S71PL129JA0BAW9B0 [SPANSION]

Stacked Multi-Chip Product (MCP) Flash Memory; 堆叠式多芯片产品( MCP )闪存
S71PL129JA0BAW9B0
型号: S71PL129JA0BAW9B0
厂家: SPANSION    SPANSION
描述:

Stacked Multi-Chip Product (MCP) Flash Memory
堆叠式多芯片产品( MCP )闪存

闪存
文件: 总149页 (文件大小:2994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71PL129JC0/S71PL129JB0/S71PL129JA0  
Stacked Multi-Chip Product (MCP) Flash Memory and  
pSRAM 128 Megabit (8M x 16-bit) CMOS 3.0 Volt-only  
Simultaneous Operation, Page Mode Flash Memory with  
64/32/16 Megabit (4M/2M/1M x 16-bit) Pseudo-Static RAM  
ADVANCE  
INFORMATION  
Distinctive Characteristics  
„
„
Package  
— 8 x 11.6 x 1.2 mm 64 ball FBGA  
MCP Features  
„
Power supply voltage of 2.7 to 3.1 volt  
Operating Temperature  
„
High performance  
— –25°C to +85°C (Wireless)  
— –40°C to +85°C (Industrial)  
— 65ns (65ns Flash, 70ns pSRAM)  
„ Dual CE# Flash memory  
General Description  
The S71PL129J series is a product line of stacked Multi-Chip Product (MCP) pack-  
ages and consists of:  
„ One S29PL129J Flash memory die  
„ One 16M, 32M, or 64M pSRAM  
The products covered by this document are listed in the table below. For details  
about their specifications, please refer to the individual constituent datasheets for  
further details.  
Flash Memory Density  
128Mb  
64Mb  
32Mb  
16Mb  
S71PL129JC0  
S71PL129JB0  
S71PL129JA0  
pSRAM  
Density  
Publication Number S71PL129Jxx_00 Revision A Amendment 5 Issue Date December 23, 2004  
This document contains information on a product under development at Spansion, LLC. The information is intended to help you evaluate this product. Do not design in  
this product without contacting the factory. Spansion reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
128 Mb Flash Memory  
Device-Model#  
S71PL129JA0-9P  
S71PL129JB0-9Z  
S71PL129JB0-9B  
S71PL129JB0-9U  
S71PL129JC0-9Z  
S71PL129JC0-9U  
pSRAM density Flash Access time (ns) (p)SRAM Access time (ns) pSRAM type Package  
16M pSRAM  
32M pSRAM  
32M pSRAM  
32M pSRAM  
64M pSRAM  
64M pSRAM  
65  
65  
65  
65  
65  
65  
70  
70  
70  
70  
70  
70  
Type 7  
Type 7  
Type 2  
Type 6  
Type 7  
Type 6  
TLA064  
TLA064  
TLA064  
TLA064  
TLA064  
TLA064  
2
S71PL129JC0/S71PL129JB0/S71PL129JA0  
S71PL129Jxx_00_A5_E December 23, 2004  
A d v a n c e I n f o r m a t i o n  
Write Protect (WP#) ....................................................................................... 36  
Persistent Protection Bit Lock ................................................................... 37  
S71PL129JC0/S71PL129JB0/S71PL129JA0  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . 1  
MCP Features ........................................................................................................ 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .2  
128 Mb Flash Memory ..........................................................................................2  
MCP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .6  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . .7  
Input/Output Description . . . . . . . . . . . . . . . . . . . 8  
Pin Description ......................................................................................................8  
Logic Symbol ...........................................................................................................8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . .9  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 11  
TLA064—64-ball Fine-Pitch Ball Grid Array (FBGA)  
High Voltage Sector Protection ..................................................................... 37  
Figure 1. In-System Sector Protection/Sector Unprotection  
Algorithms........................................................................ 38  
Temporary Sector Unprotect ........................................................................39  
Figure 2. Temporary Sector Unprotect Operation ................... 39  
Secured Silicon Sector Flash Memory Region ...........................................39  
Factory-Locked Area (64 words) ..............................................................40  
Customer-Lockable Area (64 words) ......................................................40  
Secured Silicon Sector Protection Bits ....................................................40  
Figure 3. Secured Silicon Sector Protect Verify ...................... 41  
Hardware Data Protection ..............................................................................41  
Low VCC Write Inhibit .................................................................................41  
Write Pulse “Glitch” Protection ................................................................41  
Logical Inhibit ....................................................................................................41  
Power-Up Write Inhibit ................................................................................41  
8 x 11.6 mm Package ............................................................................................ 11  
Common Flash Memory Interface (CFI) . . . . . . 42  
Table 8. CFI Query Identification String ................................ 42  
Table 9. System Interface String ......................................... 43  
Table 10. Device Geometry Definition ................................... 43  
Table 11. Primary Vendor-Specific Extended Query ................ 43  
S29PL129J for MCP  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 14  
Simultaneous Read/Write Operation with Zero Latency ...................... 14  
Page Mode Features ........................................................................................... 14  
Standard Flash Memory Features ................................................................... 14  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 19  
Table 1. PL129J Device Bus Operations ................................ 19  
Requirements for Reading Array Data ......................................................... 19  
Random Read (Non-Page Read) ...............................................................20  
Page Mode Read .............................................................................................20  
Table 2. Page Select .......................................................... 20  
Simultaneous Read/Write Operation .......................................................... 20  
Writing Commands/Command Sequences ................................................. 21  
Accelerated Program Operation ............................................................... 21  
Autoselect Functions ..................................................................................... 21  
Standby Mode ........................................................................................................21  
Automatic Sleep Mode ..................................................................................... 22  
RESET#: Hardware Reset Pin ........................................................................ 22  
Output Disable Mode ....................................................................................... 22  
Table 3. S29PL129J Sector Architecture ............................... 23  
Table 4. Secured Silicon Sector Addresses ............................ 29  
Autoselect Mode ................................................................................................ 29  
Table 5. Autoselect Codes for PL129J ................................... 30  
Table 6. PL129J Boot Sector/Sector Block Addresses for Protection/  
Unprotection ..................................................................... 31  
Selecting a Sector Protection Mode ..............................................................32  
Table 7. Sector Protection Schemes ..................................... 32  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 45  
Reading Array Data ...........................................................................................45  
Reset Command .................................................................................................45  
Autoselect Command Sequence ....................................................................46  
Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Se-  
quence ....................................................................................................................46  
Word Program Command Sequence ...........................................................46  
Unlock Bypass Command Sequence ........................................................47  
Figure 4. Program Operation............................................... 48  
Chip Erase Command Sequence ...................................................................48  
Sector Erase Command Sequence ................................................................49  
Figure 5. Erase Operation................................................... 50  
Erase Suspend/Erase Resume Commands ..................................................50  
Password Program Command ........................................................................51  
Password Verify Command ..............................................................................51  
Password Protection Mode Locking Bit Program Command ...............51  
Persistent Sector Protection Mode Locking Bit Program Command 52  
Secured Silicon Sector Protection Bit Program Command ..................52  
PPB Lock Bit Set Command ............................................................................52  
DYB Write Command ......................................................................................52  
Password Unlock Command ..........................................................................52  
PPB Program Command .................................................................................. 53  
All PPB Erase Command .................................................................................. 53  
DYB Write Command ...................................................................................... 53  
PPB Lock Bit Set Command ............................................................................ 53  
Command .............................................................................................................54  
Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Persistent Sector Protection ...........................................................................32  
Password Sector Protection ............................................................................32  
WP# Hardware Protection .............................................................................32  
Selecting a Sector Protection Mode ..............................................................32  
Persistent Sector Protection . . . . . . . . . . . . . . . . 33  
Persistent Protection Bit (PPB) .......................................................................33  
Persistent Protection Bit Lock (PPB Lock) .................................................33  
Dynamic Protection Bit (DYB) .......................................................................33  
Persistent Sector Protection Mode Locking Bit ........................................35  
Password Protection Mode . . . . . . . . . . . . . . . . . 35  
Password and Password Mode Locking Bit ................................................36  
64-bit Password ...................................................................................................36  
Command Definitions Tables .........................................................................54  
Table 12. Memory Array Command Definitions ...................... 54  
Table 13. Sector Protection Command Definitions .................. 55  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 56  
DQ7: Data# Polling ............................................................................................56  
Figure 6. Data# Polling Algorithm........................................ 58  
RY/BY#: Ready/Busy# ....................................................................................... 58  
DQ6: Toggle Bit I ...............................................................................................58  
Figure 7. Toggle Bit Algorithm............................................. 59  
DQ2: Toggle Bit II ..............................................................................................60  
Reading Toggle Bits DQ6/DQ2 .....................................................................60  
DQ5: Exceeded Timing Limits ........................................................................60  
DQ3: Sector Erase Timer .................................................................................61  
December 23, 2004 S71PL129Jxx_00_A5  
3
A d v a n c e I n f o r m a t i o n  
Table 14. Write Operation Status ......................................... 61  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . .62  
Figure 8. Maximum Overshoot Waveforms............................. 62  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Industrial (I) Devices ..........................................................................................63  
Extended (E) Devices .........................................................................................63  
Supply Voltages ....................................................................................................63  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .64  
Table 15. CMOS Compatible ................................................ 64  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .65  
Test Conditions ...................................................................................................65  
Figure 9. Test Setups......................................................... 65  
Table 16. Test Specifications ............................................... 65  
Switching Waveforms ........................................................................................65  
Table 17. Key to Switching Waveforms ................................. 65  
Figure 10. Input Waveforms and Measurement Levels............. 66  
VCC RampRate .................................................................................................. 66  
Read Operations ................................................................................................ 66  
Table 18. Read-Only Operations .......................................... 66  
Figure 11. Read Operation Timings....................................... 67  
Figure 12. Page Read Operation Timings ............................... 67  
Reset ......................................................................................................................68  
Table 19. Hardware Reset (RESET#) .................................... 68  
Figure 13. Reset Timings..................................................... 68  
Erase/Program Operations ............................................................................. 69  
Table 20. Erase and Program Operations .............................. 69  
Timing Diagrams ................................................................................................. 70  
Figure 14. Program Operation Timings.................................. 70  
Figure 15. Accelerated Program Timing Diagram .................... 70  
Figure 16. Chip/Sector Erase Operation Timings..................... 71  
Figure 17. Back-to-back Read/Write Cycle Timings ................. 72  
Figure 18. Data# Polling Timings  
Write Timings ......................................................................................................85  
Figure 26. Write Cycle #1 (WE# Controlled) (See Note 8)....... 85  
Figure 27. Write Cycle #2 (CE# Controlled) (See Note 8) ....... 86  
Deep Power-down Timing ..............................................................................86  
Figure 28. Deep Power Down Timing.................................... 86  
Power-on Timing ................................................................................................86  
Figure 29. Power-on Timing ................................................ 86  
Provisions of Address Skew ............................................................................87  
Read ....................................................................................................................87  
Figure 30. Read................................................................. 87  
Write ..................................................................................................................87  
Figure 31. Write ................................................................ 87  
pSRAM Type 1  
Functional Description . . . . . . . . . . . . . . . . . . . . . 88  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 88  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .89  
Timing Test Conditions . . . . . . . . . . . . . . . . . . . . 94  
Output Load Circuit ..........................................................................................95  
Figure 32. Output Load Circuit............................................. 95  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . 95  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .96  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Read Cycle ...........................................................................................................107  
Figure 33. Timing of Read Cycle  
(CE# = OE# = V , WE# = ZZ# = V ).............................. 107  
IL  
IH  
Figure 34. Timing Waveform of Read Cycle  
(WE# = ZZ# = V )......................................................... 108  
IH  
Figure 35. Timing Waveform of Page Mode Read Cycle  
(WE# = ZZ# = V )......................................................... 109  
IH  
Write Cycle ..........................................................................................................110  
Figure 36. Timing Waveform of Write Cycle  
(During Embedded Algorithms)............................................ 72  
Figure 19. Toggle Bit Timings (During Embedded Algorithms) .. 73  
Figure 20. DQ2 vs. DQ6...................................................... 73  
(WE# Control, ZZ# = V )................................................ 110  
IH  
Figure 37. Timing Waveform of Write Cycle  
(CE# Control, ZZ# = V )................................................. 110  
Figure 38. Timing Waveform of Page Mode Write Cycle  
Protect/Unprotect . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 21. Temporary Sector Unprotect ................................. 74  
Figure 21. Temporary Sector Unprotect Timing Diagram.......... 74  
Figure 22. Sector/Sector Block Protect and Unprotect Timing  
Diagram............................................................................ 75  
Controlled Erase Operations ..........................................................................76  
Table 22. Alternate CE# Controlled Erase and  
IH  
(ZZ# = V ) ................................................................... 111  
IH  
Partial Array Self Refresh (PAR) .....................................................................111  
Temperature Compensated Refresh (for 64Mb) .....................................112  
Deep Sleep Mode ...............................................................................................112  
Reduced Memory Size (for 32M and 16M) ..................................................112  
Program Operations ........................................................... 76  
Table 23. Alternate CE# Controlled Write (Erase/Program)  
Other Mode Register Settings (for 64M) ....................................................112  
Figure 39. Mode Register.................................................. 113  
Figure 40. Mode Register Update Timings (UB#, LB#, OE# are  
Don’t Care)..................................................................... 113  
Figure 41. Deep Sleep Mode - Entry/Exit Timings (for 64M)... 114  
Figure 42. Deep Sleep Mode - Entry/Exit Timings  
Operation Timings ............................................................. 77  
Table 24. CE1#/CE2# Timing ............................................. 77  
Figure 23. Timing Diagram for Alternating Between CE1# and CE2#  
Control ............................................................................. 78  
Table 25. Erase And Programming Performance .................... 78  
(for 32M and 16M)........................................................... 114  
BGA Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . 78  
Type 2 pSRAM  
pSRAM Type 6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Product Information . . . . . . . . . . . . . . . . . . . . . . 118  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . 119  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Power Up ..............................................................................................................119  
Figure 43. Power Up 1 (CS1# Controlled) ........................... 119  
Figure 44. Power Up 2 (CS2 Controlled).............................. 119  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Functional Description . . . . . . . . . . . . . . . . . . . . . 80  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 80  
AC Characteristics and Operating Conditions . 81  
AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . 82  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Functional Description . . . . . . . . . . . . . . . . . . . . 120  
Absolute Maximum Ratings . . . . . . . . . . . . . . . 120  
DC Recommended Operating Conditions . . . . 120  
Read Timings ........................................................................................................83  
Figure 24. Read Cycle......................................................... 83  
Figure 25. Page Read Cycle (8 Words Access)........................ 84  
4
S71PL129Jxx_00_A5 December 23, 2004  
A d v a n c e I n f o r m a t i o n  
Power Down Parameters ...............................................................................137  
Other Timing Parameters ...............................................................................137  
AC Test Conditions .........................................................................................138  
AC Measurement Output Load Circuits ...................................................138  
Figure 53. AC Output Load Circuit – 16 Mb.......................... 138  
Figure 54. AC Output Load Circuit – 32 Mb and 64 Mb.......... 138  
DC and Operating Characteristics . . . . . . . . . . . 121  
Common ...............................................................................................................121  
16M pSRAM .........................................................................................................122  
32M pSRAM ........................................................................................................122  
64M pSRAM ........................................................................................................ 123  
128M pSRAM ....................................................................................................... 123  
AC Operating Conditions . . . . . . . . . . . . . . . . . 124  
Test Conditions (Test Load and Test Input/Output Reference) .......124  
Figure 45. Output Load ..................................................... 124  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Read Timings ......................................................................................................126  
Figure 46. Timing Waveform of Read Cycle(1)...................... 126  
Figure 47. Timing Waveform of Read Cycle(2)...................... 126  
Figure 48. Timing Waveform of Page Cycle (Page Mode Only) 127  
Write Timings .................................................................................................... 127  
Figure 49. Write Cycle #1 (WE# Controlled) ........................ 127  
Figure 50. Write Cycle #2 (CS1# Controlled)....................... 128  
Figure 51. Timing Waveform of Write Cycle(3)  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Read Timings .......................................................................................................139  
Figure 55. Read Timing #1 (Basic Timing) .......................... 139  
Figure 56. Read Timing #2 (OE# Address Access................. 139  
Figure 57. Read Timing #3 (LB#/UB# Byte Access) ............. 140  
Figure 58. Read Timing #4 (Page Address Access after CE1#  
Control Access for 32M and 64M Only) ............................... 140  
Figure 59. Read Timing #5 (Random and Page Address Access for  
32M and 64M Only) ......................................................... 141  
Write Timings ......................................................................................................141  
Figure 60. Write Timing #1 (Basic Timing).......................... 141  
Figure 61. Write Timing #2 (WE# Control).......................... 142  
Figure 62. Write Timing #3-1  
(WE#/LB#/UB# Byte Write Control) .................................. 142  
Figure 63. Write Timing #3-3  
(WE#/LB#/UB# Byte Write Control) .................................. 143  
Figure 64. Write Timing #3-4  
(WE#/LB#/UB# Byte Write Control) .................................. 143  
Read/Write Timings ..........................................................................................144  
Figure 65. Read/Write Timing #1-1 (CE1# Control) ............. 144  
Figure 66. Read / Write Timing #1-2  
(CE1#/WE#/OE# Control)................................................ 144  
Figure 67. Read / Write Timing #2 (OE#, WE# Control) ....... 145  
Figure 68. Read / Write Timing #3  
(CS2 Controlled) .............................................................. 128  
Figure 52. Timing Waveform of Write Cycle(4) (UB#, LB#  
Controlled)...................................................................... 129  
pSRAM Type 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Functional Description . . . . . . . . . . . . . . . . . . . . . 131  
Power Down (for 32M, 64M Only) . . . . . . . . . . . . 131  
Power Down ....................................................................................................... 131  
Power Down Program Sequence ................................................................. 132  
Address Key ....................................................................................................... 132  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 133  
Package Capacitance . . . . . . . . . . . . . . . . . . . . . . 133  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 134  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 135  
Read Operation ..................................................................................................135  
Write Operation ............................................................................................... 136  
(OE#, WE#, LB#, UB# Control) ........................................ 145  
Figure 69. Power-up Timing #1 ......................................... 146  
Figure 70. Power-up Timing #2 ......................................... 146  
Figure 71. Power Down Entry and Exit Timing ..................... 146  
Figure 72. Standby Entry Timing after Read or Write............ 147  
Figure 73. Power Down Program Timing (for 32M/64M Only). 147  
Revision Summary  
December 23, 2004 S71PL129Jxx_00_A5  
5
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram  
VCC  
f
VVCCCC  
CE1#f  
CE2#f  
WP#/ACC  
RESET#  
Flash-only Address  
Flash 1  
Shared Address  
OE#  
WE#  
RY/BY#  
DQ15 to DQ0  
VCCS  
VCC  
pSRAM  
IO15-IO0  
CE#s  
UB#s  
CE#  
UB#  
LB#  
LB#s  
CE2#ps  
CEM1#ps  
6
S71PL129Jxx_00_A5 December 23, 2004  
A d v a n c e I n f o r m a t i o n  
Connection Diagram  
64-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
A1  
A10  
NC  
NC  
B5  
RFU  
B6  
RFU  
C6  
Legend  
C3  
A7  
C4  
LB#  
D4  
C5  
C7  
A8  
C8  
A11  
D8  
WP/ACC  
D5  
WE#  
D6  
D2  
A3  
D9  
A15  
E9  
D3  
D7  
Shared  
(Note 1)  
A6  
UB#  
E4  
RST#f  
E5  
CE2s  
E6  
A19  
E7  
A12  
E8  
E2  
A2  
E3  
A5  
A18  
F4  
RY/BY#  
A20  
A9  
A13  
F8  
A21  
F9  
Flash only  
RAM only  
F2  
F3  
F7  
A1  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
CE2#  
G9  
G2  
G3  
VSS  
H3  
A0  
DQ1  
H4  
DQ6  
H7  
RFU  
H8  
A16  
H9  
H2  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
Reserved for  
Future Use  
CE1#f  
J2  
OE#  
J3  
DQ9  
J4  
DQ13  
J7  
DQ15  
J8  
RFU  
J9  
CE1#s  
DQ0  
K3  
DQ10  
K4  
VCCf  
K5  
VCCs  
K6  
DQ12  
K7  
DQ7  
K8  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
L5  
L6  
RFU  
RFU  
M1  
NC  
M10  
NC  
Note: May be shared depending on density:  
— A21 is shared for the 64M pSRAM configuration.  
— A20 is shred for the 32M pSRAM configuration.  
— A19 is shared for the 16M pSRAM configuration.  
MCP  
S71PL129JC0  
Flash-only Addresses  
Shared Addresses  
A21-A0  
A22  
S71PL129JB0  
S71PL129JA0  
A22-A21  
A22-A20  
A20-A0  
A19-A0  
Note: It is advised to tie J5 and L5 together on the board.  
December 23, 2004 S71PL129Jxx_00_A5  
7
A d v a n c e I n f o r m a t i o n  
Input/Output Description  
Pin Description  
A21–A0  
DQ15–DQ0  
CE1#f  
CE2#f  
CE1#ps  
CE2ps  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
22 Address Inputs (Common)  
16 Data Inputs/Outputs (Common)  
Chip Enable 1 (Flash)  
Chip Enable 2 (Flash)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low (Flash 1)  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
RESET#  
WP#/ACC  
VCC  
f
VCCps  
VSS  
NC  
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
22  
A21–A0  
16  
CE1#f  
DQ15–DQ0  
R Y/BY#  
CE2#f  
CE1#ps  
CE2ps  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
8
S71PL129Jxx_00_A5 December 23, 2004  
A d v a n c e I n f o r m a t i o n  
Ordering Information  
The order number is formed by a valid combinations of the following:  
S71PL  
129  
J
B0 BA  
W
9
Z
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
See valid combinations table.  
PACKAGE MODIFIER  
9
=
8 x 11.6 mm, 1.2 mm height, 64 balls (TLA064)  
TEMPERATURE RANGE  
W
I
=
=
Wireless (-25  
Industrial (-40  
°
C to +85  
°
C)  
°C to +85  
°C)  
PACKAGE TYPE  
BA  
BF  
=
=
Fine-pitch BGA Lead (Pb)-free compliant package  
Fine-pitch BGA Lead (Pb)-free package  
pSRAM DENSITY  
C0  
B0  
A0  
=
=
=
64 Mb pSRAM  
32 Mb pSRAM  
16 Mb pSRAM  
PROCESS TECHNOLOGY  
110 nm, Floating Gate Technology  
J
=
FLASH DENSITY  
129 128Mb, dual CE#  
=
PRODUCT FAMILY  
S71PL Multi-chip Product (MCP)  
3.0-volt Simultaneous Read/Write, Page Mode Flash Memory and RAM  
December 23, 2004 S71PL129Jxx_00_A5  
9
A d v a n c e I n f o r m a t i o n  
S71PL129J Valid Combinations  
(p)SRAM  
Type/Access  
Time (ns)  
Base Ordering  
Part Number  
Package &  
Package Modifier/  
Model Number  
Speed Options  
(ns)  
Package  
Marking  
Temperature  
Packing Type  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
9P  
9Z  
9B  
9U  
9Z  
9U  
9P  
9Z  
9B  
9U  
9Z  
9U  
9P  
9Z  
9B  
9U  
9Z  
9U  
9P  
9Z  
9B  
9U  
9Z  
9U  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 2 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 2 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 2 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 2 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
BAW  
BFW  
BAI  
0, 2, 3 (Note 1)  
65  
65  
65  
65  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
(Note 2)  
BFI  
Notes:  
Valid Combinations  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
3. Contact factory for availability of any of the above OPNs. RAM  
type availability may vary over time.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
10  
S71PL129Jxx_00_A5 December 23, 2004  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TLA064—64-ball Fine-Pitch Ball Grid Array (FBGA)  
8 x 11.6 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
eE  
3
2
1
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
64X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
PACKAGE  
JEDEC  
TLA 064  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.20  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
64  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B2,B3,B4,B7,B8,B9,B10  
C1,C2,C9,C10,D1,D10,E1,E10,  
F1,F5,F6,F10,G1,G5,G6,G10  
H1,H10,J1,J10,K1,K2,K9,K10  
L1,L2,L3,L4,L7,L8,L9,L10  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
M2,M3,M4,M5,M6,M7,M8,M9  
3352 \ 16-038.22a  
December 23, 2004 S71PL129Jxx_00_A5  
11  
S29PL129J for MCP  
128 Megabit (8 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Read/Write  
Flash Memory with Enhanced VersatileIOTM Control  
ADVANCE  
INFORMATION  
Datasheet  
Distinctive Characteristics  
Architectural Advantages  
Performance Characteristics  
„
128 Mbit Page Mode devices  
„
High Performance  
— Page size of 8 words: Fast page read access from  
random locations within the page  
— Page access times as fast as 20 ns  
— Random access times as fast as 55 ns  
„
Single power supply operation  
— Full Voltage range: 2.7 to 3.6 volt read, erase, and  
program operations for battery-powered applications  
„
Power consumption (typical values at 10 MHz)  
— 45 mA active read current  
— 17 mA program/erase current  
— 0.2 µA typical standby mode current  
„
„
Dual Chip Enable inputs (only in PL129J)  
Two CE# inputs control selection of each half of the  
memory space  
Software Features  
Simultaneous Read/Write Operation  
„
Software command-set compatible with JEDEC  
42.4 standard  
— Backward compatible with Am29F, Am29LV,  
Am29DL, and AM29PDL families and MBM29QM/RM,  
MBM29LV, MBM29DL, MBM29PDL families  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank  
— Zero latency switching from write to read operations  
„
FlexBank Architecture  
— 4 separate banks, with up to two simultaneous  
operations per device  
— CE#1 controlled banks:  
Bank 1A:  
„
CFI (Common Flash Interface) compliant  
— Provides device-specific information to the system,  
allowing host software to easily reconfigure for  
different Flash devices  
- 16Mbit (4Kw x 8 and 32Kw x 31)  
Bank 1B:  
- 48Mbit (32Kw x 96)  
„
„
Erase Suspend / Erase Resume  
— Suspends an erase operation to allow read or  
program operations in other sectors of same bank  
— CE#2 controlled banks:  
Unlock Bypass Program command  
— Reduces overall programming time when issuing  
multiple program command sequences  
Bank 2A:  
- 48 Mbit (32Kw x 96)  
Bank 2B:  
- 16Mbit (4Kw x 8 and 32Kw x 31)  
Enhanced VersatileI/OTM (VIO) Control  
— Output voltage generated and input voltages  
tolerated on all control inputs and I/Os is determined  
by the voltage on the VIO pin  
Hardware Features  
„
„
„
„
„
Ready/Busy# pin (RY/BY#)  
— Provides a hardware method of detecting program or  
erase cycle completion  
Hardware reset pin (RESET#)  
— Hardware method to reset the device to reading  
array data  
Secured Silicon Sector region  
— Up to 128 words accessible through a command  
sequence  
WP#/ ACC (Write Protect/Acceleration) input  
— At VIL, hardware level protection for the first and  
last two 4K word sectors.  
— Up to 64 factory-locked words  
— Up to 64 customer-lockable words  
„
„
„
„
Both top and bottom boot blocks in one device  
Manufactured on 110 nm process technology  
Data Retention: 20 years typical  
— At VIH, allows removal of sector protection  
— At VHH, provides accelerated programming in a  
factory setting  
„
Persistent Sector Protection  
— A command sector protection method to lock  
combinations of individual sectors and sector groups  
Cycling Endurance: 1 million cycles per sector  
typical  
Publication Number S29PL129J_MCP_00 Revision A Amendment 0 Issue Date June 4, 2004  
A d v a n c e I n f o r m a t i o n  
to prevent program or erase operations within that  
„
Password Sector Protection  
sector  
— A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups  
to prevent program or erase operations within that  
sector using a user-defined 64-bit password  
— Sectors can be locked and unlocked in-system at VCC  
level  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
13  
A d v a n c e I n f o r m a t i o n  
General Description  
The PL129J is a 128 Mbit, 3.0 volt-only Page Mode and Simultaneous Read/Write  
Flash memory device organized as 8 Mwords.  
The word-wide data (x16) appears on DQ15-DQ0. This device can be pro-  
grammed in-system or in standard EPROM programmers. A 12.0 V VPP is not  
required for write or erase operations.  
The device offers fast page access times of 20 to 30 ns, with corresponding ran-  
dom access times of 55 to 70 ns, respectively, allowing high speed  
microprocessors to operate without wait states. To eliminate bus contention the  
device has separate chip enable (CE#), write enable (WE#) and output enable  
(OE#) controls. Note: Device PL129J has 2 chip enable inputs (CE1#, CE2#).  
Simultaneous Read/Write Operation with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation  
by dividing the memory space into 4 banks, which can be considered to be four  
separate memory arrays as far as certain operations are concerned. The device  
can improve overall system performance by allowing a host system to program  
or erase in one bank, then immediately and simultaneously read from another  
bank with zero latency (with two simultaneous operations operating at any one  
time). This releases the system from waiting for the completion of a program or  
erase operation, greatly improving system performance.  
The device can be organized in both top and bottom sector configurations. The  
banks are organized as follows:  
Bank  
1A  
PL129J Sectors  
CE# Control  
CE1#  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
1B  
CE1#  
2A  
48 Mbit (32 Kw x 96)  
CE2#  
2B  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
CE2#  
Page Mode Features  
The page size is 8 words. After initial page access is accomplished, the page mode  
operation provides fast read access speed of random locations within that page.  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V to 3.6 V) for both  
read and write functions. Internally generated and regulated voltages are pro-  
vided for the program and erase operations.  
The device is entirely command set compatible with the JEDEC 42.4 single-  
power-supply Flash standard. Commands are written to the command regis-  
ter using standard microprocessor write timing. Register contents serve as inputs  
to an internal state-machine that controls the erase and programming circuitry.  
Write cycles also internally latch addresses and data needed for the programming  
and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. The  
Unlock Bypass mode facilitates faster programming times by requiring only two  
14  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
write cycles to program data instead of four. Device erasure occurs by executing  
the erase command sequence.  
The host system can detect whether a program or erase operation is complete by  
reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program  
or erase cycle has been completed, the device is ready to read array data or ac-  
cept another command.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or via programming  
equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on  
hold for any period of time to read data from, or program data to, any sector that  
is not selected for erasure. True background erase can thus be achieved. If a read  
is needed from the Secured Silicon Sector area (One Time Program area) after  
an erase suspend, then the user must use the proper command sequence to  
enter and exit this region.  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consumption  
is greatly reduced in both these modes.  
The device electrically erases all bits within a sector simultaneously via Fowler-  
Nordheim tunneling. The data is programmed using hot electron injection.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
15  
A d v a n c e I n f o r m a t i o n  
Block Diagram  
DQ15–DQ0  
RY/BY# (See Note)  
V
CC  
V
SS  
Sector  
Switches  
V
IO  
Input/Output  
Buffers  
RESET#  
WE#  
Erase Voltage  
Generator  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Data Latch  
Y-Gating  
Y-Decoder  
X-Decoder  
V
CC  
Detector  
Timer  
Amax–A3  
Cell Matrix  
A2–A0  
Notes:  
1. RY/BY# is an open drain output.  
2. For PL129J there are two CE# (CE1# and CE2#)  
16  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Simultaneous Read/Write Block Diagram (PL129J)  
V
V
CC  
OE#  
SS  
CE1#=L  
CE2#=H  
Mux  
Bank 1A  
Bank 1A Address  
Bank 1B Address  
A21–A0  
X-Decoder  
RY/BY#  
Bank 1B  
X-Decoder  
A21–A0  
RESET#  
STATE  
CONTROL  
&
Status  
WE#  
CE1#  
DQ15–DQ0  
CE2#  
COMMAND  
REGISTER  
Control  
Mux  
WP#/ACC  
CE1#=H  
CE2#=L  
X-Decoder  
Bank 2A  
DQ0–DQ15  
Bank 2A Address  
Bank 2B Address  
X-Decoder  
Bank 2B  
A21–A0  
Mux  
Notes:  
1. Amax = A21 (PL129J)  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
17  
A d v a n c e I n f o r m a t i o n  
Pin Description  
Amax–A0  
DQ15–DQ0  
CE#  
OE#  
WE#  
VSS  
NC  
RY/BY#  
=
=
=
=
=
=
=
=
Address bus  
16-bit data inputs/outputs/float  
Chip Enable Inputs  
Output Enable Input  
Write Enable  
Device Ground  
Pin Not Connected Internally  
Ready/Busy output and open drain.  
When RY/BY#= VIH, the device is ready to accept  
read operations and commands. When RY/BY#=  
VOL, the device is either executing an embedded  
algorithm or the device is executing a hardware  
reset operation.  
WP#/ACC  
=
Write Protect/Acceleration Input.  
When WP#/ACC= VIL, the highest and lowest two  
4K-word sectors are write protected regardless of  
other sector protection configurations. When WP#/  
ACC= VIH, these sector are unprotected unless the  
DYB or PPB is programmed. When WP#/ACC= 12V,  
program and erase operations are accelerated.  
VIO  
VCC  
=
=
Input/Output Buffer Power Supply 2.7 V to 3.6 V  
Chip Power Supply  
(2.7 V to 3.6 V or 2.7 to 3.3 V)  
RESET#  
CE1#, CE2#  
=
=
Hardware Reset Pin  
Chip Enable Inputs.  
CE1# controls the 64Mb in Banks 1A and 1B. CE2#  
controls the 64 Mb in Banks 2A and 2B.  
Notes:  
1. Amax = A21  
Logic Symbol  
max+1  
Amax–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
RY/BY#  
VIO (VCCQ  
)
18  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels re-  
quired, and the resulting output. The following subsections describe each of these  
operations in further detail.  
Table 1. PL129J Device Bus Operations  
Addresses  
(A21–A0)  
DQ15–  
DQ0  
Operation  
CE1#  
CE2#  
OE#  
WE#  
RESET#  
WP#/ACC  
L
H
L
H
L
Read  
L
H
H
X
AIN  
DOUT  
H
L
X
Write  
H
X
L
H
AIN  
X
DIN  
(Note 2)  
H
VIO  
0.3 V  
±
VIO  
0.3 V  
±
VIO ±  
0.3 V  
Standby  
X
X
High-Z  
Output Disable  
Reset  
L
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
X
X
Temporary Sector Unprotect  
(High Voltage)  
X
X
X
X
VID  
X
AIN  
DIN  
Legend: L = Logic Low = V , H = Logic High = V , V = 11.5–12.5 V, V = 8.5–9.5 V, X = Don’t Care, SA = Sector  
HH  
IL  
IH  
ID  
Address, A = Address In, D = Data In, D = Data Out  
IN  
IN  
OUT  
Notes:  
1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See  
“High Voltage Sector Protection” on page 37.”  
2. WP#/ACC must be high when writing to upper two and lower two sectors.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the OE# and appro-  
priate CE# pins to VIL. In PL129J, CE1# and CE2# are the power control and  
select the lower (CE1#) or upper (CE2#) halves of the device. CE# is the power  
control. OE# is the output control and gates array data to the output pins. WE#  
should remain at VIH.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. Each bank remains enabled for read access until the command register  
contents are altered.  
See Table 24 for timing specifications and Figure 11 for the timing diagram. ICC1  
in the DC Characteristics table represents the active current specification for  
reading array data.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
19  
A d v a n c e I n f o r m a t i o n  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from stable addresses to valid  
output data. The chip enable access time (tCE) is the delay from the stable ad-  
dresses and stable CE# to valid data at the output inputs. The output enable  
access time is the delay from the falling edge of the OE# to valid data at the out-  
put inputs (assuming the addresses have been stable for at least tACC–tOE time).  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. Address bits Amax–A3 select an 8 word page,  
and address bits A2–A0 select a specific word within that page. This is an asyn-  
chronous operation with the microprocessor supplying the specific word location.  
The random or initial page access is tACC or tCE and subsequent page read ac-  
cesses (as long as the locations specified by the microprocessor falls within that  
page) is equivalent to tPACC. When CE1# and CE#2 are deasserted (=VIH), the  
reassertion of CE1# or CE#2 for subsequent access has access time of tACC or  
tCE. Here again, CE1#/CE#2 selects the device and OE# is the output control and  
should be used to gate data to the output inputs if the device is selected. Fast  
page mode accesses are obtained by keeping Amax–A3 constant and changing  
A2–A0 to select the specific word within that page.  
Table 2. Page Select  
Word  
A2  
0
A1  
0
0
1
1
0
0
1
1
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
Simultaneous Read/Write Operation  
In addition to the conventional features (read, program, erase-suspend read, and  
erase-suspend program), the device is capable of reading data from one bank of  
memory while a program or erase operation is in progress in another bank of  
memory (simultaneous operation). The bank can be selected by bank addresses  
(A21–A19) with zero latency.  
The simultaneous operation can execute multi-function mode in the same bank.  
Bank  
CE1#  
CE2#  
PL129J: A21–A20  
00  
Bank 1A  
Bank 1B  
0
0
1
1
01, 10, 11  
20  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Bank 2A  
Bank 2B  
1
1
0
0
00, 01, 10  
11  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE1# or CE#2 to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once a bank enters the Unlock Bypass mode, only two write cycles are required  
to program a word, instead of four. “Word Program Command Sequence” on page  
46 has details on programming data to the device using both standard and Unlock  
Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 4 indicates the set of address space that each sector occupies. A “bank ad-  
dress” is the set of address bits required to uniquely select a bank. Similarly, a  
“sector address” refers to the address bits required to uniquely select a sector.  
“Command Definitions” on page 45 has details on erasing a sector or the entire  
chip, or suspending/resuming the erase operation.  
ICC2 in the DC Characteristics table represents the active current specification for  
the write mode. See the timing specification tables and timing diagrams in “Re-  
set” for write operations.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
function is primarily intended to allow faster manufacturing throughput at the  
factory.  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the time required for program  
operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin re-  
turns the device to normal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin should be raised to VCC when not in  
use. That is, the WP#/ACC pin should not be left floating or unconnected; incon-  
sistent behavior of the device may result.  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ15–DQ0. Standard  
read cycle timings apply in this mode. See “Secured Silicon Sector Addresses” on  
page 29 and “Autoselect Command Sequence” on page 46 for more information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
21  
A d v a n c e I n f o r m a t i o n  
The device enters the CMOS standby mode when the CE1# or CE#2 and RESET#  
pins are both held at VIO ± 0.3 V. (Note that this is a more restricted voltage  
range than VIH.) If CE1# or CE#2 and RESET# are held at VIH, but not within VIO  
± 0.3 V, the device is in standby mode, but the standby current is greater. The  
device requires standard access time (tCE) for read access when the device is in  
either of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
ICC3 in “DC Characteristics” represents the CMOS standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. Note that during automatic sleep mode, OE# must be at VIH before  
the device reduces current to the stated sleep mode specification. ICC5 in “DC  
Characteristics” represents the automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current is greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin re-  
mains a “0” (busy) until the internal reset operation is complete, which requires  
a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/  
BY# to determine whether the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing (RY/BY# pin is “1”), the reset  
operation is completed within a time of tREADY (not during Embedded Algorithms).  
The system can read data tRH after the RESET# pin returns to VIH.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 13  
for the timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
(except for RY/BY#) are placed in the highest Impedance state  
22  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 1 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
SA1-0  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
4
SA1-1  
4
SA1-2  
4
SA1-3  
4
SA1-4  
4
SA1-5  
4
SA1-6  
4
SA1-7  
4
SA1-8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-9  
SA1-10  
SA1-11  
SA1-12  
SA1-13  
SA1-14  
SA1-15  
SA1-16  
SA1-17  
SA1-18  
SA1-19  
SA1-20  
SA1-21  
SA1-22  
SA1-23  
SA1-24  
SA1-25  
SA1-26  
SA1-27  
SA1-28  
SA1-29  
SA1-30  
SA1-31  
SA1-32  
SA1-33  
SA1-34  
SA1-35  
SA1-36  
SA1-37  
SA1-38  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
23  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 2 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
Bank  
Sector  
SA1-39  
SA1-40  
SA1-41  
SA1-42  
SA1-43  
SA1-44  
SA1-45  
SA1-46  
SA1-47  
SA1-48  
SA1-49  
SA1-50  
SA1-51  
SA1-52  
SA1-53  
SA1-54  
SA1-55  
SA1-56  
SA1-57  
SA1-58  
SA1-59  
SA1-60  
SA1-61  
SA1-62  
SA1-63  
SA1-64  
SA1-65  
SA1-66  
SA1-67  
SA1-68  
SA1-69  
SA1-70  
SA1-71  
SA1-72  
SA1-73  
SA1-74  
SA1-75  
SA1-76  
SA1-77  
SA1-78  
SA1-79  
SA1-80  
SA1-81  
SA1-82  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
24  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 3 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
Bank  
Sector  
SA1-83  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
SA1-84  
SA1-85  
SA1-86  
SA1-87  
SA1-88  
SA1-89  
SA1-90  
SA1-91  
SA1-92  
SA1-93  
SA1-94  
SA1-95  
SA1-96  
SA1-97  
SA1-98  
SA1-99  
SA1-100  
SA1-101  
SA1-102  
SA1-103  
SA1-104  
SA1-105  
SA1-106  
SA1-107  
SA1-108  
SA1-109  
SA1-110  
SA1-111  
SA1-112  
SA1-113  
SA1-114  
SA1-115  
SA1-116  
SA1-117  
SA1-118  
SA1-119  
SA1-120  
SA1-121  
SA1-122  
SA1-123  
SA1-124  
SA1-125  
SA1-126  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
25  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 4 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
Bank  
Sector  
SA1-127  
SA1-128  
SA1-129  
SA1-130  
SA1-131  
SA1-132  
SA1-133  
SA1-134  
SA2-0  
CE1#  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111XXX  
0000000XXX  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
SA2-1  
SA2-2  
SA2-3  
SA2-4  
SA2-5  
SA2-6  
SA2-7  
SA2-8  
SA2-9  
SA2-10  
SA2-11  
SA2-12  
SA2-13  
SA2-14  
SA2-15  
SA2-16  
SA2-17  
SA2-18  
SA2-19  
SA2-20  
SA2-21  
SA2-22  
SA2-23  
SA2-24  
SA2-25  
SA2-26  
SA2-27  
SA2-28  
SA2-29  
SA2-30  
SA2-31  
SA2-32  
SA2-33  
SA2-34  
SA2-35  
26  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 5 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
Bank  
Sector  
SA2-36  
SA2-37  
SA2-38  
SA2-39  
SA2-40  
SA2-41  
SA2-42  
SA2-43  
SA2-44  
SA2-45  
SA2-46  
SA2-47  
SA2-48  
SA2-49  
SA2-50  
SA2-51  
SA2-52  
SA2-53  
SA2-54  
SA2-55  
SA2-56  
SA2-57  
SA2-58  
SA2-59  
SA2-60  
SA2-61  
SA2-62  
SA2-63  
SA2-64  
SA2-65  
SA2-66  
SA2-67  
SA2-68  
SA2-69  
SA2-70  
SA2-71  
SA2-72  
SA2-73  
SA2-74  
SA2-75  
SA2-76  
SA2-77  
SA2-78  
SA2-79  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
27  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 6 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
Bank  
Sector  
SA2-80  
SA2-81  
SA2-82  
SA2-83  
SA2-84  
SA2-85  
SA2-86  
SA2-87  
SA2-88  
SA2-89  
SA2-90  
SA2-91  
SA2-92  
SA2-93  
SA2-94  
SA2-95  
SA2-96  
SA2-97  
SA2-98  
SA2-99  
SA2-100  
SA2-101  
SA2-102  
SA2-103  
SA2-104  
SA2-105  
SA2-106  
SA2-107  
SA2-108  
SA2-109  
SA2-110  
SA2-111  
SA2-112  
SA2-113  
SA2-114  
SA2-115  
SA2-116  
SA2-117  
SA2-118  
SA2-119  
SA2-120  
SA2-121  
SA2-122  
SA2-123  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
28  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. S29PL129J Sector Architecture (Sheet 7 of 7)  
Sector Address (A21-  
A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE1#  
1
CE2#  
Address Range (x16)  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
0
0
0
0
0
0
0
0
0
0
0
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
32  
32  
32  
4
1
1
1
1
4
1
4
1
4
1
4
1
4
1
4
1
4
Table 4. Secured Silicon Sector Addresses  
Sector Size  
64 words  
Address Range  
Factory-Locked Area  
000000h-00003Fh  
000040h-00007Fh  
Customer-Lockable Area  
64 words  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output on DQ7–DQ0. This mode  
is primarily intended for programming equipment to automatically match a device  
to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on ad-  
dress pin A9. Address pins must be as shown in Table 5. In addition, when  
verifying sector protection, the sector address must appear on the appropriate  
highest order address bits. Table 5 shows the remaining address bits that are  
don’t care. When all necessary bits have been set as required, the programming  
equipment may then read the corresponding identifier code on DQ7–DQ0. How-  
ever, the autoselect codes can also be accessed in-system through the command  
register, for instances when the device is erased or programmed in a system with-  
out access to high voltage on the A9 pin. The command sequence is illustrated in  
Table 12. Note: If a Bank Address (BA) (on address bits A21A19) is asserted  
during the third write cycle of the autoselect command, the host system can read  
autoselect data that bank and then immediately read array data from the other  
bank, without exiting the autoselect mode.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 12. This method does  
not require VID. See “Autoselect Command Sequence” on page 46 for more  
information.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
29  
A d v a n c e I n f o r m a t i o n  
Table 5. Autoselect Codes for PL129J  
A21  
to  
A5  
to  
DQ15  
Description  
CE1# CE2# OE# WE# A12  
A10 A9 A8 A7 A6  
A4 A3 A2 A1 A0  
to DQ0  
Manufacturer  
L
H
L
VI  
ID:  
Spansion  
L
H
H
X
X
X
X
X
X
L
L
L
L
X
L
L
L
L
L
0001h  
D
H
products  
L
H
L
H
L
Read  
Cycle 1  
L
H
H
L
H
H
L
H
L
227Eh  
2221h  
2200h  
H
L
Read  
Cycle 2  
VI  
L
H
H
D
H
L
H
L
Read  
Cycle 3  
H
H
L
Sector  
Protection  
Verification  
H
VI  
0001h (protected),  
0000h (unprotected)  
L
L
H
H
SA  
X
X
X
X
X
L
L
L
L
L
L
L
L
H
H
L
D
H
L
L
Secured  
Silicon  
Indicator Bit  
(DQ7, DQ6)  
H
DQ7=1 (factory  
locked),  
DQ6=1 (factory and  
VI  
X
X
H
D
H
L
customer locked)  
Legend: L = Logic Low = VIL, H = Logic High = VIH, BA = Bank Address, SA = Sector Address, X = Don’t care.  
Note: The autoselect codes may also be accessed in-system via command sequences  
30  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 6. PL129J Boot Sector/Sector Block Addresses for Protection/Unprotection  
CE1# Control  
CE2# Control  
Sector/Sector Block  
Size  
Sector/Sector Block  
Size  
Sector Group  
SA1-0  
A21-12  
Sector Group  
SA2-0–SA2-3  
SA2-4–SA2-7  
SA2-8–SA2-11  
SA2-12–SA2-15  
SA2-16–SA2-19  
SA2-20–SA2-23  
SA2-24–SA2-27  
SA2-28–SA2-31  
SA2-32–SA2-35  
SA2-36–SA2-39  
SA2-40–SA2-43  
SA2-44–SA2-47  
SA2-48–SA2-51  
SA2-52–SA2-55  
SA2-56–SA2-59  
SA2-60–SA2-63  
SA2-64–SA2-67  
SA2-68–SA2-71  
SA2-72–SA2-75  
SA2-76–SA2-79  
SA2-80–SA2-83  
SA2-84–SA2-87  
SA2-88–SA2-91  
SA2-92–SA2-95  
SA2-96–SA2-99  
SA2-100–SA2-103  
SA2-104–SA2-107  
SA2-108–SA2-111  
SA2-112–SA2-115  
SA2-116–SA2-119  
SA2-120–SA2-123  
SA2-124  
A21-12  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
11111XXXXX  
4 Kwords  
00000XXXXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1-1  
4 Kwords  
SA1-2  
4 Kwords  
SA1-3  
4 Kwords  
SA1-4  
4 Kwords  
SA1-5  
4 Kwords  
SA1-6  
4 Kwords  
SA1-7  
4 Kwords  
SA1-8  
32 Kwords  
SA1-9  
32 Kwords  
SA1-10  
32 Kwords  
SA1-11 - SA1-14  
SA1-15 - SA1-18  
SA1-19 - SA1-22  
SA1-23 - SA1-26  
SA1-27 - SA1-30  
SA1-31 - SA1-34  
SA1-35 - SA1-38  
SA1-39 - SA1-42  
SA1-43 - SA1-46  
SA1-47 - SA1-50  
SA1-51 - SA1-54  
SA1-55 - SA1-58  
SA1-59 - SA1-62  
SA1-63 - SA1-66  
SA1-67 - SA1-70  
SA1-71 - SA1-74  
SA1-75 - SA1-78  
SA1-79 - SA1-82  
SA1-83 - SA1-86  
SA1-87 - SA1-90  
SA1-91 - SA1-94  
SA1-95 - SA1-98  
SA1-99 - SA1-102  
SA1-103 - SA1-106  
SA1-107 - SA1-110  
SA1-111 - SA1-114  
SA1-115 - SA1-118  
SA1-119 - SA1-122  
SA1-123 - SA1-126  
SA1-127 - SA1-130  
SA1-131 - SA1-134  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA2-125  
32 Kwords  
SA2-126  
32 Kwords  
SA2-127  
4 Kwords  
SA2-128  
4 Kwords  
SA2-129  
4 Kwords  
SA2-130  
4 Kwords  
SA2-131  
4 Kwords  
SA2-132  
4 Kwords  
SA2-133  
4 Kwords  
SA2-134  
4 Kwords  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
31  
A d v a n c e I n f o r m a t i o n  
Selecting a Sector Protection Mode  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See “Se-  
cured Silicon Sector Addresses” on page 29 for details.  
Table 7. Sector Protection Schemes  
DYB  
0
PPB  
0
PPB Lock  
Sector State  
0
1
0
0
0
1
1
1
Unprotected—PPB and DYB are changeable  
Unprotected—PPB not changeable, DYB is changeable  
0
0
0
1
1
0
Protected—PPB and DYB are changeable  
1
1
0
1
1
0
Protected—PPB not changeable, DYB is changeable  
1
1
Sector Protection  
The PL129J features several levels of sector protection, which can disable both  
the program and erase operations in certain sectors or sector groups:  
Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled pro-  
tection method.  
Password Sector Protection  
A highly sophisticated protection method that requires a password before  
changes to certain sectors or sector groups are permitted  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in sectors SA1-  
133, SA1-134, SA2-0 and SA2-1.  
The WP# Hardware Protection feature is always available, independent of the  
software managed protection method chosen.  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method is used. If the Persistent Sector Protection  
method is desired, programming the Persistent Sector Protection Mode Locking  
Bit permanently sets the device to the Persistent Sector Protection mode. If the  
Password Sector Protection method is desired, programming the Password Mode  
Locking Bit permanently sets the device to the Password Sector Protection mode.  
It is not possible to switch between the two protection modes once a locking bit  
has been set. One of the two modes must be selected when the device is first  
32  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
programmed. This prevents a program or virus from later setting the Password  
Mode Locking Bit, which would cause an unexpected shift from the default Per-  
sistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See Au-  
toselect Mode for details.  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the 12 V controlled protection  
method in previous flash devices. This new method provides three different sec-  
tor protection states:  
„ Persistently Locked—The sector is protected and cannot be changed.  
„ Dynamically Locked—The sector is protected and can be changed by a simple  
command.  
„ Unlocked—The sector is unprotected and can be changed by a simple com-  
mand.  
To achieve these states, three types of “bits” are used:  
„ Persistent Protection Bit  
„ Persistent Protection Bit Lock  
„ Persistent Sector Protection Mode Locking Bit  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to a maximum four  
sectors (see the sector address tables for specific sector protection groupings).  
All 4 Kword boot-block sectors have individual sector Persistent Protection Bits  
(PPBs) for greater flexibility. Each PPB is individually modifiable through the PPB  
Write Command.  
The device erases all PPBs in parallel. If any PPB requires erasure, the device  
must be instructed to preprogram all of the sector PPBs prior to PPB erasure. Oth-  
erwise, a previously erased sector PPBs can potentially be over-erased. The flash  
device does not have a built-in means of preventing sector PPBs over-erasure.  
Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a global volatile bit. When set to  
“1, the PPBs cannot be changed. When cleared (“0”), the PPBs are changeable.  
There is only one PPB Lock bit per device. The PPB Lock is cleared after power-  
up or hardware reset. There is no command sequence to unlock the PPB Lock.  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware  
reset, the contents of all DYBs is “0. Each DYB is individually modifiable through  
the DYB Write Command.  
When the parts are first shipped, the PPBs are cleared, the DYBs are cleared, and  
PPB Lock is defaulted to power up in the cleared state – meaning the PPBs are  
changeable.  
When the device is first powered on the DYBs power up cleared (sectors not pro-  
tected). The Protection State for each sector is determined by the logical OR of  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
33  
A d v a n c e I n f o r m a t i o n  
the PPB and the DYB related to that sector. For the sectors that have the PPBs  
cleared, the DYBs control whether or not the sector is protected or unprotected.  
By issuing the DYB Write command sequences, the DYBs are set or cleared, thus  
placing each sector in the protected or unprotected state. These are the so-called  
Dynamic Locked or Unlocked states. These states are called dynamic states be-  
cause it is very easy to switch back and forth between the protected and  
unprotected conditions. This allows software to easily protect sectors against in-  
advertent changes yet does not prevent the easy removal of protection when  
changes are needed. The DYBs maybe set or cleared as often as needed.  
The PPBs allow for a more static, and difficult to change, level of protection. The  
PPBs retain their state across power cycles because the PPBs are non-volatile. In-  
dividual PPBs are set with a command but must all be cleared as a group through  
a complex sequence of program and erasing commands. The PPBs are also lim-  
ited to 100 erase cycles.  
The PPB Lock bit adds an additional level of protection. Once all PPBs are pro-  
grammed to the desired settings, the PPB Lock may be set to “1. Setting the PPB  
Lock disables all program and erase commands to the non-volatile PPBs. In ef-  
fect, the PPB Lock Bit locks the PPBs into their current state. The only way to clear  
the PPB Lock is to go through a power cycle. System boot code can determine if  
any changes to the PPB are needed; for example, to allow new system code to  
be downloaded. If no changes are needed then the boot code can set the PPB  
Lock to disable any further changes to the PPBs during system operation.  
The WP#/ACC write protect pin adds a final level of hardware protection to sec-  
tors SA1-133, SA1-134, SA2-0 and SA2-1. When this pin is low it is not possible  
to change the contents of these sectors. These sectors generally hold system  
boot code. The WP#/ACC pin can prevent any changes to the boot code that could  
override the choices made while setting up sector protection during system  
initialization.  
For customers who are concerned about malicious viruses there is another level  
of security - the persistently locked state. To persistently protect a given sector  
or sector group, the PPBs associated with that sector need to be set to “1. Once  
all PPBs are programmed to the desired settings, the PPB Lock should be set to  
“1. Setting the PPB Lock automatically disables all program and erase commands  
to the Non-Volatile PPBs. In effect, the PPB Lock “freezes” the PPBs into their cur-  
rent state. The only way to clear the PPB Lock is to go through a power cycle.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Write command se-  
quence is all that is necessary. The DYB write command for the dynamic sectors  
switch the DYBs to signify protected and unprotected, respectively. If there is a  
need to change the status of the persistently locked sectors, a few more steps  
are required. First, the PPB Lock bit must be disabled by either putting the device  
through a power-cycle, or hardware reset. The PPBs can then be changed to re-  
flect the desired settings. Setting the PPB lock bit once again lock the PPBs, and  
the device operates normally again.  
The best protection is achieved by executing the PPB lock bit set command early  
in the boot code, and protect the boot code by holding WP#/ACC = VIL.  
Table 17 contains all possible combinations of the DYB, PPB, and PPB lock relating  
to the status of the sector.  
34  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
In summary, if the PPB is set, and the PPB lock is set, the sector is protected and  
the protection can not be removed until the next power cycle clears the PPB lock.  
If the PPB is cleared, the sector can be dynamically locked or unlocked. The DYB  
then controls whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program command to a protected sec-  
tor enables status polling for approximately 1 µs before the device returns to read  
mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs  
after which the device returns to read mode without having erased the protected  
sector.  
The programming of the DYB, PPB, and PPB lock for a given sector can be verified  
by writing a DYB/PPB/PPB lock verify command to the device. There is an alter-  
native means of reading the protection status. Take RESET# to VIL and hold WE#  
at VIH.(The high voltage A9 Autoselect Mode also works for reading the status of  
the PPBs). Scanning the addresses (A18–A11) while (A6, A1, A0) = (0, 1, 0) pro-  
duces a logical ‘1” code at device output DQ0 for a protected sector or a “0” for  
an unprotected sector. In this mode, the other addresses are don’t cares. Address  
location with A1 = VIL are reserved for autoselect manufacturer and device  
codes.  
Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sector Protection mode locking  
bit exists to guarantee that the device remain in software sector protection. Once  
set, the Persistent Sector Protection locking bit prevents programming of the  
password protection mode locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
Password Protection Mode  
The Password Sector Protection Mode method allows an even higher level of se-  
curity than the Persistent Sector Protection Mode. There are two main differences  
between the Persistent Sector Protection and the Password Sector Protection  
Mode:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock  
bit set to the locked state, rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writing a unique 64-bit Password  
to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
Once the Password Mode Locking Bit is set, the password is permanently set with  
no means to read, program, or erase it. The password is used to clear the PPB  
Lock bit. The Password Unlock command must be written to the flash, along with  
a password. The flash device internally compares the given password with the  
pre-programmed password. If they match, the PPB Lock bit is cleared, and the  
PPBs can be altered. If they do not match, the flash device does nothing. There  
is a built-in 2 µs delay for each “password check.This delay is intended to thwart  
any efforts to run a program that tries all possible combinations in order to crack  
the password.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
35  
A d v a n c e I n f o r m a t i o n  
Password and Password Mode Locking Bit  
In order to select the Password sector protection scheme, the customer must first  
program the password. The password may be correlated to the unique Electronic  
Serial Number (ESN) of the particular flash device. Each ESN is different for every  
flash device; therefore each password should be different for every flash device.  
While programming in the password region, the customer may perform Password  
Verify operations.  
Once the desired password is programmed in, the customer must then set the  
Password Mode Locking Bit. This operation achieves two objectives:  
Permanently sets the device to operate using the Password Protection Mode. It is  
not possible to reverse this function.  
Disables all further commands to the password region. All program, and read op-  
erations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Protection  
method is desired when setting the Password Mode Locking Bit. More importantly,  
the user must be sure that the password is correct when the Password Mode  
Locking Bit is set. Due to the fact that read operations are disabled, there is no  
means to verify what the password is afterwards. If the password is lost after set-  
ting the Password Mode Locking Bit, there is not any way to clear the PPB Lock bit.  
The Password Mode Locking Bit, once set, prevents reading the 64-bit password  
on the DQ bus and further password programming. The Password Mode Locking  
Bit is not erasable. Once Password Mode Locking Bit is programmed, the Persis-  
tent Sector Protection Locking Bit is disabled from programming, guaranteeing  
that no changes to the protection scheme are allowed.  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Verify commands (see “Password Verify  
Command”). The password function works in conjunction with the Password  
Mode Locking Bit, which when set, prevents the Password Verify command from  
reading the contents of the password on the pins of the device.  
Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the upper  
two and lower two sectors(PL127J: 0, 1, 268, and 269, PL064J: 0, 1, 140, and  
141, PL032J: 0, 1, 76, and 77, PL129J: SA1-133, SA1-134,SA2-0 and SA2-1)  
without using VID. This function is provided by the WP# pin and overrides the pre-  
viously discussed method, “High Voltage Sector Protection” on page 37.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in the two outermost 4 Kword sectors on both ends of the flash  
array independent of whether it was previously protected or unprotected.  
If the system asserts VIH on the WP#/ACC pin, the device reverts the upper two  
and lower two sectors to whether they were last set to be protected or unpro-  
tected. That is, sector protection or unprotection for these sectors depends on  
whether they were last protected or unprotected using the method described in  
“High Voltage Sector Protection” on page 37.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent  
behavior of the device may result.  
36  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile bit that reflects the state of  
the Password Mode Locking Bit after power-up reset. If the Password Mode Lock  
Bit is also set after a hardware reset (RESET# asserted) or a power-up reset, the  
ONLY means for clearing the PPB Lock Bit in Password Protection Mode is to issue  
the Password Unlock command. Successful execution of the Password Unlock  
command clears the PPB Lock Bit, allowing for sector PPBs modifications. Assert-  
ing RESET#, taking the device through a power-on reset, or issuing the PPB Lock  
Bit Set command sets the PPB Lock Bit to a “1” when the Password Mode Lock Bit  
is not set.  
If the Password Mode Locking Bit is not set, including Persistent Protection Mode,  
the PPB Lock Bit is cleared after power-up or hardware reset. The PPB Lock Bit is  
set by issuing the PPB Lock Bit Set command. Once set the only means for clear-  
ing the PPB Lock Bit is by issuing a hardware or power-up reset. The Password  
Unlock command is ignored in Persistent Protection Mode.  
High Voltage Sector Protection  
Sector protection and unprotection may also be implemented using programming  
equipment. The procedure requires high voltage (VID) to be placed on the RE-  
SET# pin. Refer to Figure 1 for details on this procedure. Note that for sector  
unprotect, all unprotected sectors must first be protected prior to the first sector  
write cycle.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
37  
A d v a n c e I n f o r m a t i o n  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 1. In-System Sector Protection/Sector Unprotection Algorithms  
38  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to  
change data in-system. The Sector Unprotect mode is activated by setting the  
RESET# pin to VID. During this mode, formerly protected sectors can be pro-  
grammed or erased by selecting the sector addresses. Once VID is removed from  
the RESET# pin, all the previously protected sectors are protected again.  
Figure 2 shows the algorithm, and Figure 21 shows the timing diagrams, for this  
feature. While PPB lock is set, the device cannot enter the Temporary Sector Un-  
protection Mode.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors are unprotected (If WP#/ACC = V , upper two and lower  
IL  
two sectors remain protected).  
2. All previously protected sectors are protected once again  
Figure 2. Temporary Sector Unprotect Operation  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables  
permanent part identification through an Electronic Serial Number (ESN) The  
128-word Secured Silicon sector is divided into 64 factory-lockable words that  
can be programmed and locked by the customer. The Secured Silicon sector is  
located at addresses 000000h-00007Fh in both Persistent Protection mode and  
Password Protection mode. Indicator bits DQ6 and DQ7 are used to indicate the  
factory-locked and customer locked status of the part.  
The system accesses the Secured Silicon Sector through a command sequence  
(see “Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Se-  
quence” on page 46). After the system has written the Enter Secured Silicon  
Sector command sequence, it may read the Secured Silicon Sector by using the  
addresses normally occupied by the boot sectors. This mode of operation contin-  
ues until the system issues the Exit Secured Silicon Sector command sequence,  
or until power is removed from the device. On power-up, or following a hardware  
reset, the device reverts to sending commands to the normal address space. Note  
that the ACC function and unlock bypass modes are not available when the Se-  
cured Silicon Sector is enabled.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
39  
A d v a n c e I n f o r m a t i o n  
Factory-Locked Area (64 words)  
The factory-locked area of the Secured Silicon Sector (000000h-00003Fh) is  
locked when the part is shipped, whether or not the area was programmed at the  
factory. The Secured Silicon Sector Factory-locked Indicator Bit (DQ7) is perma-  
nently set to a “1. Optional Spansion programming services can program the  
factory-locked area with a random ESN, a customer-defined code, or any combi-  
nation of the two. Because only FASL can program and protect the factory-locked  
area, this method ensures the security of the ESN once the product is shipped to  
the field. Contact your local sales office for details on using Spansion’s program-  
ming services. Note that the ACC function and unlock bypass modes are not  
available when the Secured Silicon sector is enabled.  
Customer-Lockable Area (64 words)  
The customer-lockable area of the Secured Silicon Sector (000040h-00007Fh) is  
shipped unprotected, which allows the customer to program and optionally lock  
the area as appropriate for the application. The Secured Silicon Sector Customer-  
locked Indicator Bit (DQ6) is shipped as “0” and can be permanently locked to “1”  
by issuing the Secured Silicon Protection Bit Program Command. The Secured Sil-  
icon Sector can be read any number of times, but can be programmed and locked  
only once. Note that the accelerated programming (ACC) and unlock bypass func-  
tions are not available when programming the Secured Silicon Sector.  
The Customer-lockable Secured Silicon Sector area can be protected using one  
of the following procedures:  
„ Write the three-cycle Enter Secured Silicon Sector Region command se-  
quence, and then follow the in-system sector protect algorithm as shown in  
Figure 1, except that RESET# may be at either VIH or VID. This allows in-sys-  
tem protection of the Secured Silicon Sector Region without raising any de-  
vice pin to a high voltage. Note that this method is only applicable to the  
Secured Silicon Sector.  
„ To verify the protect/unprotect status of the Secured Silicon Sector, follow the  
algorithm shown in Figure 3.  
Once the Secured Silicon Sector is locked and verified, the system must write the  
Exit Secured Silicon Sector Region command sequence to return to reading and  
writing the remainder of the array.  
The Secured Silicon Sector lock must be used with caution since, once locked,  
there is no procedure available for unlocking the Secured Silicon Sector area and  
none of the bits in the Secured Silicon Sector memory space can be modified in  
any way.  
Secured Silicon Sector Protection Bits  
The Secured Silicon Sector Protection Bits prevent programming of the Secured  
Silicon Sector memory area. Once set, the Secured Silicon Sector memory area  
contents are non-modifiable.  
40  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
START  
If data = 00h,  
RESET# =  
VIH or VID  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Figure 3. Secured Silicon Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes. In addition, the following  
hardware data protection measures prevent accidental erasure or programming,  
which might otherwise be caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system noise.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE1#, CE2# or WE# do not ini-  
tiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE1# = CE2# = VIH  
or WE# = VIH. To initiate a write cycle, CE1# / CE2# and WE# must be a logical  
zero while OE# is a logical one.  
Power-Up Write Inhibit  
If WE# = CE# (CE1#, CE2# in PL129J) = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising edge of WE#. The internal  
state machine is automatically reset to the read mode on power-up.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
41  
A d v a n c e I n f o r m a t i o n  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Table 8, Table 9,  
Table 10, and Table 11. To terminate reading CFI data, the system must write the  
reset command. The CFI Query mode is not accessible when the device is exe-  
cuting an Embedded Program or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Table 8, Table 9, Table 10, and Table 11. The  
system must write the reset command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Contact your local sales office for copies of these documents.  
Table 8. CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
42  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 9. System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
Typical timeout per individual block erase 2N ms  
µs (00h = not supported)  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 10. Device Geometry Definition  
Addresses  
Data  
Description  
27h  
0018h (PL129J)  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
00FDh (PL129J)  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
Table 11. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
43  
A d v a n c e I n f o r m a t i o n  
Table 11. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
43h  
Data  
Description  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
44h  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
TBD  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
0002h  
0001h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
0001h  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
0007h (PLxxxJ)  
00E7h (PL129J)  
0000h  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
0002h (PLxxxJ)  
0085h  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
0095h  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = Both top and bottom boot with write protect,  
02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
0001h  
Program Suspend  
0 = Not supported, 1 = Supported  
50h  
57h  
58h  
59h  
5Ah  
5Bh  
0001h  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
0004h  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
0027h (PL129J)  
0060h (PL129J)  
0060h (PL129J)  
0027h (PL129J)  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
44  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 12 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state. A reset com-  
mand is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE# (CE1# / CE2# in  
PL129J), whichever happens later. All data is latched on the rising edge of WE#  
or CE# (CE1# / CE2# in PL129J), whichever happens first. See AC Characteristics  
for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank  
enters the erase-suspend-read mode, after which the system can read data from  
any non-erase-suspended sector within the same bank. The system can read  
array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing  
a programming operation in the Erase Suspend mode, the system may once  
again read array data with the same exception. See “Erase Suspend/Erase Re-  
sume Commands” on page 50 for more information.  
The system must issue the reset command to return a bank to the read (or erase-  
suspend-read) mode if DQ5 goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See “Reset Command,for more  
information.  
See “Requirements for Reading Array Data” on page 19 in “Device Bus Opera-  
tions” for more information. The AC Characteristics table provides the read  
parameters, and Figure 12 shows the timing diagram.  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the bank to which  
the system was writing to the read mode. If the program command sequence is  
written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while  
in the Erase Suspend mode, writing the reset command returns that bank to the  
erase-suspend-read mode.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
45  
A d v a n c e I n f o r m a t i o n  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the banks to the read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
The autoselect command sequence may be written to an address within a bank  
that is either in the read or erase-suspend-read mode. The autoselect command  
may not be written while the device is actively programming or erasing in the  
other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autoselect mode. The system may  
read any number of autoselect codes without reinitiating the command sequence.  
Table 12 shows the address and data requirements. To determine sector protec-  
tion information, the system must write to the appropriate bank address (BA) and  
sector address (SA).  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the bank was previously in Erase Suspend).  
Enter Secured Silicon Sector/Exit Secured Silicon Sector Command  
Sequence  
The Secured Silicon Sector region provides a secured data area containing a ran-  
dom, eight word electronic serial number (ESN). The system can access the  
Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon  
Sector command sequence. The device continues to access the Secured Silicon  
Sector region until the system issues the four-cycle Exit Secured Silicon Sector  
command sequence. The Exit Secured Silicon Sector command sequence returns  
the device to normal operation. The Secured Silicon Sector is not accessible when  
the device is executing an Embedded Program or embedded Erase algorithm.  
Table 12 shows the address and data requirements for both command sequences.  
Also see, “Secured Silicon Sector Flash Memory Region” on page 39 for further in-  
formation. Note: The ACC function and unlock bypass modes are not available  
when the Secured Silicon Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 12 shows the address and  
data requirements for the program command sequence. Note that the Secured  
Silicon Sector, autoselect, and CFI functions are unavailable when a [program/  
erase] operation is in progress.  
When the Embedded Program algorithm is complete, that bank then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7, DQ6, or RY/BY#. See “Write  
Operation Status” on page 56 for information on these status bits.  
46  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that a hardware reset immediately terminates the program  
operation. The program command sequence should be reinitiated once that bank  
has returned to the read mode, to ensure data integrity. Note that the Secured  
Silicon Sector, autoselect and CFI functions are unavailable when the Secured Sil-  
icon Sector is enabled.  
Programming is allowed in any sequence and across sector boundaries. A bit  
cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate  
the operation was successful. However, a succeeding read shows that the data is  
still “0.Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program data to a bank faster  
than using the standard program command sequence. The unlock bypass com-  
mand sequence is initiated by first writing two unlock cycles. This is followed by  
a third write cycle containing the unlock bypass command, 20h. That bank then  
enters the unlock bypass mode. A two-cycle unlock bypass program command  
sequence is all that is required to program in this mode. The first cycle in this se-  
quence contains the unlock bypass program command, A0h; the second cycle  
contains the program address and data. Additional data is programmed in the  
same manner. This mode dispenses with the initial two unlock cycles required in  
the standard program command sequence, resulting in faster total programming  
time. Table 12 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (Table 13)  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
be at VHH any operation other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
Figure 4 illustrates the algorithm for the program operation. See the Erase/Pro-  
gram Operations table in AC Characteristics for parameters, and Figure 14 for  
timing diagrams.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
47  
A d v a n c e I n f o r m a t i o n  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 12 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 12 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. Refer to “Write Op-  
eration Status” on page 56 for information on these status bits.  
Any commands written during the chip erase operation are ignored. Note that Se-  
cured Silicon Sector, autoselect, and CFI functions are unavailable when a  
[program/erase] operation is in progress. However, note that a hardware reset  
immediately terminates the erase operation. If that occurs, the chip erase com-  
mand sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
Figure 5 illustrates the algorithm for the erase operation. See the Erase/Program  
Operations tables in AC Characteristics for parameters, and Figure 16 for timing  
diagrams.  
48  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 12 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. If any com-  
mand other than 30h, B0h, F0h is input during the time-out period, the  
normal operation cannot be guaranteed. The system must rewrite the com-  
mand sequence and any additional addresses and commands. Note that Secured  
Silicon Sector, autoselect, and CFI functions are unavailable when a [program/  
erase] operation is in progress.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See “DQ3: Sector Erase Timer” on page 61). The time-out begins from the rising  
edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading  
array data and addresses are no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read data from the non-erasing  
bank. The system can determine the status of the erase operation by reading  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. See “Write Operation Status” on  
page 56 for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
Figure 5 illustrates the algorithm for the erase operation. See the Erase/Program  
Operations tables in AC Characteristics for parameters, and Figure 16 for timing  
diagrams.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
49  
A d v a n c e I n f o r m a t i o n  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 12 for erase command sequence.  
2. See “DQ3: Sector Erase Timer” on page 61 for information on the sector erase  
timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing this command. This com-  
mand is valid only during the sector erase operation, including the 80 µs time-out  
period during the sector erase command sequence. The Erase Suspend command  
is ignored if written during the chip erase operation or Embedded Program  
algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a maximum of 35 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-out period and suspends  
the erase operation. Addresses are “don’t-cares” when writing the Erase suspend  
command.  
After the erase operation has been suspended, the bank enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. See  
“Write Operation Status” on page 56 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the  
erase-suspend-read mode. The system can determine the status of the program  
50  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
operation using the DQ7 or DQ6 status bits, just as in the standard Word Program  
operation. See “Write Operation Status” on page 56 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. The device allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored in the memory array. When  
the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. See “Secured Silicon Sector Ad-  
dresses” on page 29 and “Autoselect Command Sequence” on page 46 for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command (address bits are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command. Further writes of the  
Resume command are ignored. Another Erase Suspend command can be written  
after the chip has resumed erasing.  
Password Program Command  
The Password Program Command permits programming the password that is  
used as part of the hardware protection scheme. The actual password is 64-bits  
long. Four Password Program commands are required to program the password.  
The system must enter the unlock cycle, password program command (38h) and  
the program address/data for each portion of the password when programming.  
There are no provisions for entering the 2-cycle unlock cycle, the password pro-  
gram command, and all the password data. There is no special addressing order  
required for programming the password. Also, when the password is undergoing  
programming, Simultaneous Operation is disabled. Read operations to any mem-  
ory location will return the programming status. Once programming is complete,  
the user must issue a Read/Reset command to return the device to normal oper-  
ation. Once the Password is written and verified, the Password Mode Locking Bit  
must be set in order to prevent verification. The Password Program Command is  
only capable of programming “0”s. Programming a “1” after a cell is programmed  
as a “0” results in a time-out by the Embedded Program Algorithm™ with the cell  
remaining as a “0. The password is all ones when shipped from the factory. All  
64-bit password combinations are valid as a password.  
Password Verify Command  
The Password Verify Command is used to verify the Password. The Password is  
verifiable only when the Password Mode Locking Bit is not programmed. If the  
Password Mode Locking Bit is programmed and the user attempts to verify the  
Password, the device will always drive all F’s onto the DQ data bus.  
The Password Verify command is permitted if the Secured Silicon sector is en-  
abled. Also, the device will not operate in Simultaneous Operation when the  
Password Verify command is executed. Only the password is returned regardless  
of the bank address. The lower two address bits (A1-A0) are valid during the  
Password Verify. Writing the Read/Reset command returns the device back to  
normal operation.  
Password Protection Mode Locking Bit Program Command  
The Password Protection Mode Locking Bit Program Command programs the  
Password Protection Mode Locking Bit, which prevents further verifies or updates  
to the Password. Once programmed, the Password Protection Mode Locking Bit  
cannot be erased! If the Password Protection Mode Locking Bit is verified as pro-  
gram without margin, the Password Protection Mode Locking Bit Program  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
51  
A d v a n c e I n f o r m a t i o n  
command can be executed to improve the program margin. Once the Password  
Protection Mode Locking Bit is programmed, the Persistent Sector Protection  
Locking Bit program circuitry is disabled, thereby forcing the device to remain in  
the Password Protection mode. Exiting the Mode Locking Bit Program command  
is accomplished by writing the Read/Reset command.  
Persistent Sector Protection Mode Locking Bit Program Command  
The Persistent Sector Protection Mode Locking Bit Program Command programs  
the Persistent Sector Protection Mode Locking Bit, which prevents the Password  
Mode Locking Bit from ever being programmed. If the Persistent Sector Protec-  
tion Mode Locking Bit is verified as programmed without margin, the Persistent  
Sector Protection Mode Locking Bit Program Command should be reissued to im-  
prove program margin. By disabling the program circuitry of the Password Mode  
Locking Bit, the device is forced to remain in the Persistent Sector Protection  
mode of operation, once this bit is set. Exiting the Persistent Protection Mode  
Locking Bit Program command is accomplished by writing the Read/Reset  
command.  
Secured Silicon Sector Protection Bit Program Command  
The Secured Silicon Sector Protection Bit Program Command programs the Se-  
cured Silicon Sector Protection Bit, which prevents the Secured Silicon sector  
memory from being cleared. If the Secured Silicon Sector Protection Bit is verified  
as programmed without margin, the Secured Silicon Sector Protection Bit Pro-  
gram Command should be reissued to improve program margin. Exiting the VCC-  
level Secured Silicon Sector Protection Bit Program Command is accomplished by  
writing the Read/Reset command.  
PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the PPB Lock bit if it is cleared either  
at reset or if the Password Unlock command was successfully executed. There is  
no PPB Lock Bit Clear command. Once the PPB Lock Bit is set, it cannot be cleared  
unless the device is taken through a power-on clear or the Password Unlock com-  
mand is executed. Upon setting the PPB Lock Bit, the PPBs are latched into the  
DYBs. If the Password Mode Locking Bit is set, the PPB Lock Bit status is reflected  
as set, even after a power-on reset cycle. Exiting the PPB Lock Bit Set command  
is accomplished by writing the Read/Reset command (only in the Persistent Pro-  
tection Mode).  
DYB Write Command  
The DYB Write command is used to set or clear a DYB for a given sector. The high  
order address bits (Amax–A12) are issued at the same time as the code 01h or  
00h on DQ7-DQ0. All other DQ data bus pins are ignored during the data write  
cycle. The DYBs are modifiable at any time, regardless of the state of the PPB or  
PPB Lock Bit. The DYBs are cleared at power-up or hardware reset.Exiting the  
DYB Write command is accomplished by writing the Read/Reset command.  
Password Unlock Command  
The Password Unlock command is used to clear the PPB Lock Bit so that the PPBs  
can be unlocked for modification, thereby allowing the PPBs to become accessible  
for modification. The exact password must be entered in order for the unlocking  
function to occur. This command cannot be issued any faster than 2 µs at a time  
to prevent a hacker from running through all 64-bit combinations in an attempt  
52  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
to correctly match a password. If the command is issued before the 2 µs execu-  
tion window for each portion of the unlock, the command will be ignored.  
Once the Password Unlock command is entered, the RY/BY# indicates that the  
device is busy. Approximately 1 µs is required for each portion of the unlock. Once  
the first portion of the password unlock completes (RY/BY# is not low or DQ6  
does not toggle when read), the next part of the password is written. The system  
must thus monitor RY/BY# or the status bits to confirm when to write the next  
portion of the password. Seven cycles are required to successfully clear the PPB  
Lock Bit.  
PPB Program Command  
The PPB Program command is used to program, or set, a given PPB. Each PPB is  
individually programmed (but is bulk erased with the other PPBs). The specific  
sector address (A22–A12) are written at the same time as the program command  
60h with A6 = 0. If the PPB Lock Bit is set and the corresponding PPB is set for  
the sector, the PPB Program command will not execute and the command will  
time-out without programming the PPB.  
After programming a PPB, two additional cycles are needed to determine whether  
the PPB has been programmed with margin. If the PPB has been programmed  
without margin, the program command should be reissued to improve the pro-  
gram margin. Also note that the total number of PPB program/erase cycles is  
limited to 100 cycles. Cycling the PPBs beyond 100 cycles is not guaranteed.  
The PPB Program command does not follow the Embedded Program algorithm.  
All PPB Erase Command  
The All PPB Erase command is used to erase all PPBs in bulk. There is no means  
for individually erasing a specific PPB. Unlike the PPB program, no specific sector  
address is required. However, when the PPB erase command is written all Sector  
PPBs are erased in parallel. If the PPB Lock Bit is set the ALL PPB Erase command  
will not execute and the command will time-out without erasing the PPBs. After  
erasing the PPBs, two additional cycles are needed to determine whether the PPB  
has been erased with margin. If the PPBs has been erased without margin, the  
erase command should be reissued to improve the program margin.  
It is the responsibility of the user to preprogram all PPBs prior to issuing the All  
PPB Erase command. If the user attempts to erase a cleared PPB, over-erasure  
may occur making it difficult to program the PPB at a later time. Also note that  
the total number of PPB program/erase cycles is limited to 100 cycles. Cycling the  
PPBs beyond 100 cycles is not guaranteed.  
DYB Write Command  
The DYB Write command is used for setting the DYB, which is a volatile bit that  
is cleared at reset. There is one DYB per sector. If the PPB is set, the sector is  
protected regardless of the value of the DYB. If the PPB is cleared, setting the  
DYB to a 1 protects the sector from programs or erases. Since this is a volatile  
bit, removing power or resetting the device will clear the DYBs. The bank address  
is latched when the command is written.  
PPB Lock Bit Set Command  
The PPB Lock Bit set command is used for setting the DYB, which is a volatile bit  
that is cleared at reset. There is one DYB per sector. If the PPB is set, the sector  
is protected regardless of the value of the DYB. If the PPB is cleared, setting the  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
53  
A d v a n c e I n f o r m a t i o n  
DYB to a 1 protects the sector from programs or erases. Since this is a volatile  
bit, removing power or resetting the device will clear the DYBs. The bank address  
is latched when the command is written.  
Command  
The programming of either the PPB or DYB for a given sector or sector group can  
be verified by writing a Sector Protection Status command to the device.  
Note that there is no single command to independently verify the programming  
of a DYB for a given sector group.  
Command Definitions Tables  
Table 12. Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr  
Data  
Addr  
Data  
Addr  
Data  
Read (Note 5)  
Reset (Note 6)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
4
6
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
90  
90  
01  
(BA)  
555  
(BA)  
X01  
(BA)  
X0E  
(Note  
10)  
(BA)  
X0F  
(Note  
10)  
Device ID (Note 10)  
227E  
Autoselect  
(Note 7)  
SecuredSiliconSector  
Factory Protect (Note  
8)  
(BA)  
555  
(Note  
8)  
4
4
555  
555  
AA  
2AA  
2AA  
55  
55  
90  
90  
X03  
Sector Group Protect  
Verify (Note 9)  
(BA)  
555  
(SA)  
X02  
XX00/  
XX01  
AAA  
Program  
4
6
6
1
1
1
2
3
2
2
1
2
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
98  
A0  
AA  
A0  
80  
98  
90  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
PD  
AA  
AA  
Chip Erase  
Sector Erase  
555  
555  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Program/Erase Suspend (Note 11)  
Program/Erase Resume (Note 12)  
CFI Query (Note 13)  
BA  
55  
Accelerated Program (Note 15)  
Unlock Bypass Entry (Note 15)  
Unlock Bypass Program (Note 15)  
Unlock Bypass Erase (Note 15)  
Unlock Bypass CFI (Notes 13, 15)  
Unlock Bypass Reset (Note 15)  
XX  
PA  
2AA  
PA  
PD  
55  
PD  
10  
555  
XX  
555  
20  
XX  
XX  
XX  
XXX  
XXX  
00  
Legend:  
BA = Address of bank switching to autoselect mode, bypass mode, or erase operation. Determined by Amax:A19.  
PA = Program Address (Amax:A0). Addresses latch on falling edge of WE# or CE1#/CE2# pulse, whichever happens  
later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data latches on rising edge of WE# or CE1#/CE2# pulse,  
whichever happens first.  
RA = Read Address (Amax:A0).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (Amax:A12) for verifying (in autoselect mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for specific write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
54  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than DQ7 are don’t cares.  
5. No unlock or command cycles required when bank is reading array data.  
6. The Reset command is required to return to reading array (or to erase-suspend-read mode if previously in Erase Suspend)  
when bank is in autoselect mode, or if DQ5 goes high (while bank is providing status information).  
7. Fourth cycle of autoselect command sequence is a read cycle. System must provide bank address to obtain manufacturer ID  
or device ID information. See “Autoselect Command Sequence” on page 46 for more information.  
8. The data is DQ6=1 for factory and customer locked and DQ7=1 for factory locked.  
9. The data is 00h for an unprotected sector group and 01h for a protected sector group.  
10. Device ID must be read across cycles 4, 5, and 6. PL129J (X0Eh = 2221h, X0Fh = 2200h).  
11. System may read and program in non-erasing sectors, or enter autoselect mode, when in Program/Erase Suspend mode.  
Program/Erase Suspend command is valid only during a sector erase operation, and requires bank address.  
12. Program/Erase Resume command is valid only during Erase Suspend mode, and requires bank address.  
13. Command is valid when device is ready to read array data or when device is in autoselect mode.  
14. WP#/ACC must be at VID during the entire operation of command.  
15. Unlock Bypass Entry command is required prior to any Unlock Bypass operation. Unlock Bypass Reset command is required  
to return to the reading array.  
Table 13. Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Reset  
1
3
4
XXX  
555  
555  
F0  
AA  
AA  
Secured Silicon Sector Entry  
Secured Silicon Sector Exit  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
XX  
00  
68  
Secured Silicon Protection Bit Program  
(Notes 5, 6)  
RD  
(0)  
6
5
4
4
7
6
4
555  
555  
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
555  
555  
60  
60  
38  
C8  
28  
60  
90  
OW  
OW  
OW  
48  
OW  
RD  
(0)  
Secured Silicon Protection Bit Status  
Password Program (Notes 5, 7, 8)  
Password Verify (Notes 6, 8, 9)  
Password Unlock (Notes 7, 10, 11)  
PPB Program (Notes 5, 6, 12)  
PPB Status  
OW  
XX  
48  
PD  
[0-3] [0-3]  
PWA PWD  
[0-3] [0-3]  
PWA PWD PWA PWD PWA PWD PWA PWD  
[0]  
[0]  
[1]  
[1]  
[2]  
[2]  
[3]  
[3]  
(SA)  
WP  
(SA)  
WP  
(SA)  
WP  
RD  
(0)  
68  
48  
(SA)  
WP  
RD  
(0)  
(SA)  
WP  
RD  
(0)  
All PPB Erase (Notes 5, 6, 13, 14)  
PPB Lock Bit Set  
6
3
4
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
60  
78  
58  
WP  
60  
(SA)  
40  
RD  
(1)  
PPB Lock Bit Status (Note 15)  
SA  
DYB Write (Note 7)  
DYB Erase (Note 7)  
4
4
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
48  
48  
SA  
SA  
X1  
X0  
RD  
(0)  
DYB Status (Note 6)  
4
6
5
6
5
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
58  
60  
60  
60  
60  
SA  
PL  
PL  
SL  
SL  
RD  
(0)  
PPMLB Program (Notes 5, 6, 12)  
PPMLB Status (Note 5)  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD  
(0)  
RD  
(0)  
SPMLB Program (Notes 5, 6, 12)  
SPMLB Status (Note 5)  
48  
RD  
(0)  
Legend:  
DYB = Dynamic Protection Bit  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
55  
A d v a n c e I n f o r m a t i o n  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
PL = Password Protection Mode Lock Address (A7:A0) is (00001010)  
RD(0) = Read Data DQ0 for protection indicator bit.  
RD(1) = Read Data DQ1 for PPB Lock status.  
SA = Sector Address where security command applies. Address bits Amax:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is (00010010)  
WP = PPB Address (A7:A0) is (00000010)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than DQ7 are don’t cares.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6 validate bit has been fully programmed when DQ0 = 1. If DQ0 =  
0 in cycle 6, program command must be issued and verified again.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion of password.  
9. Command sequence returns FFh if PPMLB is set.  
10. The password is written over four consecutive cycles, at addresses 0-3.  
11. A 2 µs timeout is required between any two portions of password.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have been fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6, erase  
command must be issued and verified again. Before issuing erase command, all PPBs should be programmed to prevent PPB  
overerasure.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
Write Operation Status  
The device provides several bits to determine the status of a program or erase opera-  
tion: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 14 and the following subsections describe  
the function of these bits. DQ7 and DQ6 each offer a method for determining whether  
a program or erase operation is complete or in progress. The device also provides a  
hardware-based output signal, RY/BY#, to determine whether an Embedded Program  
or Erase operation is in progress or has been completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Pro-  
gram or Erase algorithm is in progress or completed, or whether a bank is in Erase  
Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the com-  
mand sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement  
of the datum programmed to DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is complete, the device out-  
puts the datum programmed to DQ7. The system must provide the program address  
to read valid status information on DQ7. If a program address falls within a protected  
sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns  
to the read mode.  
56  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide  
an address within any of the sectors selected for erasure to read valid status in-  
formation on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 400 µs, then the  
bank returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
When the system detects DQ7 has changed from the complement to true data,  
it can read valid data at DQ15–DQ0 on the following read cycles. Just prior to the  
completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ15–DQ0 while Output Enable (OE#) is asserted low. That is,  
the device may change from providing status information to valid data on DQ7.  
Depending on when the system samples the DQ7 output, it may read the status  
or valid data. Even if the device has completed the program or erase operation  
and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid  
data on DQ15–DQ0 appears on successive read cycles.  
Table 14 shows the outputs for Data# Polling on DQ7. 6 shows the Data# Polling  
algorithm. Figure 18 in AC Characteristics shows the Data# Polling timing  
diagram.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
57  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is  
any sector address within the sector being erased. During chip erase, a valid address is  
any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously  
with DQ5.  
Figure 6. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or one of the banks is in the  
erase-suspend-read mode.  
Table 14 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
58  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 400 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see “DQ7: Data# Polling” on page 56).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 14 shows the outputs for Toggle Bit I on DQ6. Figure 7 shows the toggle bit  
algorithm. Figure 19 in “Read Operation Timings” shows the toggle bit timing di-  
agrams. Figure 20 shows the differences between DQ2 and DQ6 in graphical  
form. See also “DQ2: Toggle Bit II.  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Figure 7. Toggle Bit Algorithm  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
59  
A d v a n c e I n f o r m a t i o n  
Note: The system should recheck the toggle bit even if DQ5 = “1” because the toggle  
bit may stop toggling as DQ5 changes to “1.” See “DQ6: Toggle Bit I” and “DQ2: Tog-  
gle Bit II” for more information.  
Figure 7. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE1# / CE2# to  
control the read cycles.) But DQ2 cannot distinguish whether the sector is actively  
erasing or is erase-suspended. DQ6, by comparison, indicates whether the device  
is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors  
are selected for erasure. Thus, both status bits are required for sector and mode  
information. See Table 14 to compare outputs for DQ2 and DQ6.  
Figure 7 shows the toggle bit algorithm in flowchart form, and the “DQ2: Toggle  
Bit II” explains the algorithm. See also “DQ6: Toggle Bit I.Figure 19 shows the  
toggle bit timing diagram. Figure 20 shows the differences between DQ2 and DQ6  
in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see “DQ5: Exceeded Timing Limits”). If it is, the system should then determine  
again whether the toggle bit is toggling, since the toggle bit may have stopped  
toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase operation. If it is still toggling,  
the device did not completed the operation successfully, and the system must  
write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 7).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified inter-  
nal pulse count limit. Under these conditions DQ5 produces a “1,indicating that the  
program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
60  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return  
to the read mode (or to the erase-suspend-read mode if a bank was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.See also  
“Sector Erase Command Sequence” on page 49.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device accepts additional  
sector erase commands. To ensure the command has been accepted, the system  
software should check the status of DQ3 prior to and following each subsequent  
sector erase command. If DQ3 is high on the second status check, the last com-  
mand might not have been accepted.  
Table 14 shows the status of DQ3 relative to the other status bits.  
Table 14. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits.“DQ5: Exceeded Timing Limits” for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for  
further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded  
Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
61  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Storage Temperature Plastic Packages . . . . . . . . . . . . . . . . –65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground  
VCC (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
A9, OE#, and RESET# (Note 2) . . . . . . . . . . . . . . . . . . . . .0.5 V to +13.0 V  
WP#/ACC (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions,  
input or I/O pins may overshoot V to –2.0 V for periods of up to 20 ns. Maximum  
SS  
DC voltage on input or I/O pins is V +0.5 V. During voltage transitions, input or  
CC  
I/O pins may overshoot to V +2.0 V for periods up to 20 ns. See Figure 8.  
CC  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5 V.  
During voltage transitions, A9, OE#, WP#/ACC, and RESET# may overshoot V  
SS  
to –2.0 V for periods of up to 20 ns. See Figure 8. Maximum DC input voltage on  
pin A9, OE#, and RESET# is +12.5 V which may overshoot to +14.0 V for periods  
up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the  
short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this data sheet is not implied. Exposure of the device to absolute max-  
imum rating conditions for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Maximum Negative Overshoot Waveform  
Maximum Positive Overshoot Waveform  
Figure 8. Maximum Overshoot Waveforms  
62  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Operating Ranges  
Operating ranges define those limits between which the functionality of the de-  
vice is guaranteed.  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (E) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Supply Voltages  
VCC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7–3.6 V  
VIO or 2.7–3.6 V  
Notes:  
For all AC and DC specifications, V = V ; contact your local sales office for other  
IO  
CC  
V
options.  
IO  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
63  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
Table 15. CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
,
ILI  
Input Load Current  
±1.0  
µA  
VCC = VCC max  
ILIT  
ILR  
A9, OE#, RESET# Input Load Current  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
ILO  
Output Leakage Current  
±1.0  
µA  
5 MHz  
20  
45  
15  
30  
55  
25  
OE# = VIH, VCC = VCC max  
(Note 1)  
ICC1  
VCC Active Read Current (Notes 1, 2)  
mA  
10 MHz  
ICC2  
ICC3  
ICC4  
ICC5  
VCC Active Write Current (Notes 2, 3)  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
OE# = VIH, WE# = VIL  
mA  
µA  
µA  
µA  
CE#, RESET#, WP#/ACC  
= VIO ± 0.3 V  
0.2  
0.2  
0.2  
5
5
5
RESET# = VSS ± 0.3 V  
VIH = VIO ± 0.3 V;  
VIL = VSS ± 0.3 V  
Automatic Sleep Mode (Notes 2, 4)  
5 MHz  
10 MHz  
5 MHz  
21  
46  
21  
46  
45  
70  
45  
70  
VCC Active Read-While-Program Current  
(Notes 1, 2)  
ICC6  
OE# = VIH  
,
,
mA  
VCC Active Read-While-Erase Current  
(Notes 1, 2)  
ICC7  
OE# = VIH  
OE# = VIH  
mA  
mA  
10 MHz  
VCC Active Program-While-Erase-  
Suspended Current (Notes 2, 5)  
ICC8  
17  
10  
25  
ICC9  
VIL  
VCC Active Page Read Current (Note 2)  
Input Low Voltage  
OE# = VIH, 8 word Page Read  
VIO = 2.7–3.6 V  
15  
0.8  
mA  
V
–0.5  
2.0  
VIH  
VHH  
Input High Voltage  
VIO = 2.7–3.6 V  
VCC+0.3  
9.5  
V
Voltage for ACC Program Acceleration  
VCC = 3.0 V ± 10%  
8.5  
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VOL  
VCC = 3.0 V ± 10%  
11.5  
12.5  
0.4  
V
V
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
IOH = –2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
VOH  
Output High Voltage  
2.4  
2.3  
V
V
VLKO  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
Notes:  
1. The I current listed is typically less than 5 mA/MHz, with OE# at V  
.
IH  
CC  
2. Maximum I specifications are tested with V = V .  
CCmax  
CC  
CC  
3. I active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Automatic sleep mode enables the low power mode when addresses remain stable for t  
+ 30 ns. Typical sleep  
ACC  
mode current is 1 mA.  
5. Not 100% tested.  
6. In S29PL129J there are two CE# (CE1#, CE2#).  
7. Valid CE1#/CE2# conditions: (CE1# = V CE2# = V ) or (CE1# = V CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL,  
IH,  
IH,  
IL  
IH,  
64  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Test Conditions  
3.6 V  
2.7 kΩ  
Device  
Under  
Test  
C
6.2 kΩ  
L
VIO = 3.0 V  
Note: Diodes are IN3064 or equivalent  
Figure 9. Test Setups  
Table 16. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
30  
Unit  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
Input Rise and Fall Times  
pF  
ns  
V
VIO = 3.0 V  
VIO = 3.0 V  
5
Input Pulse Levels  
0.0–3.0  
VIO/2  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
VIO/2  
V
Switching Waveforms  
Table 17. Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
65  
A d v a n c e I n f o r m a t i o n  
VIO  
VIO/2  
VIO/2  
In  
Measurement Level  
Output  
0.0 V  
Figure 10. Input Waveforms and Measurement Levels  
VCC RampRate  
All DC characteristics are specified for a VCC ramp rate > 1V/100 µs and VCC  
>=VCCQ - 100 mV. If the VCC ramp rate is < 1V/100 µs, a hardware reset  
required.+  
Read Operations  
Table 18. Read-Only Operations  
Parameter  
JEDEC Std. Description  
Speed Options  
Test Setup  
55  
55  
55  
55  
20  
20  
60  
60  
60  
60  
25  
25  
65  
65  
65  
65  
25  
70  
70  
70  
70  
30  
Unit  
ns  
tAVAV  
tAVQV  
tELQV  
tRC  
Read Cycle Time (Note 1)  
Min  
tACC Address to Output Delay  
CE#, OE# = VIL  
OE# = VIL  
Max  
Max  
Max  
Max  
Max  
ns  
tCE  
tPACC Page Access Time  
tOE Output Enable to Output Delay  
tDF  
Chip Enable to Output Delay  
ns  
ns  
tGLQV  
tEHQZ  
30  
ns  
Chip Enable to Output High Z (Note 3)  
16  
16  
ns  
Output Enable to Output High Z  
(Notes 1, 3)  
tGHQZ  
tDF  
Max  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 3)  
tAXQX  
tOH  
Min  
Min  
Min  
5
0
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 9 and Table 16 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of V /2. The time from OE#  
CC  
high to the data bus driven to V /2 is taken as t  
.
CC  
DF  
4. S29PL129J has two CE# (CE1#, CE2#).  
5. Valid CE1# / CE2# conditions: (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL  
IH  
IH  
IL  
IH,  
6. Valid CE1# / CE2# transitions: (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V ) to (CE1# = CE2# = V  
)
)
IL  
IH  
IH  
IL  
IH  
7. Valid CE1# / CE2# transitions: (CE1# = CE2# = V ) to (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V  
IL  
IH  
IL  
IH  
IH  
8. For 70pF Output Load Capacitance, 2 ns is added to the above t  
,t ,t  
,t values for all speed grades  
ACC CE PACC OE  
66  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOH  
HIGH Z  
HIGH Z  
Valid Data  
RESET#  
RY/BY#  
0 V  
Notes:  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 11. Read Operation Timings  
Same Page  
Amax  
A2  
-
-
A3  
A0  
Ad  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Notes:  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 12. Page Read Operation Timings  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
67  
A d v a n c e I n f o r m a t i o n  
Reset  
Table 19. Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Notes:  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the below waveform CE# = CE1# or CE2#  
Figure 13. Reset Timings  
68  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Erase/Program Operations  
Table 20. Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVWL  
Std  
tWC  
tAS  
Description  
55  
60  
65  
70  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
55  
60  
65  
70  
0
ns  
Address Setup Time to OE# low during toggle bit  
polling  
tASO  
tAH  
Min  
Min  
Min  
15  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
30  
25  
35  
30  
Address Hold Time From CE1#, CE#2 or OE# high  
during toggle bit polling  
tAHT  
0
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
10  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE1# or CE#2 Setup Time  
CE1# or CE#2 Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
Min  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
µs  
ns  
ns  
ns  
tWP  
35  
tWPH  
tSR/W  
Write Pulse Width High  
20  
25  
Latency Between Read and Write Operations  
0
6
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 4)  
tWHWH1 Accelerated Programming Operation (Note 4)  
tWHWH2 Sector Erase Operation (Note 4)  
4
0.5  
50  
0
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
90  
35  
tBUSY  
Program/Erase Valid to RY/BY# Delay  
Notes:  
1. Not 100% tested.  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#).  
4. See Table 25, “Erase And Programming Performance,” on page 78 for more information.  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
69  
A d v a n c e I n f o r m a t i o n  
Timing Diagrams  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
555h  
Addresses  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address  
OUT  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 14. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 15. Accelerated Program Timing Diagram  
70  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status” on  
page 56  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 16. Chip/Sector Erase Operation Timings  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
71  
A d v a n c e I n f o r m a t i o n  
tWC  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Valid PA  
Addresses  
tAS  
tCPH  
tAS  
tAH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 17. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array  
data read cycle  
Figure 18. Data# Polling Timings (During Embedded Algorithms)  
72  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Notes:  
1. VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 19. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note:Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or  
CE# to toggle DQ2 and DQ6.  
Figure 20. DQ2 vs. DQ6  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
73  
A d v a n c e I n f o r m a t i o n  
Protect/Unprotect  
Table 21. Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 21. Temporary Sector Unprotect Timing Diagram  
74  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Notes:  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 22. Sector/Sector Block Protect and Unprotect Timing Diagram  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
75  
A d v a n c e I n f o r m a t i o n  
Controlled Erase Operations  
Table 22. Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
Speed Options  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
55  
60  
65  
70  
Unit  
ns  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
55  
60  
65  
70  
0
ns  
30  
25  
35  
30  
ns  
ns  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tWS  
tWH  
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
µs  
sec  
WE# Hold Time  
tCP  
CE1# or CE#2 Pulse Width  
CE1# or CE#2 Pulse Width High  
Programming Operation (Note 2)  
Accelerated Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
35  
20  
40  
25  
tEHEL  
tCPH  
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH1  
tWHWH2  
6
4
0.5  
Notes:  
1. Not 100% tested.  
2. See the Table 25, “Erase And Programming Performance,” on page 78 for more information.  
76  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
is the data written to the device  
OUT  
4. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
5. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Table 23. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
Table 24. CE1#/CE2# Timing  
Parameter  
JEDEC  
Std  
Description  
CE1#/CE2# Recover Time  
All Speed Options  
Unit  
tCCR  
Min  
30  
ns  
June 4, 2004 S29PL129J_MCP_00_A0  
S29PL129J for MCP  
77  
A d v a n c e I n f o r m a t i o n  
CE1#  
CE2#  
tCCR  
tCCR  
Figure 23. Timing Diagram for Alternating Between CE1# and CE2# Control  
Table 25. Erase And Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
Comments  
0.5  
2
Sector Erase Time  
Chip Erase Time  
Excludes 00h programming  
prior to erasure (Note 4)  
PL129J  
135  
216  
sec  
Excludes system level  
overhead (Note 5)  
6
4
100  
60  
µs  
µs  
Word Program Time  
Accelerated Word Program Time  
Chip Program Time  
(Note 3)  
PL129J  
50.4  
200  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 100,000 cycles. Additionally,  
CC  
programming typicals assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90°C, V = 2.7 V, 1,000,000 cycles. All values are subject to change.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
bytes program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 12 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
BGA Pin Capacitance  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
6.3  
7.0  
5.5  
11  
Max  
7
Unit  
pF  
CIN  
COUT  
CIN2  
CIN3  
Output Capacitance  
VOUT = 0  
VIN = 0  
8
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
8
pF  
VIN = 0  
12  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
78  
S29PL129J for MCP  
S29PL129J_MCP_00_A0 June 4, 2004  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 6  
2M Word by 16-bit Cmos Pseudo Static RAM (32M Density)  
4M Word by 16-bit Cmos Pseudo Static RAM (64M Density)  
Features  
„ Single power supply voltage of 2.6 to 3.3 V  
„ Direct TTL compatibility for all inputs and outputs  
„ Deep power-down mode: Memory cell data invalid  
„ Page operation mode:  
— Page read operation by 8 words  
„ Logic compatible with SRAM R/W pin  
„ Standby current  
— Standby = 70 µA (32M)  
— Standby = 100 µA (64M)  
— Deep power-down Standby = 5 µA  
„ Access Times  
32M  
64M  
Access Time  
70 ns  
70 ns  
25 ns  
30 ns  
CE1# Access Time  
OE# Access Time  
Page Access Time  
Pin Description  
Pin Name  
Description  
A0 to A21  
A0 to A2  
I/O1 to I/O16  
CE1#  
Address Inputs  
Page Address Inputs  
Data Inputs/Outputs  
Chip Enable Input  
Chip select Input  
Write Enable Input  
Output Enable Input  
Data Byte Control Inputs  
Power Supply  
CE2  
WE#  
OE#  
LB#,UB#  
VDD  
GND  
Ground  
NC  
Not Connection  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
79  
A d v a n c e I n f o r m a t i o n  
Functional Description  
Mode  
Read (Word)  
CE1#  
CE2  
H
OE#  
L
WE#  
LB#  
L
UB# Address  
I/O1-8  
DOUT  
I/O9-16  
DOUT  
Power  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDSD  
L
L
L
L
L
L
L
H
H
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (Lower Byte)  
Read (Upper Byte)  
Write (Word)  
H
L
L
DOUT  
High-Z  
DOUT  
H
L
H
L
High-Z  
DIN  
H
X
L
DIN  
Write (Lower Byte)  
Write (Upper Byte)  
Outputs Disabled  
Standby  
H
X
L
L
H
L
DIN  
Invalid  
DIN  
H
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
H
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
H
X
Deep Power-down Standby  
L
X
X
Legend:L = Low-level Input (VIL), H = High-level Input (VIH), X = VIL or VIH, High-Z = High Impedance.  
Absolute Maximum Ratings  
Symbol  
VDD  
VIN  
Rating  
Value  
-1.0 to 3.6  
-1.0 to 3.6  
-1.0 to 3.6  
-40 to 85  
-55 to 150  
0.6  
Unit  
V
Power Supply Voltage  
Input Voltage  
V
VOUT  
Topr  
Output Voltage  
V
Operating Temperature  
Storage Temperature  
Power Dissipation  
°C  
°C  
W
Tstrg  
PD  
IOUT  
Short Circuit Output Current  
50  
mA  
Note: ESD Immunity: Spansion Flash memory Multi-Chip Products (MCPs) may contain component devices that are  
developed by Spansion and component devices that are developed by a third party (third-party components). Spansion  
components are tested and guaranteed to the ESD immunity levels listed in the corresponding Spansion Flash memory  
Qualification Database. Third-party components are neither tested nor guaranteed by Spansion for ESD immunity. How-  
ever, ESD test results for third-party components may be available from the component manufacturer. Component man-  
ufacturer contact information is listed in the Spansion MCP Qualification Report, when available. The Spansion Flash  
memory Qualification Database and Spansion MCP Qualification Report are available from Spansion sales offices.  
DC Recommended Operating Conditions (Ta = -40°C to 85°C)  
Symbol  
VDD  
Parameter  
Min  
2.6  
Typ  
2.75  
Max  
Unit  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
3.3  
VDD + 0.3 (Note)  
0.4  
VIH  
2.0  
V
VIL  
-0.3 (Note)  
Note: V (Max) V  
= 1.0 V with 10 ns pulse width. V (Min) -1.0 V with 10 ns pulse width.  
IL  
IH  
DD  
80  
pSRAM Type 6  
pSRAM_Type06_14_A1 Ocotober 16, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 3 to 4)  
Symbol  
Parameter  
Test Condition  
Min  
Typ.  
Max  
Unit  
Input Leakage  
Current  
IIL  
VIN = 0 V to VDD  
-1.0  
+1.0  
µA  
Output Leakage  
Current  
ILO  
Output disable, VOUT = 0 V to VDD  
-1.0  
+1.0  
µA  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH = - 0.5 mA  
IOL = 1.0 mA  
2.0  
¾
V
V
V
0.4  
40  
50  
ET5UZ8A-43DS  
ET5VB5A-43DS  
CE1#= VIL, CE2 = VIH, IOUT = 0  
mA, tRC = min.  
IDDO1 Operating Current  
mA  
mA  
Page Access  
IDDO2  
CE1#= VIL, CE2 = VIH, IOUT = 0 mA  
Page add. cycling, tRC = min.  
25  
Operating Current  
ET5UZ8A-43DS  
ET5VB5A-43DS  
70  
mA  
µA  
Standby Current  
(MOS)  
CE1# = VDD - 0.2 V,  
CE2 = VDD - 0.2 V  
IDDS  
100  
Deep Power-down  
IDDSD  
CE2 = 0.2 V  
5
µA  
Standby Current  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
Max  
10  
Unit  
Input Capacitance  
Output Capacitance  
VIN = GND  
pF  
pF  
COUT  
VOUT = GND  
10  
Note: This parameter is sampled periodically and is not 100% tested.  
AC Characteristics and Operating Conditions  
(Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 5 to 11)  
Symbol  
tRC  
tACC  
tCO  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
70  
10  
0
10000  
70  
70  
25  
25  
Address Access Time  
Chip Enable (CE1#) Access Time  
Output Enable Access Time  
tOE  
tBA  
Data Byte Control Access Time  
tCOE  
tOEE  
tBE  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
0
tOD  
tODO  
tBD  
20  
20  
20  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
81  
A d v a n c e I n f o r m a t i o n  
Symbol  
tOH  
Parameter  
Min  
10  
70  
30  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
µs  
Output Data Hold Time  
Page Mode Time  
tPM  
10000  
tPC  
Page Mode Cycle Time  
Page Mode Address Access Time  
tAA  
30  
tAOH  
tWC  
tWP  
tCW  
tBW  
tAW  
tAS  
Page Mode Output Data Hold Time  
Write Cycle Time  
10  
70  
50  
70  
60  
60  
0
10000  
Write Pulse Width  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Valid to End of Write  
Address Set-up Time  
tWR  
tCEH  
tWEH  
tODW  
tOEW  
tDS  
Write Recovery Time  
0
Chip Enable High Pulse Width  
Write Enable High Pulse Width  
WE# Low to Output High-Z  
WE# High to Output Active  
Data Set-up Time  
10  
6
20  
0
30  
0
tDH  
Data Hold Time  
tCS  
CE2 Set-up Time  
0
tCH  
CE2 Hold Time  
300  
10  
0
tDPD  
tCHC  
tCHP  
CE2 Pulse Width  
CE2 Hold from CE1#  
CE2 Hold from Power On  
30  
AC Test Conditions  
Parameter  
Output load  
Condition  
30 pF + 1 TTL Gate  
VDD - 0.2 V, 0.2 V  
VDD x 0.5  
Input pulse level  
Timing measurements  
Reference level  
tR, tF  
VDD x 0.5  
5 ns  
82  
pSRAM Type 6  
pSRAM_Type06_14_A1 Ocotober 16, 2004  
A d v a n c e I n f o r m a t i o n  
Timing Diagrams  
Read Timings  
t
RC  
Address  
A0 to A20(32M)  
A0 to A21(64M)  
t
t
ACC  
OH  
t
CO  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
t
t
OD  
OE  
t
ODO  
t
BA  
,
UB# LB#  
t
BE  
t
BD  
t
OEE  
D
OUT  
Hi-Z  
VALID DATA OUT  
Hi-Z  
t
COE  
I/O1 to I/O16  
INDETERMINATE  
Figure 24. Read Cycle  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
83  
A d v a n c e I n f o r m a t i o n  
t
PM  
Address  
A0 to A2  
t
t
t
t
PC  
PC  
PC  
RC  
Address  
A3 to A20(32M)  
A3 to A21(64M)  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
UB#, LB#  
t
t
OD  
OE  
t
BD  
t
BA  
t
t
t
AOH  
AOH  
AOH  
t
t
OEE  
OH  
t
BE  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O16  
t
COE  
t
t
t
t
t
ODO  
CO  
AA  
AA  
AA  
* Maximum 8 words  
t
ACC  
Figure 25. Page Read Cycle (8 Words Access)  
84  
pSRAM Type 6  
pSRAM_Type06_14_A1 Ocotober 16, 2004  
A d v a n c e I n f o r m a t i o n  
Write Timings  
t
WC  
Address  
A0 to A20(32M)  
A0 to A21(64M)  
t
t
WEH  
AW  
t
t
t
t
AS  
WP  
WR  
WE#  
t
CW  
WR  
CE1#  
t
CH  
CE2  
t
t
BW  
WR  
UB#, LB#  
t
t
OEW  
ODW  
D
OUT  
(See Note 10)  
Hi-Z  
(See Note 11)  
I/O1 to I/O16  
t
t
DH  
DS  
D
IN  
(See Note 9)  
VALID DATA IN  
(See Note 9)  
I/O1 to I/O16  
Figure 26. Write Cycle #1 (WE# Controlled) (See Note 8)  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
85  
A d v a n c e I n f o r m a t i o n  
t
WC  
Address  
A0 to A20(32M)  
A0 to A21(64M)  
t
AW  
t
t
t
t
AS  
WP  
WR  
WE#  
t
CEH  
t
CW  
WR  
CE1#  
CE2  
t
CH  
t
t
BW  
WR  
UB#, LB#  
t
t
ODW  
BE  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O16  
t
COE  
t
t
DH  
DS  
D
IN  
(See Note 9)  
VALID DATA IN  
I/O1 to I/O16  
Figure 27. Write Cycle #2 (CE# Controlled) (See Note 8)  
Deep Power-down Timing  
CE1#  
t
DPD  
CE2  
t
t
CH  
CS  
Figure 28. Deep Power Down Timing  
Power-on Timing  
V
min  
DD  
V
DD  
CE1#  
CE2  
t
CHC  
t
CH  
t
CHP  
Figure 29. Power-on Timing  
86  
pSRAM Type 6  
pSRAM_Type06_14_A1 Ocotober 16, 2004  
A d v a n c e I n f o r m a t i o n  
Provisions of Address Skew  
Read  
In case multiple invalid address cycles shorter than tRC min. sustain over 10 µs  
in an active status, at least one valid address cycle over tRC min. is required dur-  
ing 10µs.  
over 10µs  
CE1#  
WE#  
Address  
t min  
RC  
Figure 30. Read  
Write  
In case multiple invalid address cycles shorter than tWC min. sustain over 10 µs  
in an active status, at least one valid address cycle over tWC min. is required dur-  
ing 10 µs.  
CE1#  
WE#  
t min  
WP  
Address  
t min  
WC  
Figure 31. Write  
Notes:  
1. Stresses greater than listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
2. All voltages are reference to GND.  
3. IDDO depends on the cycle time.  
4.  
IDDO depends on output loading. Specified values are defined with the output open condition.  
5. AC measurements are assumed tR, tF = 5 ns.  
6. Parameters tOD, tODO, tBD and tODW define the time at which the output goes the open condition and are not output voltage  
reference levels.  
7. Data cannot be retained at deep power-down stand-by mode.  
8. If OE# is high during the write cycle, the outputs will remain at high impedance.  
9. During the output state of I/O signals, input signals of reverse polarity must not be applied.  
10. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.  
11. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance.  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
87  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 1  
4Mbit (256K Word x 16-bit)  
8Mbit (512K Word x 16-bit)  
16Mbit (1M Word x 16-bit)  
32Mbit (2M Word x 16-bit)  
64Mbit (4M Word x 16-bit)  
Functional Description  
Mode  
CE#  
CE2/ZZ#  
OE#  
L
WE# UB#  
LB#  
L
Addresses  
I/O 1-8  
Dout  
I/O 9-16  
Dout  
Power  
IACTIVE  
Read (word)  
L
L
H
H
H
H
H
H
H
H
L
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (lower byte)  
Read (upper byte)  
Write (word)  
L
L
Dout  
High-Z  
Dout  
IACTIVE  
L
L
H
L
High-Z  
Din  
IACTIVE  
L
X
L
Din  
IACTIVE  
Write (lower byte)  
Write (upper byte)  
Outputs disabled  
Standby  
L
X
L
H
L
L
Din  
Invalid  
Din  
IACTIVE  
L
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
IACTIVE  
L
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
IACTIVE  
H
H
X
ISTANDBY  
IDEEP SLEEP  
Deep power down  
X
X
Absolute Maximum Ratings  
Item  
Voltage on any pin relative to VSS  
Voltage on VCC relative to VSS  
Power dissipation  
Symbol  
Vin, Vout  
VCC  
Ratings  
Units  
V
-0.2 to VCC +0.3  
-0.2 to 3.6  
1
V
PD  
W
Storage temperature  
TSTG  
-55 to 150  
-25 to 85  
°C  
°C  
Operating temperature  
TA  
88  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(4Mb pSRAM Asynchronous)  
Asynchronous  
-70  
Performance Grade  
Density  
4Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Power Supply  
Conditions  
Min  
2.7  
Units  
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
0.8 Vccq  
-0.3  
VCC + 0.3  
0.4  
VIL  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
0.5  
0.5  
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
IOH = -1.0 mA  
Output High  
Voltage  
VOH  
I
OH = -0.2 mA  
0.8 Vccq  
V
V
IOH = -0.5 mA  
IOL = 2.0 mA  
IOL = 0.2 mA  
IOL = 0.5 mA  
Output Low  
Voltage  
VOL  
0.2  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
25  
70  
mA  
µA  
V
CC = 3.0 V  
ISTANDBY Standby Current  
VCC = 3.3 V  
IDEEP  
SLEEP  
Deep Power  
x
x
x
µA  
µA  
µA  
Down Current  
1/4 Array PAR  
Current  
IPAR 1/4  
1/2 Array PAR  
Current  
IPAR 1/2  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
89  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(8Mb pSRAM Asynchronous)  
Asynchronous  
B
Version  
Performance Grade  
Density  
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.7  
Units  
Min  
2.7  
Units  
Min  
2.7  
Units  
Power Supply  
3.3  
V
V
V
3.6  
V
V
V
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
2.2  
VCC + 0.3  
0.6  
2.2  
VCC + 0.3  
0.6  
0.8  
VCC+0.3  
0.4  
VIL  
-0.3  
-0.3  
-0.3  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
I
OH = -1.0 mA VCC-0.4  
VCC-0.4  
VOH  
Output High Voltage IOH = -0.2 mA  
IOH = -0.5 mA  
V
V
V
V
0.8 VCCQ  
V
V
I
OL = 2.0 mA  
Output Low Voltage IOL = 0.2 mA  
OL = 0.5 mA  
0.4  
0.4  
VOL  
0.2  
I
IACTIVE Operating Current  
VCC = 3.3 V  
VCC = 3.0 V  
25  
60  
mA  
µA  
23  
60  
mA  
µA  
25  
70  
mA  
µA  
ISTANDBY Standby Current  
V
CC = 3.3 V  
IDEEP  
SLEEP  
Deep Power Down  
Current  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
1/4 Array PAR  
Current  
IPAR 1/4  
1/2 Array PAR  
Current  
IPAR 1/2  
90  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(16Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-55  
16Mb pSRAM  
-70  
16Mb pSRAM  
Symbol  
VCC  
VIH  
Parameter  
Power Supply  
Conditions  
Minimum Maximum  
Units  
V
Minimum Maximum Units  
2.7  
2.2  
3.6  
VCC + 0.3  
0.6  
2.7  
2.2  
3.6  
VCC + 0.3  
0.6  
V
V
Input High Level  
V
VIL  
Input Low Level  
-0.3  
V
-0.3  
V
IIL  
Input Leakage Current  
Output Leakage Current  
Vin = 0 to VCC  
OE = VIH or Chip Disabled  
IOH = -1.0 mA  
0.5  
µA  
µA  
0.5  
µA  
µA  
ILO  
0.5  
0.5  
VCC-0.4  
VCC-0.4  
VOH  
Output High Voltage  
Output Low Voltage  
IOH = -0.2 mA  
V
V
V
V
IOH = -0.5 mA  
IOL = 2.0 mA  
0.4  
0.4  
VOL  
IOL = 0.2 mA  
IOL = 0.5 mA  
VCC = 3.3 V  
IACTIVE  
Operating Current  
Standby Current  
25  
mA  
µA  
25  
mA  
µA  
V
CC = 3.0 V  
100  
100  
ISTANDBY  
VCC = 3.3 V  
IDEEP SLEEP Deep Power Down Current  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
IPAR 1/4  
IPAR 1/2  
1/4 Array PAR Current  
1/2 Array PAR Current  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
91  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(16Mb pSRAM Page Mode)  
Page Mode  
Performance Grade  
Density  
-60  
16Mb pSRAM  
Max  
-65  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
Units  
Min  
Units  
Min  
Units  
VCC  
Power Supply  
2.7  
3.3  
V
2.7  
3.3  
V
2.7  
3.3  
V
Input High  
Level  
VIH  
VIL  
IIL  
0.8 Vccq VCC + 0.2  
V
V
0.8 Vccq VCC + 0.2  
V
V
0.8 Vccq  
-0.2  
VCC + 0.2  
0.2 Vccq  
1
V
V
Input Low  
Level  
-0.2  
0.2 Vccq  
1
-0.2  
0.2 Vccq  
1
Input Leakage  
Current  
Vin = 0 to VCC  
µA  
µA  
µA  
Output  
Leakage  
Current  
OE = VIH or  
ILO  
1
µA  
V
1
µA  
V
1
µA  
V
Chip Disabled  
IOH = -1.0 mA  
IOH = -0.2 mA  
Output High  
Voltage  
VOH  
IOH = -0.5 mA 0.8 Vccq  
IOL = 2.0 mA  
0.8 Vccq  
0.8 Vccq  
Output Low  
Voltage  
VOL  
IOL = 0.2 mA  
V
V
V
IOL = 0.5 mA  
0.2 Vccq  
25  
0.2 Vccq  
25  
0.2 Vccq  
25  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
mA  
µA  
mA  
µA  
mA  
µA  
V
CC = 3.0 V  
Standby  
Current  
ISTANDBY  
VCC = 3.3 V  
100  
10  
100  
10  
100  
10  
IDEEP  
SLEEP  
Deep Power  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Down Current  
1/4 Array PAR  
Current  
IPAR 1/4  
65  
80  
65  
80  
65  
80  
1/2 Array PAR  
Current  
IPAR 1/2  
92  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(32Mb pSRAM Page Mode)  
Page Mode  
Version  
C
-65  
E
Performance Grade  
Density  
-60  
32Mb pSRAM  
-65  
32Mb pSRAM  
Min Max Units  
-70  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
Symbol Parameter  
Conditions  
Min  
Max  
Units  
Min  
Max  
Units  
Power  
VCC  
VIH  
VIL  
IIL  
2.7  
1.4  
3.6  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
3.3  
V
V
Supply  
VCC  
+
0.2  
Input High  
Level  
VCC  
+
VCC  
+ 0.2  
VCC  
+ 0.2  
0.8  
Vccq  
0.2  
Input Low  
Level  
0.2  
Vccq  
0.2  
Vccq  
0.2  
Vccq  
-0.2  
0.4  
0.5  
V
V
V
-0.2  
V
Input  
Leakage  
Current  
Vin = 0 to VCC  
µA  
1
1
µA  
1
1
µA  
1
1
µA  
Output  
Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
0.5  
µA  
V
µA  
V
µA  
V
µA  
V
IOH = -1.0 mA  
0.8  
Vccq  
Output High  
Voltage  
IOH = -0.2 mA  
VOH  
0.8  
Vccq  
IOH = -0.5 mA  
IOL = 2.0 mA  
0.8 Vccq  
0.8 Vccq  
Output Low  
Voltage  
I
I
OL = 0.2 mA  
OL = 0.5 mA  
0.2  
25  
VOL  
V
V
V
V
0.2  
0.2  
0.2  
Vccq  
Vccq  
Vccq  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
CC = 3.0 V  
VCC = 3.3 V  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
V
Standby  
Current  
ISTANDBY  
100  
10  
120  
10  
120  
10  
120  
10  
Deep Power  
Down  
Current  
IDEEP  
SLEEP  
µA  
µA  
µA  
µA  
1/4 Array  
IPAR 1/4  
65  
80  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
PAR Current  
1/2 Array  
PAR Current  
IPAR 1/2  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
93  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(64Mb pSRAM Page Mode)  
Page Mode  
Performance Grade  
-70  
64Mb pSRAM  
Max  
Density  
Symbol  
VCC  
Parameter  
Power Supply  
Conditions  
Min  
2.7  
Units  
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
0.8 Vccq  
-0.2  
VCC + 0.2  
0.2 Vccq  
VIL  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
1
1
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
IOH = -1.0 mA  
Output High  
Voltage  
VOH  
I
OH = -0.2 mA  
V
V
IOH = -0.5 mA  
IOL = 2.0 mA  
IOL = 0.2 mA  
IOL = 0.5 mA  
0.8 Vccq  
Output Low  
Voltage  
VOL  
0.2 Vccq  
25  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
mA  
µA  
V
CC = 3.0 V  
ISTANDBY Standby Current  
VCC = 3.3 V  
120  
10  
IDEEP  
SLEEP  
Deep Power  
Down Current  
µA  
µA  
µA  
1/4 Array PAR  
Current  
IPAR 1/4  
65  
80  
1/2 Array PAR  
Current  
IPAR 1/2  
Timing Test Conditions  
Item  
Input Pulse Level  
0.1 VCC to 0.9 VCC  
5ns  
Input Rise and Fall Time  
Input and Output Timing Reference Levels  
Operating Temperature  
0.5 VCC  
-25°C to +85°C  
94  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Output Load Circuit  
VCC  
14.5K  
30 pF  
I/O  
14.5K  
Output Load  
Figure 32. Output Load Circuit  
Power Up Sequence  
After applying power, maintain a stable power supply for a minimum of 200 µs  
after CE# > VIH.  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
95  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(4Mb pSRAM Page Mode)  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
trc  
Read cycle time  
70  
ns  
Address Access  
Time  
taa  
70  
70  
20  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
Output hold from  
Address Change  
10  
96  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Asynchronous  
-70  
Performance Grade  
Density  
4Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
twc  
Write cycle time  
70  
70  
ns  
ns  
Chipselect to end  
of write  
tcw  
tas  
Address set up  
Time  
0
ns  
ns  
Address valid to  
end of write  
taw  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
20  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
x
Page address  
access time  
x
twpc  
tcp  
Page write cycle  
x
x
Chip select high  
pulse width  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
97  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(8Mb pSRAM Asynchronous)  
Asynchronous  
B
Version  
Performance Grade  
Density  
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Units  
Min  
Units  
trc  
Read cycle time  
55  
ns  
70  
ns  
70  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
35  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
20  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
20  
20  
20  
25  
25  
25  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
10  
98  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Max  
Units  
Min  
Units  
twc  
tcw  
Write cycle time  
55  
ns  
70  
55  
ns  
ns  
70  
ns  
Chip select to  
end of write  
45  
0
ns  
ns  
ns  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
0
ns  
ns  
Address valid to  
end of write  
taw  
45  
55  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
45  
45  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
20  
ns  
ns  
ns  
Data to write  
time overlap  
40  
0
40  
0
ns  
ns  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
x
x
Chip select high  
pulse width  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
99  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(16Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-55  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
trc  
Read cycle time  
55  
ns  
ns  
70  
ns  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
70  
70  
35  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
25  
25  
25  
25  
25  
25  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
100  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Asynchronous  
Performance Grade  
Density  
-55  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
twc  
tcw  
Write cycle time  
55  
ns  
ns  
70  
ns  
ns  
Chipselect to end  
of write  
50  
0
55  
0
Address set up  
Time  
tas  
ns  
ns  
ns  
ns  
Address valid to  
end of write  
taw  
50  
55  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
output Low-Z  
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
Chip select high  
pulse width  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
101  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(16Mb pSRAM Page Mode)  
Page Mode  
Performance Grade  
Density  
-60  
-65  
-70  
16Mb pSRAM  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
Min  
Max  
Units  
trc  
Read cycle time  
60  
20k  
ns  
ns  
65  
20k  
ns  
ns  
70  
20k  
ns  
ns  
Address Access  
Time  
taa  
60  
60  
25  
60  
65  
65  
25  
65  
70  
70  
25  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
102  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Page Mode  
-65  
Performance Grade  
Density  
Parameter  
-60  
-70  
16Mb pSRAM  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Min  
Max  
Units  
Min  
Max  
Units  
Min  
Max  
Units  
twc  
Write cycle time  
60  
20k  
ns  
ns  
65  
20k  
ns  
ns  
70  
20k  
ns  
ns  
Chipselect to end  
of write  
tcw  
tas  
50  
0
60  
0
60  
0
Address set up  
Time  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to  
end of write  
taw  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
103  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(32Mb pSRAM Page Mode)  
Page Mode  
E
Version  
Performance Grade  
Density  
C
-65  
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
trc  
Read cycle time  
65  
20k  
65  
ns  
ns  
60  
20k  
60  
ns  
ns  
65  
20k  
65  
ns  
ns  
70  
20k  
70  
ns  
ns  
Address Access  
Time  
taa  
Chip select to  
output  
tco  
toe  
tba  
tlz  
65  
20  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
65  
25  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
104  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
twc  
tcw  
Write cycle time  
65  
55  
20k  
ns  
ns  
60  
50  
20k  
ns  
ns  
65  
60  
20k  
ns  
ns  
70  
60  
20k  
ns  
ns  
Chipselect to end  
of write  
Address set up  
Time  
tas  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Address valid to  
end of write  
taw  
55  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
55  
55  
0
ns  
ns  
ns  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
105  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
(64Mb pSRAM Page Mode)  
Page Mode  
Performance Grade  
Density  
-70  
64Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
trc  
Read cycle time  
70  
20k  
ns  
ns  
Address Access  
Time  
taa  
70  
70  
25  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
Output hold from  
Address Change  
106  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Page Mode  
-70  
Performance Grade  
Density  
64Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
twc  
Write cycle time  
70  
20k  
ns  
ns  
Chipselect to end  
of write  
tcw  
tas  
60  
0
Address set up  
Time  
ns  
ns  
Address valid to  
end of write  
taw  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
20  
20k  
20  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
20  
10  
20k  
Chip select high  
pulse width  
Timing Diagrams  
Read Cycle  
tRC  
Address  
tAA  
tOH  
Previous Data Valid  
Figure 33. Timing of Read Cycle (CE# = OE# = VIL, WE# = ZZ# = VIH)  
August 30, 2004 pSRAM_Type01_12_A1 pSRAM Type 1  
Data Valid  
Data Out  
107  
A d v a n c e I n f o r m a t i o n  
tRC  
Address  
tAA  
CE#  
tCO  
tLZ  
tHZ  
tOE  
OE#  
tOLZ  
tOHZ  
tLB, UB  
t
LB#, UB#  
Data Out  
tBHZ  
Data Valid  
tBLZ  
High-Z  
Figure 34. Timing Waveform of Read Cycle (WE# = ZZ# = VIH)  
108  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
tPGMAX  
Page Address (A4 - A20)  
tRC  
tPC  
Word Address (A0 - A3)  
tAA  
tPA  
tHZ  
CE#  
tCO  
tOE  
tOHZ  
OE#  
tOLZ  
tLB, UB  
tBHZ  
t
LB#, UB#  
tBLZ,  
High-Z  
Data Out  
Figure 35. Timing Waveform of Page Mode Read Cycle (WE# = ZZ# = VIH)  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
109  
A d v a n c e I n f o r m a t i o n  
Write Cycle  
tWC  
Address  
tWR  
tAW  
CE#  
tCW  
tBW  
LB#, UB#  
tAS  
tWP  
WE#  
tDW  
tDH  
High-Z  
Data Valid  
Data In  
Data Out  
tWHZ  
tOW  
High-Z  
Figure 36. Timing Waveform of Write Cycle (WE# Control, ZZ# = VIH)  
tWC  
Address  
CE#  
tAW  
tWR  
tCW  
tAS  
tBW  
LB#, UB#  
WE#  
tWP  
tDW  
tDH  
Data Valid  
Data In  
tWHZ  
High-Z  
Figure 37. Timing Waveform of Write Cycle (CE# Control, ZZ# = VIH)  
pSRAM Type 1 pSRAM_Type01_12_A1 August 30, 2004  
Data Out  
110  
A d v a n c e I n f o r m a t i o n  
tPGMAX  
Page Address  
(A4 - A20)  
tWC  
tPWC  
Wor d Address  
(A0 - A3 )  
tAS  
tCW  
CE#  
tWP  
WE#  
tLBW, UBW  
t
LB#, UB#  
tDW  
tDH tPDW tPDH  
tPDW tPDH  
High-Z  
Data Out  
Figure 38. Timing Waveform of Page Mode Write Cycle (ZZ# = VIH)  
Power Savings Modes (For 16M Page Mode, 32M and 64M Only)  
There are several power savings modes.  
„ Partial Array Self Refresh  
„ Temperature Compensated Refresh (64M)  
„ Deep Sleep Mode  
„ Reduced Memory Size (32M, 16M)  
The operation of the power saving modes ins controlled by the settings of bits  
contained in the Mode Register. This definition of the Mode Register is shown in  
Figure 39 and the various bits are used to enable and disable the various low  
power modes as well as enabling Page Mode operation. The Mode Register is set  
by using the timings defined in Figure xxx.  
Partial Array Self Refresh (PAR)  
In this mode of operation, the internal refresh operation can be restricted to a  
16Mb, 32Mb, or 48Mb portion of the array. The array partition to be refreshed is  
determined by the respective bit settings in the Mode Register. The register set-  
tings for the PASR operation are defined in Table xxx. In this PASR mode, when  
ZZ# is active low, only the portion of the array that is set in the register is re-  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
111  
A d v a n c e I n f o r m a t i o n  
freshed. The data in the remainder of the array will be lost. The PASR operation  
mode is only available during standby time (ZZ# low) and once ZZ# is returned  
high, the device resumes full array refresh. All future PASR cycles will use the  
contents of the Mode Register that has been previously set. To change the ad-  
dress space of the PASR mode, the Mode Register must be reset using the  
previously defined procedures. For PASR to be activated, the register bit, A4 must  
be set to a one (1) value, “PASR Enabled. If this is the case, PASR will be acti-  
vated 10 µs after ZZ# is brought low. If the A4 register bit is set equal to zero  
(0), PASR will not be activated.  
Temperature Compensated Refresh (for 64Mb)  
In this mode of operation, the internal refresh rate can be optimized for the op-  
eration temperature used and this can then lower standby current. The DRAM  
array in the PSRAM must be refreshed internally on a regular basis. At higher  
temperatures, the DRAM cell must be refreshed more often than at lower tem-  
peratures. By setting the temperature of operation in the Mode Register, this  
refresh rate can be optimized to yield the lowest standby current at the given op-  
erating temperature. There are four different temperature settings that can be  
programmed in to the PSRAM. These are defined in Figure 39.  
Deep Sleep Mode  
In this mode of operation, the internal refresh is turned off and all data integrity  
of the array is lost. Deep Sleep is entered by bringing ZZ# low with the A4 reg-  
ister bit set to a zero (0), “Deep Sleep Enabled. If this is the case, Deep Sleep  
will be entered 10 µs after ZZ# is brought low. The device will remain in this mode  
as long as ZZ# remains low. If the A4 register bit is set equal to one (1), Deep  
Sleep will not be activated.  
Reduced Memory Size (for 32M and 16M)  
In this mode of operation, the 32Mb PSRAM can be operated as a 8Mb or 16Mb  
device. The mode and array size are determined by the settings in the VA register.  
The VA register is set according to the following timings and the bit settings in  
the table “Address Patterns for RMS. The RMS mode is enabled at the time of ZZ  
transitioning high and the mode remains active until the register is updated. To  
return to the full 32Mb address space, the VA register must be reset using the  
previously defined procedures. While operating in the RMS mode, the unselected  
portion of the array may not be used.  
Other Mode Register Settings (for 64M)  
The Page Mode operation can also be enabled and disabled using the Mode Reg-  
ister. Register bit A7 controls the operation of Page Mode and setting this bit to a  
one (1), enables Page Mode. If the register bit A7 is set to a zero (0), Page Mode  
operation is disabled.  
112  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
64 Mb  
32 Mb / 16 Mb  
A21 - A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Array Mode  
for ZZ#  
Reserved  
Must set to all 0  
Temp  
Compensated  
Refresh  
0 = PAR (default)  
1 = RMS  
PAR Section  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1 = Top 1/4 array  
0 = Top 1/2 array  
1 = Top 3/4 array  
0 = No PAR  
1 = Bottom 1/4 array  
0 = Bottom 1/2 array  
1 = Bottom 3/4 array  
0 = Full array (default)  
1
0
0
1
0 = 15oC  
1 = 45oC  
0 = 70oC  
1 = 85oC (default)  
Page Mode  
0 = Page Mode Disabled (default)  
1 = Page Mode Enabled  
Deep Sleep Enable/Disable  
0 = Deep Sleep Enabled  
1 = Deep Sleep Disabled (default)  
Figure 39. Mode Register  
t
WC  
Address  
t
AW  
t
AS  
t
WR  
CE#  
t
WP  
WE#  
ZZ#  
t
ZZWE  
t
CDZZ  
Figure 40. Mode Register Update Timings (UB#, LB#, OE# are Don’t Care)  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
113  
A d v a n c e I n f o r m a t i o n  
t
ZZMIN  
ZZ#  
CE#  
t
t
R
CDZZ  
Figure 41. Deep Sleep Mode - Entry/Exit Timings (for 64M)  
t
WC  
A4  
t
t
AS  
AW  
CE#  
t
WR  
t
WP  
WE#  
t
t
BW  
LB#, UB#  
R
t
ZZWE  
t
ZZMIN  
ZZ#  
Figure 42. Deep Sleep Mode - Entry/Exit Timings (for 32M and 16M)  
Mode Register Update and Deep Sleep Timings  
Item  
Chip deselect to ZZ# low  
ZZ# low to WE# low  
Symbol  
tCDZZ  
tZZWE  
tWC  
Min  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Note  
10  
500  
Write register cycle time  
Chip enable to end of write  
Address valid to end of write  
Write recovery time  
70/85  
70/85  
70/85  
0
1
1
1
tCW  
tAW  
tWR  
Address setup time  
tAS  
0
Write pulse width  
tWR  
40  
Deep Sleep Pulse Width  
Deep Sleep Recovery  
tZZMIN  
tR  
10  
200  
Notes:  
1. Minimum cycle time for writing register is equal to speed grade of product.  
114  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Address Patterns for PASR (A4=1) (64M)  
A2 A1 A0  
Active Section  
Top quarter of die  
Top half of die  
Reserved  
Address Space  
300000h-3FFFFFh  
200000h-3FFFFFh  
Size  
Density  
16Mb  
32Mb  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1Mb x 16  
2Mb x 16  
No PASR  
None  
0
0
Bottom quarter of die  
Bottom half of die  
Reserved  
000000h-0FFFFFh  
000000h-1FFFFFh  
1Mb x 16  
2Mb x 16  
16Mb  
32Mb  
Full array  
000000h-3FFFFFh  
4Mb x 16  
64Mb  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
115  
A d v a n c e I n f o r m a t i o n  
Deep ICC Characteristics (for 64Mb)  
Item  
Symbol  
Te st  
Array Partition Typ Max Unit  
None  
10  
60  
1/4 Array  
1/2 Array  
Full Array  
PASR Mode Standby Current  
IPASR  
VIN = VCC or 0V, Chip Disabled, tA = 85°C  
µA  
80  
120  
Item  
Symbol  
Max Temperature  
15°C  
Typ  
Max  
50  
Unit  
45°C  
60  
Temperature Compensated Refresh Current  
ITCR  
µA  
70°C  
80  
85°C  
120  
Item  
Symbol  
Test  
Typ  
Max  
10  
Unit  
Deep Sleep Current  
IZZ  
VIN = VCC or 0V, Chip in ZZ# mode, tA = 25°C  
µA  
Address Patterns for PAR (A3= 0, A4=1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
512Kb x 16  
1Mb x 16  
2Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
000000h - 0FFFFFh  
000000h - 1FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
32Mb  
8Mb  
One-quarter of die  
One-half of die  
16Mb  
Address Patterns for RMS (A3 = 1, A4 = 1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
1
1
1
1
1
1
1
0
1
0
512Kb x 16  
1Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
One-quarter of die  
One-half of die  
000000h - 0FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
8Mb  
16Mb  
116  
pSRAM Type 1  
pSRAM_Type01_12_A1 August 30, 2004  
A d v a n c e I n f o r m a t i o n  
Low Power ICC Characteristics (32M)  
Item  
Symbol  
Te s t  
Array Partition  
1/4 Array  
Typ  
Max  
75  
Unit  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current IPAR  
RMS Mode Standby Current IRMSSB  
1/2 Array  
90  
µA  
8Mb Device  
16Mb Device  
75  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
90  
µA  
VIN = VCC or 0V,  
Chip in ZZ mode, tA= 85oC  
Deep Sleep Current  
IZZ  
10  
µA  
Address Patterns for PAR (A3= 0, A4=1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
256Kb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
00000h - 7FFFFh  
00000h - FFFFFh  
C0000h - FFFFh  
80000h - 1FFFFFh  
8Mb  
16Mb  
4Mb  
One-quarter of die  
One-half of die  
256Kb x 16  
512Kb x 16  
8Mb  
Address Patterns for RMS (A3 = 1, A4 = 1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
1
1
1
1
1
1
1
0
1
0
256Kb x 16  
512Kb x 16  
256Kb x 16  
512Kb x 16  
One-half of die  
One-quarter of die  
One-half of die  
00000h - 7FFFFh  
C0000h - FFFFFh  
80000h - FFFFFh  
8Mb  
4Mb  
8Mb  
Low Power ICC Characteristics (16M)  
Item  
Symbol  
Test  
Array Partition  
1/4 Array  
Typ  
Max  
Unit  
65  
80  
65  
80  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current  
IPAR  
µA  
1/2 Array  
4Mb Device  
8Mb Device  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
RMS Mode Standby Current  
Deep Sleep Current  
IRMSSB  
µA  
µA  
VIN = VCC or 0V,  
Chip in ZZ# mode, tA= 85oC  
IZZ  
10  
August 30, 2004 pSRAM_Type01_12_A1  
pSRAM Type 1  
117  
A d v a n c e I n f o r m a t i o n  
Type 2 pSRAM  
16Mbit (1M Word x 16-bit)  
32Mbit (2M Word x 16-bit)  
64Mbit (4M Word x 16-bit)  
128Mbit (8M Word x 16-bit)  
Features  
„ Process Technology: CMOS  
„ Organization: x16 bit  
„ Power Supply Voltage: 2.7~3.1V  
„ Three State Outputs  
„ Compatible with Low Power SRAM  
Product Information  
Standby  
Operating  
Density  
16Mb  
16Mb  
32Mb  
32Mb  
64Mb  
64Mb  
128Mb  
VCC Range  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
(ISB1, Max.)  
(ICC2, Max.)  
Mode  
80 µA  
80 µA  
100 µA  
100 µA  
TBD  
30 mA  
35 mA  
35 mA  
40 mA  
TBD  
Dual CS  
Dual CS and Page Mode  
Dual CS  
Dual CS and Page Mode  
Dual CS  
TBD  
TBD  
Dual CS and Page Mode  
Dual CS and Page Mode  
TBD  
TBD  
Pin Description  
Pin Name  
Description  
I/O  
CS1#, CS2  
OE#  
Chip Select  
I
I
I
I
Output Enable  
Write Enable  
WE#  
LB#, UB#  
Lower/Upper Byte Enable  
A0-A19 (16M)  
A0-A20 (32M)  
A0-A21 (64M)  
A0-A22 (128M)  
Address Inputs  
I
I/O0-I/O15  
VCC/VCCQ  
VSS/VSSQ  
NC  
Data Inputs/Outputs  
Power Supply  
Ground  
I/O  
Not Connection  
Do Not Use  
DNU  
118  
Type 2 pSRAM  
pSRAM_Type02_15A1 June 25, 2004  
A d v a n c e I n f o r m a t i o n  
Power Up Sequence  
1. Apply power.  
2. Maintain stable power (VCC min.=2.7V) for a minimum 200 µs with  
CS1#=high or CS2=low.  
Timing Diagrams  
Power Up  
Min. 200 s  
VCC(Min)  
VCC  
CS1#  
CS2  
Power Up Mode  
Normal Operation  
Figure 43. Power Up 1 (CS1# Controlled)  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS1# high. Then the device gets into the normal operation.  
Min. 200µs  
VCC(Mni )  
VCC  
CS1#  
CS2  
PowerUp Mode  
Normal Operation  
Figure 44. Power Up 2 (CS2 Controlled)  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS2 low. Then the device gets into the normal operation.  
June 25, 2004 pSRAM_Type02_15A1  
Type 2 pSRAM  
119  
A d v a n c e I n f o r m a t i o n  
Functional Description  
Mode  
CS1#  
CS2  
X
OE#  
X
WE#  
LB#  
X
UB#  
X
I/O1-8  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
I/O9-16  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
Power  
Standby  
Standby  
Standby  
Active  
Deselected  
Deselected  
Deselected  
H
X
X
L
L
L
L
L
L
L
L
X
X
X
H
H
H
H
H
L
L
X
X
X
X
X
H
L
H
X
Output Disabled  
Outputs Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
H
H
H
L
H
X
L
Active  
H
L
H
L
Active  
H
L
H
L
High-Z  
DOUT  
Active  
H
L
L
DOUT  
Active  
Lower Byte Write  
Upper Byte Write  
Word Write  
H
X
L
H
L
DIN  
High-Z  
DIN  
Active  
H
X
L
H
L
High-Z  
DIN  
Active  
H
X
L
L
DIN  
Active  
Legend:X = Don’t care (must be low or high state).  
Absolute Maximum Ratings  
Item  
Symbol  
VIN , VOUT  
VCC  
Ratings  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
-0.2 to VCC+0.3V  
-0.2 to 3.6V  
1.0  
V
PD  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute  
maximum rating conditions longer than one second may affect reliability.  
DC Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Ground  
Min  
Typ  
2.9  
0
Max  
Unit  
2.7  
3.1  
VSS  
0
2.2  
0
VCC + 0.3 (Note 2)  
0.6  
V
VIH  
Input High Voltage  
Input Low Voltage  
VIL  
-0.2 (Note 3)  
Notes:  
1. TA=-40 to 85°C, unless otherwise specified.  
2. Overshoot: VCC+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
120  
Type 2 pSRAM  
pSRAM_Type02_15A1 June 25, 2004  
A d v a n c e I n f o r m a t i o n  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
VIN = 0V  
Min  
Max  
8
Unit  
pF  
Input Capacitance  
CIO  
Input/Output Capacitance  
VOUT = 0V  
10  
pF  
Note: This parameter is sampled periodically and is not 100% tested.  
DC and Operating Characteristics  
Common  
Item  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input Leakage Current  
ILI  
VIN=VSS to VCC  
-1  
1
1
µA  
CS1#=VIH or CS2=VIL or OE#=VIH or WE#=VIL or  
LB#=UB#=VIH, VIO=VSS to VCC  
Output Leakage Current  
ILO  
-1  
µA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
IOL=2.1mA  
0.4  
V
V
IOH=-1.0mA  
2.4  
June 25, 2004 pSRAM_Type02_15A1  
Type 2 pSRAM  
121  
A d v a n c e I n f o r m a t i o n  
16M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA,  
ICC1  
CS1#  
0.2V, LB#  
0.2V and/or UB#  
0.2V,  
7
mA  
CS2 VCC-0.2V, VIN  
0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
30 mA  
35 mA  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN-VIH or VIL  
Page  
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
80 mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
32M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA,  
ICC1  
CS1#  
0.2V, LB#  
0.2V and/or UB#  
0.2V,  
7
mA  
CS2 VCC-0.2V, VIN  
0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
35 mA  
40 mA  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN-VIH or VIL  
Page  
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
100 mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
122  
Type 2 pSRAM  
pSRAM_Type02_15A1 June 25, 2004  
A d v a n c e I n f o r m a t i o n  
64M pSRAM  
Item  
Symbol  
Test Conditions  
Cycle time=1µs, 100% duty, IIO=0mA,  
Min Typ Max Unit  
ICC1  
CS1# 0.2V, LB# 0.2V and/or UB# 0.2V,  
TBD mA  
TBD mA  
TBD mA  
CS2 VCC-0.2V, VIN 0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN-VIH or VIL  
Page  
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
TBD mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
128M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1#  
0.2V,  
ICC1  
LB#  
0.2V and/or UB#  
0.2V, CS2  
VCC-0.2V, VIN  
0.2V or  
TBD mA  
TBD mA  
Average Operating  
Current  
VIN≥  
VCC-0.2V  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty, CS1#=VIL,  
CS2=VIH LB#=VIL and/or UB#=VIL, VIN-VIH or VIL  
ICC2  
Other inputs=0-VCC  
1. CS1#  
VCC - 0.2, CS2  
VCC - 0.2V (CS1# controlled) or  
Standby Current (CMOS) ISB1 (Note 1)  
TBD mA  
2. 0V  
CS2 0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measured after 60ms from  
the time when standby mode is set up.  
June 25, 2004 pSRAM_Type02_15A1  
Type 2 pSRAM  
123  
A d v a n c e I n f o r m a t i o n  
AC Operating Conditions  
Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.4 to 2.2V  
„ Input rising and falling time: 5ns  
„ Input and output reference voltage: 1.5V  
„ Output load (See Figure 45): CL=50pF  
Dout  
CL  
Figure 45. Output Load  
Note: Including scope and jig capacitance.  
124  
Type 2 pSRAM  
pSRAM_Type02_15A1 June 25, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics (Ta = -40°C to 85°C, VCC = 2.7 to 3.1 V)  
Speed Bins  
70ns  
Symbol  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
Read Cycle Time  
70  
70  
70  
35  
70  
tAA  
Address Access Time  
tCO  
tOE  
Chip Select to Output  
Output Enable to Valid Output  
UB#, LB# Access Time  
Chip Select to Low-Z Output  
tBA  
tLZ  
10  
tBLZ  
tOLZ  
tHZ  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB#, LB# Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold from Address Change  
Page Cycle Time  
10  
5
0
25  
25  
25  
tBHZ  
tOHZ  
tOH  
tPC  
0
0
5
25  
tPA  
Page Access Time  
20  
tWC  
tCW  
tAS  
Write Cycle Time  
70  
Chip Select to End of Write  
Address Set-up Time  
60  
0
tAW  
tBW  
tWP  
tWR  
tWHZ  
tDW  
tDH  
tOW  
Address Valid to End of Write  
UB#, LB# Valid to End of Write  
Write Pulse Width  
60  
60  
55 (Note 1)  
Write Recovery Time  
0
0
Write to Output High-Z  
25  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
30  
0
5
Notes:  
1. tWP (min)=70ns for continuous write operation over 50 times.  
June 25, 2004 pSRAM_Type02_15A1  
Type 2 pSRAM  
125  
A d v a n c e I n f o r m a t i o n  
Timing Diagrams  
Read Timings  
tRC  
Address  
Data Out  
tAA  
tOH  
Data Valid  
Previous Data Valid  
Figure 46. Timing Waveform of Read Cycle(1)  
Notes:  
1. Address Controlled, CS1#=OE#=VIL, CS2=WE#=VIH, UB# and/or LB#=VIL  
.
tRC  
Address  
tOH  
tAA  
tCO  
CS1#  
CS2  
tHZ  
tBA  
UB#, LB#  
tBHZ  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
High-Z  
Data out  
Data Valid  
Figure 47. Timing Waveform of Read Cycle(2)  
Notes:  
1. WE#=VIH  
.
126  
Type 2 pSRAM  
pSRAM_Type02_15A1 June 25, 2004  
A d v a n c e I n f o r m a t i o n  
Address1)  
A1~A0  
Valid  
Address  
Valid  
Valid  
Valid  
Valid  
Address  
Address Address Address  
tAA  
tPC  
CS1#  
CS2  
tCO  
OE#  
tPA  
tOHZ  
tOE  
High Z  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
DQ15~DQ0  
Figure 48. Timing Waveform of Page Cycle (Page Mode Only)  
Notes:  
1. 16Mb: A2 ~ A19, 32Mb: A2 ~ A20, 64Mb: A2 ~ A21, 128Mb: A2 ~ A22.  
tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to  
output voltage levels.  
At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device  
to device interconnection.  
tOE(max) is met only when OE# becomes enabled after tAA(max).  
If invalid address signals shorter than min. tRC are continuously repeated for over 4µs, the device needs a normal read  
timing (tRC) or needs to sustain standby state for min. tRC at least once in every 4µs.  
Write Timings  
tWC  
Address  
tCW  
tWR  
CS1#  
CS2  
tAW  
tBW  
UB#, LB#  
tWP  
WE#  
tAS  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data Valid  
tWHZ  
tOW  
Data Undefined  
Data out  
Figure 49. Write Cycle #1 (WE# Controlled)  
June 25, 2004 pSRAM_Type02_15A1  
Type 2 pSRAM  
127  
A d v a n c e I n f o r m a t i o n  
tWC  
Address  
tWR  
tAS  
tCW  
tAW  
CS1#  
CS2  
tBW  
UB#, LB#  
tWP  
WE#  
tDW  
tDH  
Data Valid  
Data in  
High-Z  
Data out  
Figure 50. Write Cycle #2 (CS1# Controlled)  
tWC  
Address  
tWR  
tAS  
tCW  
tAW  
CS1#  
CS2  
tBW  
UB#, LB#  
WE#  
tWP(1)  
tDW  
tDH  
Data Valid  
Data in  
Data out  
High-Z  
Figure 51. Timing Waveform of Write Cycle(3) (CS2 Controlled)  
128  
Type 2 pSRAM  
pSRAM_Type02_15A1 June 25, 2004  
A d v a n c e I n f o r m a t i o n  
t
WC  
Address  
CS1#  
t
WR  
t
CW  
t
AW  
CS2  
t
BW  
UB#, LB#  
t
AS  
t
WP  
WE#  
t
DH  
t
DW  
Data Valid  
Data in  
Data out  
High-Z  
Figure 52. Timing Waveform of Write Cycle(4) (UB#, LB# Controlled)  
Notes:  
1. A write occurs during the overlap (tWP) of low CS1# and low WE#. A write begins when CS1# goes low and WE# goes low  
with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A  
write ends at the earliest transition when CS1# goes high and WE# goes high. The tWP is measured from the beginning of  
write to the end of write.  
2. tCW is measured from the CS1# going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4.  
tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS1# or WE# going  
high.  
June 25, 2004 pSRAM_Type02_15A1  
Type 2 pSRAM  
129  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 7  
16Mb (1M word x 16-bit)  
32Mb (2M word x 16-bit)  
64Mb (4M word x 16-bit)  
CMOS 1M/2M/4M-Word x 16-bit Fast Cycle Random Access Memory with Low  
Power SRAM Interface  
Features  
„ Asynchronous SRAM Interface  
„ Fast Access Time  
— tCE = tAA = 60ns max (16M)  
— tCE = tAA = 65ns max (32M/64M)  
„ 8 words Page Access Capability  
— tPAA = 20ns max (32M/64M)  
„ Low Voltage Operating Condition  
— VDD = +2.7V to +3.1V  
„ Wide Operating Temperature  
— TA = -30°C to +85°C  
„ Byte Control by LB and UB  
„ Various Power Down modes  
— Sleep (16M)  
— Sleep, 4M-bit Partial, or 8M-bit Partial (32M)  
— Sleep, 8M-bit Partial, or 16M-bit Partial (64M)  
Pin Description  
Pin Name  
A21 to A0  
CE1#  
CE2#  
WE#  
Description  
Address Input: A19 to A0 for 16M, A20 to A0 for 32M, A21 to A0 for 64M  
Chip Enable (Low Active)  
Chip Enable (High Active)  
Write Enable (Low Active)  
OE#  
Output Enable (Low Active)  
UB#  
Upper Byte Control (Low Active)  
Lower Byte Control (Low Active)  
Upper Byte Data Input/Output  
Lower Byte Data Input/Output  
Power Supply  
LB#  
DQ16 9  
-
DQ8-1  
VDD  
VSS  
Ground  
130  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
Functional Description  
Mode  
Standby (Deselect)  
Output Disable (Note 1)  
Output Disable (No Read)  
Read (Upper Byte)  
Read (Lower Byte)  
Read (Word)  
CE2#  
CE1#  
WE#  
OE#  
X
LB#  
X
UB#  
X
A21-0  
X
DQ8-1  
High-Z  
DQ16-9  
High-Z  
H
H
X
H
H
X
X
Note 3  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
X
High-Z  
High-Z  
H
H
L
H
L
High-Z  
High-Z  
High-Z  
Output Valid  
High-Z  
H
L
H
L
Output Valid  
Output Valid  
Invalid  
H
L
L
Output Valid  
Invalid  
No Write  
H
H
L
H
L
Write (Upper Byte)  
Write (Lower Byte)  
Write (Word)  
Invalid  
Input Valid  
Invalid  
L
H
X
H
L
Input Valid  
Input Valid  
High-Z  
L
Input Valid  
High-Z  
Power Down  
L
X
X
X
X
Legend:L = VIL, H = VIH, X can be either VIL or VIH, High-Z = High Impedance.  
Notes:  
1. Should not be kept this logic condition longer than 1 ms. Please contact local Spansion representative for the relaxation of  
1ms limitation.  
2. Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the  
selection of the Power-Down Program, 16M has data retention in all modes except Power Down. Refer to Power Down for  
details.  
3. Can be either VIL or VIH but must be valid before Read or Write.  
Power Down (for 32M, 64M Only)  
Power Down  
The Power Down is a low-power idle state controlled by CE2. CE2 Low drives the  
device in power-down mode and maintains the low-power idle state as long as  
CE2 is kept Low. CE2 High resumes the device from power-down mode. These  
devices have three power-down modes. These can be programmed by series of  
read/write operation. Each mode has following features.  
32M  
Retention Data  
No  
64M  
Retention Data  
No  
Mode  
Retention Address  
N/A  
Mode  
Retention Address  
N/A  
Sleep (default)  
4M Partial  
Sleep (default)  
8M Partial  
4M bit  
00000h to 3FFFFh  
00000h to 7FFFFh  
8M bit  
00000h to 7FFFFh  
00000h to FFFFFh  
8M Partial  
8M bit  
16M Partial  
16M bit  
The default state is Sleep and it is the lowest power consumption but all data is  
lost once CE2 is brought to Low for Power Down. It is not required to program to  
Sleep mode after power-up.  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
131  
A d v a n c e I n f o r m a t i o n  
Power Down Program Sequence  
The program requires 6 read/write operations with a unique address. Between  
each read/write operation requires that device be in standby mode. The following  
table shows the detail sequence.  
Cycle #  
1st  
Operation  
Read  
Address  
3FFFFFh (MSB)  
3FFFFFh  
Data  
Read Data (RDa)  
RDa  
2nd  
3rd  
Write  
Write  
Write  
Write  
Read  
3FFFFFh  
RDa  
4th  
3FFFFFh  
Don’t Care (X)  
X
5th  
3FFFFFh  
6th  
Address Key  
Read Data (RDb)  
The first cycle reads from the most significant address (MSB).  
The second and third cycle are to write back the data (RDa) read by first cycle.  
If the second or third cycle is written into the different address, the program is  
cancelled, and the data written by the second or third cycle is valid as a normal  
write operation.  
The fourth and fifth cycles write to MSB. The data from the fourth and fifth cycles  
is “don’t care.If the fourth or fifth cycles are written into different address, the  
program is also cancelled but write data might not be written as normal write  
operation.  
The last cycle is to read from specific address key for mode selection.  
Once this program sequence is performed from a Partial mode to the other Partial  
mode, the written data stored in memory cell array can be lost. So, it should per-  
form this program prior to regular read/write operation if Partial mode is used.  
Address Key  
The address key has following format.  
Mode  
Address  
32M  
Sleep (default)  
4M Partial  
8M Partial  
N/A  
64M  
Sleep (default)  
N/A  
A21  
1
A20  
1
A19  
1
A18 - A0  
Binary  
1
1
1
1
3FFFFFh  
37FFFFh  
2FFFFFh  
27FFFFh  
1
1
0
8M Partial  
16M Partial  
1
0
1
1
0
0
132  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
Absolute Maximum Ratings  
Item  
Symbol  
VDD  
Value  
Unit  
V
Voltage of VDD Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Storage temperature  
-0.5 to +3.6  
-0.5 to +3.6  
±50  
VIN, VOUT  
IOUT  
V
mA  
°C  
TSTG  
-55 to +125  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions (See Warning Below)  
Parameter  
Symbol  
VDD  
VSS  
VIH  
Min  
2.7  
Max  
3.1  
Unit  
V
Supply Voltage  
0
0
V
High Level Input Voltage (Note 1)  
High Level Input Voltage (Note 1)  
Ambient Temperature  
VDD 0.8  
-0.3  
-30  
VDD+0.2  
VDD 0.2  
85  
V
VIL  
V
TA  
°C  
Notes:  
1. Maximum DC voltage on input and I/O pins is VDD+0.2V. During voltage transitions, inputs can positive overshoot to  
DD+1.0V for periods of up to 5 ns.  
V
2. Minimum DC voltage on input or I/O pins is -0.3V. During voltage transitions, inputs can negative overshoot VSS to -1.0V for  
periods of up to 5ns.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the de-  
vice’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges can  
adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their FUJITSU representative before-  
hand.  
Package Capacitance  
Test conditions: TA = 25°C, f = 1.0 MHz  
Symbol  
Description  
Test Setup  
VIN = 0V  
VIN = 0V  
VIO = 0V  
Typ  
Max  
5
Unit  
pF  
CIN1  
CIN2  
CIO  
Address Input Capacitance  
Control Input Capacitance  
Data Input/Output Capacitance  
5
pF  
8
pF  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
133  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(Under Recommended Conditions Unless Otherwise Noted)  
16M  
32M  
64M  
Parameter  
Symbol  
Test Conditions  
Min. Max. Min. Max. Min. Max. Unit  
Input Leakage  
Current  
ILI  
VIN = VSS to VDD  
-1.0 +1.0 -1.0 +1.0 -1.0 +1.0  
-1.0 +1.0 -1.0 +1.0 -1.0 +1.0  
µ
A
A
Output Leakage  
Current  
ILO  
VOH  
VOL  
VOUT = VSS to VDD, Output Disable  
VDD = VDD(min), IOH = –0.5mA  
IOL = 1mA  
µ
Output High  
Voltage Level  
2.2  
2.4  
2.4  
V
Output Low  
Voltage Level  
0.4  
10  
0.4  
0.4  
10  
V
IDDPS  
IDDP4  
IDDP8  
IDDP16  
SLEEP  
10  
40  
50  
µ
A
A
A
A
VDD = VDD max.,  
VIN = VIH or VIL,  
4M Partial  
8M Partial  
16M Partial  
N/A  
N/A  
µ
µ
µ
VDD Power  
Down Current  
N/A  
N/A  
80  
CE2  
0.2 V  
N/A  
100  
VDD = VDD max.,  
VIN = VIH or VIL  
CE1 = CE2 = VIH  
IDDS  
1
1.5  
80  
1.5  
mA  
VDD Standby  
Current  
170  
90  
µ
A
A
TA< +85°C  
TA< +40°C  
VDD = VDD max.,  
IDDS1  
VIN  
0.2V or VIN  
VDD – 0.2V,  
100  
CE1 = CE2  
VDD – 0.2V  
µ
IDDA1  
IDDA2  
VDD = VDD max.,  
VIN = VIH or VIL,  
CE1 = VIL and CE2= VIH,  
tRC / tWC = min.  
20  
3
30  
3
40  
mA  
mA  
VDD  
Active Current  
tRC / tWC = 1  
µs  
5
IOUT=0mA  
VDD = VDD max., VIN = VIH or VIL,  
CE1 = VIL and CE2= VIH,  
IOUT=0mA, tPRC = min.  
VDD Page  
Read Current  
IDDA3  
N/A  
10  
10  
mA  
Notes:  
1. All voltages are referenced to VSS  
.
2. DC Characteristics are measured after following POWER-UP timing.  
3. IOUT depends on the output load conditions.  
134  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
AC Characteristics  
(Under Recommended Operating Conditions Unless Otherwise Noted)  
Read Operation  
16M  
32M  
64M  
Parameter  
Symbol  
Unit  
Notes  
Min.  
70  
Max.  
1000  
60  
Min.  
65  
20  
5
Max.  
1000  
65  
40  
65  
30  
20  
1000  
Min.  
65  
20  
5
Max.  
1000  
65  
40  
65  
30  
20  
1000  
Read Cycle Time  
tRC  
tCE  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
CE1# Access Time  
3
OE# Access Time  
tOE  
40  
3
Address Access Time  
tAA  
60  
3, 5  
LB# / UB# Access Time  
tBA  
30  
3
Page Address Access Time  
Page Read Cycle Time  
tPAA  
tPRC  
tOH  
N/A  
N/A  
3,6  
1, 6, 7  
Output Data Hold Time  
5
5
3
4
4
4
3
3
3
CE1# Low to Output Low-Z  
OE# Low to Output Low-Z  
LB# / UB# Low to Output Low-Z  
CE1# High to Output High-Z  
OE# High to Output High-Z  
LB# / UB# High to Output High-Z  
Address Setup Time to CE1# Low  
Address Setup Time to OE# Low  
Address Invalid Time  
tCLZ  
tOLZ  
tBLZ  
tCHZ  
tOHZ  
tBHZ  
tASC  
tASO  
tAX  
5
5
0
0
0
0
0
0
6  
10  
-6  
-6  
10  
10  
20  
20  
20  
–6  
10  
–6  
–6  
12  
12  
20  
14  
20  
–6  
10  
–6  
–6  
25  
12  
20  
14  
20  
10  
10  
10  
5, 8  
9
Address Hold Time from CE1# High  
Address Hold Time from OE# High  
WE# High to OE# Low Time for Read  
CE1# High Pulse Width  
tCHAH  
tOHAH  
tWHOL  
tCP  
1000  
10  
Notes:  
1. Maximum value is applicable if CE#1 is kept at Low without change of address input of A3 to A21. If needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Address should not be changed within minimum tRC  
.
3. The output load 50 pF with 50 ohm termination to VDD x 0.5 (16M), The output load 50 pF (32M and 64M).  
4. The output load 5pF.  
5. Applicable to A3 to A21 (32M and 64M) when CE1# is kept at Low.  
6. Applicable only to A0, A1 and A2 (32M and 64M) when CE1# is kept at Low for the page address access.  
7. In case Page Read Cycle is continued with keeping CE1# stays Low, CE1# must be brought to High within 4 µs. In other  
words, Page Read Cycle must be closed within 4 µs.  
8. Applicable when at least two of address inputs among applicable are switched from previous state.  
9.  
tRC(min) and tPRC(min) must be satisfied.  
10. If actual value of tWHOL is shorter than specified minimum values, the actual tAA of following Read can become longer by the  
amount of subtracting the actual value from the specified minimum value.  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
135  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Write Operation  
16M  
32M  
64M  
Parameter  
Write Cycle Time  
Symbol  
tWC  
Min.  
70  
0
Max.  
1000  
Min.  
65  
0
Max.  
1000  
Min.  
65  
0
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
1000  
1,2  
3
Address Setup Time  
tAS  
CE1# Write Pulse Width  
WE# Write Pulse Width  
LB#/UB# Write Pulse Width  
LB#/UB# Byte Mask Setup Time  
LB#/UB# Byte Mask Hold Time  
Write Recovery Time  
tCW  
tWP  
45  
45  
45  
-5  
-5  
0
40  
40  
40  
–5  
–5  
0
40  
40  
40  
–5  
–5  
0
3
3
tBW  
3
tBS  
4
tBH  
5
tWR  
6
CE1# High Pulse Width  
WE# High Pulse Width  
tCP  
10  
7.5  
10  
15  
0
12  
7.5  
12  
12  
0
12  
7.5  
12  
12  
0
tWHP  
tBHP  
tDS  
1000  
1000  
1000  
1000  
1000  
1000  
7
LB#/UB# High Pulse Width  
Data Setup Time  
Data Hold Time  
tDH  
OE# High to CE1# Low Setup Time for Write  
OE# High to Address Setup Time for Write  
LB# and UB# Write Pulse Overlap  
Notes:  
tOHCL  
tOES  
tBWO  
-5  
0
–5  
0
–5  
0
8
9
30  
30  
30  
1. Maximum value is applicable if CE1# is kept at Low without any address change. If the relaxation is needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Minimum value must be equal or greater than the sum of write pulse (tCW, tWP or tBW) and write recovery time (tWR).  
3. Write pulse is defined from High to Low transition of CE1#, WE#, or LB#/UB#, whichever occurs last.  
4. Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of CE1# or WE# whichever  
occurs last.  
5. Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1# or WE# whichever  
occurs first.  
6. Write recovery is defined from Low to High transition of CE1#, WE#, or LB#/UB#, whichever occurs first.  
7.  
tWPH minimum is absolute minimum value for device to detect High level. And it is defined at minimum VIH level.  
8. If OE# is Low after minimum tOHCL, read cycle is initiated. In other words, OE# must be brought to High within 5ns after  
CE1# is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tRC is met.  
9. If OE# is Low after new address input, read cycle is initiated. In other word, OE# must be brought to High at the same time  
or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tRC is met and data  
bus is in High-Z.  
136  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
AC Characteristics  
Power Down Parameters  
16M  
32M  
64M  
Parameter  
Symbol Min. Max. Min. Max. Min. Max. Unit Note  
CE2 Low Setup Time for Power Down Entry  
CE2 Low Hold Time after Power Down Entry  
tCSP  
10  
80  
10  
65  
10  
65  
ns  
ns  
tC2LP  
CE1# High Hold Time following CE2 High after Power  
Down Exit [SLEEP mode only]  
tCHH  
tCHHP  
tCHS  
300  
300  
1
300  
1
µ
s
s
1
2
1
CE1# High Hold Time following CE2 High after Power  
Down Exit [not in SLEEP mode]  
N/A  
µ
CE1# High Setup Time following CE2 High after Power  
Down Exit  
0
0
0
ns  
Notes:  
1. Applicable also to power-up.  
2. Applicable when 4Mb and 8Mb Partial modes are programmed.  
Other Timing Parameters  
16M  
32M  
64M  
Parameter  
CE1# High to OE# Invalid Time for Standby Entry  
CE1# High to WE# Invalid Time for Standby Entry  
CE2 Low Hold Time after Power-up  
CE1# High Hold Time following CE2 High after Power-up  
Input Transition Time  
Symbol Min. Max. Min. Max. Min. Max. Unit Note  
tCHOX  
tCHWX  
tC2LH  
tCHH  
tT  
10  
10  
50  
300  
1
25  
10  
10  
50  
300  
1
25  
10  
10  
50  
300  
1
25  
ns  
ns  
1
2
µ
s
s
µ
ns  
Notes:  
1. Some data might be written into any address location if tCHWX(min) is not satisfied.  
2. The Input Transition Time (tT) at AC testing is 5ns as shown in below. If actual tT is longer than 5ns, it can violate the AC  
specification of some of the timing parameters.  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
137  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
AC Test Conditions  
Symbol  
VIH  
Description  
Te s t S e t up  
Value  
VDD * 0.8  
VDD * 0.2  
VDD * 0.5  
5
Unit  
V
Note  
Input High Level  
VIL  
Input Low Level  
V
VREF  
tT  
Input Timing Measurement Level  
Input Transition Time  
V
Between VIL and VIH  
ns  
AC Measurement Output Load Circuits  
VDD *0.5 V  
50 ohm  
OUT  
VDD  
DEVICE  
UNDER  
TEST  
0.1 µF  
VSS  
50 pF  
Figure 53. AC Output Load Circuit – 16 Mb  
VDD  
DEVICE  
UNDER  
TEST  
OUT  
0.1µF  
VSS  
50pF  
Figure 54. AC Output Load Circuit – 32 Mb and 64 Mb  
138  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
Timing Diagrams  
Read Timings  
tRC  
ADDRESS VALID  
ADDRESS  
tASC  
tCE  
tCHAH  
tASC  
CE1#  
OE#  
tCP  
tCHZ  
tOE  
tOHZ  
tBHZ  
tBA  
LB#/UB#  
tBLZ  
tOLZ  
DQ  
(Output)  
tCLZ  
VALID DATA OUTPUT  
tOH  
Note: This timing diagram assumes CE2=H and WE#=H.  
Figure 55. Read Timing #1 (Basic Timing)  
tAx  
tRC  
tRC  
ADDRESS  
CE1#  
ADDRESS VALID  
ADDRESS VALID  
tAA  
tAA  
tOHAH  
Low  
tASO  
tOE  
OE#  
LB#/UB#  
tOLZ  
tOH  
tOHZ  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
Note: This timing diagram assumes CE2=H and WE#=H.  
VALID DATA OUTPUT  
Figure 56. Read Timing #2 (OE# Address Access  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
139  
A d v a n c e I n f o r m a t i o n  
tAX  
tRC  
tAx  
ADDRESS  
ADDRESS VALID  
tAA  
Low  
CE1#, OE#  
tBA  
tBA  
LB#  
tBA  
UB#  
tBHZ  
tBHZ  
tOH  
tOH  
tBLZ  
tBLZ  
DQ1-8  
(Output)  
VALID DATA  
OUTPUT  
tBHZ  
VALID DATA  
OUTPUT  
tOH  
tBLZ  
DQ9-16  
(Output)  
VALID DATA OUTPUT  
Note: This timing diagram assumes CE2=H and WE#=H.  
Figure 57. Read Timing #3 (LB#/UB# Byte Access)  
tRC  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
tRC  
tPRC  
tPRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS VALID  
tASC  
tCHAH  
tPAA  
tPAA  
tPAA  
CE1#  
OE#  
tCHZ  
tCE  
LB#/UB#  
tOH  
tCLZ  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Note: This timing diagram assumes CE2=H and WE#=H.  
Figure 58. Read Timing #4 (Page Address Access after CE1# Control Access for 32M and 64M Only)  
140  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
tRC  
tAX  
tRC  
tAx  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
ADDRESS VALID  
tRC  
tPRC  
tRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAA  
tPAA  
tAA  
tPAA  
CE1#  
Low  
tASO  
tOE  
OE#  
tBA  
LB#/UB#  
tOLZ  
tBLZ  
tOH  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Notes:  
1. This timing diagram assumes CE2=H and WE#=H.  
2. Either or both LB# and UB# must be Low when both CE1# and OE# are Low.  
Figure 59. Read Timing #5 (Random and Page Address Access for 32M and 64M Only)  
Write Timings  
tWC  
ADDRESS  
ADDRESS VALID  
tAS  
tCW  
tWR  
tWR  
tWR  
tAS  
CE1#  
WE#  
tCP  
tAS  
tWP  
tAS  
tWHP  
tAS  
tBW  
tAS  
LB#, UB#  
tBHP  
tOHCL  
OE#  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Note: This timing diagram assumes CE2=H.  
Figure 60. Write Timing #1 (Basic Timing)  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
141  
A d v a n c e I n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
tOHAH  
Low  
tAS  
tWP  
tWR  
tAS  
tWP  
tWR  
WE#  
tWHP  
LB#, UB#  
OE#  
tOES  
tOHZ  
tDS  
tDH  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
VALID DATA INPUT  
Note:This timing diagram assumes CE2=H.  
Figure 61. Write Timing #2 (WE# Control)  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tAS  
tWP  
tAS  
tWP  
tWHP  
tBS  
WE#  
LB#  
tBH  
tWR  
tWR  
tBS  
tBH  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
Note: This timing diagram assumes CE2=H and OE#=H.  
Figure 62. Write Timing #3-1 (WE#/LB#/UB# Byte Write Control)  
142  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tWR  
tWR  
WE#  
LB#  
tWHP  
tAS  
tBW  
tBS  
tBH  
tAS  
tBW  
tBH  
tBS  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Note: This timing diagram assumes CE2=H and OE#=H.  
Figure 63. Write Timing #3-3 (WE#/LB#/UB# Byte Write Control)  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tAS  
tBW  
tWR  
tAS  
tBW  
tWR  
tDH  
tBHP  
tBWO  
tDS  
tDH  
tDS  
DQ1-8  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
tAS  
tBW  
tWR  
tAS  
tWR  
tBWO  
tBW  
UB#  
tBHP  
tDS  
tDH  
tDS  
tDH  
DQ9-16  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
Note: This timing diagram assumes CE2=H and OE#=H.  
Figure 64. Write Timing #3-4 (WE#/LB#/UB# Byte Write Control)  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
143  
A d v a n c e I n f o r m a t i o n  
Read/Write Timings  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tCW  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tCHZ  
tOH  
tDS  
tDH  
tCLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. Write address is valid from either CE1# or WE# of last falling edge.  
Figure 65. Read/Write Timing #1-1 (CE1# Control)  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
tWP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tOE  
tCHZ  
tOH  
tDS  
tDH  
tOLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
READ DATA OUTPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. OE# can be fixed Low during write operation if it is CE1# controlled write at Read-Write-Read sequence.  
Figure 66. Read / Write Timing #1-2 (CE1#/WE#/OE# Control)  
144  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tOHAH  
tOHAH  
tAA  
Low  
tAS  
tWR  
tWP  
WE#  
UB#, LB#  
OE#  
tOES  
tASO  
tOE  
tWHOL  
tOHZ  
tOH  
tOHZ  
tOH  
tDS  
tDH  
tOLZ  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
Figure 67. Read / Write Timing #2 (OE#, WE# Control)  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tAA  
tOHAH  
tOHAH  
Low  
WE#  
tOES  
tAS  
tBW  
tWR  
tBA  
UB#, LB#  
OE#  
tBHZ  
tASO  
tWHOL  
tBHZ  
tOH  
tDS  
tDH  
tBLZ  
tOH  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
Figure 68. Read / Write Timing #3 (OE#, WE#, LB#, UB# Control)  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
145  
A d v a n c e I n f o r m a t i o n  
CE1#  
CE2  
tCHS  
tC2LH  
tCHH  
VDD  
VDD min  
0V  
Note: The t  
specifies after V  
reaches specified minimum level.  
C2LH  
DD  
Figure 69. Power-up Timing #1  
CE1#  
tCHH  
CE2  
VDD  
VDD min  
0V  
Note: The t  
specifies after V  
reaches specified minimum level and applicable to both CE1# and CE2.  
CHH  
DD  
Figure 70. Power-up Timing #2  
CE1#  
tCHS  
CE2  
DQ  
tCSP  
tC2LP  
tCHH (tCHHP)  
High-Z  
Power Down Entry  
Power Down Mode  
Power Down Exit  
Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and  
Power-Down program was not performed prior to this reset.  
Figure 71. Power Down Entry and Exit Timing  
146  
pSRAM Type 7  
pSRAM_Type07_13_A1 November 2, 2004  
A d v a n c e i n f o r m a t i o n  
CE1#  
OE#  
tCHOX  
tCHWX  
WE#  
Active (Read)  
and t define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes  
CHWX  
Standby  
Active (Write)  
Standby  
Note: Both t  
CHOX  
t
(min) period for Standby mode from CE1# Low to High transition.  
RC  
Figure 72. Standby Entry Timing after Read or Write  
tRC  
tWC  
tWC  
tWC  
tWC  
tRC  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
Key*2  
ADDRESS  
CE1#  
tCP*3  
tCP  
tCP  
tCP  
tCP  
tCP  
OE#  
WE#  
LB#, UB#  
DQ*3  
RDa  
Cycle #1  
RDa  
Cycle #2  
RDa  
Cycle #3  
X
X
RDb  
Cycle #6  
Cycle #4  
Cycle #5  
Notes:  
1. The all address inputs must be High from Cycle #1 to #5.  
2. The address key must confirm the format specified in page 132. If not, the operation and data are not guaranteed.  
3. After tCP following Cycle #6, the Power Down Program is completed and returned to the normal operation.  
Figure 73. Power Down Program Timing (for 32M/64M Only)  
November 2, 2004 pSRAM_Type07_13_A1  
pSRAM Type 7  
147  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A0 (June 9, 2004)  
Initial release.  
Revision A1 (July 19, 2004)  
Global Change  
Change all instances of FASL to Spansion  
Added Colophon text.  
“Product Selector Guide” on page 2  
Replaced “S71PL129JA0-9Z” with “S71PL129JA0-9P.  
“Ordering Information” on page 9  
In Model Number section replaced pSRAM part number with “See valid combinations table.  
Revision A2 (July 21, 2004)  
“Connection Diagram” on page 7  
Changed Row D of pinout for accuracy.  
Added the following note: “May be shared depending on density:A21 is shared for the 64M pSRAM  
configuration;A20 is shred for the 32M pSRAM configuration; A19 is shared for the 16M pSRAM  
configuration.  
Revision A3 (October 18, 2004)  
Core Flash Module  
Replaced core flash module from S29PL127J_064J_032J_MCP_00_A1_E to  
S29PL129J_MCP_00_A0  
Revision A4 (November 30, 2004)  
Product Selector Guide  
Added a new model number.  
Valid Combinations Table  
Whole table updated with new OPNs.  
Revision A5 (December 23, 2004)  
Connection Diagram  
Updated pin L5.  
Valid Combinations Table  
Added a note to the bottom of the table.  
148  
Revision Summary  
S71PL129Jxx_00_A5_E December 23, 2004  
A d v a n c e I n f o r m a t i o n  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion LLC will not be liable to you and/or any third party for any claims or damages arising in connection with above-  
mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels  
and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on ex-  
port under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and product  
names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
December 23, 2004 S71PL129Jxx_00_A5_E  
Revision Summary  
149  

相关型号:

S71PL129JA0BAW9B2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9B3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P4

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-64
SPANSION

S71PL129JA0BAW9U0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9U2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9U3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9Z0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9Z2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9Z3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION