address Input (Flash)  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
VCCf  
VCC  
VSS  
NC  
s
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
21  
A20–A0  
A21  
SA  
16  
CE#f  
DQ15–DQ0  
RY/BY#  
CE1#s  
CE2s  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
May 25, 2004 S71JLxxxHxx_00A3  
23  
P r e l i m i n a r y  
Connection Diagram of S71JL128HB0, Model Numbers 00/01/02  
73-Ball FBGA  
Top View  
Flash 1 only  
Flash 2 only  
A1  
A10  
NC  
NC  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Pseudo SRAM  
only  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
Flash 1 and 2  
shared  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
UB# RESET# CE2s  
Flash 1, 2, and  
Pseudo SRAM  
shared  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
A21  
F9  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
CE#f2  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
HH22  
CE#f1  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
s
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ11  
L5  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
24  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(BGA). The package and/or data integrity may be compromised if the package  
body is exposed to temperatures above 150°C for prolonged periods of time.  
Pin Description  
A20–A0  
A21  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
21 Address Inputs (Common)  
1 Address Input (Flash)  
16 Data Inputs/Outputs (Common)  
Chip Enable 1 (Flash 1)  
Chip Enable 2 (Flash 2)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
DQ15–DQ0  
CE#f1  
CE#f2  
CE1#ps  
CE2ps  
OE#  
WE#  
RY/BY#  
UB#  
Ready/Busy Output  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
LB#  
RESET#  
WP#/ACC  
VCCf  
VCCps  
VSS  
NC  
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
21  
A20–A0  
A21  
16  
CE#f1  
DQ15–DQ0  
RY/BY#  
CE#f2  
CE1#ps  
CE2ps  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
May 25, 2004 S71JLxxxHxx_00A3  
25  
P r e l i m i n a r y  
Connection Diagram of S71JL128HC0, Model Numbers 00/01/02  
88-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
Shared  
A2  
NC  
A10  
NC  
A1  
NC  
A9  
NC  
Flash 1 and 2  
Shared  
B4  
B5  
B6  
NC  
B7  
NC  
B8  
NC  
B9  
NC  
B2  
NC  
B3  
Flash 1 Only  
Flash 2 Only  
SRAM Only  
VSS  
Ry/BY#2 CE#f2  
CC44  
C2  
NC  
C3  
A7  
C5  
C6  
C7  
A8  
C8  
C9  
NC  
LB#  
WP#/Acc  
WE#  
A11  
D4  
D2  
A3  
D3  
A6  
D5  
D7  
D8  
D9  
D6  
UB# RESET#1 CE2s  
A19  
A12  
A15  
E2  
A2  
E3  
A5  
E4  
E5  
E6  
E7  
A9  
E8  
E9  
A18  
RY/BY#1  
A20  
A13  
A21  
F2  
A1  
F3  
A4  
F4  
F5  
F6  
F7  
F8  
F9  
A17  
NC  
NC  
A10  
A14  
NC  
G2  
A0  
G3  
G4  
G5  
NC  
G6  
NC  
G7  
G8  
NC  
G9  
V
DQ1  
DQ6  
A16  
SS  
H4  
H5  
H6  
H7  
H8  
H9  
NC  
HH22  
H3  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
CE#f1  
OE#  
JJ22  
J3  
J4  
JJ45  
J4  
J7  
J8  
J9  
DQ12  
V
CE1#fs  
DQ0  
DQ10  
V
f
V
s
DQ7  
SS  
CC  
CC  
K4  
K5  
K6  
NC  
K7  
K8  
K9  
NC  
K2  
NC  
K3  
DQ2  
DQ11  
L5  
DQ5  
DQ14  
DQ8  
L2  
L3  
L4  
L6  
L7  
L8  
L9  
NC  
NC  
RESET#2  
V
V
f
NC  
NC  
NC  
SS  
CC  
M1  
NC  
M2  
NC  
M9  
NC  
M10  
NC  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PLCC, PDIP, SSOP). The package and/or data integrity may be com-  
promised if the package body is exposed to temperatures above 150°C for  
prolonged periods of time.  
26  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Pin Description  
A21–A0  
DQ15–DQ0  
CE#f1  
CE#f2  
CE1#ps  
CE2ps  
OE#  
WE#  
RY/BY#1  
RY/BY#2  
UB#  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
22 Address Inputs (Common)  
16 Data Inputs/Outputs (Common)  
Chip Enable 1 (Flash 1)  
Chip Enable 2 (Flash 2)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output (Flash 1)  
Ready/Busy Output (Flash 2)  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low (Flash 1)  
Hardware Reset Pin, Active Low (Flash 2)  
Hardware Write Protect/Acceleration Pin (Flash)  
LB#  
RESET#1  
RESET#2  
WP#/ACC  
VCCf  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
VCCps  
VSS  
NC  
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
22  
A21–A0  
16  
CE#f1  
DQ15–DQ0  
CE#f2  
CE1#ps  
RY/BY#1  
RY/BY#2  
CE2ps  
OE#  
WE#  
WP#/ACC  
RESET#1  
RESET#2  
UB#  
LB#  
May 25, 2004 S71JLxxxHxx_00A3  
27  
P r e l i m i n a r y  
Look-ahead Connection Diagram  
96-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
Legend:  
A9  
NC  
A2  
NC  
A10  
NC  
A1  
NC  
ds = Data storage only  
f = Flash shared only  
f1 = 1st Flash only  
f2 = 2nd Flash only  
NC = Outrigger balls  
s = RAM shared  
B9  
NC  
B1  
NC  
B2  
NC  
B10  
NC  
s1 = 1st RAM only  
s2 = 2nd RAM only  
C4  
C5  
C6  
C7  
C8  
C9  
C2  
C3  
AVD#  
VSSds  
CLK  
CE#f2  
VCCds RESET#ds CLKds RY/BY#ds  
D4  
D2  
D3  
A7  
D5  
D6  
D7  
A8  
D8  
D9  
WP#  
LB#s WP#/ACC WE#  
E4 E5 E6  
UB#s RESET#f CE2s1  
A11  
CE1#ds  
E2  
A3  
E3  
A6  
E7  
E8  
E9  
A19  
A12  
A15  
F2  
A2  
F3  
A5  
F4  
F5  
F6  
F7  
A9  
F8  
F9  
A18  
RY/BY#  
A20  
A13  
A21  
G2  
A1  
G3  
A4  
G4  
G5  
G6  
G7  
G8  
G9  
A17  
CE1#s2  
A23  
A10  
A14  
A22  
H2  
A0  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
VSS  
DQ1  
VCCs2  
CE2s2  
DQ6  
A24  
A16  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J2  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
CREs  
CE#f1  
OE#  
K2  
K3  
K4  
KK55  
K6  
K7  
K8  
K9  
DQ12  
VSS  
CE1#s1  
DQ0  
DQ10  
VCCf  
VCCs1  
DQ7  
L4  
L5  
L6  
L7  
L8  
L9  
L2  
L3  
DQ2  
DQ11  
A25  
DQ5  
DQ14 LOCK  
or WP#/ACCds  
VCCds  
DQ8  
M2  
M3  
M4  
M5  
M6  
M7  
M8 M9  
TEST  
A27  
A26  
VSSnds  
VCCf  
or VCCQf  
CE2#ds VCCQs1 VCCQds  
N9  
NC  
N1  
NC  
N2  
NC  
N10  
NC  
P1  
P9  
P2  
P10  
NC  
NC  
NC  
NC  
Note: To provide customers with a migration path to higher densities and an option to stack more die in a package,  
FASL has prepared a standard pinout that supports  
„ NOR Flash and SRAM densities up to 4 Gigabits  
„ NOR Flash and pSRAM densities up to 4 Gigabits  
28  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
„ NOR Flash and pSRAM and DATA STORAGE densities up to 4 Gigabits  
The signal locations of the resultant MCP device are shown above. Note that for different densities, the actual package  
outline may vary. Any pinout in any MCP, however, will be a subset of the pinout above.  
In some cases, there may be outrigger balls in locations outside the grid shown above. In such cases, the user is rec-  
ommended to treat them as reserved and not connect them to any other signal.  
For any further inquiries about the above look-ahead pinout, please refer to the application note on this subject or con-  
tact your sales office.  
May 25, 2004 S71JLxxxHxx_00A3  
29  
P r e l i m i n a r y  
Ordering Information  
The order number (Valid Combination) is formed by the following:  
S
71  
J
L
064 A W 00  
H
A
0
B
0
PACKING TYPE  
0
2
3
= Tray  
= 7” Tape & Reel  
= 13” Tape & Reel  
Additional ordering options  
See Product Selector Guide  
TEMPERATURE (and RELIABILITY) GRADE  
E
W
I
= Engineering Samples  
= Wireless (-25 C to +85  
= Industrial (-40 C to +85  
°
°
C)  
C)  
°
°
PACKAGE MATERIAL SET (BGA Package Type)  
A
= Standard (Pb-free compliant) Package  
F
= Lead (Pb)-free Package  
PACKAGE TYPE  
B
= BGA Package  
CHIP CONTENTS—2  
0
= No second content  
CHIP CONTENTS—1  
8
A
B
C
= 8 Mb  
= 16 Mb  
= 32 Mb  
= 64 Mb  
Spansion FLASH MEMORY PROCESS TECHNOLOGY  
(Highest-density Flash described in Characters 4-8)  
H
= 130 nm Floating Gate Technology  
BASE NOR FLASH DENSITY  
064  
=
one S29JL064H  
128  
=
two S29JL064H  
BASE NOR FLASH CORE VOLTAGE  
L
= 3-volt V  
CC  
BASE NOR FLASH INTERFACE and SIMULTANEOUS READ/  
WRITE  
J
= Simultaneous Read/Write  
PRODUCT FAMILY  
71  
= Flash Base + xRAM.  
PREFIX  
S
= Spansion  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device.  
Consult the local sales office to confirm availability of specific valid combinations and to  
check on newly released combinations.  
Valid Combinations  
Flash Access  
Time (ns)  
(p)SRAM Access  
Time (ns)  
Temperature  
Range  
Order Number  
Package Marking  
71JL064H80BAI01  
71JL064H80BAI02  
71JL064H80BAI10  
71JL064H80BAI11  
Supplier  
S71JL064H80BAI01  
S71JL064H80BAI02  
S71JL064H80BAI10  
S71JL064H80BAI11  
70  
85  
55  
70  
70  
85  
55  
70  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
30  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Valid Combinations  
Order Number  
Flash Access  
Time (ns)  
(p)SRAM Access  
Time (ns)  
Temperature  
Range  
Package Marking  
71JL064H80BAI12  
71JL064H80BAW01  
71JL064H80BAW02  
71JL064H80BAW10  
71JL064H80BAW11  
71JL064H80BAW12  
71JL064H80BFI01  
71JL064H80BFI02  
71JL064H80BFI10  
71JL064H80BFI11  
71JL064H80BFI12  
71JL064H80BFW01  
71JL064H80BFW02  
71JL064H80BFW10  
71JL064H80BFW11  
71JL064H80BFW12  
Supplier  
S71JL064H80BAI12  
S71JL064H80BAW01  
S71JL064H80BAW02  
S71JL064H80BAW10  
S71JL064H80BAW11  
S71JL064H80BAW12  
S71JL064H80BFI01  
S71JL064H80BFI02  
S71JL064H80BFI10  
S71JL064H80BFI11  
S71JL064H80BFI12  
S71JL064H80BFW01  
S71JL064H80BFW02  
S71JL064H80BFW10  
S71JL064H80BFW11  
S71JL064H80BFW12  
85  
85  
70  
85  
55  
70  
85  
70  
85  
55  
70  
85  
70  
85  
55  
70  
85  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
Supplier 2  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
70  
85  
55  
70  
85  
70  
85  
55  
70  
85  
70  
85  
55  
70  
85  
S71JL064HA0BAI01  
S71JL064HA0BAI02  
S71JL064HA0BAI10  
S71JL064HA0BAI11  
S71JL064HA0BAI12  
S71JL064HA0BAI62  
S71JL064HA0BAW01  
S71JL064HA0BAW02  
S71JL064HA0BAW10  
S71JL064HA0BAW11  
S71JL064HA0BAW12  
S71JL064HA0BAW62  
S71JL064HA0BFI01  
S71JL064HA0BFI02  
S71JL064HA0BFI10  
S71JL064HA0BFI11  
S71JL064HA0BFI12  
S71JL064HA0BFI62  
71JL064HA0BAI01  
71JL064HA0BAI02  
71JL064HA0BAI10  
71JL064HA0BAI11  
71JL064HA0BAI12  
71JL064HA0BAI62  
71JL064HA0BAW01  
71JL064HA0BAW02  
71JL064HA0BAW10  
71JL064HA0BAW11  
71JL064HA0BAW12  
71JL064HA0BAW62  
71JL064HA0BFI01  
71JL064HA0BFI02  
71JL064HA0BFI10  
71JL064HA0BFI11  
71JL064HA0BFI12  
71JL064HA0BFI62  
70  
85  
55  
70  
85  
70  
70  
85  
55  
70  
85  
70  
70  
85  
55  
70  
85  
70  
70  
85  
55  
70  
85  
70  
70  
85  
55  
70  
85  
70  
70  
85  
55  
70  
85  
70  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 4  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 4  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 4  
May 25, 2004 S71JLxxxHxx_00A3  
31  
P r e l i m i n a r y  
Valid Combinations  
Order Number  
Flash Access  
Time (ns)  
(p)SRAM Access  
Temperature  
Range  
Package Marking  
71JL064HA0BFW01  
71JL064HA0BFW02  
71JL064HA0BFW10  
71JL064HA0BFW11  
71JL064HA0BFW12  
71JL064HA0BFW62  
Time (ns)  
Supplier  
S71JL064HA0BFW01  
S71JL064HA0BFW02  
S71JL064HA0BFW10  
S71JL064HA0BFW11  
S71JL064HA0BFW12  
S71JL064HA0BFW62  
70  
85  
55  
70  
85  
70  
70  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
Supplier 1  
Supplier 1  
Supplier 2  
Supplier 2  
Supplier 2  
Supplier 4  
85  
55  
70  
85  
70  
S71JL064HB0BAI00  
S71JL064HB0BAI01  
S71JL064HB0BAI02  
S71JL064HB0BAW00  
S71JL064HB0BAW01  
S71JL064HB0BAW02  
S71JL064HB0BFI00  
S71JL064HB0BFI01  
S71JL064HB0BFI02  
S71JL064HB0BFW00  
S71JL064HB0BFW01  
S71JL064HB0BFW02  
71JL064HB0BAI00  
71JL064HB0BAI01  
71JL064HB0BAI02  
71JL064HB0BAW00  
71JL064HB0BAW01  
71JL064HB0BAW02  
71JL064HB0BFI00  
71JL064HB0BFI01  
71JL064HB0BFI02  
71JL064HB0BFW00  
71JL064HB0BFW01  
71JL064HB0BFW02  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
S71JL128HB0BAI00  
S71JL128HB0BAI01  
S71JL128HB0BAI02  
S71JL128HB0BAW00  
S71JL128HB0BAW01  
S71JL128HB0BAW02  
S71JL128HB0BFI00  
S71JL128HB0BFI01  
S71JL128HB0BFI02  
S71JL128HB0BFW00  
S71JL128HB0BFW01  
S71JL128HB0BFW02  
71JL128HB0BAI00  
71JL128HB0BAI01  
71JL128HB0BAI02  
71JL128HB0BAW00  
71JL128HB0BAW01  
71JL128HB0BAW02  
71JL128HB0BFI00  
71JL128HB0BFI01  
71JL128HB0BFI02  
71JL128HB0BFW00  
71JL128HB0BFW01  
71JL128HB0BFW02  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
S71JL128HC0BAI00  
S71JL128HC0BAI01  
71JL128HC0BAI00  
71JL128HC0BAI01  
55  
70  
55  
70  
-40C to +85C  
-40C to +85C  
Supplier 3  
Supplier 3  
32  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
Valid Combinations  
Order Number  
Flash Access  
Time (ns)  
(p)SRAM Access  
Time (ns)  
Temperature  
Range  
Package Marking  
71JL128HC0BAI02  
71JL128HC0BAW00  
71JL128HC0BAW01  
71JL128HC0BAW02  
71JL128HC0BFI00  
71JL128HC0BFI01  
71JL128HC0BFI02  
71JL128HC0BFW00  
71JL128HC0BFW01  
71JL128HC0BFW02  
Supplier  
S71JL128HC0BAI02  
S71JL128HC0BAW00  
S71JL128HC0BAW01  
S71JL128HC0BAW02  
S71JL128HC0BFI00  
S71JL128HC0BFI01  
S71JL128HC0BFI02  
S71JL128HC0BFW00  
S71JL128HC0BFW01  
S71JL128HC0BFW02  
85  
85  
55  
70  
85  
55  
70  
85  
55  
70  
85  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-25C to +85C  
-25C to +85C  
-25C to +85C  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
Supplier 3  
55  
70  
85  
55  
70  
85  
55  
70  
85  
May 25, 2004 S71JLxxxHxx_00A3  
33  
P r e l i m i n a r y  
Physical Dimensions  
FLB073  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
E1  
5
4
eE  
3
2
1
L
J
H G F E D C B A  
M
K
INDEX MARK  
10  
PIN A1  
PIN A1  
CORNER  
B
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
C
A2  
A
0.08  
C
C
A1  
6
73X  
b
0.15 M C  
0.08 M C  
A B  
NOTES:  
PACKAGE  
JEDEC  
FLB 073  
N/A  
11.60 mm x 8.00 mm  
PACKAGE  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
NOTE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
SYMBOL  
A
MIN.  
---  
NOM.  
MAX.  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
---  
1.40  
---  
PROFILE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A1  
0.20  
0.95  
---  
---  
BALL HEIGHT  
BODY THICKNESS  
BODY SIZE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
A2  
1.13  
D
11.60 BSC.  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
E
8.00 BSC.  
8.80 BSC.  
BODY SIZE  
D1  
MATRIX FOOTPRINT  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E1  
7.20 BSC.  
12  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
MATRIX SIZE D DIRECTION  
MD  
ME  
n
10  
MATRIX SIZE E DIRECTION  
BALL COUNT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
73  
Ob  
0.25  
0.30  
0.35  
BALL DIAMETER  
BALL PITCH  
eE  
0.80 BSC  
0.80 BSC  
0.40 BSC  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
eD  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
SD/SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B2,B3,B4,B7,B8,B9  
C2,C9,C10,D1,D10,E1,E10  
F5,F6,G5,G6,H1,H10  
DEPOPULATED SOLDER BALL  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
9. N/A  
J1,J10,K1,K2, K9,K10,L2,L3,L4,L7,L8,L9  
M2,M3,M4,M5,M6,M7,M8,M9  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTION OR OTHER MEANS.  
3188\38.14b  
34  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
FLJ073  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
73X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
PACKAGE  
JEDEC  
FLJ 073  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER ASME  
Y14.5M-1994.  
11.60 mm x 8.00 mm  
PACKAGE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.40  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.25  
0.95  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E"  
DIRECTION.  
A2  
---  
1.13  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULATED SOLDER BALL  
POSITIONS FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
73  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = 0.000.  
φb  
0.30  
0.35  
0.40  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF  
DEPOPULATED BALLS.  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9,B2,B3,B4,B7,B8,B9  
9. NOT USED.  
C2,C9,C10,D1,D10,E1,E10,F5,F6,G5,G6,H1,H10 DEPOPULATED SOLDER BALLS  
J1,J10,K1,K2,K9,K10,L2,L3,L4,L7,L8,L9  
10. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
M2,M3,M4,M5,M6,M7,M8,M9  
3232 \ 16-038.14b  
May 25, 2004 S71JLxxxHxx_00A3  
35  
P r e l i m i n a r y  
FTA073  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
E1  
5
4
3
2
1
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
PIN A1  
CORNER  
B
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
73X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
PACKAGE  
JEDEC  
FTA 073  
N/A  
11.60 mm x 8.00 mm  
PACKAGE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
NOTE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
4. REPRESENTS THE SOLDER BALL GRID PITCH.  
SYMBOL  
A
MIN.  
NOM.  
MAX.  
e
---  
---  
1.40  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
A1  
0.25  
1.00  
---  
---  
BALL HEIGHT  
BODY THICKNESS  
BODY SIZE  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
1.11  
D
11.60 BSC.  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
8.00 BSC.  
8.80 BSC.  
BODY SIZE  
D1  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
7.20 BSC.  
12  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MD  
ME  
n
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
10  
MATRIX SIZE E DIRECTION  
BALL COUNT  
73  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Ob  
0.30  
0.35  
0.40  
BALL DIAMETER  
BALL PITCH  
eE  
0.80 BSC  
0.80 BSC  
0.40 BSC  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eD  
BALL PITCH  
SD/SE  
SOLDER BALL PLACEMENT  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
A2,A3,A4,A5,A6,A7,A8,A9  
B2,B3,B4,B7,B8,B9,C2,C9,C10  
D1,D10,E1,E10,F5,F6,G5,G6  
H1,H10,J1,J10,K1,K2,K9,K10  
L2,L3,L4,L7,L8,L9  
DEPOPULATED SOLDER BALL  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTION OR OTHER MEANS.  
M2,M3,M4,M5,M6,M7,M8,M9  
3159\38.14b  
36  
S71JLxxxHxx_00A3 May 25, 2004  
P r e l i m i n a r y  
FTA088  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
88X  
b
M
0.15  
C
C
A B  
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
FTA 088  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.40  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.25  
1.00  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
1.11  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
88  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.30  
0.35  
0.40  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A3,A4,A5,A6,A7,A8,B1,B10,C1,C10,D1,D10 DEPOPULATED SOLDER BALLS  
E1,E10,F1,F10,G1,G10,H1,H10  
J1,J10,K1,K10,L1,L10,M3,M4,M5,M6,M7,M8  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3237 \ 16-038.14b  
May 25, 2004 S71JLxxxHxx_00A3  
37  
P r e l i m i n a r y  
38  
S71JLxxxHxx_00A3 May 25, 2004  
S29JL064H  
For Multi-Chip Products (MCP)  
64 Megabit (8 M x 8-Bit/4 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Read/Write  
Flash Memory  
PRELIMINARY  
Distinctive Characteristics  
— 10 mA active read current at 5 MHz  
— 200 nA in standby or automatic sleep mode  
Architectural Advantages  
„
Simultaneous Read/Write operations  
„
„
Cycling Endurance: 1 million cycles per sector  
typical  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank.  
— Zero latency between read and write operations  
Data Retention: 20 years typical  
„
Flexible Bank architecture  
Software Features  
— Read may occur in any of the three banks not being  
written or erased.  
— Four banks may be grouped by customer to achieve  
desired bank divisions.  
„
Supports Common Flash Memory Interface (CFI)  
„
Erase Suspend/Erase Resume  
— Suspends erase operations to read data from, or  
program data to, a sector that is not being erased,  
then resumes the erase operation.  
„
Boot Sectors  
Top and bottom boot sectors in the same device  
— Any combination of sectors can be erased  
„
„
Data# Polling and Toggle Bits  
— Provides a software method of detecting the status of  
program or erase cycles  
„
„
Manufactured on 130 nm process technology  
SecSi™ (Secured Silicon) Sector: Extra 256 Byte  
sector  
Unlock Bypass Program command  
Factory locked and identifiable: 16 bytes available for  
secure, random factory Electronic Serial Number;  
verifiable as factory locked through autoselect  
function.  
— Reduces overall programming time when issuing  
multiple program command sequences  
Hardware Features  
Customer lockable: One-time programmable only.  
Once locked, data cannot be changed  
„
„
„
Ready/Busy# output (RY/BY#)  
— Hardware method for detecting program or erase  
cycle completion  
„
„
Zero Power Operation  
— Sophisticated power management circuits reduce  
power consumed during inactive periods to nearly  
zero.  
Hardware reset pin (RESET#)  
— Hardware method of resetting the internal state  
machine to the read mode  
Compatible with JEDEC standards  
— Pinout and software compatible with single-power-  
supply flash standard  
WP#/ACC input pin  
— Write protect (WP#) function protects sectors 0, 1,  
140, and 141, regardless of sector protect status  
— Acceleration (ACC) function accelerates program  
timing  
Performance Characteristics  
„
High performance  
— Access time as fast as 55 ns  
— Program time: 4 µs/word typical using accelerated  
programming function  
Ultra low power consumption (typical values)  
— 2 mA active read current at 1 MHz  
„
Sector protection  
— Hardware method to prevent any program or erase  
operation within a sector  
Temporary Sector Unprotect allows changing data in  
protected sectors in-system  
„
Publication Number S29JL064H Revision A Amendment 1 Issue Date May 7, 2004  
This document contains information on a product under development at FASL LLC. The information is intended to help you evaluate this product. FASL LLC reserves the  
right to change or discontinue work on this proposed product without notice.  
P r e l i m i n a r y  
General Description  
The S29JL064H is a 64 megabit, 3.0 volt-only flash memory device, organized as  
4,194,304 words of 16 bits each or 8,388,608 bytes of 8 bits each. Word mode  
Data appears on DQ15–DQ0; byte mode data appears on DQ7–DQ0. The device  
is designed to be programmed in-system with the standard 3.0 volt VCC supply,  
and can also be programmed in standard EPROM programmers.  
Standard control pins—chip enable (CE#), write enable (WE#), and output en-  
able (OE#)—control normal read and write operations, and avoid bus contention  
issues.  
The device requires only a single 3.0 volt power supply for both read and write  
functions. Internally generated and regulated voltages are provided for the pro-  
gram and erase operations.  
Simultaneous Read/Write Operations with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation  
by dividing the memory space into four banks, two 8 Mb banks with small and  
large sectors, and two 24 Mb banks of large sectors. Sector addresses are fixed,  
system software can be used to form user-defined bank groups.  
During an Erase/Program operation, any of the three non-busy banks may be  
read from. Note that only two banks can operate simultaneously. The device can  
improve overall system performance by allowing a host system to program or  
erase in one bank, then immediately and simultaneously read from the other  
bank, with zero latency. This releases the system from waiting for the completion  
of program or erase operations.  
The S29JL064H can be organized as both a top and bottom boot sector  
configuration.  
Bank  
Megabits  
Sector Sizes  
Eight 8 Kbyte/4 Kword,  
Fifteen 64 Kbyte/32 Kword  
Bank 1  
8 Mb  
Bank 2  
Bank 3  
24 Mb  
24 Mb  
Forty-eight 64 Kbyte/32 Kword  
Forty-eight 64 Kbyte/32 Kword  
Eight 8 Kbyte/4 Kword,  
Fifteen 64 Kbyte/32 Kword  
Bank 4  
8 Mb  
S29JL064H Features  
The SecSi™ (Secured Silicon) Sector is an extra 256 byte sector capable of  
being permanently locked by FASL or customers. [The SecSi Customer Indicator  
Bit (DQ6) is permanently set to 1 if the part has been customer locked and per-  
manently set to 0 if the part has been factory locked.] This way, customer  
lockable parts can never be used to replace a factory locked part.  
Factory locked parts provide several options. The SecSi Sector may store a se-  
cure, random 16 byte ESN (Electronic Serial Number), customer code  
(programmed through Spansion programming services), or both. Customer Lock-  
able parts may utilize the SecSi Sector as bonus space, reading and writing like  
any other flash sector, or may permanently lock their own code there.  
DMS (Data Management Software) allows systems to easily take advantage  
of the advanced architecture of the simultaneous read/write product line by al-  
2
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
lowing removal of EEPROM devices. DMS will also allow the system software to  
be simplified, as it will perform all functions necessary to modify data in file struc-  
tures, as opposed to single-byte modifications. To write or update a particular  
piece of data (a phone number or configuration data, for example), the user only  
needs to state which piece of data is to be updated, and where the updated data  
is located in the system. This is an advantage compared to systems where user-  
written software must keep track of the old data location, status, logical to phys-  
ical translation of the data onto the Flash memory device (or memory devices),  
and more. Using DMS, user-written software does not need to interface with the  
Flash memory directly. Instead, the user's software accesses the Flash memory  
by calling one of only six functions.  
The device offers complete compatibility with the JEDEC 42.4 sin-  
gle-power-supply Flash command set standard. Commands are written to  
the command register using standard microprocessor write timings. Reading data  
out of the device is similar to reading from other Flash or EPROM devices.  
The host system can detect whether a program or erase operation is complete by  
using the device status bits: RY/BY# pin, DQ7 (Data# Polling) and DQ6/DQ2  
(toggle bits). After a program or erase cycle has been completed, the device au-  
tomatically returns to the read mode.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of the sectors of memory. This can be achieved in-system or via  
programming equipment.  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consump-  
tion is greatly reduced in both modes.  
May 7, 2004 S29JL064HA1  
S29JL064H  
3
P r e l i m i n a r y  
Product Selector Guide  
Part Number  
S29JL064H  
Speed Option  
Standard Voltage Range: V  
CC  
= 2.7–3.6 V  
55  
55  
55  
25  
70  
70  
70  
30  
85  
85  
85  
40  
Max Access Time (ns), tACC  
CE# Access (ns), tCE  
OE# Access (ns), tOE  
Block Diagram  
OE# BYTE#  
ux  
Bank 1  
Bank 1 Address  
X-Decoder  
Bank 2 Address  
/BY#  
Bank 2  
X-Decoder  
L
Status  
D
R
Control  
X-Decoder  
Bank 3  
Bank 3 Address  
X-Decoder  
Bank 4  
Bank 4 Address  
ux  
4
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Pin Description  
A21–A0  
DQ14–DQ0  
DQ15/A-1  
=
=
=
22 Addresses  
15 Data Inputs/Outputs (x16-only devices)  
DQ15 (Data Input/Output, word mode), A-1 (LSB  
Address Input, byte mode)  
CE#  
OE#  
WE#  
WP#/ACC  
=
=
=
=
Chip Enable  
Output Enable  
Write Enable  
Hardware Write Protect/  
Acceleration Pin  
RESET#  
BYTE#  
RY/BY#  
VCC  
=
=
=
=
Hardware Reset Pin, Active Low  
Selects 8-bit or 16-bit mode  
Ready/Busy Output  
3.0 volt-only single power supply  
(see Product Selector Guide for speed  
options and voltage supply tolerances)  
VSS  
NC  
=
=
Device Ground  
Pin Not Connected Internally  
Logic Symbol  
22  
A21–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
May 7, 2004 S29JL064HA1  
S29JL064H  
5
P r e l i m i n a r y  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. S29JL064H Device Bus Operations  
DQ15–DQ8  
Addresses  
(Note 2)  
BYTE#  
= V  
BYTE#  
= V  
DQ7–  
DQ0  
Operation  
CE# OE# WE# RESET# WP#/ACC  
IH  
IL  
Read  
Write  
L
L
L
H
L
H
H
L/H  
AIN  
AIN  
DOUT  
DIN  
DOUT  
DIN  
DQ14–DQ8 = High-  
Z, DQ15 = A-1  
H
(Note 3)  
VCC  
0.3 V  
VCC  
0.3 V  
Standby  
X
X
L/H  
X
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
X
SA, A6 = L,  
A1 = H, A0 = L  
Sector Protect (Note 2)  
L
L
H
H
X
L
L
VID  
VID  
VID  
L/H  
X
X
X
X
DIN  
DIN  
DIN  
SA, A6 = H,  
A1 = H, A0 = L  
Sector Unprotect (Note 2)  
(Note 3)  
(Note 3)  
Temporary Sector  
Unprotect  
X
X
AIN  
DIN  
High-Z  
Legend: L = Logic Low = V , H = Logic High = V , V = 11.5–12.5 V, V = 9.0 ± 0.5 V, X = Don’t Care, SA = Sector  
HH  
IL  
IH  
ID  
Address, A = Address In, D = Data In, D = Data Out  
IN  
IN  
OUT  
Notes:  
1. Addresses are A21:A0 in word mode (BYTE# = V ), A21:A-1 in byte mode (BYTE# = V ).  
IH  
IL  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See  
the “Sector/Sector Block Protection and Unprotection” section.  
3. If WP#/ACC = V , sectors 0, 1, 140, and 141 remain protected. If WP#/ACC = V , protection on sectors 0, 1, 140,  
IL  
IH  
and 141 depends on whether they were last protected or unprotected using the method described in “Sector/Sector  
Block Protection and Unprotection”. If WP#/ACC = V , all sectors will be unprotected.  
HH  
6
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Word/Byte Configuration  
The BYTE# pin controls whether the device data I/O pins operate in the byte or  
word configuration. If the BYTE# pin is set at logic ‘1, the device is in word con-  
figuration, DQ15–DQ0 are active and controlled by CE# and OE#.  
If the BYTE# pin is set at logic ‘0’, the device is in byte configuration, and only  
data I/O pins DQ7–DQ0 are active and controlled by CE# and OE#. The data I/  
O pins DQ14–DQ8 are tri-stated, and the DQ15 pin is used as an input for the  
LSB (A-1) address function.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE#  
pins to VIL. CE# is the power control and selects the device. OE# is the output  
control and gates array data to the output pins. WE# should remain at VIH. The  
BYTE# pin determines whether the device outputs array data in words or bytes.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. Each bank remains enabled for read access until the command register  
contents are altered.  
Refer to the AC Read-Only Operations table for timing specifications and to 14 for  
the timing diagram. ICC1 in the DC Characteristics table represents the active cur-  
rent specification for reading array data.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH  
.
For program operations, the BYTE# pin determines whether the device accepts  
program data in bytes or words. Refer to “Word/Byte Configuration” for more  
information.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once a bank enters the Unlock Bypass mode, only two write cycles are required  
to program a word or byte, instead of four. The “Byte/Word Program Command  
Sequence” section has details on programming data to the device using both  
standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 3 indicates the address space that each sector occupies. Similarly, a sector  
address” is the address bits required to uniquely select a sector. The “Command  
Definitions” section has details on erasing a sector or the entire chip, or suspend-  
ing/resuming the erase operation.  
The device address space is divided into four banks. A “bank address” is the ad-  
dress bits required to uniquely select a bank.  
ICC2 in the DC Characteristics table represents the active current specification for  
the write mode. The AC Characteristics section contains timing specification ta-  
bles and timing diagrams for write operations.  
May 7, 2004 S29JL064HA1  
S29JL064H  
7
P r e l i m i n a r y  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
is one of two functions provided by the WP#/ACC pin. This function is primarily  
intended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the time required for program  
operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin re-  
turns the device to normal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result. See “Write Protect  
(WP#)” on page 17. for related information.  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ15–DQ0. Standard  
read cycle timings apply in this mode. Refer to the Autoselect Mode and Autose-  
lect Command Sequence sections for more information.  
Simultaneous Read/Write Operations with Zero Latency  
This device is capable of reading data from one bank of memory while program-  
ming or erasing in the other bank of memory. An erase operation may also be  
suspended to read from or program to another location within the same bank (ex-  
cept the sector being erased). Figure 21 shows how read and write cycles may be  
initiated for simultaneous operation with zero latency. ICC6 and ICC7 in the DC  
Characteristics table represent the current specifications for read-while-program  
and read-while-erase, respectively.  
8
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at VCC ± 0.3 V. (Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within VCC ± 0.3 V, the device  
will be in the standby mode, but the standby current will be greater. The device  
requires standard access time (tCE) for read access when the device is in either  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
ICC3 in the DC Characteristics table represents the standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. ICC5 in the DC Characteristics table represents the automatic sleep  
mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin re-  
mains a “0” (busy) until the internal reset operation is complete, which requires  
a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/  
BY# to determine whether the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing (RY/BY# pin is “1”), the reset  
operation is completed within a time of tREADY (not during Embedded Algorithms).  
The system can read data tRH after the RESET# pin returns to VIH  
.
Refer to the AC Characteristics tables for RESET# parameters and to 15 for the  
timing diagram.  
May 7, 2004 S29JL064HA1  
S29JL064H  
9
P r e l i m i n a r y  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
are placed in the high impedance state.  
10  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Table 2. S29JL064H Sector Architecture  
Sector Size  
(Kbytes/  
Kwords)  
Sector Address  
(x8)  
Address Range  
(x16)  
Address Range  
Bank  
Sector  
A21–A12  
SA0  
SA1  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001110xxx  
0001111xxx  
8/4  
8/4  
000000h–001FFFh  
002000h–003FFFh  
004000h–005FFFh  
006000h–007FFFh  
008000h–009FFFh  
00A000h–00BFFFh  
00C000h–00DFFFh  
00E000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
SA2  
8/4  
SA3  
8/4  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
Bank 1  
May 7, 2004 S29JL064HA1  
S29JL064H  
11  
P r e l i m i n a r y  
Table 2. S29JL064H Sector Architecture (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Sector Address  
A21–A12  
(x8)  
Address Range  
(x16)  
Address Range  
Bank  
Sector  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
0100010xxx  
0101011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0110100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Bank 2  
12  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Table 2. S29JL064H Sector Architecture (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Sector Address  
A21–A12  
(x8)  
Address Range  
(x16)  
Address Range  
Bank  
Sector  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
Bank 3  
May 7, 2004 S29JL064HA1  
S29JL064H  
13  
P r e l i m i n a r y  
Table 2. S29JL064H Sector Architecture (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Sector Address  
A21–A12  
(x8)  
Address Range  
(x16)  
Address Range  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7F1FFFh  
7F2000h–7F3FFFh  
7F4000h–7F5FFFh  
7F6000h–7F7FFFh  
7F8000h–7F9FFFh  
7FA000h–7FBFFFh  
7FC000h–7FDFFFh  
7FE000h–7FFFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
Bank 4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note: The address range is A21:A-1 in byte mode (BYTE#=VIL) or A21:A0 in word mode (BYTE#=VIH).  
Table 3. Bank Address  
Bank  
A21–A19  
000  
1
2
3
4
001, 010, 011  
100, 101, 110  
111  
Table 4. SecSiTM Sector Addresses  
(x8)  
(x16)  
Device  
Sector Size  
Address Range  
Address Range  
S29JL064H  
256 bytes  
000000h–0000FFh  
000000h–00007Fh  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output on DQ7–DQ0. This mode  
is primarily intended for programming equipment to automatically match a device  
to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
14  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Sector/Sector Block Protection and Unprotection  
(Note: For the following discussion, the term “sector” applies to both sectors and  
sector blocks. A sector block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Table 5).  
The hardware sector protection feature disables both program and erase opera-  
tions in any sector. The hardware sector unprotection feature re-enables both  
program and erase operations in previously protected sectors. Sector protection/  
unprotection can be implemented via two methods.  
Table 5. S29JL064H Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector/  
Sector  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
A21–A12  
Sector Block Size  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
0000001XXX,  
0000010XXX,  
0000011XXX,  
SA8–SA10  
192 (3x64) Kbytes  
SA11–SA14  
SA15–SA18  
SA19–SA22  
SA23–SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55–SA58  
SA59–SA62  
SA63–SA66  
SA67–SA70  
SA71–SA74  
SA75–SA78  
SA79–SA82  
SA83–SA86  
SA87–SA90  
SA91–SA94  
SA95–SA98  
SA99–SA102  
SA103–SA106  
SA107–SA110  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
May 7, 2004 S29JL064HA1  
S29JL064H  
15  
P r e l i m i n a r y  
Sector/  
Sector  
A21–A12  
Sector Block Size  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
SA111–SA114  
SA115–SA118  
SA119–SA122  
SA123–SA126  
SA127–SA130  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX,  
1111101XXX,  
1111110XXX  
SA131–SA133  
192 (3x64) Kbytes  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
16  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Sector protect/Sector Unprotect requires VID on the RESET# pin only, and can be  
implemented either in-system or via programming equipment. Figure 2 shows  
the algorithms and Figure 26 shows the timing diagram. For sector unprotect, all  
unprotected sectors must first be protected prior to the first sector unprotect  
write cycle. Note that the sector unprotect algorithm unprotects all sectors in par-  
allel. All previously protected sectors must be individually re-protected. To  
change data in protected sectors efficiently, the temporary sector unprotect func-  
tion is available. See Temporary Sector Unprotect” .  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming service enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See the  
Autoselect Mode section for details.  
Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting without  
using VID. This function is one of two provided by the WP#/ACC pin.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in sectors 0, 1, 140, and 141, independently of whether those  
sectors were protected or unprotected using the method described in “Sector/  
Sector Block Protection and Unprotection”.  
If the system asserts VIH on the WP#/ACC pin, the device reverts to whether sec-  
tors 0, 1, 140, and 141 were last set to be protected or unprotected. That is,  
sector protection or unprotection for these sectors depends on whether they were  
last protected or unprotected using the method described in “Sector/Sector Block  
Protection and Unprotection”.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent  
behavior of the device may result.  
Table 6. WP#/ACC Modes  
Device  
WP# Input Voltage  
Mode  
VIL  
Disables programming and erasing in SA0, SA1, SA140, and SA141  
Enables programming and erasing in SA0, SA1, SA140, and SA141, dependent on  
whether they were last protected or unprotected.  
VIH  
Enables accelerated progamming (ACC). See “Accelerated Program Operation” on  
page 8..  
VHH  
Temporary Sector Unprotect  
(Note: For the following discussion, the term “sector” applies to both sectors and  
sector blocks. A sector block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Table 5).  
This feature allows temporary unprotection of previously protected sectors to  
change data in-system. The Temporary Sector Unprotect mode is activated by  
setting the RESET# pin to VID. During this mode, formerly protected sectors can  
be programmed or erased by selecting the sector addresses. Once VID is removed  
from the RESET# pin, all the previously protected sectors are protected again.  
shows the algorithm, and 25 shows the timing diagrams, for this feature. If the  
WP#/ACC pin is at VIL, sectors 0, 1, 140, and 141 will remain protected during  
the Temporary sector Unprotect mode.  
May 7, 2004 S29JL064HA1  
S29JL064H  
17  
P r e l i m i n a r y  
.
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC =  
V , sectors 0, 1, 140, and 141 will remain  
IL  
protected).  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
18  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
Wait 1 ms  
Wait 1 ms  
unprotect address  
No  
No  
First Write  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
A1 = 1, A0 = 0  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
No  
from RESET#  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 2. In-System Sector Protect/Unprotect Algorithms  
May 7, 2004 S29JL064HA1  
S29JL064H  
19  
P r e l i m i n a r y  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region  
The SecSi (Secured Silicon) Sector feature provides a Flash memory region that  
enables permanent part identification through an Electronic Serial Number  
(ESN). The SecSi Sector is 256 bytes in length, and uses a SecSi Sector Indicator  
Bit (DQ7) to indicate whether or not the SecSi Sector is locked when shipped from  
the factory. This bit is permanently set at the factory and cannot be changed,  
which prevents cloning of a factory locked part. This ensures the security of the  
ESN once the product is shipped to the field.  
The product is available with the SecSi Sector either factory locked or customer  
lockable. The factory-locked version is always protected when shipped from the  
factory, and has the SecSi (Secured Silicon) Sector Indicator Bit permanently set  
to a “1.The customer-lockable version is shipped with the SecSi Sector unpro-  
tected, allowing customers to utilize the that sector in any manner they choose.  
The customer-lockable version has the SecSi (Secured Silicon) Sector Indicator  
Bit permanently set to a “0.Thus, the SecSi Sector Indicator Bit prevents cus-  
tomer-lockable devices from being used to replace devices that are factory  
locked. The SecSi Customer Indicator Bit (DQ6) is permanently set to 1 if the part  
has been customer locked, permanently set to 0 if the part has been factory  
locked, and is 0 if customer lockable.  
The system accesses the SecSi Sector Secure through a command sequence (see  
“Enter SecSi™ Sector/Exit SecSi Sector Command Sequence”). After the system  
has written the Enter SecSi Sector command sequence, it may read the SecSi  
Sector by using the addresses normally occupied by the boot sectors. This mode  
of operation continues until the system issues the Exit SecSi Sector command se-  
quence, or until power is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands to the first 256 bytes of  
Sector 0. Note that the ACC function and unlock bypass modes are not available  
when the SecSi Sector is enabled.  
Factory Locked: SecSi Sector Programmed and Protected At the Factory  
In a factory locked device, the SecSi Sector is protected when the device is  
shipped from the factory. The SecSi Sector cannot be modified in any way. The  
device is preprogrammed with both a random number and a secure ESN. The 8-  
word random number is at addresses 000000h–000007h in word mode (or  
000000h–00000Fh in byte mode). The secure ESN is programmed in the next 8  
words at addresses 000008h–00000Fh (or 000010h–00001Fh in byte mode). The  
device is available preprogrammed with one of the following:  
„
„
„
A random, secure ESN only  
Customer code through Spansion programming services  
Both a random, secure ESN and customer code through Spansion program-  
ming services  
Contact an your local sales office for details on using Spansion programming  
services.  
Customer Lockable: SecSi Sector NOT Programmed or Protected At the Factory  
If the security feature is not required, the SecSi Sector can be treated as an ad-  
ditional Flash memory space. The SecSi Sector can be read any number of times,  
but can be programmed and locked only once. Note that the accelerated pro-  
gramming (ACC) and unlock bypass functions are not available when  
programming the SecSi Sector.  
20  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
The SecSi Sector area can be protected using one of the following procedures:  
„
Write the three-cycle Enter SecSi Sector Region command sequence, and  
then follow the in-system sector protect algorithm as shown in Figure 2, ex-  
cept that RESET# may be at either VIH or VID. This allows in-system protec-  
tion of the SecSi Sector Region without raising any device pin to a high  
voltage. Note that this method is only applicable to the SecSi Sector.  
„
To verify the protect/unprotect status of the SecSi Sector, follow the algo-  
rithm shown in Figure 3.  
Once the SecSi Sector is locked and verified, the system must write the Exit SecSi  
Sector Region command sequence to return to reading and writing the remainder  
of the array.  
The SecSi Sector lock must be used with caution since, once locked, there is no  
procedure available for unlocking the SecSi Sector area and none of the bits in  
the SecSi Sector memory space can be modified in any way.  
START  
If data = 00h,  
RESET# =  
SecSi Sector is  
unprotected.  
VIH or VID  
If data = 01h,  
SecSi Sector is  
protected.  
Wait 1 ms  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
command  
A1 = 1, A0 = 0  
Write reset  
SecSi Sector  
Protect Verify  
Sector address  
complete  
Read from SecSi  
with A6 = 0,  
A1 = 1, A0 = 0  
Figure 3. SecSi Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes (refer to Table 4 for command  
definitions). In addition, the following hardware data protection measures pre-  
vent accidental erasure or programming, which might otherwise be caused by  
spurious system level signals during VCC power-up and power-down transitions,  
or from system noise.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
May 7, 2004 S29JL064HA1  
S29JL064H  
21  
P r e l i m i n a r y  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write  
cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# =  
VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to the read mode on power-up.  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The system can read CFI information  
at the addresses given in Tables 1–3. To terminate reading CFI data, the system  
must write the reset command.The CFI Query mode is not accessible when the  
device is executing an Embedded Program or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 1–3. The system must write the reset  
command to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Contact your local sales office for copies of these documents.  
22  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Table 1. CFI Query Identification String  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 7. System Interface String  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
36h  
38h  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
May 7, 2004 S29JL064HA1  
S29JL064H  
23  
P r e l i m i n a r y  
Table 2. Device Geometry Definition  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0017h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
007Dh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
24  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Table 3. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
Query-unique ASCII string “PRI”  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
000Ch  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
46h  
47h  
48h  
8Ch  
8Eh  
90h  
0002h  
0001h  
0001h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
49h  
92h  
0004h  
01 =29F040 mode, 02 = 29F016 mode, 03 = 29F400, 04 = 29LV800  
mode  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors (excluding Bank 1)  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0077h  
0000h  
0000h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
0085h  
0095h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = 8 x 8 Kbyte Sectors, Top And Bottom  
Boot with Write Protect, 02h = Bottom Boot Device, 03h = Top Boot  
Device, 04h= Both Top and Bottom  
4Fh  
9Eh  
0001h  
Program Suspend  
50h  
57h  
58h  
59h  
5Ah  
5Bh  
A0h  
AEh  
B0h  
B2h  
B4h  
B6h  
0001h  
0004h  
0017h  
0030h  
0030h  
0017h  
0 = Not supported, 1 = Supported  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
May 7, 2004 S29JL064HA1  
S29JL064H  
25  
P r e l i m i n a r y  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 4 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the im-  
proper sequence may place the device in an unknown state. A reset command is  
then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristics section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank  
enters the erase-suspend-read mode, after which the system can read data from  
any non-erase-suspended sector within the same bank. The system can read  
array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing  
a programming operation in the Erase Suspend mode, the system may once  
again read array data with the same exception. See the Erase Suspend/Erase Re-  
sume Commands section for more information.  
The system must issue the reset command to return a bank to the read (or erase-  
suspend-read) mode if DQ5 goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the next section, Reset  
Command, for more information.  
See also Requirements for Reading Array Data in the Device Bus Operations sec-  
tion for more information. The Read-Only Operations table provides the read  
parameters, and 14 shows the timing diagram.  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the bank to which  
the system was writing to the read mode. If the program command sequence is  
written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while  
in the Erase Suspend mode, writing the reset command returns that bank to the  
erase-suspend-read mode.  
26  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the banks to the read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
The autoselect command sequence may be written to an address within a bank  
that is either in the read or erase-suspend-read mode. The autoselect command  
may not be written while the device is actively programming or erasing in another  
bank.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autoselect mode. The system may  
read any number of autoselect codes without reinitiating the command sequence.  
Table 4 shows the address and data requirements. To determine sector protection  
information, the system must write to the appropriate bank address (BA) and  
sector address (SA). Table 3 shows the address range and bank number associ-  
ated with each sector.  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the bank was previously in Erase Suspend).  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence  
The SecSi Sector region provides a secured data area containing a random, six-  
teen-byte electronic serial number (ESN). The system can access the SecSi  
Sector region by issuing the three-cycle Enter SecSi Sector command sequence.  
The device continues to access the SecSi Sector region until the system issues  
the four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector com-  
mand sequence returns the device to normal operation. The SecSi Sector is not  
accessible when the device is executing an Embedded Program or embedded  
Erase algorithm. Table 4 shows the address and data requirements for both com-  
mand sequences. See also “SecSi™ (Secured Silicon) Sector  
Flash Memory Region” for further information. Note that the ACC function and un-  
lock bypass modes are not available when the SecSi Sector is enabled.  
Byte/Word Program Command Sequence  
The system may program the device by word or byte, depending on the state of  
the BYTE# pin. Programming is a four-bus-cycle operation. The program com-  
mand sequence is initiated by writing two unlock write cycles, followed by the  
program set-up command. The program address and data are written next, which  
in turn initiate the Embedded Program algorithm. The system is not required to  
provide further controls or timings. The device automatically provides internally  
generated program pulses and verifies the programmed cell margin. Table 4  
shows the address and data requirements for the byte program command  
sequence.  
When the Embedded Program algorithm is complete, that bank then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7, DQ6, or RY/BY#. Refer to the  
Write Operation Status section for information on these status bits.  
May 7, 2004 S29JL064HA1  
S29JL064H  
27  
P r e l i m i n a r y  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that a hardware reset immediately terminates the program  
operation. The program command sequence should be reinitiated once that bank  
has returned to the read mode, to ensure data integrity. Note that the SecSi Sec-  
tor, autoselect, and CFI functions are unavailable when a program operation is in  
progress.  
Programming is allowed in any sequence and across sector boundaries. A bit  
cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate  
the operation was successful. However, a succeeding read will show that the data  
is still “0.Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program bytes or words to a bank  
faster than using the standard program command sequence. The unlock bypass  
command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the unlock bypass command, 20h. That bank  
then enters the unlock bypass mode. A two-cycle unlock bypass program com-  
mand sequence is all that is required to program in this mode. The first cycle in  
this sequence contains the unlock bypass program command, A0h; the second  
cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required  
in the standard program command sequence, resulting in faster total program-  
ming time. Table 4 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (See Table  
12).  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
be at VHH for any operation other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may result.  
4 illustrates the algorithm for the program operation. Refer to the Erase and Pro-  
gram Operations table in the AC Characteristics section for parameters, and  
Figure 18 for timing diagrams.  
28  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 4 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 4 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. Refer to the Write  
Operation Status section for information on these status bits.  
Any commands written during the chip erase operation are ignored. However,  
note that a hardware reset immediately terminates the erase operation. If that  
occurs, the chip erase command sequence should be reinitiated once that bank  
has returned to reading array data, to ensure data integrity. Note that the SecSi  
Sector, autoselect, and CFI functions are unavailable when an erase operation is  
in progress.  
May 7, 2004 S29JL064HA1  
S29JL064H  
29  
P r e l i m i n a r y  
5 illustrates the algorithm for the erase operation. Refer to the Erase and Program  
Operations tables in the AC Characteristics section for parameters, and Figure 20  
section for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 4 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire sector for  
an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 80 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 80 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. Any com-  
mand other than Sector Erase or Erase Suspend during the time-out  
period resets that bank to the read mode. The system must rewrite the com-  
mand sequence and any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# or CE# pulse (first rising edge) in the command  
sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading  
array data and addresses are no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read data from the non-erasing  
bank. The system can determine the status of the erase operation by reading  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer to the Write Operation Sta-  
tus section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity. Note that the SecSi Sector, autoselect, and  
CFI functions are unavailable when an erase operation is in progress.  
5 illustrates the algorithm for the erase operation. Refer to the Erase and Program  
Operations tables in the AC Characteristics section for parameters, and Figure 20  
section for timing diagrams.  
30  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 4 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing this command. This com-  
mand is valid only during the sector erase operation, including the 80 µs time-out  
period during the sector erase command sequence. The Erase Suspend command  
is ignored if written during the chip erase operation or Embedded Program  
algorithm. The bank address must contain one of the sectors currently selected  
for erase.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a maximum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-out period and suspends  
the erase operation.  
After the erase operation has been suspended, the bank enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the Write Operation Status section for information on these status bits.  
May 7, 2004 S29JL064HA1  
S29JL064H  
31  
P r e l i m i n a r y  
After an erase-suspended program operation is complete, the bank returns to the  
erase-suspend-read mode. The system can determine the status of the program  
operation using the DQ7 or DQ6 status bits, just as in the standard Byte Program  
operation. Refer to the Write Operation Status section for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. The device allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored in the memory array. When  
the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. Refer to the Autoselect Mode and  
Autoselect Command Sequence sections for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command. The bank address of the erase-suspended bank is required when writ-  
ing this command. Further writes of the Resume command are ignored. Another  
Erase Suspend command can be written after the chip has resumed erasing.  
32  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Table 4. S29JL064H Command Definitions  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Fifth  
Addr  
Sixth  
Addr Data Addr Data  
Data  
Addr  
Data  
Data  
Addr  
Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
RD  
F0  
XXX  
555  
AAA  
555  
AAA  
555  
AAA  
555  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
Manufacturer ID  
4
6
4
AA  
AA  
AA  
55  
55  
55  
90  
90  
90  
(BA)X00  
01  
7E  
(BA)X01  
(BA)X02  
(BA)X03  
(BA)X06  
(SA)X02  
(BA)X0E  
(BA)X1C  
(BA)X0F  
(BA)X1E  
Device ID (Note 9)  
02  
01  
SecSi Sector Factory  
Protect (Note 10)  
80/  
00  
Sector/Sector Block  
Protect Verify  
(Note 11)  
00/  
01  
4
AA  
55  
90  
Byte  
AAA  
555  
(BA)AAA  
(SA)X04  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
BA  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
PA  
XXX  
2AA  
555  
2AA  
555  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
3
AA  
AA  
AA  
AA  
55  
55  
55  
55  
88  
90  
A0  
20  
XXX  
PA  
00  
PD  
Unlock Bypass  
Unlock Bypass Program (Note 12)  
Unlock Bypass Reset (Note 13)  
2
2
A0  
90  
PD  
00  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
2AA  
555  
2AA  
555  
555  
AAA  
Chip Erase  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
Sector Erase  
SA  
Erase Suspend (Note 14)  
Erase Resume (Note 15)  
1
1
B0  
30  
BA  
Word  
CFI Query (Note 16)  
Byte  
55  
AA  
1
98  
Legend:  
X = Don’t care  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE# pulse, whichever happens first.  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A21–A12 uniquely select any sector. Refer to  
Table 3 for information on sector addresses.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE# pulse, whichever happens  
later.  
BA = Address of the bank that is being switched to autoselect mode, is  
in bypass mode, or is being erased. A21–A19 uniquely select a bank.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
9. The device ID must be read across the fourth, fifth, and sixth  
cycles.  
3. Except for the read cycle and the fourth, fifth, and sixth cycle of  
the autoselect command sequence, all bus cycles are write  
cycles.  
4. Data bits DQ15–DQ8 are don’t care in command sequences,  
except for RD and PD.  
5. Unless otherwise noted, address bits A21–A11 are don’t cares for  
unlock and command cycles, unless SA or PA is required.  
6. No unlock or command cycles required when bank is reading  
array data.  
7. The Reset command is required to return to the read mode (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a bank is in the autoselect mode, or if DQ5 goes high  
(while the bank is providing status information).  
8. The fourth cycle of the autoselect command sequence is a read  
cycle. The system must provide the bank address to obtain the  
manufacturer ID, device ID, or SecSi Sector factory protect  
information. Data bits DQ15–DQ8 are don’t care. While reading  
the autoselect addresses, the bank address must be the same  
until a reset command is given. See the Autoselect Command  
Sequence section for more information.  
10. The data is 80h for factory locked, 40h for customer locked, and  
00h for not factory/customer locked.  
11. The data is 00h for an unprotected sector/sector block and 01h  
for a protected sector/sector block.  
12. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
13. The Unlock Bypass Reset command is required to return to the  
read mode when the bank is in the unlock bypass mode.  
14. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
15. The Erase Resume command is valid only during the Erase  
Suspend mode, and requires the bank address.  
16. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
May 7, 2004 S29JL064HA1  
S29JL064H  
33  
P r e l i m i n a r y  
Write Operation Status  
The device provides several bits to determine the status of a program or erase  
operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 8 and the following subsections  
describe the function of these bits. DQ7 and DQ6 each offer a method for deter-  
mining whether a program or erase operation is complete or in progress. The  
device also provides a hardware-based output signal, RY/BY#, to determine  
whether an Embedded Program or Erase operation is in progress or has been  
completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded  
Program or Erase algorithm is in progress or completed, or whether a bank is in  
Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse  
in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the com-  
plement of the datum programmed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to DQ7. The system must  
provide the program address to read valid status information on DQ7. If a pro-  
gram address falls within a protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then that bank returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide  
an address within any of the sectors selected for erasure to read valid status in-  
formation on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the  
bank returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
When the system detects DQ7 has changed from the complement to true data,  
it can read valid data at DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the fol-  
lowing read cycles. Just prior to the completion of an Embedded Program or Erase  
operation, DQ7 may change asynchronously with DQ15–DQ8 (DQ7–DQ0 for x8-  
only device) while Output Enable (OE#) is asserted low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on  
when the system samples the DQ7 output, it may read the status or valid data.  
Even if the device has completed the program or erase operation and DQ7 has  
valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid data on  
DQ15–DQ0 (or DQ7–DQ0 for x8-only device) will appear on successive read  
cycles.  
Table 8 shows the outputs for Data# Polling on DQ7. 6 shows the Data# Polling  
algorithm. 22 in the AC Characteristics section shows the Data# Polling timing  
diagram.  
34  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a  
sector erase operation, a valid address is any sector  
address within the sector being erased. During chip  
erase, a valid address is any non-protected sector  
address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
May 7, 2004 S29JL064HA1  
S29JL064H  
35  
P r e l i m i n a r y  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or one of the banks is in the  
erase-suspend-read mode.  
Table 8 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
36  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Program/Erase  
Operation Complete  
Complete, Write  
Reset Command  
Note: The system should recheck the toggle bit even if  
DQ5 = “1” because the toggle bit may stop toggling as DQ5  
changes to “1.” See the subsections on DQ6 and DQ2 for  
more information.  
Figure 7. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
May 7, 2004 S29JL064HA1  
S29JL064H  
37  
P r e l i m i n a r y  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 8 to compare outputs for DQ2 and DQ6.  
7 shows the toggle bit algorithm in flowchart form, and the section “DQ2: Toggle  
Bit II” explains the algorithm. See also the DQ6: Toggle Bit I subsection. 23  
shows the toggle bit timing diagram. 24 shows the differences between DQ2 and  
DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to 7 for the following discussion. Whenever the system initially begins read-  
ing toggle bit status, it must read DQ15–DQ0 (or DQ7–DQ0 for x8-only device)  
at least twice in a row to determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit after the first read. After  
the second read, the system would compare the new value of the toggle bit with  
the first. If the toggle bit is not toggling, the device has completed the program  
or erase operation. The system can read array data on DQ15–DQ0 (or DQ7–DQ0  
for x8-only device) on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of 7).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified in-  
ternal pulse count limit. Under these conditions DQ5 produces a “1,indicating  
that the program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return  
to the read mode (or to the erase-suspend-read mode if a bank was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
38  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.” If the  
time between additional sector erase commands from the system can be as-  
sumed to be less than 50 µs, the system need not monitor DQ3. See also the  
Sector Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 8 shows the status of DQ3 relative to the other status bits.  
Table 8. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded  
Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.  
May 7, 2004 S29JL064HA1  
S29JL064H  
39  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +125°C  
Voltage with Respect to Ground  
V
(Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.0 V  
CC  
OE# and RESET#  
(Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +12.5 V  
WP#/ACC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V +0.5 V  
CC  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot V to –  
SS  
2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is V  
+0.5 V. See Figure 8. During voltage  
CC  
transitions, input or I/O pins may overshoot to V +2.0 V for periods up to 20 ns. See Figure 9.  
CC  
2. Minimum DC input voltage on pins OE#, RESET#, and WP#/ACC is –0.5 V. During voltage transitions, OE#, WP#/ACC,  
and RESET# may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 8. Maximum DC input voltage on WP#/  
SS  
ACC is +9.5 V which may overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one  
second.  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any other conditions above those indicated in the operational  
sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods  
may affect device reliability.  
20 ns  
20 ns  
20 ns  
+0.8 V  
VCC  
+2.0 V  
–0.5 V  
–2.0 V  
VCC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 8. Maximum Negative  
Overshoot Waveform  
Figure 9. Maximum Positive  
Overshoot Waveform  
Operating Ranges  
Wireless (W) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
VCC Supply Voltages  
VCC for standard voltage range . . . . . . . . . . . . . . . . . . . . . . . .2.7 V to 3.6 V  
Operating ranges define those limits between which the functionality of the device is  
guaranteed.  
40  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
DC Characteristics  
CMOS Compatible  
Paramete  
r Symbol  
Parameter Description  
Input Load Current  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
VCC = VCC max  
,
ILI  
1.0  
µA  
OE# and RESET# Input Load  
Current  
VCC = VCC max, OE# = VIH;  
OE# or RESET# = 12.5 V  
ILIT  
ILO  
ILR  
35  
1.0  
35  
µA  
µA  
µA  
VOUT = VSS to VCC  
,
Output Leakage Current  
Reset Leakage Current  
VCC = VCC max, OE# = VIH  
VCC = VCC max; RESET# =  
12.5 V  
5 MHz  
10  
2
16  
4
CE# = VIL,OE# = VIH,  
Byte Mode  
1 MHz  
5 MHz  
1 MHz  
VCC Active Read Current  
(Notes 1, 2)  
ICC1  
mA  
10  
2
16  
4
CE# = VIL, OE# =  
VIH, Word Mode  
VCC Active Write Current (Notes 2,  
3)  
ICC2  
CE# = VIL, OE# = VIH, WE# = VIL  
15  
30  
mA  
ICC3  
ICC4  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
CE#, RESET# = VCC 0.3 V  
RESET# = VSS 0.3 V  
0.2  
0.2  
5
5
µA  
µA  
VIH = VCC 0.3 V;  
VIL = VSS 0.3 V  
ICC5  
ICC6  
Automatic Sleep Mode (Notes 2, 4)  
0.2  
5
µA  
Byte  
CE# = VIL, OE# = VIH  
Word  
21  
21  
21  
21  
45  
45  
45  
45  
VCC Active Read-While-Program  
Current (Notes 1, 2)  
mA  
Byte  
CE# = VIL, OE# = VIH  
Word  
VCC Active Read-While-Erase  
Current (Notes 1, 2)  
ICC7  
ICC8  
mA  
mA  
VCC Active Program-While-Erase-  
Suspended Current (Notes 2, 5)  
CE# = VIL, OE# = VIH  
17  
35  
VIL  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
VIH  
0.7 x VCC  
VCC + 0.3  
Voltage for WP#/ACC Sector  
Protect/Unprotect and Program  
Acceleration  
VHH  
VCC = 3.0 V ± 10%  
VCC = 3.0 V 10%  
8.5  
9.5  
V
Voltage for Autoselect and  
Temporary Sector Unprotect  
VID  
11.5  
12.5  
0.45  
V
VOL  
VOH1  
VOH2  
VLKO  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
0.85 VCC  
VCC–0.4  
2.3  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
V
Notes:  
1. The I current listed is typically less than 2 mA/MHz, with OE# at V  
.
IH  
CC  
2. Maximum I  
specifications are tested with V = V max.  
CC CC  
CC  
3.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Automatic sleep mode enables the low power mode when addresses remain stable for t  
current is 200 nA.  
+ 30 ns. Typical sleep mode  
ACC  
5. Not 100% tested.  
May 7, 2004 S29JL064HA1  
S29JL064H  
41  
P r e l i m i n a r y  
DC Characteristics  
Zero-Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 10. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
12  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 11. Typical ICC1 vs. Frequency  
42  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Test Conditions  
3.3 V  
2.7 kΩ  
Device  
Under  
Test  
C
L
6.2 k  
Note: Diodes are IN3064 or equivalent  
Figure 12. Test Setup  
Table 5. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
Unit  
Output Load  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
5
0.0–3.0  
1.5  
ns  
V
Input Pulse Levels  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
1.5  
V
Key To Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
0.0 V  
Figure 13. Input Waveforms and Measurement Levels  
May 7, 2004 S29JL064HA1  
S29JL064H  
43  
P r e l i m i n a r y  
AC Characteristics  
Read-Only Operations  
Parameter  
Speed Options  
JEDEC  
Std. Description  
Test Setup  
55  
70  
85 Unit  
tAVAV  
tRC  
Read Cycle Time (Note 1)  
Min  
55  
70  
85  
85  
ns  
ns  
CE#,  
OE# = VIL  
tAVQV  
tACC  
Address to Output Delay  
Max  
55  
70  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
Output Enable to Output Delay  
OE# = VIL  
Max  
Max  
Max  
Max  
55  
25  
70  
30  
16  
16  
85  
40  
ns  
ns  
ns  
ns  
Chip Enable to Output High Z (Notes 1, 3)  
Output Enable to Output High Z (Notes 1, 3)  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold Time  
(Note 1)  
tOEH  
Toggle and  
5
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See 12 and Table 5 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of V /2. The time from OE#  
CC  
high to the data bus driven to V /2 is taken as t  
CC  
DF  
.
tRC  
Addresses Stable  
Addresses  
tACC  
CE#  
OE#  
tRH  
tRH  
tDF  
tOE  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 14. Read Operation Timings  
44  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
AC Characteristics  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
May 7, 2004 S29JL064HA1  
S29JL064H  
45  
P r e l i m i n a r y  
AC Characteristics  
Word/Byte Configuration (BYTE#)  
Parameter  
Speed Options  
JEDEC  
Std.  
tELFL/ ELFH  
tFLQZ  
tFHQV  
Description  
55  
70  
5
85  
Unit  
ns  
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
16  
70  
ns  
55  
85  
ns  
46  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
CE#  
OE#  
BYTE#  
tELFL  
Data Output  
(DQ14–DQ0)  
Data Output  
(DQ7–DQ0)  
BYTE#  
Switching  
from word  
to byte  
DQ14–DQ0  
DQ15/A-1  
Address  
Input  
DQ15  
Output  
mode  
tFLQZ  
tELFH  
BYTE#  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ7–DQ0)  
Data Output  
DQ14–DQ0  
DQ15/A-1  
(DQ14–DQ0)  
mode  
Address  
Input  
DQ15  
Output  
tFHQV  
Figure 16. BYTE# Timings for Read Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note: Refer to the Erase/Program Operations table for t and t  
specifications.  
AH  
AS  
Figure 17. BYTE# Timings for Write Operations  
May 7, 2004 S29JL064HA1  
S29JL064H  
47  
P r e l i m i n a r y  
AC Characteristics  
Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
55  
70  
70  
0
85  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
55  
85  
tAVWL  
Min  
Min  
Min  
Min  
ns  
Address Setup Time to OE# low during toggle bit  
polling  
tASO  
tAH  
15  
40  
0
ns  
ns  
ns  
tWLAX  
Address Hold Time  
30  
30  
45  
45  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
40  
0
ns  
ns  
ns  
Data Hold Time  
tOEPH  
Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
25  
25  
30  
30  
0
35  
30  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
Byte  
Word  
5
tWHWH1  
tWHWH1  
Programming Operation (Note 2)  
µs  
µs  
7
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
Typ  
4
tWHWH2  
tVCS  
Sector Erase Operation (Note 2)  
VCC Setup Time (Note 1)  
Typ  
Min  
Min  
Max  
0.4  
50  
0
sec  
µs  
ns  
tRB  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
48  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
AC Characteristics  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 18. Program Operation Timings  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
tVHH  
Figure 19. Accelerated Program Timing Diagram  
May 7, 2004 S29JL064HA1  
S29JL064H  
49  
P r e l i m i n a r y  
AC Characteristics  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.  
2. These waveforms are for the word mode.  
Figure 20. Chip/Sector Erase Operation Timings  
50  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
AC Characteristics  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Addresses  
tCPH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# or CE2# Controlled Write Cycles  
Figure 21. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Valid Data  
Status Data  
True  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array  
data read cycle.  
Figure 22. Data# Polling Timings (During Embedded Algorithms)  
May 7, 2004 S29JL064HA1  
S29JL064H  
51  
P r e l i m i n a r y  
AC Characteristics  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status  
read cycle, and array data read cycle  
Figure 23. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#  
to toggle DQ2 and DQ6.  
Figure 24. DQ2 vs. DQ6  
52  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
AC Characteristics  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 25. Temporary Sector Unprotect Timing Diagram  
May 7, 2004 S29JL064HA1  
S29JL064H  
53  
P r e l i m i n a r y  
AC Characteristics  
V
ID  
IH  
V
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 26. Sector/Sector Block Protect and  
Unprotect Timing Diagram  
54  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
Std.  
tWC  
tAS  
Description  
55  
70  
70  
0
85  
Unit  
ns  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
55  
85  
ns  
tAH  
tDS  
tDH  
30  
30  
40  
40  
0
45  
45  
ns  
ns  
Data Hold Time  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
25  
25  
40  
45  
tCPH  
30  
Byte  
5
7
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
µs  
Word  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
Typ  
Typ  
4
µs  
Sector Erase Operation (Note 2)  
0.4  
sec  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
May 7, 2004 S29JL064HA1  
S29JL064H  
55  
P r e l i m i n a r y  
AC Characteristics  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 27. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
56  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
Erase And Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
µs  
Comments  
Sector Erase Time  
0.4  
56  
7
5
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
Word Program Time  
210  
120  
30  
Accelerated Byte/Word Program Time  
Accelerated Chip Programming Time  
Byte Program Time  
4
µs  
10  
5
sec  
µs  
Excludes system level  
overhead (Note 5)  
150  
126  
84  
Byte Mode  
Word Mode  
42  
28  
Chip Program Time  
(Note 3)  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 100,000 cycles; checkerboard data  
CC  
pattern.  
2. Under worst case conditions of 90°C, V  
= 2.7 V, 1,000,000 cycles.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See  
Table 4 for further information on command definitions.  
6. The device has a minimum cycling endurance of 100,000 cycles per sector.  
May 7, 2004 S29JL064HA1  
S29JL064H  
57  
P r e l i m i n a r y  
58  
S29JL064H  
S29JL064HA1 May 7, 2004  
P r e l i m i n a r y  
16 Mb SRAM (supplier 1)  
16 Megabit (1Mb x 16 bit) CMOS SRAM  
Functional Description  
CE1#  
H
X
X
L
CS2  
X
OE#  
X
WE#  
X
LB#  
X
X
H
L
UB#  
X
IO  
IO  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
0~7  
8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Deselected  
L
X
X
X
Deselected  
X
X
X
H
X
Deselected  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
L
X
L
L
Active  
L
H
L
Active  
L
L
H
L
High-Z  
Dout  
Active  
L
L
L
Dout  
Active  
L
X
L
H
L
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
X
L
H
L
High-Z  
Din  
Active  
L
X
L
L
Din  
Active  
Note: X means don’t care (must be low or high state).  
Absolute Maximum Ratings  
Item  
Symbol  
VIN,VOUT  
VCC  
Ratings  
Unit  
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
-0.2 to VCC+0.3V (Max. 3.6V)  
V
V
-0.2 to 3.6V  
1.0  
PD  
W
Storage Temperature  
TSTG  
TA  
-85 to 150  
-40 to 85  
°
C
C
Operating Temperature  
°
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional  
operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
February 25, 2004 SRAM_Samsung_01A2  
16 Mb SRAM (supplier 1)  
59  
P r e l i m i n a r y  
DC Characteristics  
Recommended DC Operating Conditions (Note 1)  
Item  
Symbol  
VCC  
Min  
Typ  
3.0  
0
Max  
Unit  
V
Supply voltage  
Ground  
2.7  
3.3  
VSS  
0
2.2  
0
VCC+0.2 (Note 2)  
0.6  
V
Input high voltage  
Input low voltage  
VIH  
-
V
VIL  
-0.2 (Note 3)  
-
V
Notes:  
1. T = -40 to 85  
°C, otherwise specified.  
A
2. Overshoot: Vcc+2.0V in case of pulse width 20ns.  
3. Undershoot: -2.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance (f=1MHz, T =25°C)  
A
Item  
Symbol  
CIN  
Test Condition  
Min  
Max  
8
Unit  
Input capacitance  
Input/Output capacitance  
VIN=0V  
VIO=0V  
-
-
pF  
pF  
CIO  
10  
Note: Capacitance is sampled, not 100% tested  
DC Operating Characteristics  
Typ  
Min (Note) Max  
Item  
Symbol  
Test Conditions  
Unit  
Input leakage current  
ILI  
VIN=VSS to VCC  
-1  
-1  
-
-
1
1
µ
A
A
CE1#=VIH, CS2=VIL or OE#=VIH or WE#=VIL or  
LB#=UB#=VIH, VIO=VSS to VCC  
Output leakage current  
ILO  
µ
Cycle time=1  
LB# 0.2V and/or UB#  
VIN 0.2V or VIN  
µ
s, 100% duty, IIO=0mA, CE1#  
0.2V, CS2  
VCC-0.2V  
0.2V,  
VCC-0.2V,  
ICC1  
-
-
-
-
5
µ
A
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty,  
CE1#=VIL, CS2=VIH, LB#=VIL and/or  
UB#=VIL, VIN=VIL or VIH  
ICC2  
70ns  
30  
mA  
Output low voltage  
Output high voltage  
VOL  
VOH  
IOL = 2.1mA  
IOH = -1.0mA  
-
-
-
0.4  
-
V
V
2.4  
Other input = 0-VCC  
Standby Current (CMOS)  
ISB1  
-
-5.0  
25  
µA  
1. CE1#  
VCC-0.2V, CS2  
VCC-0.2V (CE1# controlled) or  
2. 0V CS2 0.2V (CS2 controlled)  
Note: Typical values are measured at V =2.0V, T =25°C and not 100% tested.  
CC  
A
60  
16 Mb SRAM (supplier 1)  
SRAM_Samsung_01A2 February 25, 2004  
P r e l i m i n a r y  
AC Characteristics  
Read/Write Charcteristics (V =2.7-3.3V)  
CC  
Parameter List  
Read cycle time  
Symbol  
tRC  
Min  
70  
-
Max  
-
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address access time  
tAA  
70  
70  
35  
70  
-
Chip select to output  
tCO1, tCO2  
tOE  
-
Output enable to valid output  
LB#, UB# valid to data output  
Chip select to low-Z output  
Output enable to low-Z output  
LB#, UB# enable to low-Z output  
Output hold from address change  
Chip disable to high-Z output  
OE# disable to high-Z output  
UB#, LB# disable to high-Z output  
Write cycle time  
-
tBA  
-
tLZ1, tLZ2  
tOLZ  
10  
5
-
tBLZ  
10  
10  
0
-
tOH  
-
tHZ1, tHZ2  
tOHZ  
tBHZ  
25  
25  
25  
-
0
0
tWC  
70  
60  
0
Chip select to end of write  
Address set-up time  
tCW1, tCW2  
tAS  
-
-
Address valid to end of write  
Write pulse width  
tAW  
60  
50  
0
-
tWP  
-
Write recovery time  
tWR  
-
Write to output high-Z  
tWHZ  
tDW  
0
20  
-
Data to write time overlap  
Data hold from write time  
End write to output low-Z  
LB#, UB# valid to end of write  
30  
0
tDH  
-
tOW  
5
-
tBW  
60  
-
Data Retention Characteristics  
Item  
Symbol  
Test Condition  
VCC-0.2V (Note 1), VIN  
VCC=1.5V, CE1# V-0.2V (Note 1),  
Min  
Typ  
Max  
Unit  
VCC for data retention  
VDR  
CE1#  
0V  
1.5  
-
3.3  
15  
V
1.0  
(Note 2)  
Data retention current  
IDR  
-
µA  
VIN 0V  
Data retention set-up time  
Recovery time  
tSDR  
tRDR  
0
-
-
-
-
See data retention waveform  
ns  
tRC  
Notes:  
1. CE1#VCC-0.2, CS2VCC-0.2V (CE1# controlled) or 0CS2-0.2V (CS2 controlled)  
2. Typical values are measured at T =26  
°C and not 100% tested.  
A
February 25, 2004 SRAM_Samsung_01A2  
16 Mb SRAM (supplier 1)  
61  
P r e l i m i n a r y  
Timing Diagrams  
t
RC  
Address  
t
AA  
t
OH  
Data Valid  
Data Out  
Previous Data Valid  
Figure 28. Timing Waveform of Read Cycle(1) (address controlled, CD#1=OE#=VIL, CS2=WE#=VIH, UB#  
and/or LB#=VIL)  
t
RC  
Address  
CS1#  
CS2  
t
OH  
t
AA  
t
CO1  
t
CO2  
t
HZ  
t
BA  
UB#, LB#  
OE#  
t
BHZ  
t
OE  
t
OLZ  
t
OHZ  
t
BLZ  
t
LZ  
Data out  
High-Z  
Data Valid  
Notes:  
1. t and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced  
OHZ  
HZ  
to output voltage levels.  
2. At any given temperature and voltage condition, t (Max.) is less than t (Min.) both for a given device and from  
HZ  
LZ  
device to device interconnection.  
Figure 29. Timing Waveform of Read Cycle(2) (WE#=VIH  
)
62  
16 Mb SRAM (supplier 1)  
SRAM_Samsung_01A2 February 25, 2004  
P r e l i m i n a r y  
t
WC  
Address  
t
CW(2)  
t
WR(4)  
CS1#  
CS2  
t
AW  
t
BW  
UB#, LB#  
WE#  
t
WP(1)  
t
AS(3)  
t
t
DH  
DW  
High-Z  
High-Z  
Data in  
Data Valid  
t
t
OW  
WHZ  
Data Undefined  
Data out  
Figure 30. Timing Waveform of Write Cycle(1) (WE# controlled)  
t
WC  
Address  
t
WR(4)  
t
t
CW(2)  
AS(3)  
CS1#  
CS2  
t
AW  
t
BW  
UB#, LB#  
t
WP(1)  
WE#  
Data in  
t
t
DW  
DH  
Data Valid  
Data out  
High-Z  
High-Z  
Figure 31. Timing Waveform of Write Cycle(2) (CS# controlled)  
February 25, 2004 SRAM_Samsung_01A2  
16 Mb SRAM (supplier 1)  
63  
P r e l i m i n a r y  
t
WC  
Address  
CS1#  
t
WR(4)  
t
CW(2)  
t
AW  
CS2  
t
BW  
UB#, LB#  
t
AS(3)  
t
WP(1)  
WE#  
t
DH  
t
DW  
Data Valid  
Data in  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap(t ) of low CS1# and low WE#. A write begins when CS1# goes low and WE#  
WP  
goes low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double  
byte operation. A write ends at the earliest transition when CS1# goes high and WE# goes high. The t  
measured from the beginning of write to the end of write.  
is  
WP  
2. t  
is measured from the CS1# going low to the end of write.  
CW  
3. t is measured from the address valid to the beginning of write.  
AS  
4. t  
is measured from the end of write to the address change. t  
applied in case a write ends as CS1# or WE#  
WR  
WR  
going high.  
Figure 32. Timing Waveform of Write Cycle(3) (UB#, LB# controlled)  
64  
16 Mb SRAM (supplier 1)  
SRAM_Samsung_01A2 February 25, 2004  
P r e l i m i n a r y  
CS1# Controlled  
Data Retention Mode  
t
tSDR  
RDR  
V
CC  
2.7V  
2.2V  
V
DR  
CS1#V  
CC  
- 0.2V, CS2 V -0.2V  
CC  
CS1#  
GND  
CS2 Controlled  
Data Retention Mode  
V
CC  
2.7V  
CS2  
t
t
SDR  
RDR  
V
DR  
CS2 0.2V  
0.4V  
GND  
Figure 33. Data Retention Waveform  
February 25, 2004 SRAM_Samsung_01A2  
16 Mb SRAM (supplier 1)  
65  
P r e l i m i n a r y  
66  
16 Mb SRAM (supplier 1)  
SRAM_Samsung_01A2 February 25, 2004  
P r e l i m i n a r y  
8 Mb pSRAM (supplier 2)  
8 Megabit (512 K x 16 bit) Ultra-low Power  
Asynchronous CMOS Pseudo SRAM  
Features  
„
„
„
Single Wide Power Supply Range  
— 2.7 to 3.6 Volts  
Very low standby current  
— 65µA at 3.0V (Max)  
Simple memory control  
— Dual Chip Enables (CE1# and CE2)  
— Byte control for independent byte operation  
— Output Enable (OE#) for memory expansion  
„
Very fast output enable access time  
— 35ns OE# access time  
„
„
„
Automatic power down to standby mode  
TTL compatible three-state output driver  
Operating Temperature  
— -40°C to +85°C  
Power Supply  
„
„
— 2.3V - 3.6V  
Speed  
— 70ns @ 2.7V  
General Description  
The S71JL064H80—10/11/12 contains an integrated memory device containing  
a low power 8 Mbit SRAM built using a self-refresh DRAM array organized as  
512,288 words by 16 bits. It is designed to be identical in operation and interface  
to standard 6T SRAMS. The device is designed for low standby and operating cur-  
rent and includes a power-down feature to automatically enter standby mode.  
The device operates with two chip enable (CE1# and CE2) controls and output  
enable (OE#) to allow for easy memory expansion. Byte controls (UB# and LB#)  
allow the upper and lower bytes to be accessed independently and can also be  
used to deselect the device. The S71JL064H80 is optimal for various applications  
where low-power is critical such as battery backup and hand-held devices. The  
device can operate over a very wide temperature range of -40°C to +85°C and  
is available in tested wafer format.  
February 25, 2004 pSRAM_NanoAmp_03A2  
8 Mb pSRAM (supplier 2)  
67  
P r e l i m i n a r y  
Block Diagram  
Address  
Decode  
Logic  
Address  
Inputs  
A - A  
Input/  
512K x 16 bit  
RAM Array  
Output  
Mux and  
Buffers  
0
18  
I/O - I/O  
0
7
I/O - I/O  
8
15  
CE1#  
CE2  
Control  
Logic  
WE#  
OE#  
UB#  
LB#  
Figure 34. Functional Block Diagram  
Table 9. Functional Description  
CE1#  
CE2  
WE#  
X
OE#  
X
UB#  
X
LB#  
X
I/O - I/O (Note 1)  
MODE  
POWER  
Standby  
Standby  
Standby  
Active  
0
15  
H
X
L
L
L
L
X
L
High Z  
Standby (Note 2)  
Standby (Note 2)  
Standby  
X
X
X
X
High Z  
High Z  
H
H
H
H
X
X
H
H
L
X (Note 3) L (Note 1) L (Note 1)  
Data In  
Data Out  
High Z  
Write  
H
L
L (Note 1) L (Note 1)  
L (Note 1) L (Note 1)  
Read  
Active  
H
H
Active  
Active  
Notes:  
1. When UB# and LB# are in select mode (low), I/O - I/O are affected as shown. When LB# only is in the select mode  
0
15  
only I/O - I/O7 are affected as shown. When UB# is in the select mode only I/O8 - I/O15 are affected as shown.  
0
2. When the device is in standby mode, control inputs (WE#, OE#, UB#, and LB#), address inputs and data input/  
outputs are internally isolated from any external influence and disabled from exerting any influence externally.  
3. When WE# is invoked, the OE# input is internally disabled and has no effect on the circuit.  
Absolute Maximum Ratings (See Note)  
Item  
Symbol  
VIN,OUT  
VCC  
Rating  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC Supply Relative to VSS  
Operating Temperature  
–0.3 to VCC+0.3  
–0.3 to 4.5  
V
TA  
-40 to +85  
°C  
Note: Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only,  
and functional operation of the device at these or any other conditions above those indicated in the operating section of  
68  
8 Mb pSRAM (supplier 2)  
pSRAM_NanoAmp_03A2 February 25, 2004  
P r e l i m i n a r y  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
DC Characteristics  
Operating Characteristics (Over Specified Temperature Range)  
Typ.  
Item  
Symbol  
VCC  
VIH  
Test Conditions  
Min  
2.7  
(Note 1)  
Max.  
3.6  
Unit  
V
Supply Voltage  
3.0  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
2.2  
VCC+0.3  
0.6  
V
VIL  
–0.3  
VCC–0.4  
V
VOH  
VOL  
ILI  
IOH = -1.0mA  
IOL = 2.0mA  
V
0.4  
0.5  
0.5  
V
VIN = 0 to VCC  
µ
A
A
ILO  
OE# = VIH or Chip Disabled  
µ
VCC=3.6 V, VIN=VIH or VIL  
Chip Enabled, IOUT = 0  
ICC1  
5.0  
Read/Write Operating Supply Current  
3.0  
mA  
mA  
@ 1 µs Cycle Time (Note 2)  
VCC=3.3 V, VIN=VIH or VIL Chip  
Enabled, IOUT = 0  
ICC2  
ICC3  
ICC4  
5.0  
VCC=3.6 V, VIN=VIH or VIL Chip  
Enabled, IOUT = 0  
25.0  
23.0  
Read/Write Operating Supply Current  
@ 70ns Cycle Time (Note 2)  
12.0  
VCC=3.3 V, VIN=VIH or VIL Chip  
Enabled, IOUT = 0  
VIN = VCC or 0V  
Chip Disabled  
tA= 85oC, VCC = 3.0 V  
Maximum Standby Current  
(Standard Part)  
ISB1  
70.0  
60.0  
µ
A
A
VIN = VCC or 0V  
Chip Disabled  
tA= 85oC, VCC = 3.0 V  
Maximum Standby Current  
(Ultra Low Power Part)  
ISB1  
µ
Notes:  
1. Typical values are measured at V =V Typ., TA=25°C, and not 100% tested.  
CC  
CC  
2. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current  
required to drive output capacitance expected in the actual system.  
AC Characteristics  
Table 10. Timing Test Conditions  
Item  
Input Pulse Level  
Input Rise and Fall Time  
0.1VCC to 0.9 VCC  
5ns  
Input and Output Timing Reference Levels  
Operating Temperature  
0.5 VCC  
-40 °C to +85 °C  
February 25, 2004 pSRAM_NanoAmp_03A2  
8 Mb pSRAM (supplier 2)  
69  
P r e l i m i n a r y  
Table 11. Timings  
Speed Bins  
55  
70  
Parameter List  
Symbol  
tRC  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
55  
70  
Address Access Time  
tAA  
55  
55  
30  
55  
70  
70  
35  
70  
Chip Enable to Valid Output  
Output Enable to Valid Output  
Byte Select to Valid Output  
Chip Enable to Low-Z output  
Output Enable to Low-Z Output  
Byte Select to Low-Z Output  
Chip Disable to High-Z Output  
Output Disable to High-Z Output  
Byte Select Disable to High-Z Output  
Output Hold from Address Change  
Write Cycle Time  
tCO  
tOE  
tLB, tUB  
tLZ  
5
5
5
5
tOLZ  
tLBZ, tUBZ  
tHZ  
5
5
0
20  
20  
20  
0
25  
25  
25  
tOHZ  
tLBHZ, tUBHZ  
tOH  
0
0
0
0
10  
55  
45  
45  
45  
45  
0
10  
70  
55  
55  
55  
55  
0
tWC  
Chip Enable to End of Write  
Address Valid to End of Write  
Byte Select to End of Write  
Write Pulse Width  
tCW  
tAW  
tLBW, tUBW  
tWP  
Address Setup Time  
tAS  
Write Recovery Time  
tWR  
0
0
Write to High-Z Output  
tWHZ  
tDW  
25  
25  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Low-Z Output  
40  
0
40  
0
tDH  
tOW  
5
5
70  
8 Mb pSRAM (supplier 2)  
pSRAM_NanoAmp_03A2 February 25, 2004  
P r e l i m i n a r y  
Timing Diagrams  
t
RC  
Address  
t
AA  
t
OH  
Previous Data Valid  
Data Valid  
Data Out  
Figure 35. Timing of Read Cycle (CE1# = OE# = VIL, WE# = CE2 = VIH  
)
t
RC  
Address  
CE1#  
CE2  
tAA  
t
HZ  
t
CO  
t
LZ  
t
OHZ  
t
t
OE  
OE#  
t
OLZ  
t
LB, UB  
LB#, UB  
Data Out  
t
t
tLBLZ, UBLZ  
t
LBHZ, UBHZ  
High-Z  
Data Valid  
Figure 36. Timing Waveform of Read Cycle (WE# = VIH  
)
February 25, 2004 pSRAM_NanoAmp_03A2  
8 Mb pSRAM (supplier 2)  
71  
P r e l i m i n a r y  
t
WC  
Address  
t
WR  
t
AW  
CE1#  
CE2  
t
CW  
t
, t  
LBW UBW  
LB#, UB  
t
t
AS  
WP  
WE#  
Data In  
t
t
DW  
DH  
High-Z  
Data Valid  
tWHZ  
t
OW  
High-Z  
Data Out  
Figure 37. Timing Waveform of Write Cycle (WE# Control)  
t
WC  
Address  
t
t
AW  
WR  
CE1#  
(for CE2 Control,  
use inverted signal  
t
CW  
t
AS  
t
, t  
LBW UBW  
LB#, UB  
WE#  
t
WP  
t
t
DH  
DW  
Data In  
Data Valid  
High-Z  
t
LZ  
t
WHZ  
Data Out  
Figure 38. Timing Waveform of Write Cycle (CE1# Control)  
72  
8 Mb pSRAM (supplier 2)  
pSRAM_NanoAmp_03A2 February 25, 2004  
P r e l i m i n a r y  
16 Mb pSRAM (supplier 2)  
16 Megabit (1Mb x 16bit) Ultra-low Power  
Asynchronous CMOS Pseudo SRAM  
Features  
„
„
„
Single Wide Power Supply Range  
— 2.7 to 3.6 Volts  
Very low standby current  
— 100µA at 3.0V (Max)  
Simple memory control  
— Dual Chip Enables (CE1# and CE2)  
— Byte control for independent byte operation  
— Output Enable (OE#) for memory expansion  
„
Very fast access time  
— 55ns address access option  
— 35ns OE# access time  
„
„
„
Automatic power down to standby mode  
TTL compatible three-state output driver  
Operating Temperature  
— -40°C to +85°C  
„
Speed  
— 70ns  
— 55 ns  
General Description  
The S71JL064HA0-10/11/12 contains an integrated memory device containing a  
low-power, 16 Mbit SRAM built using a self-refresh DRAM array organized as  
1,024,576 words by 16 bits. It is designed to be identical in operation and inter-  
face to standard 6T SRAMS. The device is designed for low standby and operating  
current and includes a power-down feature to automatically enter standby mode.  
The device operates with two chip enable (CE1# and CE2) controls and output  
enable (OE#) to allow for easy memory expansion. Byte controls (UB# and LB#)  
allow the upper and lower bytes to be accessed independently and can also be  
used to deselect the device. The S71JL064HA0 is optimal for various applications  
where low-power is critical, such as battery backup and hand-held devices. The  
device can operate over a very wide temperature range of -40°C to +85°C and  
is available in tested wafer format.  
February 25, 2004 pSRAM_NanoAmp_02A2  
16 Mb pSRAM (supplier 2)  
73  
P r e l i m i n a r y  
Block Diagram  
Address  
Decode  
Logic  
Address  
Inputs  
A - A  
Input/  
1024K x 16 bit  
RAM Array  
Output  
Mux and  
Buffers  
0
19  
I/O - I/O  
0
7
I/O - I/O  
8
15  
CE1#  
CE2  
Control  
Logic  
WE#  
OE#  
UB#  
LB#  
Figure 39. Functional Block Diagram  
Table 12. Functional Description  
CE1#  
CE2  
X
WE#  
X
OE#  
UB#/LB#  
I/O (Note 1)  
High Z  
MODE  
POWER  
Standby  
H
X
L
L
L
L
X
X
X
X
L
X
Standby (Note 2)  
Standby (Note 4)  
Standby (Note 4)  
Write (Note 3)  
Read  
L
X
X
High Z  
Standby  
H
X
H
High Z  
Standby  
H
L
L (Note 3)  
L (Note 3)  
L (Note 3)  
Data In  
Data Out  
High Z  
Active -> Standby (Note 4)  
Active -> Standby (Note 4)  
Standby (Note 4)  
H
H
H
H
H
Active  
Notes:  
1. When UB# and LB# are in select mode (low), I/O - I/O are affected as shown. When LB# only is in the select  
0
15  
mode only I/O - IO are affected as shown. When UB is in the select mode only I/O - I/O are affected as shown.  
0
7
8
15  
If both UB# and LB# are in the deselect mode (high), the chip is in a standby mode regardless of the state of CE1#  
or CE2.#  
2. When the device is in standby mode, control inputs (WE#, OE#, UB#, and LB), address inputs and data input/  
outputs are internally isolated from any external influence and disabled from exerting any influence externally.  
3. When WE# is invoked, the OE# input is internally disabled and has no effect on the circuit.  
4. The device will consume active power in this mode whenever addresses are changed. Data inputs are internally  
isolated from any external influence.  
74  
16 Mb pSRAM (supplier 2)  
pSRAM_NanoAmp_02A2 February 25, 2004  
P r e l i m i n a r y  
Absolute Maximum Ratings (See Note)  
Item  
Symbol  
VIN,OUT  
VCC  
Rating  
–0.3 to VCC+0.3  
–0.3 to 4.0  
500  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC Supply Relative to VSS  
Power Dissipation  
V
PD  
mW  
°C  
°C  
Storage Temperature  
TSTG  
TA  
–40 to 125  
-40 to +85  
Operating Temperature  
Note: Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating section of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
DC Characteristics  
Operating Characteristics (Over Specified Temperature Range)  
Typ.  
Item  
Supply Voltage  
Symbol  
VCC  
VIH  
Comments  
Min  
2.7  
(Note 1)  
Max.  
3.6  
Unit  
V
3.0  
Input High Voltage  
2.2  
VCC+0.3  
0.6  
V
Input Low Voltage  
VIL  
–0.3  
VCC-0.2  
V
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
ILI  
IOH = -0.2 mA  
IOL = 0.2 mA  
V
0.2  
0.5  
0.5  
V
Input Leakage Current  
Output Leakage Current  
Read/Write Operating Supply Current  
VIN = 0 to VCC  
µ
A
A
ILO  
OE# = VIH or Chip Disabled  
µ
VCC=VCCMAX, VIN=VIH/VIL  
Chip Enabled, IOUT = 0  
ICC1  
5
mA  
mA  
@ 1 µs Cycle Time (Note 2)  
Read/Write Operating Supply Current  
@ Min Cycle Time (Note 2)  
VCC=VCCMAX, VIN=VIH/VIL  
Chip Enabled, IOUT = 0  
ICC2  
25  
VIN = VCC or 0V  
Chip Disabled  
tA = 85°C, VCC= 3.0V  
Standby Current  
ISB  
100.0  
µA  
Notes:  
1. Typical values are measured at V =V Typ., T =25°C, and not 100% tested.  
CC  
CC  
A
2. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current  
required to drive output capacitance expected in the actual system.  
February 25, 2004 pSRAM_NanoAmp_02A2  
16 Mb pSRAM (supplier 2)  
75  
P r e l i m i n a r y  
AC Characteristics  
Timing Test Conditions  
Item  
Input Pulse Level  
0.1 VCC to 0.9 VCC  
5ns  
Input Rise and Fall Time  
Input and Output Timing Reference Levels  
Operating Temperature  
0.5 VCC  
-40 °C to +85 °C  
Timings  
55  
70  
Item  
Symbol  
tRC  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
55  
70  
Address Access Time  
tAA  
55  
55  
30  
55  
70  
70  
35  
70  
Chip Enable to Valid Output  
Output Enable to Valid Output  
Byte Select to Valid Output  
Chip Enable to Low-Z output  
Output Enable to Low-Z Output  
Byte Select to Low-Z Output  
Chip Disable to High-Z Output  
Output Disable to High-Z Output  
Byte Select Disable to High-Z Output  
Output Hold from Address Change  
Write Cycle Time  
tCO  
tOE  
tLB, tUB  
tLZ  
5
5
5
5
tOLZ  
tLBZ, tUBZ  
tHZ  
5
5
0
25  
25  
25  
0
25  
25  
25  
tOHZ  
tLBHZ, tUBHZ  
tOH  
0
0
0
0
10  
55  
50  
50  
50  
50  
0
10  
70  
55  
55  
55  
55  
0
tWC  
Chip Enable to End of Write  
Address Valid to End of Write  
Byte Select to End of Write  
Write Pulse Width  
tCW  
tAW  
tLBW, tUBW  
tWP  
Write Recovery Time  
tWR  
Write to High-Z Output  
tWHZ  
tAS  
25  
25  
Address Setup Time  
0
25  
0
0
25  
0
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Low-Z Output  
tDW  
tDH  
tOW  
5
5
76  
16 Mb pSRAM (supplier 2)  
pSRAM_NanoAmp_02A2 February 25, 2004  
P r e l i m i n a r y  
Timings  
t
RC  
Address  
t
AA  
t
OH  
Previous Data Valid  
Data Valid  
Data Out  
Figure 40. Timing of Read Cycle (CE1# = OE# = VIL, WE# = CE2 = VIH  
)
t
RC  
Address  
t
AA  
CE1#  
CE2  
t
CO  
t
LZ  
t
HZ  
t
t
OE  
OE#  
t
OLZ  
t
OHZ  
, t  
LB UB  
LB#, UB#  
Data Out  
t
, t  
LBHZ UBHZ  
t
, t  
LBLZ UBLZ  
High-Z  
Data Valid  
Figure 41. Timing Waveform of Read Cycle (WE# = VIH  
)
February 25, 2004 pSRAM_NanoAmp_02A2  
16 Mb pSRAM (supplier 2)  
77  
P r e l i m i n a r y  
t
WC  
Address  
CE1#  
t
WR  
t
AW  
t
CW  
CE2  
t
, t  
LBW UBW  
LB#, UB#  
WE#  
t
t
AS  
WP  
t
t
DH  
DW  
High-Z  
Data Valid  
Data In  
t
WHZ  
t
OW  
High- Z  
Data Out  
Figure 42. Timing Waveform of Write Cycle (WE# Control)  
t
WC  
Address  
CE1#  
t
AW  
t
WR  
t
CW  
t
AS  
t
, t  
LBW UBW  
LB#, UB#  
WE#  
t
WP  
t
t
DH  
DW  
Data Valid  
Data In  
t
WHZ  
High- Z  
Data Out  
Figure 43. Timing Waveform of Write Cycle (CE1# Control, CE2 = High)  
16 Mb pSRAM (supplier 2) pSRAM_NanoAmp_02A2 February 25, 2004  
78  
P r e l i m i n a r y  
16 Mb pSRAM (supplier 4)  
16 Megabit (1M x 16) CMOS Pseudo SRAM  
Features  
„
„
„
„
„
„
„
Organized as 1M words by 16 bits  
Fast Cycle Time : 70 ns  
Standby Current : 100 µA  
Deep power-down Current : 10 µA (Memory cell data invalid)  
Byte data control: LB# (DQ0 - 7), UB# (DQ8 - 15)  
Compatible with low-power SRAM  
Single Power Supply Voltage : 3.0V±0.3V  
Description  
The S71JL064HA0 Model #62 contains a 16M-bit Pseudo SRAM organized as 1M  
words by 16 bits. It is designed with advanced CMOS technology specified RAM  
featuring low-power static RAM-compatible function and pin configuration. This  
device operates from a single power supply. Advanced circuit technology provides  
both high speed and low power. It is automatically placed in low-power mode  
when CS1# or both UB# and LB# are asserted high or CS2 is asserted low. There  
are three control inputs. CS1# and CS2 are used to select the device, and output  
enable (OE#) provides fast memory access. Data byte control pins (LB#,UB#)  
provide lower and upper byte access. This device is well suited to various micro-  
processor system applications where high speed, low power and battery backup  
are required.  
Pin Description  
A0 – A19  
=
=
=
=
=
=
=
=
=
=
Address Inputs  
Data Inputs/Outputs  
Chip Enable  
Deep Power Down  
Output Enable  
Write Control  
Lower Byte Control  
Upper Byte Control  
Power Supply  
DQ0 – DQ15  
CE1#  
CE2  
OE#  
WE#  
LB#  
UB#  
VCC  
VSS  
Ground  
February 25, 2004 pSRAM_EtronTech_06A2  
16 Mb pSRAM (supplier 4)  
79  
P r e l i m i n a r y  
Operation Mode  
MODE  
CE1#  
H
X
L
CE2  
H
OE#  
X
WE#  
X
LB#  
X
X
H
L
UB#  
X
DQ0 to DQ7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
D-out  
DQ8 to DQ15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
D-out  
POWER  
Standby  
Deep Power Down  
Standby  
Active  
Deselect  
Deselect  
L
X
X
X
Deselect  
H
X
X
H
X
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
L
H
H
H
L
H
H
H
H
H
L
L
H
X
L
L
Active  
L
H
H
L
Active  
L
H
L
H
L
High-Z  
D-out  
Active  
L
H
L
L
D-out  
Active  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
X
L
H
L
D-in  
High-Z  
D-in  
Active  
L
H
X
L
H
L
High-Z  
D-in  
Active  
L
H
X
L
L
D-in  
Active  
Note: X=don’t care. H=logic high. L=logic low.  
Absolute Maxumum Ratings (see Note)  
SYMBOL  
VCC  
RATING  
VALUE  
UNIT  
V
Supply Voltage  
-0.2 to +3.6  
-0.2 to VCC + 0.3  
-2.0 to +3.6  
100  
VIN  
Input Voltages  
V
VIN, VOUT  
ISH  
Output and output Voltages  
Output short circuit current  
Power Dissipation  
V
mA  
W
PD  
1
Note: Absolute maximum DC requirements contains stress ratings only. Functional operation at the absolute maximum  
limits is not implied or guaranteed. Extended exposure to maximum ratings may affect device reliability.  
DC Characteristics  
Table 13. DC Recommended Operating Conditions  
SYMBOL  
VDD  
PARAMETER  
Power Supply Voltage  
Ground  
MIN  
TYP.  
MAX  
UNIT  
2.7  
3.0  
3.3  
VSS  
0
2.2  
-
-
-
0
V
VIH  
Input High Voltage  
Input Low Voltage  
VCC + 0.2 (Note 1)  
+0.6  
VIL  
-0.2 (Note 2)  
Notes:  
1. Overshoot: V + 2.0V in case of pulse width 20ns  
CC  
2. Undershoot: -2.0V in case of pulse width 20ns  
3. Overshoot and undershoot are sampled, not 100% tested.  
80  
16 Mb pSRAM (supplier 4)  
pSRAM_EtronTech_06A2 February 25, 2004  
P r e l i m i n a r y  
Table 14. DC Characteristics (TA = -25°C to 85°C, VDD = 2.6 to 3.3V)  
SYMBOL  
PARAMETER  
TEST CONDITION  
MIN MAX UNIT  
IIL  
Input Leakage Current  
VIN = VSS to VDD  
-1  
1
µA  
VIO = VSS to VDD  
ILO  
Output Leakage Current  
CE1# = VIH, CE2 = VIL or  
OE# = VIH or WE# = VIL  
-1  
1
µA  
Cycle time = Min., 100% duty,  
IO = 0mA, CE1# = VIL, CE2 = VIH,  
VIN = VIH or VIL  
ICC1  
Operating Current @ Min Cycle Time  
I
-
-
-
35  
5
mA  
mA  
Cycle time = 1  
µ
s, 100% duty  
0.2V,  
-0.2V, V 0.2V  
DD IN  
I
= 0mA, CE1#  
IO  
ICC2  
Operating Current @ Max Cycle Time  
Standby Current (CMOS)  
CE2  
V
or V  
V
-0.2V  
IN  
DD  
CE1# = VDD – 0.2V and  
CE2 = VDD – 0.2V,  
Other inputs = VSS ~ VCC  
ISB1  
100  
µ
A
A
ISBD  
VOL  
Deep Power-down  
Output Low Voltage  
Output High Voltage  
CE2  
0.2V, Other inputs = VSS ~ VCC  
IOL = 2.1mA  
10  
0.4  
-
µ
-
V
VOH  
IOH = -1.0mA  
2.4  
V
AC Characteristics  
Table 15. AC Characteristics and Operating Conditions (TA = -25°C to 85°C, VDD = 2.6 to 3.3V)  
70  
Cycle  
Symbol  
tRC  
Parameter  
Min  
70  
-
Max  
-
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tAA  
Address Access Time  
70  
70  
70  
35  
70  
-
tCO1  
tCO2  
tOE  
Chip Enable (CE#1) Access Time  
Chip Enable (CE2) Access Time  
Output Enable Access Time  
-
-
-
tBA  
Data Byte Control Access Time  
Chip Enable Low to Output in Low-Z  
Output Enable Low to Output in Low-Z  
Data Byte Control Low to Output in Low-Z  
Chip Enable High to Output in High-Z  
Output Enable High to Output in High-Z  
Data Byte Control High to Output in High-Z  
Output Data Hold Time  
-
tLZ  
10  
5
tOLZ  
tBLZ  
tHZ  
-
10  
-
-
25  
25  
25  
-
tOHZ  
tBHZ  
tOH  
-
-
10  
February 25, 2004 pSRAM_EtronTech_06A2  
16 Mb pSRAM (supplier 4)  
81  
P r e l i m i n a r y  
Table 15. AC Characteristics and Operating Conditions (TA = -25°C to 85°C, VDD = 2.6 to 3.3V) (Continued)  
70  
Cycle  
Symbol  
tWC  
Parameter  
Write Cycle Time  
Min  
70  
50  
60  
60  
60  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
tWP  
Write Pulse Width  
tAW  
Address Valid to End of Write  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Set-up Time  
Write Recovery Time  
WE# Low to Output High-Z  
WE# High to Output in High-Z  
Data to Write Overlap  
Data Hold Time  
-
tCW  
-
tBW  
-
tAS  
-
tWR  
0
-
tWZH  
tOW  
tDW  
tDH  
-
20  
-
5
35  
0
-
-
tWEH  
WE# High Time  
5
10  
Table 16. AC Test Conditions  
Parameter  
Condition  
Output load  
50 pF  
+
1 TTL Gate  
Input pulse level  
0.4 V, 2.4  
Timing measurements  
t , t  
0.5  
× VCC  
5 ns  
R
F
R
= 50 Ω  
L
V
= 1.5 V  
D
L
OUT  
C
= 50 pF (see Note)  
L
Z
= 50 Ω  
0
Note: Including scope and jig capacitance  
Figure 44. AC Test Loads  
82  
16 Mb pSRAM (supplier 4)  
pSRAM_EtronTech_06A2 February 25, 2004  
P r e l i m i n a r y  
Deep Power Down Exit Sequence  
CE1# = V  
or V ,  
IL  
IH  
CE2=V  
IH  
Deep Power  
Down Mode  
CE2=VIH  
CE2=V  
IL  
or  
CE2=V  
CE1# =V  
,
IH  
IH  
Power  
on  
Initial State  
Active
CE2=V  
IL  
(Wait 200 µs)  
UB#, LB# =V  
IH  
CE1# =V , CE2=V  
UB# & LB# or/and LB# = V  
,
Standby  
Mode  
IL  
IH  
Power Up Sequence  
IL  
Figure 45. State Diagram  
Table 17. Standby Mode Characteristics  
Power Mode  
Standby  
Memory Cell Data  
Valid  
Standby Current (µA)  
Wait Time (µs)  
100  
10  
0
Deep Power Down  
Invalid  
200  
Timing Diagrams  
t
RC  
Address  
t
AA  
t
OH  
t
OH  
Previous Data Valid  
Data Valid  
Data Out  
Note: CE1# = OE# = V , CE2 = WE# = V , UB# and/or LB# = V  
IL  
IH  
IL  
Figure 46. Read Cycle 1—Addressed Controlled  
February 25, 2004 pSRAM_EtronTech_06A2  
16 Mb pSRAM (supplier 4)  
83  
P r e l i m i n a r y  
t
RC  
Address  
t
A
A
t
OH  
t
CO  
t
LZ  
CE1#  
t
HZ  
t
BA  
t
BLZ  
UB#, LB#  
t
BHZ  
t
OE  
OE#  
t
OHZ  
t
OLZ  
High-Z  
High-Z  
Data Out  
Data Valid  
Note: CE2 = WE# = V  
IH  
Figure 47. Read Cycle 2—CS1# Controlled  
t
WC  
Address  
t
WR  
t
AW  
t
CW  
CE1#  
t
UB#, LB#  
BW  
WE#  
t
WP  
t
AS  
t
t
DW  
DH  
High-Z  
High-Z  
Data In  
Data Valid  
t
WHZ  
t
OW  
Data Out  
Data Undefined  
Notes:  
1. CE2 = V  
IH  
2. CE2 = WE# = V  
IH  
Figure 48. Write Cycle 1—WE# Controlled  
84  
16 Mb pSRAM (supplier 4)  
pSRAM_EtronTech_06A2 February 25, 2004  
P r e l i m i n a r y  
t
WC  
Address  
t
WR  
t
AW  
t
AS  
t
CW  
CE1#  
t
UB#, LB#  
BW  
WE#  
t
WP  
t
t
DH  
DW  
Data In  
Data Valid  
High-Z  
Data Out  
Notes:  
1. CE2 = V  
IH  
2. CE2 = WE# = V  
IH  
Figure 49. Write Cycle 2—CS1# Controlled  
t
WC  
Address  
tWR  
t
AW  
t
CE1#  
CW  
UB#, LB#  
t
BW  
t
AS  
WE#  
tWP  
t
DH  
t
DW  
Data In  
Data Valid  
High-Z  
Data Out  
Notes:  
1. CE2 = V  
IH  
2. CE2 = WE# = V  
IH  
Figure 50. Write Cycle3—UB#, LB# Controlled  
February 25, 2004 pSRAM_EtronTech_06A2  
16 Mb pSRAM (supplier 4)  
85  
P r e l i m i n a r y  
200 µs  
1µs  
CE2  
Wake Up  
Deep Power  
Down Mode  
Suspend  
Normal Operation  
Normal Operation  
Mode  
CE1#  
Figure 51. Deep Power-down Mode  
µs  
200  
V
CC  
CE2  
CE1#  
Figure 52. Power-up Mode  
>
15µs  
CE1#  
WE#  
<
t
RC  
Address  
Note: The S71JL064HA0 Model 61 has a timing that is not supported at read operation. Data will be lost if your system  
has multiple invalid address signal shorter than t during over 15µs at the read operation shown above.  
RC  
Figure 53. Abnormal Timing  
86  
16 Mb pSRAM (supplier 4)  
pSRAM_EtronTech_06A2 February 25, 2004  
P r e l i m i n a r y  
32 Mb pSRAM (Supplier 3)  
32 Megabit CMOS Pseudo Static RAM  
Features  
„
„
„
„
„
Organized as 2,097,152 words by 16 bits  
Single power supply voltage of 2.6 to 3.3 V  
Direct TTL compatibility for all inputs and outputs  
Deep power-down mode: Memory cell data invalid  
Page operation mode:  
— Page read operation by 8 words  
Logic compatible with SRAM R/W (WE#) pin  
Standby current  
„
„
— Standby  
70 µA  
— Deep power-down standby 5 µA  
„
Access Times:  
— Access Time  
70 ns  
70 ns  
25 ns  
30 ns  
— CE1# Access Time  
— OE# Access Time  
— Page Access Time  
Description  
The S71JL128HB0 contains a 33,554,432-bit, pseudo static random access mem-  
ory (PSRAM) organized as 2,097,152 words by 16 bits. It provides high density,  
high speed, and low power. The device operates single power supply. The device  
also features SRAM-like W/R timing whereby the device is controlled by DE1#,  
OE#, and WE# on asynchronous. The device has the page access operation. Page  
size is 8 words. The device also supports deep power-down mode, realizing low-  
power standby.  
Pin Description  
A0 to A20  
=
=
=
=
=
=
=
=
=
=
=
Address Inputs  
A0 to A2  
I/O1 to I/O16  
CE1#  
CE2  
WE#  
OE#  
LB#, UB#  
VDD  
GND  
NC  
Page Address Inputs  
Data Inputs/Outputs  
Chip Enable Input  
Chip select Input  
Write Enable Input  
Output Enable Input  
Data Byte Control Inputs  
Power  
Ground  
No Connection  
February 25, 2004 pSRAM_Toshiba_04A2  
32 Mb pSRAM (Supplier 3)  
87  
P r e l i m i n a r y  
Operation Mode  
MODE  
Read (Word)  
CE1# CE2 OE# WE# LB# UB# Add  
I/O1 to I/O8  
DOUT  
I/O9 to I/O16  
DOUT  
POWER  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDS  
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (Lower Byte)  
Read (Upper Byte)  
Write (Word)  
DOUT  
High-Z  
DOUT  
L
H
L
High-Z  
DIN  
X
X
X
H
X
X
L
DIN  
Write (Lower Byte)  
Write (Upper Byte)  
Outputs Disabled  
Standby  
L
L
H
L
DIN  
Invalid  
DIN  
L
H
X
X
X
Invalid  
High-Z  
High-Z  
High-Z  
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
Deep Power-down Standby  
IDDSD  
Note: L = Low-level Input (V ), H = High-level Input (V ), X = V or V , High-Z = High impedance  
IL  
IH  
IH  
IL  
Absolute Maxumum Ratings  
SYMBOL  
VDD  
RATING  
VALUE  
-1.0 to 3.6  
-1.0 to 3.6  
-1.0 to 3.6  
-40 to 85  
-55 to 150  
0.6  
UNIT  
V
Power Supply Voltage  
Input Voltage  
VIN  
V
VOUT  
Topr.  
Output Voltage  
V
Operating Temperature  
Storage Temperature  
Power Dissipation  
°C  
°C  
W
Tstrg.  
PD  
IOUT  
Short Circuit Output Current  
50  
mA  
Note: (Stresses greater than listed under "Absolute Maximum Ratings" may cause permanent damage to the device  
DC Characteristics  
Table 18. DC Recommended Operating Conditions (TA = -40°C to 85°C)  
SYMBOL  
PARAMETER  
MIN  
TYP.  
MAX  
UNIT  
VDD  
Power Supply Voltage  
2.6  
2.75  
3.3  
VDD + 0.3  
(Note)  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.0  
-
-
V
-0.3 (Note  
0.4  
Note: V (Min) -1.0 V with 10 ns pulse width; VIH(Max) VDD+1.0 V with 10 ns pulse width  
IL  
88  
32 Mb pSRAM (Supplier 3)  
pSRAM_Toshiba_04A2 February 25, 2004  
P r e l i m i n a r y  
Table 19. DC Characteristics (TA = -40°C to 85°C, VDD = 2.6 to 3.3V)  
SYMBOL  
IIL  
PARAMETER  
TEST CONDITION  
VIN = 0 V to VDD  
MIN TYP. MAX UNIT  
Input Leakage Current  
Output Leakage Current  
Output High Voltage  
Output Low Voltage  
-1.0  
-1.0  
2.4  
-
-
-
-
-
+1.0  
+1.0  
-
µ
A
A
ILO  
Output disable, VOUT = 0 V to VDD  
IOH = - 0.5 mA  
µ
VOH  
V
VOL  
IOL = 1.0 mA  
0.4  
V
CE1# = VIL  
CE2 = VIH, IOUT = 0 mA  
IDDO1  
Operating Current  
tRC = min  
-
-
-
-
40  
25  
mA  
CE1# = VIL, CE2 = VIH,  
Page add. cycling, IOUT = 0 mA  
IDDO2  
Page Access Operating Current  
tPC = min  
mA  
IDDS  
Standby Current (MOS)  
CE1# = VDD - 0.2 V, CE2 = VDD - 0.2 V  
CE2 = 0.2 V  
-
-
-
-
70  
5
µ
A
A
IDDSD  
Deep Power-down Standby Current  
µ
Notes:  
1. I  
depends on the cycle time.  
DDO  
2. I  
depends on output loading. Specified values are defined with the output open condition.  
DDO  
Table 20. Capacitance (TA = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
Max  
10  
Unit  
Input Capacitance  
Output Capacitance  
VIN  
=
GND  
GND  
pF  
pF  
COUT  
VOUT  
=
10  
AC Characteristics  
Table 21. AC Characteristics and Operating Conditions (TA = -40°C to 85°C, VDD = 2.6 to 3.3V)  
Symbol  
tRC  
Parameter  
Min  
70  
Max  
10000  
70  
Unit  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tACC  
tCO  
Address Access Time  
Chip Enable (CE#) Access Time  
Output Enable Access Time  
Data Byte Control Access Time  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
Output Data Hold Time  
70  
tOE  
25  
tBA  
25  
tCOE  
tOEE  
tBE  
10  
0
0
tOD  
20  
tODO  
tBD  
20  
20  
tOH  
10  
70  
30  
tPM  
Page Mode Time  
10000  
tPC  
Page Mode Cycle Time  
February 25, 2004 pSRAM_Toshiba_04A2  
32 Mb pSRAM (Supplier 3)  
89  
P r e l i m i n a r y  
Table 21. AC Characteristics and Operating Conditions (TA = -40°C to 85°C, VDD = 2.6 to 3.3V) (Continued)  
Symbol  
tAA  
Parameter  
Page Mode Address Access Time  
Page Mode Output Data Hold Time  
Write Cycle Time  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
tAOH  
tWC  
10  
70  
50  
70  
60  
60  
0
10000  
tWP  
Write Pulse Width  
20  
tCW  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Valid to End of Write  
Address Set-up Time  
tBW  
tAW  
tAS  
tWR  
Write Recovery Time  
0
tCEH  
tWEH  
tODW  
tOEW  
tDS  
Chip Enable High Pulse Width  
Write Enable High Pulse Width  
WE# Low to Output High-Z  
WE# High to Output Active  
Data Set-up Time  
10  
6
0
30  
0
tDH  
Data Hold Time  
tCS  
CE2 Set-up Time  
0
tCH  
CE2 Hold Time  
300  
10  
0
µs  
tDPD  
tCHC  
tCHP  
CE2 Pulse Width  
ms  
ns  
CE2 Hold from CE1#  
CE2 Hold from Power On  
30  
µs  
Notes:  
1. AC measurements are assumed t , t = 5 ns.  
R
F
2. Parameters t , t  
, t and t  
define the time at which the output goes the open condition and are not output  
ODW  
OD ODO BD  
voltage reference levels.  
3. Data cannot be retained at deep power-down stand-by mode.  
4. If OE# is high during the write cycle, the outputs will remain at high impedance.  
5. During the output state of I/O signals, input signals of reverse polarity must not be applied.  
6. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.  
7. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high  
impedance.  
Table 22. AC Test Conditions  
Parameter  
Output load  
Condition  
30 pF 1 TTL Gate  
VDD 0.2 V, 0.2 V  
+
Input pulse level  
Timing measurements  
Reference level  
VDD  
VDD  
×
0.5  
0.5  
×
tR  
,
tF  
5 ns  
90  
32 Mb pSRAM (Supplier 3)  
pSRAM_Toshiba_04A2 February 25, 2004  
P r e l i m i n a r y  
Timing Diagrams  
tRC  
Addresses  
A0 to A20  
tACC  
tOH  
tCO  
CE#1  
Fixed High  
CE2  
OE#  
tOD  
tOE  
tODO  
WE#  
tBA  
LB#, UB#  
tBE  
tOEE  
tBD  
Indeterminate  
High-Z  
High-Z  
D
OUT  
Valid Data Out  
I/O1 to I/O16  
tCOE  
Indeterminate  
Figure 54. Read Cycle  
February 25, 2004 pSRAM_Toshiba_04A2  
32 Mb pSRAM (Supplier 3)  
91  
P r e l i m i n a r y  
t
PM  
Address  
A0 toA2  
t
t
t
t
PC  
PC  
PC  
RC  
Address  
A3 to A20  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
UB#, LB#  
t
t
OD  
OE  
t
BD  
t
BA  
t
t
t
AOH  
AOH  
AOH  
t
t
OEE  
OH  
t
BE  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O1  
t
COE  
t
t
t
t
t
ODO  
CO  
AA  
AA  
AA  
* Maximum 8 words  
t
ACC  
Figure 55. Page Read Cycle (8 words access)  
92  
32 Mb pSRAM (Supplier 3)  
pSRAM_Toshiba_04A2 February 25, 2004  
P r e l i m i n a r y  
t
WC  
Address  
A0 to A20  
t
t
WEH  
AW  
t
t
t
AS  
WP  
WR  
WE#  
t
t
CW  
WR  
CE#1  
t
CH  
CE2  
t
t
BW  
WR  
UB#, LB#  
t
t
OEW  
ODW  
D
OUT  
(See Note 2)  
Hi-Z  
(See Note 4)  
I/O1 to I/O16  
t
t
DH  
DS  
D
IN  
I/O1 to I/O16  
Notes:  
1. If OE# is high during the write cycle, the outputs will remain at high impedance  
(See Note 3)  
VALID DATA IN  
(See Note 3)  
2. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance  
3. During the output state of I/O signals, input signals of reverse polarity must not be applied  
4. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high  
impedance  
Figure 56. Write Cycle 1 (WE# controlled)  
February 25, 2004 pSRAM_Toshiba_04A2  
32 Mb pSRAM (Supplier 3)  
93  
P r e l i m i n a r y  
t
WC  
Address  
A0 to A20  
t
AW  
t
t
t
AS  
WP  
WR  
WE#  
t
CEH  
t
t
CW  
WR  
CE1#  
CE2  
t
CH  
t
t
BW  
WR  
UB#, LB#  
t
t
ODW  
BE  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O16  
t
COE  
t
t
DH  
DS  
D
IN  
I/O1 to I/O16  
Notes:  
1. If OE# is high during the write cycle, the outputs will remain at high impedance  
(See Note 2)  
VALID DATA IN  
2. During the output state of I/O signals, input signals of reverse polarity must not be applied  
Figure 57. Write Cycle 2 (CE# controlled)  
CE1#  
t
DPD  
CE2  
t
t
CH  
CS  
Figure 58. Deep Power-down Timing  
V
min  
V
DD  
DD  
CE1#  
CE2  
t
CHC  
t
CH  
t
CHP  
Figure 59. Power-on Timing  
94  
32 Mb pSRAM (Supplier 3)  
pSRAM_Toshiba_04A2 February 25, 2004  
P r e l i m i n a r y  
over 10 µs  
CE1#  
WE#  
Address  
t
min  
RC  
Note: If multiple invalid address cycles shorter than tRC min occur for a period greater than 10 µs, at least one valid address  
cycle over tRC min is required during that period.  
Figure 60. Read Address Skew Provisions  
over 10 µs  
CE1#  
t
min  
WP  
WE#  
Address  
t
min  
WC  
Note: If multiple invalid address cycles shorter than tWC min occur for a period greater than 10 µs, at least one valid address  
cycle over tWC min, in addition to tWP min, is required during that period.  
Figure 61. Write Address Skew Provisions  
February 25, 2004 pSRAM_Toshiba_04A2  
32 Mb pSRAM (Supplier 3)  
95  
P r e l i m i n a r y  
96  
32 Mb pSRAM (Supplier 3)  
pSRAM_Toshiba_04A2 February 25, 2004  
P r e l i m i n a r y  
64 Mb pSRAM (supplier 3)  
64 Megabit CMOS Pseudo Static SRAM  
Features  
„
„
„
„
„
Organized as 4,194,304 words by 16 bits  
Single power supply voltage of 2.6 to 3.3 V  
Direct TTL compatibility for all inputs and outputs  
Deep power-down mode: Memory cell data invalid  
Page operation mode:  
— Page read operation by 8 words  
Logic compatible with SRAM R/W (WE#) pin  
Standby current  
„
„
— Standby  
100 µA  
— Deep power-down standby 5 µA  
„
Access Times:  
— Access Time  
70 ns  
70 ns  
25 ns  
30 ns  
— CE1# Access Time  
— OE# Access Time  
— Page Access Time  
Description  
The S71JL128HC0 contains a 67,108,864-bit, pseudo static random access mem-  
ory (PSRAM) organized as 4,194,304 words by 16 bits. It provides high density,  
high speed, and low power. The device operates on a single power supply. The  
device also features SRAM-like W/R timing whereby the device is controlled by  
DE1#, OE#, and WE# on asynchronous. The device has the page access opera-  
tion. Page size is 8 words. The device also supports deep power-down mode,  
realizing low-power standby.  
Pin Description  
A0 to A21  
=
=
=
=
=
=
=
=
=
=
=
Address Inputs  
A0 to A2  
I/O1 to I/O16  
CE1#  
CE2  
WE#  
OE#  
LB#, UB#  
VDD  
GND  
NC  
Page Address Inputs  
Data Inputs/Outputs  
Chip Enable Input  
Chip select Input  
Write Enable Input  
Output Enable Input  
Data Byte Control Inputs  
Power  
Ground  
No Connection  
February 25, 2004 pSRAM_Toshiba_05A2  
64 Mb pSRAM (supplier 3)  
97  
P r e l i m i n a r y  
Operation Mode  
MODE  
Read (Word)  
CE1# CE2 OE# WE# LB# UB# Add  
I/O1 to I/O8  
DOUT  
I/O9 to I/O16  
DOUT  
POWER  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDS  
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (Lower Byte)  
Read (Upper Byte)  
Write (Word)  
DOUT  
High-Z  
DOUT  
L
H
L
High-Z  
DIN  
X
X
X
H
X
X
L
DIN  
Write (Lower Byte)  
Write (Upper Byte)  
Outputs Disabled  
Standby  
L
L
H
L
DIN  
Invalid  
DIN  
L
H
X
X
X
Invalid  
High-Z  
High-Z  
High-Z  
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
Deep Power-down Standby  
IDDSD  
Note: L = Low-level Input (V ), H = High-level Input (V ), X = V or V , High-Z = High impedance  
IL  
IH  
IH  
IL  
Absolute Maxumum Ratings  
SYMBOL  
VDD  
RATING  
VALUE  
-1.0 to 3.6  
-1.0 to 3.6  
-1.0 to 3.6  
-25 to 85  
-55 to 150  
0.6  
UNIT  
V
Power Supply Voltage  
Input Voltage  
VIN  
V
VOUT  
Topr.  
Output Voltage  
V
Operating Temperature  
Storage Temperature  
Power Dissipation  
°C  
°C  
W
Tstrg.  
PD  
IOUT  
Short Circuit Output Current  
50  
mA  
Note: (Stresses greater than listed under "Absolute Maximum Ratings" may cause permanent damage to the device  
DC Characteristics  
Table 23. DC Recommended Operating Conditions (TA = -25°C to 85°C)  
SYMBOL  
PARAMETER  
MIN  
TYP.  
MAX  
UNIT  
VDD  
Power Supply Voltage  
2.6  
2.75  
3.3  
VDD + 0.3  
(Note)  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.0  
-
-
V
-0.3 (Note  
0.4  
Note: V (Min) -1.0 V with 10 ns pulse width; VIH(Max) VDD+1.0 V with 10 ns pulse width  
IL  
98  
64 Mb pSRAM (supplier 3)  
pSRAM_Toshiba_05A2 February 25, 2004  
P r e l i m i n a r y  
Table 24. DC Characteristics (TA = -25°C to 85°C, VDD = 2.6 to 3.3V)  
SYMBOL  
IIL  
PARAMETER  
TEST CONDITION  
VIN = 0 V to VDD  
MIN TYP. MAX UNIT  
Input Leakage Current  
Output Leakage Current  
Output High Voltage  
Output Low Voltage  
-1.0  
-1.0  
2.4  
-
-
-
-
-
+1.0  
+1.0  
-
µA  
ILO  
Output disable, VOUT = 0 V to VDD  
IOH = - 0.5 mA  
mA  
V
VOH  
VOL  
IOL = 1.0 mA  
0.4  
V
CE1# = VIL  
CE2 = VIH, IOUT = 0 mA  
IDDO1  
Operating Current  
tRC = min  
-
-
-
-
50  
25  
mA  
mA  
CE1# = VIL, CE2 = VIH,  
Page add. cycling, IOUT = 0 mA  
IDDO2  
Page Access Operating Current  
tPC = min  
IDDS  
Standby Current (MOS)  
CE1# = VDD - 0.2 V, CE2 = VDD - 0.2 V  
CE2 = 0.2 V  
-
-
-
-
100  
5
µ
A
A
IDDSD  
Deep Power-down Standby Current  
µ
Notes:  
1. I  
depends on the cycle time.  
DDO  
2. I  
depends on output loading. Specified values are defined with the output open condition.  
DDO  
Table 25. Capacitance (TA = 25°C, f = 1 MHz)  
SYMBOL  
CIN  
PARAMETER  
TEST CONDITION  
MAX  
10  
UNIT  
Input Capacitance  
Output Capacitance  
VIN  
=
GND  
GND  
pF  
pF  
COUT  
VOUT  
=
10  
AC Characteristics  
Table 26. AC Characteristics and Operating Conditions (TA = -25°C to 85°C, VDD = 2.6 to 3.3V)  
Symbol  
tRC  
Parameter  
Min  
70  
Max  
10000  
70  
Unit  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tACC  
tCO  
Address Access Time  
Chip Enable (CE#) Access Time  
Output Enable Access Time  
Data Byte Control Access Time  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
Output Data Hold Time  
70  
tOE  
25  
tBA  
25  
tCOE  
tOEE  
tBE  
10  
0
0
tOD  
20  
tODO  
tBD  
20  
20  
tOH  
10  
70  
30  
tPM  
Page Mode Time  
10000  
tPC  
Page Mode Cycle Time  
February 25, 2004 pSRAM_Toshiba_05A2  
64 Mb pSRAM (supplier 3)  
99  
P r e l i m i n a r y  
Table 26. AC Characteristics and Operating Conditions (TA = -25°C to 85°C, VDD = 2.6 to 3.3V) (Continued)  
Symbol  
tAA  
Parameter  
Page Mode Address Access Time  
Page Mode Output Data Hold Time  
Write Cycle Time  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
tAOH  
tWC  
10  
70  
50  
70  
60  
60  
0
10000  
tWP  
Write Pulse Width  
20  
tCW  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Valid to End of Write  
Address Set-up Time  
tBW  
tAW  
tAS  
tWR  
Write Recovery Time  
0
tCEH  
tWEH  
tODW  
tOEW  
tDS  
Chip Enable High Pulse Width  
Write Enable High Pulse Width  
WE# Low to Output High-Z  
WE# High to Output Active  
Data Set-up Time  
10  
15  
0
30  
0
tDH  
Data Hold Time  
tCS  
CE2 Set-up Time  
0
tCH  
CE2 Hold Time  
300  
10  
0
µs  
tDPD  
tCHC  
tCHP  
CE2 Pulse Width  
ms  
ns  
CE2 Hold from CE1#  
CE2 Hold from Power On  
30  
µs  
Notes:  
1. AC measurements are assumed t , t = 5 ns.  
R
F
2. Parameters t , t  
, t and t  
define the time at which the output goes the open condition and are not output  
ODW  
OD ODO BD  
voltage reference levels.  
3. Data cannot be retained at deep power-down stand-by mode.  
4. If OE# is high during the write cycle, the outputs will remain at high impedance.  
5. During the output state of I/O signals, input signals of reverse polarity must not be applied.  
6. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.  
7. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high  
impedance.  
Table 27. AC Test Conditions  
Parameter  
Output load  
Condition  
30 pF 1 TTL Gate  
VDD 0.2 V, 0.2 V  
+
Input pulse level  
Timing measurements  
Reference level  
VDD  
VDD  
×
0.5  
0.5  
×
t , t  
5 ns  
R
F
100  
64 Mb pSRAM (supplier 3)  
pSRAM_Toshiba_05A2 February 25, 2004  
P r e l i m i n a r y  
Timing Diagrams  
tRC  
Addresses  
A0 to A21  
tACC  
tOH  
tCO  
CE#1  
Fixed High  
CE2  
OE#  
tOD  
tOE  
tODO  
WE#  
tBA  
LB#, UB#  
tBE  
tOEE  
tBD  
Indeterminate  
High-Z  
High-Z  
D
OUT  
Valid Data Out  
I/O1 to I/O16  
tCOE  
Indeterminate  
Figure 62. Read Cycle  
February 25, 2004 pSRAM_Toshiba_05A2  
64 Mb pSRAM (supplier 3)  
101  
P r e l i m i n a r y  
t
PM  
Address  
A0 to A2  
t
t
t
t
PC  
PC  
PC  
RC  
Address  
A3 to A21  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
UB#, LB#  
t
t
OD  
OE  
t
BD  
t
BA  
t
t
t
AOH  
AOH  
AOH  
t
t
OEE  
OH  
t
BE  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O1  
t
COE  
t
t
t
t
t
ODO  
CO  
AA  
AA  
AA  
* Maximum 8 words  
t
ACC  
Figure 63. Page Read Cycle (8 words access)  
102  
64 Mb pSRAM (supplier 3)  
pSRAM_Toshiba_05A2 February 25, 2004  
P r e l i m i n a r y  
t
WC  
Address  
A0 to A21  
t
t
WEH  
AW  
t
t
t
AS  
WP  
WR  
WE#  
t
t
CW  
WR  
CE#1  
t
CH  
CE2  
t
t
BW  
WR  
UB#, LB#  
t
t
OEW  
ODW  
D
OUT  
(See Note 2)  
Hi-Z  
(See Note 4)  
I/O1 to I/O16  
t
t
DH  
DS  
D
IN  
I/O1 to I/O16  
Notes:  
1. If OE# is high during the write cycle, the outputs will remain at high impedance  
(See Note 3)  
VALID DATA IN  
(See Note 3)  
2. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance  
3. During the output state of I/O signals, input signals of reverse polarity must not be applied  
4. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high  
impedance  
Figure 64. Write Cycle 1 (WE# controlled)  
February 25, 2004 pSRAM_Toshiba_05A2  
64 Mb pSRAM (supplier 3)  
103  
P r e l i m i n a r y  
t
WC  
Address  
A0 to A21  
t
AW  
t
t
t
AS  
WP  
WR  
WE#  
t
CEH  
t
t
CW  
WR  
CE1#  
CE2  
t
CH  
t
t
BW  
WR  
UB#, LB#  
t
t
ODW  
BE  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O16  
t
COE  
t
t
DH  
DS  
D
IN  
I/O1 to I/O16  
Notes:  
1. If OE# is high during the write cycle, the outputs will remain at high impedance  
(See Note 2)  
VALID DATA IN  
2. During the output state of I/O signals, input signals of reverse polarity must not be applied  
Figure 65. Write Cycle 2 (CE# controlled)  
CE1#  
t
DPD  
CE2  
t
t
CH  
CS  
Figure 66. Deep Power-down Timing  
V
min  
V
DD  
DD  
CE1#  
CE2  
t
CHC  
t
CH  
t
CHP  
Figure 67. Power-on Timing  
104  
64 Mb pSRAM (supplier 3)  
pSRAM_Toshiba_05A2 February 25, 2004  
P r e l i m i n a r y  
over10 µs  
CE1#  
WE#  
Address  
t
min  
RC  
Note: If multiple invalid address cycles shorter than tRC min occur for a period greater than 10 µs, at least one valid address  
cycle over tRC min is required during that period.  
Figure 68. Read Address Skew Provisions  
over 10 µs  
CE1#  
t
min  
WP  
WE#  
Address  
t
min  
WC  
Note: If multiple invalid address cycles shorter than tWC min occur for a period greater than 10 µs, at least one valid address  
cycle over tWC min, in addition to tWP min, is required during that period.  
Figure 69. Write Address Skew Provisions  
February 25, 2004 pSRAM_Toshiba_05A2  
64 Mb pSRAM (supplier 3)  
105  
P r e l i m i n a r y  
106  
64 Mb pSRAM (supplier 3)  
pSRAM_Toshiba_05A2 February 25, 2004  
P r e l i m i n a r y  
8 Mb SRAM (supplier 1)  
8 Megabit (x8/x16) CMOS SRAM  
Functional Description  
Table 28. Word Mode  
CS1#  
H
X
X
L
CS#2  
X
OE#  
X
WE# BYTE#  
SA  
X
X
X
X
X
X
X
X
X
X
X
LB#  
X
X
H
L
UB#  
X
DQ  
DQ  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
0~7  
8~15  
X
X
X
H
H
H
H
H
L
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Deselected  
L
X
X
X
Deselected  
X
X
X
H
X
Deselected  
H
H
H
L
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
L
H
X
L
L
Active  
L
H
H
L
Active  
L
H
L
H
L
High-Z  
Dout  
Active  
L
H
L
L
Dout  
Active  
L
H
X
L
H
L
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
H
X
L
H
L
High-Z  
Din  
Active  
L
H
X
L
L
Din  
Active  
Note: X = V or V  
IL  
IH  
Table 29. Byte Mode  
CS1# CS#2 OE# WE# BYTE#  
SA  
LB#  
X
UB#  
X
DQ  
DQ  
Mode  
Power  
Standby  
Standby  
Active  
0~7  
8~15  
H
X
L
X
L
X
X
H
L
X
X
H
H
L
X
X
X
High-Z  
High-Z  
High-Z  
Dout  
High-Z  
High-Z  
DNU  
Deselected  
X
X
X
Deselected  
H
H
H
VSS  
VSS  
VSS  
SA (Note 2) DNU  
SA (Note 2) DNU  
SA (Note 2) DNU  
DNU  
DNU  
DNU  
Output Disabled  
Lower Byte Read  
Lower Byte Write  
L
DNU  
Active  
L
X
Din  
DNU  
Active  
Notes:  
1. X = V or V  
IL  
IH  
2. Address input for byte operation.  
February 25, 2004 SRAM_Samsung_00A2  
8 Mb SRAM (supplier 1)  
107  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Item  
Symbol  
Ratings  
-0.2 to VCC+0.3V (Max. 3.6V)  
-0.2 to 3.6V  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
VIN,VOUT  
VCC  
V
PD  
1.0  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional  
operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
DC Characteristics  
Recommended DC Operating Conditions  
Item  
Symbol  
VCC  
Min  
Typ  
3.0  
0
Max  
Unit  
V
Supply voltage  
Ground  
2.7  
3.3  
VSS  
0
2.2  
0
VCC+0.2 (Note 1)  
0.6  
V
Input high voltage  
Input low voltage  
VIH  
-
V
VIL  
-0.2 (Note 2)  
-
V
Notes:  
1. Overshoot: Vcc+1.0V in case of pulse width 20ns.  
2. Undershoot: -1.0V in case of pulse width 20ns.  
3. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance (f=1MHz, T =25°C)  
A
Item  
Symbol  
CIN  
Test Condition  
Min  
Max  
8
Unit  
Input capacitance  
Input/Output capacitance  
VIN=0V  
VIO=0V  
-
-
pF  
pF  
CIO  
10  
Note: Capacitance is sampled, not 100% tested  
108  
8 Mb SRAM (supplier 1)  
SRAM_Samsung_00A2 February 25, 2004  
P r e l i m i n a r y  
DC and Operating Characteristics  
Item  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input leakage current  
ILI  
VIN=VSS to VCC  
-1  
-
1
mA  
CE1#=VIH, CS2=VIL or OE#=VIH or WE#=VIL,  
VIO=VSS to VCC  
Output leakage current  
ILO  
-1  
-
-
-
1
3
mA  
mA  
Cycle time=1  
CS2 VCC-0.2V, BYTE#=VSS or VCC, VIN  
VIN VCC-0.2V  
µ
s, 100% duty, IIO=0mA, CE1#  
0.2V,  
ICC1  
0.2V or  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty,  
CE1#=VIL, CS2=VIH, BYTE#=VSS or VCC  
VIN=VIL or VIH  
ICC2  
,
70ns  
-
-
22  
mA  
Output low voltage  
Output high voltage  
VOL  
VOH  
IOL = 2.1mA  
IOH = -1.0mA  
-
-
-
0.4  
V
V
2.4  
CE1#  
VCC-0.2V, CS2  
VCC-0.2V (CE1# controlled) or  
Standby Current (CMOS)  
ISB1  
CS2  
0.2V(CS2 controlled), BYTE3=VSS or VCC,  
-
-
15  
mA  
Other input =0~VCC  
February 25, 2004 SRAM_Samsung_00A2  
8 Mb SRAM (supplier 1)  
109  
P r e l i m i n a r y  
AC Characteristics  
Read/Write Charcteristics (V =2.7-3.3V)  
CC  
Parameter List  
Read cycle time  
Symbol  
tRC  
Min  
70  
-
Max  
-
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address access time  
Chip select to output  
tAA  
70  
70  
35  
70  
-
tCO1, tCO2  
tOE  
-
Output enable to valid output  
UB#, LB# Access Time  
-
tBA  
-
Chip select to low-Z output  
UB#, LB# enable to low-Z output  
Output enable to low-Z output  
Chip disable to high-Z output  
UB#, LB# disable to high-Z output  
Output disable to high-Z output  
Output hold from address change  
Write cycle time  
tLZ1, tLZ2  
tBLZ  
10  
10  
5
-
tOLZ  
-
tHZ1, tHZ2  
tBHZ  
tOHZ  
tOH  
0
25  
25  
25  
-
0
0
10  
70  
60  
0
tWC  
-
Chip select to end of write  
Address set-up time  
tCW  
-
tAS  
-
Address valid to end of write  
UB#, LB# Valid to End of Write  
Write pulse width  
tAW  
60  
60  
50  
0
-
tBW  
-
tWP  
-
Write recovery time  
tWR  
-
Write to output high-Z  
tWHZ  
tDW  
0
20  
-
Data to write time overlap  
Data hold from write time  
End write to output low-Z  
30  
0
tDH  
-
tOW  
5
-
Data Retention Characteristics  
Item  
Symbol  
VDR  
Test Condition  
CS1# VCC-0.2V  
VCC=3.0V, CS1# VCC-0.2V  
Min  
1.5  
-
Typ  
Max  
Unit  
VCC for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
-
-
-
-
3.3  
15  
-
V
IDR  
µA  
tSDR  
tRDR  
0
See data retention waveform  
ns  
tRC  
-
Note: CE1#VCC-0.2V. CS2VCC-0.2V (CE1# controlled) or CS20.2V (CS2 controlled), BYTE#=V or V  
SS  
CC  
110  
8 Mb SRAM (supplier 1)  
SRAM_Samsung_00A2 February 25, 2004  
P r e l i m i n a r y  
Timing Diagrams  
t
RC  
Address  
t
AA  
t
OH  
Data Valid  
Data Out  
Previous Data Valid  
Figure 70. Timing Waveform of Read Cycle(1) (address controlled, CD#1=OE#=VIL, CS2=WE#=VIH, UB#  
and/or LB#=VIL)  
t
RC  
Address  
CS1#  
CS2  
t
OH  
t
AA  
t
CO1  
t
CO2  
t
HZ  
t
BA  
UB#, LB#  
OE#  
t
BHZ  
t
OE  
t
OLZ  
t
OHZ  
t
BLZ  
t
LZ  
Data out  
High-Z  
Data Valid  
Notes:  
1. t and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.  
HZ OHZ  
2. At any given temperature and voltage condition, t (Max.) is less than t (Min.) both for a given device and from device to device  
HZ LZ  
interconnection.  
Figure 71. Timing Waveform of Read Cycle(2) (WE#=VIH, if BYTE# is low, ignore UB#/LB# timing)  
t
WC  
Address  
t
CW(2)  
t
WR(4)  
CS1#  
CS2  
t
AW  
t
BW  
UB#, LB#  
WE#  
t
WP(1)  
t
AS(3)  
t
t
DH  
DW  
High-Z  
High-Z  
Data in  
Data Valid  
t
t
OW  
WHZ  
Data Undefined  
Data out  
Figure 72. Timing Waveform of Write Cycle(1) (WE# controlled, if BYTE# is low, ignore UB#/LB# timing)  
February 25, 2004 SRAM_Samsung_00A2 8 Mb SRAM (supplier 1) 111  
P r e l i m i n a r y  
t
WC  
Address  
CS#  
t
t
CW(2)  
AS(3)  
t
WR(4)  
t
AW  
CS2  
UB#, LB#  
t
BW  
t
WP(1)  
WE#  
t
t
DH  
DW  
Data Valid  
Data in  
Data out  
High-Z  
High-Z  
Figure 73. Timing Waveform of Write Cycle(2) (CE1# controlled, if BYTE# is low, ignore UB#/LB# timing)  
t
WC  
Address  
CS1#  
t
)
CW(2  
t
WR(4)  
t
AW  
CS2  
t
CW(2)  
t
BW  
UB#, LB#  
t
AS(3)  
t
WP(1)  
WE#  
Data in  
t
t
DH  
DW  
Data Valid  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap(t ) of low CS1# and low WE#. A write begins when CS1# goes low and WE#  
WP  
goes low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double  
byte operation. A write ends at the earliest transition when CS1# goes high and WE# goes high. The t  
measured from the beginning of write to the end of write.  
is  
WP  
2. t  
is measured from the CS1# going low to the end of write.  
CW  
3. t is measured from the address valid to the beginning of write.  
AS  
4. t  
is measured from the end of write to the address change. t  
applied in case a write ends as CS1# or WE#  
WR  
WR  
going high.  
Figure 74. Timing Waveform of Write Cycle(3) (UB#, LB# controlled, BYTE# must be high)  
112  
8 Mb SRAM (supplier 1)  
SRAM_Samsung_00A2 February 25, 2004  
P r e l i m i n a r y  
Data Retention Waveforms  
Data Retention Mode  
t
t
RDR  
SDR  
V
CC  
2.7V  
2.2V  
V
DR  
CS1# V - 0.2V  
CC  
CS1#  
GND  
Figure 75. CE1# Controlled  
Data Retention Mode  
V
CC  
2.7V  
CS2  
t
t
SDR  
RDR  
V
DR  
CS20.2V  
0.4V  
GND  
Figure 76. CS2 Controlled  
February 25, 2004 SRAM_Samsung_00A2  
8 Mb SRAM (supplier 1)  
113  
P r e l i m i n a r y  
114  
8 Mb SRAM (supplier 1)  
SRAM_Samsung_00A2 February 25, 2004  
P r e l i m i n a r y  
Revision Summary  
Revision A (February 23, 2004)  
Initial release.  
Revision A+1 (February 25, 2004)  
Global  
Corrected Supplier 4 Model Number to 62.  
Revision A+2 (February 26, 2004)  
Global  
Corrected missed Supplier 4 Model Number to 62.  
Revision A+3 (May 25, 2004)  
S29JL064H Module  
Removed Latchup Characteristics.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by  
FASL LLC. FASL LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided ìas isî  
without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of  
third-party rights, or any other warranty, express, implied, or statutory. FASL LLC assumes no liability for any damages of any kind arising out of the use of  
the information in this document.  
Copyright © 2003 FASL LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of FASL  
LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
May 25, 2004 S71JLxxxHxx_00A3  
Revision Summary  
115  

相关型号:

S71JL064H80BFI100

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFI102

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFI110

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFI122

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFW010

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFW013

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFW020

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFW023

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFW113

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064H80BFW122

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, LEAD FREE, FBGA-73
SPANSION

S71JL064HA0BAI013

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION

S71JL064HA0BAI020

Memory Circuit, 4MX16, CMOS, PBGA73, 8 X 11.60 MM, FBGA-73
SPANSION