S71WS256ND0BAWE3 [SPANSION]

Memory Circuit, 16MX16, CMOS, PBGA84, 12 X 9 MM, 1.20 MM HEIGHT, LEAD FREE COMPLIANT, FBGA-84;
S71WS256ND0BAWE3
型号: S71WS256ND0BAWE3
厂家: SPANSION    SPANSION
描述:

Memory Circuit, 16MX16, CMOS, PBGA84, 12 X 9 MM, 1.20 MM HEIGHT, LEAD FREE COMPLIANT, FBGA-84

文件: 总288页 (文件大小:7324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71WS512Nx0/S71WS256Nx0 Based MCPs  
Stacked Multi-chip Product (MCP)  
256/512 Megabit (32M/16M x 16 bit) CMOS  
1.8 Volt-only Simultaneous Read/Write,  
Burst-mode Flash Memory with 128/64Megabit (8M/4M x 16-Bit)  
pSRAM  
ADVANCE  
INFORMATION  
Distinctive Characteristics  
MCP Features  
„Power supply voltage of 1.7 to 1.95V  
„Burst Speed: 54MHz  
„Packages: 8 x 11.6 mm, 9 x 12 mm  
„Operating Temperature  
„-25°C to +85°C  
„-40°C to +85°C  
General Description  
The S71WS Series is a product line of stacked Multi-chip Product (MCP) packages  
and consists of  
„One or more flash memory die  
„pSRAM  
The products covered by this document are listed in the table below. For details  
about their specifications, please refer to the individual constituent datasheet for  
further details.  
Flash Density  
512Mb  
256Mb  
128Mb  
64Mb  
128Mb  
64Mb  
32Mb  
S71WS512ND0  
S71WS512NC0  
S71WS256ND0  
S71WS256NC0  
16Mb  
Publication Number S71WS512/256Nx0_00 Revision A Amendment 0 Issue Date October 26, 2004  
A d v a n c e I n f o r m a t i o n  
8-, 16-, and 32-Word Linear Burst with Wrap Around ......................36  
S71WS512Nx0/S71WS256Nx0 Based MCPs  
Table 9. Burst Address Groups ............................................ 37  
8-, 16-, and 32-Word Linear Burst without Wrap Around ............... 37  
Configuration Register ...................................................................................... 37  
RDY: Ready ...........................................................................................................37  
Handshaking ......................................................................................................... 37  
Simultaneous Read/Write Operations with Zero Latency ...................38  
Writing Commands/Command Sequences ................................................38  
Unlock Bypass Mode .....................................................................................38  
Accelerated Program/Chip Erase Operations ...........................................38  
Write Buffer Programming Operation ........................................................39  
Autoselect Mode ................................................................................................40  
Advanced Sector Protection and Unprotection ........................................41  
Persistent Mode Lock Bit ..............................................................................41  
Password Mode Lock Bit ..............................................................................41  
Sector Protection ...............................................................................................42  
Persistent Sector Protection ...........................................................................42  
Persistent Protection Bit (PPB) ..................................................................43  
Persistent Protection Bit Lock (PPB Lock Bit) in Persistent Sector  
Protection Mode ............................................................................................43  
Dynamic Protection Bit (DYB) ..................................................................43  
Table 10. Sector Protection Schemes ................................... 44  
Password Sector Protection ...........................................................................45  
64-bit Password ..............................................................................................45  
Persistent Protection Bit Lock (PPB Lock Bit) in Password Sector  
Protection Mode ............................................................................................45  
Lock Register .......................................................................................................46  
Table 11. WS256N Lock Register ......................................... 46  
Table 12. WS128N/064N Lock Register ................................. 46  
Hardware Data Protection Mode .................................................................46  
Write Protect (WP#) ...................................................................................46  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . 1  
MCP Features ................................................................................................... 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .8  
MCP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 10  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 11  
CellularRAM Based Pinout . . . . . . . . . . . . . . . . . . 11  
CosmoRAM Based Pinout ................................................................................ 12  
Type 4 - based Pinout .........................................................................................13  
MCP Look-ahead Connection Diagram ....................................................... 14  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . 15  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 16  
Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . 17  
256Mb WS256N Flash + 64Mb pSRAM .........................................................17  
256Mb - WS256N Flash + 128 pSRAM ..........................................................18  
2x 256Mb—WS512N Flash + 64Mb pSRAM ................................................19  
2x256Mb—WS256N Flash + 128Mb pSRAM .............................................20  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 21  
FEA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 mm MCP  
Compatible Package ........................................................................................... 21  
TSD084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 mm MCP  
Compatible Package .......................................................................................... 22  
TLA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 11.6x8.0x1.2 mm  
MCP Compatible Package ...............................................................................23  
S29WSxxxN MirrorBit™ Flash Family  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . 24  
Architectural Advantages ........................................................................... 24  
Performance Characteristics ..................................................................... 24  
Hardware Features ...................................................................................... 24  
Security Features .......................................................................................... 24  
Software Features ......................................................................................... 25  
Additional Features ...................................................................................... 25  
Low V Write Inhibit .................................................................................47  
CC  
Write Pulse “Glitch” Protection ...............................................................47  
Logical Inhibit ...................................................................................................47  
Power-Up Write Inhibit ...............................................................................47  
Standby Mode ......................................................................................................47  
Automatic Sleep Mode .....................................................................................47  
RESET#: Hardware Reset Input .....................................................................47  
Output Disable Mode .......................................................................................48  
SecSi™ (Secured Silicon) Sector Flash  
Memory Region . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Factory Locked: Factor SecSi Sector Programmed and Protected At  
the Factory .......................................................................................................49  
Table 13. SecSiTM Sector Addresses ...................................... 49  
Customer SecSi Sector .................................................................................49  
Common Flash Memory Interface (CFI) . . . . . . 49  
Table 14. CFI Query Identification String .............................. 51  
Table 15. System Interface String ........................................ 51  
Table 17. Primary Vendor-Specific Extended Query ................ 52  
Table 18. WS256N Sector & Memory Address Map ................. 54  
Table 19. WS128N Sector & Memory Address Map ................. 62  
Table 20. WS064N Sector & Memory Address Map ................. 66  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .68  
Reading Array Data ...........................................................................................68  
Set Configuration Register Command Sequence .....................................68  
Read Configuration Register Command Sequence ..................................69  
Figure 1. Synchronous/Asynchronous State Diagram.............. 69  
Read Mode Setting .........................................................................................69  
Programmable Wait State Configuration ...............................................69  
Table 21. Programmable Wait State Settings ......................... 70  
Programmable Wait State ...........................................................................70  
General Description 26  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . 29  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Block Diagram of  
Simultaneous Operation Circuit . . . . . . . . . . . . . .30  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . 31  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 33  
Table 1. Device Bus Operations ........................................... 33  
VersatileIO™ (V ) Control .............................................................................33  
IO  
Requirements for Asynchronous (Non-Burst)  
Read Operation ...................................................................................................33  
Requirements for Synchronous (Burst) Read Operation .......................34  
Table 2. Address Dependent Additional Latency ..................... 34  
Table 3. Address Latency for 5 Wait States (  
Table 4. Address Latency for 4 Wait States (  
Table 5. Address Latency for 3 Wait States (  
68 MHz) ........... 35  
54 MHz) ........... 35  
40 MHz) ........... 35  
Table 6. Address/Boundary Crossing Latency for 5 Wait States  
(< 68 MHz) ...................................................................... 35  
Table 7. Address/Boundary Crossing Latency for 4 Wait States  
(< 54 MHz) ...................................................................... 35  
Table 8. Address/Boundary Crossing Latency for 3 Wait States  
(< 40 MHz) ...................................................................... 36  
Continuous Burst ............................................................................................36  
October 26, 2004 S71WS512/256Nx0_00A0  
S71WS512Nx0/S71WS256Nx0  
2
A d v a n c e I n f o r m a t i o n  
Figure 12. CLK Characterization........................................... 98  
Synchronous/Burst Read ..................................................................................99  
Timing Diagrams ...............................................................................................100  
Figure 13. CLK Synchronous Burst Mode Read..................... 100  
Figure 14. 8-word Linear Burst with Wrap Around................ 101  
Figure 15. 8-word Linear Burst without Wrap Around ........... 101  
Figure 16. Linear Burst with RDY Set One Cycle Before Data . 102  
Boundary Crossing Latency ........................................................................ 70  
Table 22. Wait States for Handshaking ................................. 70  
Handshaking .................................................................................................... 70  
Burst Length Configuration ........................................................................ 70  
Table 23. Burst Length Configuration ................................... 71  
Burst Wrap Around ........................................................................................71  
RDY Configuration ..........................................................................................71  
RDY Polarity .....................................................................................................71  
Configuration Register ......................................................................................72  
Table 24. Configuration Register ......................................... 72  
Reset Command ..................................................................................................72  
Autoselect Command Sequence ....................................................................73  
Table 25. Autoselect Addresses ........................................... 74  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence .................74  
Word Program Command Sequence ...........................................................74  
Figure 2. Word Program Operation ....................................... 75  
Write Buffer Programming Command Sequence .....................................75  
Table 26. Write Buffer Command Sequence .......................... 76  
Figure 3. Write Buffer Programming Operation....................... 77  
Unlock Bypass Command Sequence ........................................................ 78  
Chip Erase Command Sequence ................................................................... 78  
Sector Erase Command Sequence ................................................................ 78  
Figure 4. Erase Operation.................................................... 79  
Erase Suspend/Erase Resume Commands ..................................................80  
Program Suspend/Program Resume Commands .....................................80  
Lock Register Command Set Definitions ....................................................81  
Password Protection Command Set Definitions ...................................... 81  
Non-Volatile Sector Protection Command Set Definitions ................. 82  
Figure 5. PPB Program/Erase Algorithm................................. 84  
Global Volatile Sector Protection Freeze Command Set ..................... 85  
Volatile Sector Protection Command Set .................................................. 85  
SecSi Sector Entry Command ........................................................................86  
AC Characteristics—Asynchronous . . . . . . . . . . 103  
Asynchronous Mode Read .............................................................................103  
Timing Diagrams ................................................................................................103  
Figure 17. Asynchronous Mode Read with Latched Addresses 103  
Figure 18. Asynchronous Mode Read.................................. 104  
Hardware Reset (RESET#) .............................................................................104  
Figure 19. Reset Timings.................................................. 104  
Erase/Program Timing ......................................................................................105  
Figure 20. Asynchronous Program Operation Timings: WE#  
Latched Addresses........................................................... 106  
Figure 21. Synchronous Program Operation Timings:  
CLK Latched Addresses .................................................... 107  
Figure 22. Accelerated Unlock Bypass Programming Timing... 108  
Figure 23. Data# Polling Timings  
(During Embedded Algorithm)........................................... 108  
Figure 24. Toggle Bit Timings  
(During Embedded Algorithm)........................................... 109  
Figure 25. Synchronous Data Polling Timings/  
Toggle Bit Timings........................................................... 109  
Figure 26. DQ2 vs. DQ6 ................................................... 110  
Figure 27. Latency with Boundary Crossing when  
Frequency > 66 MHz........................................................ 110  
Figure 28. Latency with Boundary Crossing into Program/  
Erase Bank..................................................................... 111  
Figure 29. Example of Wait States Insertion........................ 112  
Figure 30. Back-to-Back Read/Write Cycle Timings .............. 113  
Erase and Programming Performance . . . . . . . . 114  
Command Definition Summary ..................................................................... 87  
Table 27. Memory Array Commands ................................... 87  
Table 28. Sector Protection Commands ................................ 88  
CellularRAM  
Write Operation Status . . . . . . . . . . . . . . . . . . . . .89  
Figure 6. Polling Flow Chart ................................................. 89  
DQ7: Data# Polling ...........................................................................................90  
DQ6: Toggle Bit I ...............................................................................................90  
DQ2: Toggle Bit II ............................................................................................... 91  
Table 29. DQ6 and DQ2 Indications ..................................... 91  
Reading Toggle Bits DQ6/DQ2 ..................................................................... 92  
DQ5: Exceeded Timing Limits ....................................................................... 92  
DQ3: Sector Erase Start Timeout State Indicator ................................... 92  
DQ1: Write to Buffer Abort ............................................................................93  
Table 30. Write Operation Status ......................................... 93  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . .94  
Figure 7. Maximum Negative Overshoot Waveform................. 94  
Figure 8. Maximum Positive Overshoot Waveform .................. 94  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 94  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .95  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
General Description . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 31. Functional Block Diagram .................................. 117  
Table 32. Signal Descriptions ............................................ 118  
Table 33. Bus Operations—Asynchronous Mode ................... 119  
Table 34. Bus Operations—Burst Mode ............................... 120  
Functional Description . . . . . . . . . . . . . . . . . . . . 120  
Power-Up Initialization ....................................................................................120  
Figure 32. Power-Up Initialization Timing............................ 121  
Bus Operating Modes . . . . . . . . . . . . . . . . . . . . . . 121  
Asynchronous Mode .........................................................................................121  
Figure 33. READ Operation (ADV# LOW) ............................ 121  
Figure 34. WRITE Operation (ADV# LOW)........................... 122  
Page Mode READ Operation ........................................................................122  
Figure 35. Page Mode READ Operation (ADV# LOW)............ 123  
Burst Mode Operation ....................................................................................123  
Figure 36. Burst Mode READ (4-word burst)........................ 124  
Figure 37. Burst Mode WRITE (4-word burst) ...................... 124  
Mixed-Mode Operation ...................................................................................125  
WAIT Operation ...............................................................................................125  
Figure 38. Wired or WAIT Configuration.............................. 125  
LB#/UB# Operation .........................................................................................126  
Figure 39. Refresh Collision During READ Operation............. 126  
Figure 40. Refresh Collision During WRITE Operation............ 127  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Figure 9. Test Setup ........................................................... 96  
Table 31. Test Specifications ............................................... 96  
Key to Switching Waveforms . . . . . . . . . . . . . . . 96  
Switching Waveforms . . . . . . . . . . . . . . . . . . . . . 96  
Figure 10. Input Waveforms and Measurement Levels............. 96  
VCC Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 11. VCC Power-up Diagram ........................................ 97  
AC Characteristics—Synchronous . . . . . . . . . . . 98  
CLK Characterization .......................................................................................98  
Low-Power Operation . . . . . . . . . . . . . . . . . . . . . 127  
Standby Mode Operation ................................................................................127  
3
S71WS512Nx0/S71WS256Nx0  
S71WS512/256Nx0_00A0 October 26, 2004  
A d v a n c e I n f o r m a t i o n  
Operation ....................................................................... 150  
Figure 53. Single-Access Burst READ  
Operation—Variable Latency ............................................. 152  
Table 56. Burst READ Timing Parameters—Single Access, Variable  
Latency .......................................................................... 152  
Figure 54. Four-word Burst READ  
Temperature Compensated Refresh .......................................................... 127  
Partial Array Refresh .......................................................................................128  
Deep Power-Down Operation .....................................................................128  
Configuration Registers . . . . . . . . . . . . . . . . . . . 128  
Access Using CRE .............................................................................................128  
Figure 41. Configuration Register WRITE, Asynchronous Mode  
Followed by READ ............................................................ 129  
Figure 42. Configuration Register WRITE, Synchronous Mode  
Followed by READ0........................................................... 130  
Bus Configuration Register ............................................................................130  
Table 35. Bus Configuration Register Definition ....................131  
Table 36. Sequence and Burst Length .................................132  
Burst Length (BCR[2:0]): Default = Continuous Burst ..................... 132  
Burst Wrap (BCR[3]): Default = No Wrap ......................................... 132  
Output Impedance (BCR[5:4]): Default = Outputs Use Full Drive  
Strength .............................................................................................................133  
Table 37. Output Impedance .............................................133  
WAIT Configuration (BCR[8]): Default = WAIT Transitions One  
Clock Before Data Valid/Invalid ................................................................133  
WAIT Polarity (BCR[10]): Default = WAIT Active HIGH ................133  
Figure 43. WAIT Configuration (BCR[8] = 0)........................ 133  
Figure 44. WAIT Configuration (BCR[8] = 1)........................ 134  
Figure 45. WAIT Configuration During Burst Operation.......... 134  
Latency Counter (BCR[13:11]): Default = Three-Clock Latency ..... 134  
Table 38. Variable Latency Configuration Codes ...................134  
Figure 46. Latency Counter (Variable Initial Latency, No Refresh  
Collision)......................................................................... 135  
Operating Mode (BCR[15]): Default = Asynchronous Operation ..135  
Refresh Configuration Register .....................................................................135  
Table 39. Refresh Configuration Register Mapping ................136  
Partial Array Refresh (RCR[2:0]): Default = Full Array Refresh .... 136  
Table 40. 128Mb Address Patterns for PAR (RCR[4] = 1) .......136  
Table 41. 64Mb Address Patterns for PAR (RCR[4] = 1) .........137  
Table 42. 32Mb Address Patterns for PAR (RCR[4] = 1) .........137  
Deep Power-Down (RCR[4]): Default = DPD Disabled ..................137  
Temperature Compensated Refresh (RCR[6:5]): Default = +85ºC  
Operation .........................................................................................................137  
Page Mode Operation (RCR[7]): Default = Disabled .........................137  
Operation—Variable Latency ............................................. 154  
Table 57. Burst READ Timing Parameters—4-word Burst ....... 155  
Figure 55. Four-word Burst READ Operation (with LB#/UB#) 156  
Table 58. Burst READ Timing Parameters—4-word Burst with LB#/  
UB# ............................................................................... 157  
Figure 56. READ Burst Suspend......................................... 158  
Table 59. Burst READ Timing Parameters—Burst Suspend ..... 158  
Figure 57. Continuous Burst READ Showing an Output Delay with  
BCR[8] = 0 for End-of-Row Condition................................. 159  
Table 60. Burst READ Timing Parameters—BCR[8] = 0 ......... 159  
Figure 58. CE#-Controlled Asynchronous WRITE.................. 160  
Table 61. Asynchronous WRITE Timing Parameters—CE#-  
Controlled ....................................................................... 160  
Figure 59. LB#/UB#-Controlled Asynchronous WRITE .......... 162  
Table 62. Asynchronous WRITE Timing Parameters—LB#/UB#-  
Controlled ....................................................................... 162  
Figure 60. WE#-Controlled Asynchronous WRITE................. 164  
Table 63. Asynchronous WRITE Timing Parameters—WE#-  
Controlled ....................................................................... 164  
Figure 61. Asynchronous WRITE Using ADV# ...................... 166  
Table 64. Asynchronous WRITE Timing  
Parameters Using ADV# ................................................... 167  
Figure 62. Burst WRITE Operation ..................................... 168  
Table 65. Burst WRITE Timing Parameters .......................... 169  
Figure 63. Continuous Burst WRITE Showing an Output Delay with  
BCR[8] = 0 for End-of-Row Condition................................. 170  
Table 66. Burst WRITE Timing Parameters—BCR[8] = 0 ....... 170  
Figure 64. Burst WRITE Followed by Burst READ.................. 171  
Table 67. WRITE Timing Parameters—Burst WRITE Followed by  
Burst READ ..................................................................... 171  
Table 68. READ Timing Parameters—Burst WRITE Followed by  
Burst READ ..................................................................... 171  
Figure 65. Asynchronous WRITE Followed by Burst READ...... 172  
Table 69. WRITE Timing Parameters—Asynchronous WRITE  
Followed by Burst READ ................................................... 173  
Table 70. READ Timing Parameters—Asynchronous WRITE  
Followed by Burst READ ................................................... 173  
Figure 66. Asynchronous WRITE (ADV# LOW) Followed By Burst  
READ............................................................................. 174  
Table 71. Asynchronous WRITE Timing  
Parameters—ADV# LOW .................................................. 174  
Table 72. Burst READ Timing Parameters ............................ 175  
Figure 67. Burst READ Followed by Asynchronous WRITE (WE#-  
Controlled) ..................................................................... 176  
Table 73. Burst READ Timing Parameters ............................ 177  
Table 74. Asynchronous WRITE Timing Parameters—WE#  
Controlled ....................................................................... 177  
Figure 68. Burst READ Followed by Asynchronous WRITE Using  
ADV#............................................................................. 178  
Table 75. Burst READ Timing Parameters ............................ 179  
Table 76. Asynchronous WRITE Timing Parameters  
Using ADV# .................................................................... 179  
Figure 69. Asynchronous WRITE Followed by Asynchronous READ—  
ADV# LOW..................................................................... 180  
Table 77. WRITE Timing Parameters—ADV# LOW ................ 180  
Table 78. READ Timing Parameters—ADV# LOW .................. 181  
Figure 70. Asynchronous WRITE Followed by  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 138  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 139  
Table 43. Electrical Characteristics and Operating Conditions .139  
Table 44. Temperature Compensated Refresh Specifications and  
Conditions .......................................................................140  
Table 45. Partial Array Refresh Specifications and Conditions .140  
Table 46. Deep Power-Down Specifications ..........................140  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 47. AC Input/Output Reference Waveform................. 141  
Figure 48. Output Load Circuit ........................................... 141  
Table 47. Output Load Circuit ............................................141  
Table 48. Asynchronous READ Cycle Timing Requirements .....142  
Table 49. Burst READ Cycle Timing Requirements .................143  
Table 50. Asynchronous WRITE Cycle Timing Requirements ...144  
Table 51. Burst WRITE Cycle Timing Requirements ...............144  
Timing Diagrams ................................................................................................ 145  
Figure 49. Initialization Period............................................ 145  
Table 52. Initialization Timing Parameters ...........................145  
Figure 50. Asynchronous READ .......................................... 146  
Table 53. Asynchronous READ Timing Parameters ................146  
Figure 51. Asynchronous READ Using ADV# ........................ 148  
Table 54. Asynchronous READ Timing  
Parameters Using ADV# ....................................................148  
Figure 52. Page Mode READ............................................... 150  
Table 55. Asynchronous READ Timing Parameters—Page Mode  
Asynchronous READ......................................................... 182  
Table 79. WRITE Timing Parameters—Asynchronous WRITE  
Followed by Asynchronous READ ....................................... 182  
October 26, 2004 S71WS512/256Nx0_00A0  
S71WS512Nx0/S71WS256Nx0  
4
A d v a n c e I n f o r m a t i o n  
Table 80. READ Timing Parameters—Asynchronous WRITE  
Burst Type ...........................................................................................................199  
Table 90. Burst Sequence ................................................. 199  
Low Power Features . . . . . . . . . . . . . . . . . . . . . 200  
Internal TCSR ................................................................................................... 200  
Figure 83. PAR Mode Execution and Exit............................. 200  
Table 91. PAR Mode Characteristics .................................... 200  
Driver Strength Optimization ..................................................................... 200  
Partial Array Refresh (PAR) mode ............................................................. 200  
Absolute Maximum Ratings . . . . . . . . . . . . . . . 201  
DC Recommended Operating Conditions . . . . 201  
Capacitance (Ta = 25°C, f = 1 MHz) . . . . . . . . . 201  
DC and Operating Characteristics . . . . . . . . . . 202  
Common .............................................................................................................202  
AC Operating Conditions . . . . . . . . . . . . . . . . . 203  
Test Conditions (Test Load and Test Input/Output Reference) .......203  
Figure 84. Output Load .................................................... 203  
Asynchronous AC Characteristics ..............................................................204  
Followed by Asynchronous READ ........................................183  
How Extended Timings Impact CellularRAM™  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Introduction ........................................................................................................183  
Asynchronous WRITE Operation ...............................................................184  
Figure 71. Extended Timing for tCEM.............................................. 184  
Figure 72. Extended Timing for tTM................................................ 184  
Table 81. Extended Cycle Impact on READ and WRITE Cycles 184  
Extended WRITE Timing— Asynchronous WRITE Operation .....184  
Figure 73. Extended WRITE Operation ................................ 185  
Page Mode READ Operation ........................................................................185  
Burst-Mode Operation ....................................................................................185  
Summary ..............................................................................................................185  
1.8V pSRAM Type 4  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . 187  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 188  
Power Up ............................................................................................................188  
Figure 74. Power Up Timing............................................... 188  
Standby Mode .....................................................................................................188  
Figure 75. Standby Mode State Machines ............................ 188  
Functional Description . . . . . . . . . . . . . . . . . . . . 189  
Table 82. Asynchronous 4 Page Read & Asynchronous Write Mode  
(A15/A14=0/0) ................................................................189  
Table 83. Synchronous Burst Read & Asynchronous Write Mode  
(A15/A14=0/1) ................................................................190  
Table 84. Synchronous Burst Read & Synchronous Burst Write  
Mode(A15/A14=1/0) ........................................................191  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Asynchronous Read Timing Waveform ....................................................205  
Figure 85. Timing Waveform Of Asynchronous Read Cycle .... 205  
Table 92. Asynchronous Read AC Characteristics ................. 205  
Page Read .......................................................................................................206  
Figure 86. Timing Waveform Of Page Read Cycle................. 206  
Table 93. Asynchronous Page Read AC Characteristics .......... 206  
Asynchronous Write Timing Waveform ..................................................207  
Figure 87. Timing Waveform Of Write Cycle........................ 207  
Table 94. Asynchronous Write AC Characteristics ................. 207  
Write Cycle 2 ............................................................................................... 208  
Figure 88. Timing Waveform of Write Cycle(2) .................... 208  
Table 95. Asynchronous Write AC Characteristics (UB# & LB#  
Controlled) ..................................................................... 208  
Write Cycle (Address Latch Type) ........................................................209  
Figure 89. Timing Waveform Of Write Cycle  
Mode Register Setting Operation . . . . . . . . . . . . 191  
Mode Register Set (MRS) ...............................................................................192  
Table 85. Mode Register Setting According to  
(Address Latch Type)....................................................... 209  
Table 96. Asynchronous Write in Synchronous Mode AC  
Field of Function ...............................................................192  
Table 86. Mode Register Set ..............................................193  
MRS Pin Control Type Mode Register Setting Timing .......................... 193  
Figure 76. Mode Register Setting Timing (OE# = VIH)........... 194  
Table 87. MRS AC Characteristics .......................................194  
Characteristics ................................................................ 209  
Asynchronous Write Timing Waveform in Synchronous Mode ........210  
Write Cycle (Low ADV# Type) ...............................................................210  
Figure 90. Timing Waveform Of Write Cycle (Low ADV# Type) 210  
Table 97. Asynchronous Write in Synchronous Mode AC  
Characteristics ................................................................ 210  
Write Cycle (Low ADV# Type) ................................................................211  
Figure 91. Timing Waveform Of Write Cycle (Low ADV# Type) 211  
Table 98. Asynchronous Write in Synchronous Mode AC  
Characteristics ................................................................ 211  
Multiple Write Cycle (Low ADV# Type) ..............................................212  
Figure 92. Timing Waveform Of Multiple Write Cycle (Low ADV#  
Type)............................................................................. 212  
Table 99. Asynchronous Write in Synchronous Mode AC  
Asynchronous Operation . . . . . . . . . . . . . . . . . . 195  
Asynchronous 4 Page Read Operation ......................................................195  
Asynchronous Write Operation .................................................................. 195  
Asynchronous Write Operation in Synchronous Mode .......................195  
Figure 77. Asynchronous 4-Page Read ................................ 195  
Figure 78. Asynchronous Write........................................... 195  
Synchronous Burst Operation . . . . . . . . . . . . . . 196  
Synchronous Burst Read Operation ...........................................................196  
Synchronous Burst Write Operation .........................................................196  
Figure 79. Synchronous Burst Read.................................... 196  
Figure 80. Synchronous Burst Write.................................... 197  
Characteristics ................................................................ 213  
AC Operating Conditions . . . . . . . . . . . . . . . . . . 214  
Test Conditions (Test Load and Test Input/Output Reference) ........214  
Figure 93. AC Output Load Circuit...................................... 214  
Table 100. Synchronous AC Characteristics ........................ 215  
Synchronous Burst Operation Terminology . . 197  
Clock (CLK) ........................................................................................................197  
Latency Count ....................................................................................................197  
Table 88. Latency Count Support ........................................197  
Table 89. Number of CLocks for 1st Data .............................197  
Figure 81. Latency Configuration (Read) ............................. 198  
Burst Length .......................................................................................................198  
Synchronous Burst Operation Timing  
Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 94. Timing Waveform Of Basic Burst Operation.......... 216  
Table 101. Burst Operation AC Characteristics ..................... 216  
Synchronous Burst Read Timing Waveform . . . 217  
Burst Stop ............................................................................................................198  
Read Timings .......................................................................................................217  
Figure 95. Timing Waveform of Burst Read Cycle (1)............ 217  
Table 102. Burst Read AC Characteristics ............................ 218  
Synchronous Burst Operation Terminology . . 198  
Wait Control (WAIT#) ..................................................................................198  
Figure 82. WAIT# and Read/Write Latency Control............... 199  
5
S71WS512Nx0/S71WS256Nx0  
S71WS512/256Nx0_00A0 October 26, 2004  
A d v a n c e I n f o r m a t i o n  
Figure 96. Timing Waveform of Burst Read Cycle (2) ............ 218  
Figure 111. Synchronous Operation Diagram....................... 239  
Table 103. Burst Read AC Characteristics ............................219  
Figure 97. Timing Waveform of Burst Read Cycle (3) ............ 219  
Table 104. Burst Read AC Characteristics ............................220  
Write Timings ....................................................................................................221  
Figure 98. Timing Waveform of Burst Write Cycle (1)............ 221  
Table 105. Burst Write AC Characteristics ............................222  
Figure 99. Timing Waveform of Burst Write Cycle (2)............ 223  
Table 106. Burst Write AC Characteristics ............................223  
Functional Description . . . . . . . . . . . . . . . . . . . . 239  
Power-up .............................................................................................................239  
Configuration Register ....................................................................................239  
CR Set Sequence ..............................................................................................239  
Address Key ........................................................................................................241  
Power Down ......................................................................................................242  
Burst Read/Write Operation ........................................................................242  
Figure 112. Burst Read Operation...................................... 243  
Figure 113. Burst Write Operation...................................... 243  
CLK Input Function .........................................................................................243  
ADV# Input Function ......................................................................................244  
WAIT# Output Function ...............................................................................244  
Latency .................................................................................................................245  
Figure 114. Read Latency Diagram .................................... 245  
Address Latch by ADV# ................................................................................246  
Burst Length .......................................................................................................246  
Single Write ........................................................................................................246  
Write Control ...................................................................................................247  
Figure 115. Write Controls................................................ 247  
Burst Read Suspend .........................................................................................247  
Figure 116. Burst Read Suspend Diagram........................... 248  
Burst Write Suspend .......................................................................................248  
Figure 117. Burst Write Suspend Diagram .......................... 248  
Burst Read Termination .................................................................................248  
Figure 118. Burst Read Termination Diagram...................... 249  
Burst Write Termination ...............................................................................249  
Figure 119. Burst Write Termination Diagram...................... 249  
Absolute Maximum Ratings . . . . . . . . . . . . . . . 250  
Recommended Operating Conditions (See  
Warning Below) . . . . . . . . . . . . . . . . . . . . . . . . . 250  
Package Pin Capacitance . . . . . . . . . . . . . . . . . . 250  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 251  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 252  
Read Operation ................................................................................................252  
Write Operation ..............................................................................................254  
Synchronous Operation - Clock Input (Burst Mode) ...........................255  
Synchronous Operation - Address Latch (Burst Mode) ......................255  
Synchronous Read Operation (Burst Mode) ...........................................256  
Synchronous Write Operation (Burst Mode) .........................................257  
Power Down Parameters ..............................................................................258  
Other Timing Parameters ..............................................................................258  
AC Test Conditions ........................................................................................258  
AC Measurement Output Load Circuit ....................................................259  
Figure 120. Output Load Circuit......................................... 259  
Synchronous Burst Read Stop Timing  
Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 100. Timing Waveform of Burst Read Stop by CS# ..... 224  
Table 107. Burst Read Stop AC Characteristics .....................224  
Synchronous Burst Write Stop Timing  
Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Figure 101. Timing Waveform of Burst Write Stop by CS#..... 225  
Table 108. Burst Write Stop AC Characteristics ....................225  
Synchronous Burst Read Suspend Timing  
Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Figure 102. Timing Waveform of Burst Read  
Suspend Cycle (1)............................................................ 226  
Table 109. Burst Read Suspend AC Characteristics ...............226  
Transition Timing Waveform Between Read And  
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 103. Synchronous Burst Read to Asynchronous Write  
(Address Latch Type)........................................................ 227  
Table 110. Burst Read to Asynchronous Write (Address Latch Type)  
AC Characteristics ............................................................227  
Figure 104. Synchronous Burst Read to Asynchronous Write (Low  
ADV# Type) .................................................................... 228  
Table 111. Burst Read to Asynchronous Write (Low ADV# Type) AC  
Characteristics .................................................................228  
Figure 105. Asynchronous Write (Address Latch Type) to  
Synchronous Burst Read Timing......................................... 229  
Table 112. Asynchronous Write (Address Latch Type) to Burst Read  
AC Characteristics ............................................................229  
Figure 106. Asynchronous Write (Low ADV# Type) to Synchronous  
Burst Read Timing............................................................ 230  
Table 113. Asynchronous Write (Low ADV# Type) to Burst Read AC  
Characteristics .................................................................230  
Figure 107. Synchronous Burst Read to Synchronous Burst Write  
Timing............................................................................ 231  
Table 114. Asynchronous Write (Low ADV# Type) to Burst Read AC  
Characteristics .................................................................231  
Figure 108. Synchronous Burst Write to Synchronous Burst Read  
Timing............................................................................ 232  
Table 115. Asynchronous Write (Low ADV# Type) to Burst Read AC  
Characteristics .................................................................232  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Figure 121. Asynchronous Read Timing #1-1 (Basic Timing) . 260  
Figure 122. Asynchronous Read Timing #1-2 (Basic Timing) . 260  
Figure 123. Asynchronous Read Timing #2  
CosmoRAM  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Pin Description (32M) . . . . . . . . . . . . . . . . . . . . . . 235  
Functional Description . . . . . . . . . . . . . . . . . . . . 236  
Asynchronous Operation (Page Mode) .................................................... 236  
Functional Description . . . . . . . . . . . . . . . . . . . . 237  
Synchronous Operation (Burst Mode) .......................................................237  
State Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Initial/Standby State .........................................................................................238  
Figure 109. Initial Standby State Diagram........................... 238  
Asynchronous Operation State ...................................................................238  
Figure 110. Asynchronous Operation State Diagram ............. 238  
Synchronous Operation State ...................................................................... 239  
(OE# & Address Access)................................................... 261  
Figure 124. Asynchronous Read Timing #3 (LB# / UB# Byte  
Access) .......................................................................... 261  
Figure 125. Asynchronous Read Timing #4 (Page Address Access  
after CE1# Control Access)............................................... 262  
Figure 126. Asynchronous Read Timing #5 (Random and Page  
Address Access) .............................................................. 262  
Figure 127. Asynchronous Write Timing #1-1 (Basic Timing). 263  
Figure 128. Asynchronous Write Timing #1-2 (Basic Timing). 263  
Figure 129. Asynchronous Write Timing #2 (WE# Control).... 264  
Figure 130. Asynchronous Write Timing #3-1 (WE# / LB# / UB#  
Byte Write Control).......................................................... 264  
Figure 131. Asynchronous Write Timing #3-2 (WE# / LB# / UB#  
October 26, 2004 S71WS512/256Nx0_00A0  
S71WS512Nx0/S71WS256Nx0  
6
A d v a n c e I n f o r m a t i o n  
Byte Write Control) .......................................................... 265  
Figure 147. Synchronous Write Timing #1  
Figure 132. Asynchronous Write Timing #3-3 (WE# / LB# / UB#  
Byte Write Control) .......................................................... 265  
Figure 133. Asynchronous Write Timing #3-4 (WE# / LB# / UB#  
Byte Write Control) .......................................................... 266  
Figure 134. Asynchronous Read / Write Timing #1-1 (CE1#  
Control).......................................................................... 266  
Figure 135. Asynchronous Read / Write Timing #1-2 (CE1# / WE#  
/ OE# Control)................................................................. 267  
Figure 136. Asynchronous Read / Write Timing #2 (OE#, WE#  
Control).......................................................................... 267  
Figure 137. Asynchronous Read / Write Timing #3 (OE,# WE#,  
LB#, UB# Control) ........................................................... 268  
Figure 138. Clock Input Timing .......................................... 268  
Figure 139. Address Latch Timing (Synchronous Mode)......... 269  
Figure 140. 32M Synchronous Read Timing #1 (OE# Control) 270  
Figure 141. 32M Synchronous Read Timing #2  
(WE# Level Control) ........................................................ 277  
Figure 148. Synchronous Write Timing #2 (WE# Single Clock Pulse  
Control) ......................................................................... 278  
Figure 149. Synchronous Write Timing #3 (ADV# Control).... 279  
Figure 150. Synchronous Write Timing #4 (WE# Level Control,  
Single Write)................................................................... 280  
Figure 151. 32M Synchronous Read to Write Timing #1(CE1#  
Control) ......................................................................... 281  
Figure 152. 32M Synchronous Read to Write Timing #2(ADV#  
Control) ......................................................................... 282  
Figure 153. 64M Synchronous Read to Write Timing #1(CE1#  
Control) ......................................................................... 283  
Figure 154. 64M Synchronous Read to Write Timing #2(ADV#  
Control) ......................................................................... 284  
Figure 155. Synchronous Write to Read Timing #1  
(CE1# Control) ............................................................... 285  
Figure 156. Synchronous Write to Read Timing #2  
(CE1# Control) ................................................................ 271  
Figure 142. 32M Synchronous Read Timing #3  
(ADV# Control)............................................................... 286  
Figure 157. Power-up Timing #1 ....................................... 287  
Figure 158. Power-up Timing #2 ...................................... 287  
Figure 159. Power Down Entry and Exit Timing.................... 287  
Figure 160. Standby Entry Timing after Read or Write.......... 288  
Figure 161. Configuration Register Set Timing #1 (Asynchronous  
Operation)...................................................................... 288  
Figure 162. Configuration Register Set Timing #2 (Synchronous  
Operation)...................................................................... 289  
(ADV# Control)................................................................ 272  
Figure 143. Synchronous Read - WAIT# Output Timing (Continuous  
Read) ............................................................................. 273  
Figure 144. 64M Synchronous Read Timing #1 (OE# Control) 274  
Figure 145. 64M Synchronous Read Timing #2  
(CE1# Control) ................................................................ 275  
Figure 146. 64M Synchronous Read Timing #3  
(ADV# Control)................................................................ 276  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . .290  
7
S71WS512Nx0/S71WS256Nx0  
S71WS512/256Nx0_00A0 October 26, 2004  
Product Selector Guide  
WS256N + 64 pSRAM  
pSRAM Flash Speed  
pSRAM  
Device-Model  
density  
MHz  
speed MHz  
DYB Bits - Power Up  
Supplier  
Package  
S71WS256NC0-AK  
0 (Protected)  
CellularRAM 2  
1(Unprotected [Default  
State])  
S71WS256NC0-AP  
S71WS256NC0-AB  
S71WS256NC0-AF  
S71WS256NC0-AU  
S71WS256NC0-AZ  
0 (Protected)  
64M  
54  
54  
CellularRAM 1  
COSMORAM 1  
TLA084  
1(Unprotected [Default  
State])  
0 (Protected)  
1(Unprotected [Default  
State])  
WS256N + 128 pSRAM  
pSRAM Flash Speed  
pSRAM  
Device-Model  
density  
MHz  
speed MHz  
DYB Bits - Power Up  
0 (Protected)  
Supplier  
Package  
S71WS256ND0-EK  
S71WS256ND0-EP  
S71WS256ND0-EU  
S71WS256ND0-EZ  
S71WS256ND0-E3  
S71WS256ND0-E7  
128M  
54  
54  
54  
54  
CellularRAM 2  
1 (Unprotected [Default state])  
0 (Protected)  
TSD084  
9x12x1.2  
128M  
128M  
54  
54  
COSMORAM 1  
1 (Unprotected [Default state])  
0 (Protected)  
Type 4  
1 (Unprotected [Default state])  
WS512N + 64 pSRAM  
pSRAM  
speed  
MHz  
pSRAM Flash Speed  
Device-Model  
density  
MHz  
DYB Bits - Power Up  
Supplier  
Package  
S71WS512NC0-AK  
0 (Protected)  
CellularRAM 2  
1(Unprotected [Default  
State])  
S71WS512NC0-AP  
S71WS512NC0-AB  
S71WS512NC0-AF  
S71WS512NC0-AU  
S71WS512NC0-AZ  
0 (Protected)  
64Mb  
54  
54  
CellularRAM 1  
COSMORAM 1  
TLA084  
1(Unprotected [Default  
State])  
0 (Protected)  
1(Unprotected [Default  
State])  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
8
WS512N + 128 pSRAM  
pSRAM  
speed  
MHz  
pSRAM Flash Speed  
Device-Model  
density  
MHz  
DYB Bits - Power Up  
Supplier  
Package  
S71WS512ND0-YK  
S71WS512ND0-YP  
S71WS512ND0-Y3  
S71WS512ND0-Y7  
0
1
0
1
CellularRAM 2  
FEA084  
9x12x1.4  
128Mb  
54  
54  
1.8V RAM  
Type 4  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
9
MCP Block Diagram  
F-VCC  
Flash-only Address  
Shared Address  
V
V
ID  
CC  
DQ15 to DQ0  
CLK  
WP#  
22  
16  
DQ15 to DQ0  
CLK  
WP#  
ACC  
ACC  
CE#  
OE#  
Flash 1  
(Note 3) F1-CE#  
OE#  
Flash 2  
(Note 4)  
WE#  
F-RST#  
AVD#  
WE#  
RESET#  
AVD#  
RDY  
RDY  
(Note 3) F2-CE#  
R-VCC  
V
SS  
22  
V
CCQ  
V
CC  
16  
I/O15 to I/O0  
CLK  
R-CE1#  
CE#  
WE#  
OE#  
pSRAM  
WAIT#  
R-UB#  
R-LB#  
UB#  
LB#  
V
SSQ  
(Note 1) R-CE2  
AVD#  
MRS  
(Note 2) R-CRE  
(Note 6) R-MRS  
Notes:  
1. R-CRE is only present in CellularRAM-compatible pSRAM.  
2. R-CE2 is only present in Cosmoram-compatible pSRAM.  
3. For 1 Flash + pSRAM, F1-CE# = CE#. For 2 Flash + pSRAM, CE# = F1-CE# and F2-CE# is the chip-enable pin for the second Flash.  
4. Only needed for S71WS512N.  
5. For the 128M pSRAM devices, there are 23 shared addresses.  
6. R-MRS is only present in the 1.8V RAM Type 4  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
10  
Connection Diagrams  
CellularRAM Based Pinout  
84-ball Fine-Pitch Ball Grid Array  
CellularRAM-based Pinout (Top View, Balls Facing Down)  
Legend  
A10  
A1  
DNU  
DNU  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
CLK  
C4  
B5  
F2-CE#  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
Shared  
AVD#  
C2  
F-WP#  
D2  
Flash Shared only  
RFU  
D9  
R-LB#  
D4  
ACC  
D5  
WE#  
D6  
A8  
A11  
D8  
D7  
1st Flash only  
2nd Flash only  
A3  
R-UB# F-RST#  
RFU  
E6  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
E4  
A18  
F4  
E5  
RDY  
F5  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F7  
RAM only  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
A23  
G6  
G3  
VSS  
DQ1  
RFU  
RFU  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
F1-CE# OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
R-CRE  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
R-CE1#  
DQ0  
F-VCC  
R-VCC  
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
K7  
K6  
RFU  
L6  
K9  
DQ14  
DQ8  
DQ2  
DQ5  
RFU  
DQ11  
RFU  
L2  
L3  
L4  
L5  
L7  
L8  
L9  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
M10  
DNU  
M1  
DNU  
1. In MCP's based on a single S29WS256N (S71WS256N), ball B5 is RFU. In MCP's based on two  
S29WS256N (S71WS512), ball B5 is F2-CE#.  
2. Addresses are shared between Flash and RAM depending on the density of the pSRAM.  
MCP  
Flash-only Addresses  
Shared Addresses  
A21-A0  
S71WS256NC0  
S71WS256ND0  
S71WS512NC0  
S71WS512ND0  
A23-A22  
A23  
A22-A0  
A23-A22  
A23  
A21-A0  
A22-A0  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
11  
CosmoRAM Based Pinout  
84-ball Fine-Pitch Ball Grid Array  
CosmoRAM-based Pinout (Top View, Balls Facing Down)  
Legend  
A10  
A1  
DNU  
DNU  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
CLK  
C4  
B5  
F2-CE#  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
Shared  
AVD#  
C2  
F-WP#  
D2  
1st Flash Only  
RFU  
D9  
R-LB#  
D4  
ACC  
D5  
WE#  
A8  
A11  
D8  
D7  
D6  
2nd Flash Only  
1st RAM Only  
A3  
R-UB# F-RST# R-CE2  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
E4  
A18  
F4  
E5  
RDY  
F5  
E6  
A20  
F6  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A9  
A13  
F8  
A21  
F9  
F7  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
A23  
G6  
G3  
VSS  
DQ1  
RFU  
RFU  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
F1-CE# OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
R-CE1#  
DQ0  
F-VCC  
R-VCC  
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
K7  
K6  
RFU  
L6  
K9  
DQ14  
DQ8  
DQ2  
DQ5  
RFU  
DQ11  
RFU  
L2  
L3  
L4  
L5  
L7  
L8  
L9  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
M10  
DNU  
M1  
DNU  
Notes:  
1. In MCP's based on a single S29WS256N (S71WS256N), ball B5 is RFU. In MCP's based on two  
S29WS256N (S71WS512), ball B5 is F2-CE#.  
2. Addresses are shared between Flash and RAM depending on the density of the pSRAM.  
MCP  
Flash-only Addresses  
Shared Addresses  
A21-A0  
S71WS256NC0  
S71WS256ND0  
S71WS512NC0  
S71WS512ND0  
A23-A22  
A23  
A22-A0  
A23-A22  
A23  
A21-A0  
A22-A0  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
12  
Type 4 - based Pinout  
84-ball Fine-Pitch Ball Grid Array  
Type 4-based Pinout (Top View, Balls Facing Down)  
A10  
A1  
DNU  
DNU  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
CLK  
C4  
B5  
F2-CE#  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
AVD#  
C2  
F-WP#  
D2  
Legend  
RFU  
D9  
R-LB#  
D4  
F-ACC  
D5  
WE#  
D6  
A8  
A11  
D8  
D7  
Shared  
A3  
R-UB# F-RST#  
RFU  
E6  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
E4  
A18  
F4  
E5  
RDY  
F5  
Flash XIP only  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F7  
RAM only  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
A23  
G6  
G3  
1st Flash  
Only  
VSS  
DQ1  
RFU  
RFU  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
F1-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
R-MRS  
2nd Flash  
Only  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
R-CE1#  
DQ0  
F-VCC  
R-VCC  
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
K7  
K6  
RFU  
L6  
K9  
RFU  
L9  
Reserved for  
Future Use  
DQ2  
DQ5  
DQ14  
DQ8  
DQ11  
RFU  
L3  
L4  
L5  
L7  
L8  
L2  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
M10  
DNU  
M1  
DNU  
Notes:  
1. In MCP's based on a single S29WS256N (S71WS256N), ball B5 is RFU. In MCP's based on two  
S29WS256N (S71WS512), ball B5 is or F2-CE#.  
2. Addresses are shared between Flash and RAM depending on the density of the pSRAM.  
MCP  
Flash-only Addresses  
Shared Addresses  
A21-A0  
S71WS256NC0  
S71WS256ND0  
S71WS512NC0  
S71WS512ND0  
A23-A22  
A23  
A22-A0  
A23-A22  
A23  
A21-A0  
A22-A0  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
13  
MCP Look-ahead Connection Diagram  
96-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
Legend:  
A2  
A10  
A9  
A1  
DNU  
DNU  
DNU  
DNU  
(Do Not Use)  
DNU  
B1  
B9  
B2  
B10  
DNU  
DNU  
DNU  
DNU  
Code Flash Only  
pSRAM Only  
C4  
C5  
C6  
C7  
C8  
C9  
C2  
C3  
AVD#  
VSS  
CLK  
F2-CE#  
F-VCC  
F-CLK#  
R-OE# F2-OE#  
D4  
D2  
D3  
A7  
D5  
D6  
D7  
A8  
D8  
D9  
D-DM0/  
D1, D#  
See Table  
See Table WE#  
E5 E6  
F-RST# R1-CE2  
A11  
F3-CE#  
E2  
A3  
E3  
A6  
E4  
E7  
E8  
E9  
Flash/xRAM  
Shared  
D-DM1/  
D11, D#  
A19  
A12  
A15  
F2  
A2  
F3  
A5  
F4  
F5  
F6  
F7  
A9  
F8  
F9  
A18 See Table  
A20  
A13  
A21  
MirrorBit Data  
Only  
G6  
G8  
G2  
A1  
G4  
G7  
G9  
G3  
A4  
G5  
A17  
R2-CE1  
A23  
A10  
A14  
A22  
xRAM Shared  
H2  
A0  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
VSS  
DQ1  
R2-VCC R2-CE2  
DQ6  
A24  
A16  
Flash/Data  
Shared  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
R-CRE  
F1-CE#  
OE#  
K2  
K5  
K3  
K4  
K6  
K7  
K8  
K9  
DQ12  
VSS  
R1-CE1#  
DQ0  
DQ10  
F-VCC  
R1-VCC  
DQ7  
L2  
L9  
L4  
L5  
L6  
L7  
L8  
L3  
DQ2  
DQ11  
A25  
DQ5  
DQ14  
F-WP#  
R-VCC  
DQ8  
DNU  
M5  
M2  
M3  
M4  
M6  
M7  
M8  
M9  
A27  
A26  
VSS  
F-VCC  
F4-CE# R-VCCQ F-VCCQ  
DNU  
N1  
N2  
N10  
N9  
DNU  
DNU  
DNU  
DNU  
P1  
P2  
P10  
P9  
DNU  
DNU  
DNU  
DNU  
Table  
BALL  
1.8V  
Vcc  
3.0V  
Vcc  
FASL Standard  
MCP Packages  
D2  
NC  
F-WP#  
ACC  
7.0 x 9.0mm  
8.0 x 11.6mm  
9.0 x 12.0mm  
11.0 x 13.0mm  
WP#/  
ACC  
D5  
F5  
RY/  
BY#  
F-RDY/  
R-WAIT#  
Notes:  
1. In a 3.0V system, the GL device used as Data has to have WP tied to VCC.  
2. F1 and F2 denote XIP/Flash, F3 and F4 denote Data/Companion Flash.  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
14  
Input/Output Descriptions  
A23-A0  
DQ15-DQ0  
OE#  
=
=
=
Address inputs  
Data input/output  
Output Enable input. Asynchronous relative to CLK  
for the Burst mode.  
WE#  
=
=
=
=
Write Enable input.  
Ground  
V
SS  
NC  
RDY  
No Connect; not connected internally  
Ready output. Indicates the status of the Burst read.  
The WAIT# pin of the pSRAM is tied to RDY.  
CLK  
=
Clock input. In burst mode, after the initial word is  
output, subsequent active edges of CLK increment  
the internal address counter. Should be at V or V  
IL  
IH  
while in asynchronous mode  
AVD#  
=
Address Valid input. Indicates to device that the  
valid address is present on the address inputs.  
Low = for asynchronous mode, indicates valid  
address; for burst mode, causes starting address to  
be latched.  
High = device ignores address inputs  
F-RST#  
F-WP#  
=
=
Hardware reset input. Low = device resets and  
returns to reading array data  
Hardware write protect input. At V , disables  
IL  
program and erase functions in the four outermost  
sectors. Should be at V for all other conditions.  
IH  
F-ACC  
=
Accelerated input. At V , accelerates  
HH  
programming; automatically places device in unlock  
bypass mode. At V , disables all program and erase  
IL  
functions. Should be at V for all other conditions.  
IH  
R-CE1#  
R-CE2  
F1-CE#  
=
=
=
Chip-enable input for pSRAM.  
Chip-enable 2 for CosmoRAM only.  
Chip-enable input for Flash 1. Asynchronous relative  
to CLK for Burst Mode.  
F2-CE#  
=
Chip-enable input for Flash 2. Asynchronous relative  
to CLK for Burst Mode. This applies to the 512Mb  
MCP only.  
R-MRS  
R-CRE  
=
=
Mode register select for Type 4.  
Control Register Enable (pSRAM). For CellularRAM  
only.  
F-VCC  
R-VCC  
R-UB#  
R-LB#  
DNU  
=
=
=
=
=
Flash 1.8 Volt-only single power supply.  
pSRAM Power Supply.  
Upper Byte Control (pSRAM).  
Lower Byte Control (pSRAM).  
Do Not Use.  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
15  
Ordering Information  
The order number (Valid Combination) is formed by the following:  
S71WS 256  
N
C
0
BA  
W
A
K
SUPPLIER, DYB, SPEED COMBINATION  
K = 2  
P = 2  
B = 1  
F = 1  
U = 1  
Z = 1  
3
=
=
=
=
=
=
=
=
CellularRAM 2, 0, 54MHz  
CellularRAM 2, 1, 54MHz  
CellularRAM 1, 0, 54MHz/RAM Type 4,0, 54MHz  
CellularRAM 1, 1, 54MHz/RAM Type 4,1, 54MHz  
COSMORAM 1, 0, 54MHz  
COSMORAM 1, 1, 54MHz  
RAM Type 4, 0, 54MHz  
RAM Type 4, 1, 54MHz  
7
PACKAGE MODIFIER  
A
Y
E
=
=
=
1.2mm, 8 x 11.6, 84-ball FBGA  
1.4mm, 9 x 12, 84-ball FBGA  
1.2mm, 9 x 12, 84-ball FBGA  
TEMPERATURE RANGE  
W
I
=
=
Wireless (-25  
°
C to +85  
°
C)  
Industrial (–40  
°
C to +85  
°C)  
PACKAGE TYPE  
BA  
=
Very Thin Fine-Pitch BGA  
Lead (Pb)-free Compliant Package  
Very Thin Fine-Pitch BGA  
Lead (Pb)-free Package  
BF  
=
CHIP CONTENTS—2  
No second content  
CHIP CONTENTS—1  
C = 64Mb  
D = 128Mb  
PROCESS TECHNOLOGY  
N
=
110nm MirrorBit™ Technology  
FLASH DENSITY  
512  
256  
=
=
512Mb (2x256Mb)  
256Mb  
DEVICE FAMILY  
S71WS= Multi-Chip Product  
1.8 Volt-only Simultaneous Read/Write Burst Mode  
Flash Memory + xRAM  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
16  
Valid Combinations  
256Mb WS256N Flash + 64Mb pSRAM  
Temperature  
Range °C  
Burst  
Speed  
Material  
Set  
Order Number  
Package Marking  
DYB Power-up State  
Supplier  
S71WS256NC0BAWAK  
71WS256NC0BAWAK  
0(Protected)  
CellularRAM 2  
1(Unprotected[Default  
State])  
S71WS256NC0BAWAP  
S71WS256NC0BAWAB  
S71WS256NC0BAWAF  
S71WS256NC0BAWAU  
S71WS256NC0BAWAZ  
S71WS256NC0BAIAK  
S71WS256NC0BAIAP  
S71WS256NC0BAIAB  
S71WS256NC0BAIAF  
S71WS256NC0BAIAU  
S71WS256NC0BAIAZ  
S71WS256NC0BFWAK  
S71WS256NC0BFWAP  
S71WS256NC0BFWAB  
S71WS256NC0BFWAF  
S71WS256NC0BFWAU  
S71WS256NC0BFWAZ  
S71WS256NC0BFIAK  
S71WS256NC0BFIAP  
S71WS256NC0BFIAB  
S71WS256NC0BFIAF  
S71WS256NC0BFIAU  
S71WS256NC0BFIAZ  
71WS256NC0BAWAP  
71WS256NC0BAWAB  
71WS256NC0BAWAF  
71WS256NC0BAWAU  
71WS256NC0BAWAZ  
71WS256NC0BAIAK  
71WS256NC0BAIAP  
71WS256NC0BAIAB  
71WS256NC0BAIAF  
71WS256NC0BAIAU  
71WS256NC0BAIAZ  
71WS256NC0BFWAK  
71WS256NC0BFWAP  
71WS256NC0BFWAB  
71WS256NC0BFWAF  
71WS256NC0BFWAU  
71WS256NC0BFWAZ  
71WS256NC0BFIAK  
71WS256NC0BFIAP  
71WS256NC0BFIAB  
71WS256NC0BFIAF  
71WS256NC0BFIAU  
71WS256NC0BFIAZ  
0(Protected)  
-25° to +85°C  
CellularRAM 1  
CosmoRAM 1  
CellularRAM 2  
CellularRAM 1  
CosmoRAM 1  
CellularRAM 2  
CellularRAM 1  
CosmoRAM 1  
CellularRAM 2  
CellularRAM 1  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
Pb-free  
compliant  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
-40° to +85°C  
-25° to +85°C  
-40° to +85°C  
1(Unprotected[Default  
State])  
0(Sectors Protected)  
1(Unprotected[Default  
State])  
54MHz  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
Pb-free  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
17  
256Mb - WS256N Flash + 128 pSRAM  
Temperature  
Range °C  
Burst  
Speed  
Material  
Set  
Order Number  
Package Marking  
DYB Power-up State  
Supplier  
S71WS256ND0BAWEK  
71WS256ND0BAWEK  
0(Protected)  
CellularRAM 2  
1(Unprotected[Default  
State])  
S71WS256ND0BAWEP  
S71WS256ND0BAWEU  
S71WS256ND0BAWEZ  
S71WS256ND0BAWE3  
S71WS256ND0BAWE7  
S71WS256ND0BAIEK  
S71WS256ND0BAIEP  
S71WS256ND0BAIEU  
S71WS256ND0BAIEZ  
S71WS256ND0BAIE3  
S71WS256ND0BAIE7  
S71WS256ND0BFWEK  
S71WS256ND0BFWEP  
S71WS256ND0BFWEU  
S71WS256ND0BFWEZ  
S71WS256ND0BFWE3  
S71WS256ND0BFWE7  
S71WS256ND0BFIEK  
S71WS256ND0BFIEP  
S71WS256ND0BFIEU  
S71WS256ND0BFIEZ  
S71WS256ND0BFIE3  
S71WS256ND0BFIE7  
71WS256ND0BAWEP  
71WS256ND0BAWEU  
71WS256ND0BAWEZ  
71WS256ND0BAWE3  
71WS256ND0BAWE7  
71WS256ND0BAIEK  
71WS256ND0BAIEP  
71WS256ND0BAIEU  
71WS256ND0BAIEZ  
71WS256ND0BAIE3  
71WS256ND0BAIE7  
71WS256ND0BFWEK  
71WS256ND0BFWEP  
71WS256ND0BFWEU  
71WS256ND0BFWEZ  
71WS256ND0BFWE3  
71WS256ND0BFWE7  
71WS256ND0BFIEK  
71WS256ND0BFIEP  
71WS256ND0BFIEU  
71WS256ND0BFIEZ  
71WS256ND0BFIE3  
71WS256ND0BFIE7  
0(Protected)  
CosmoRAM 1  
-25° to +85°C  
1(Unprotected[Default  
State])  
0(Protected)  
1.8V RAM  
Type 4  
1(Unprotected[Default  
State])  
Pb-free  
compliant  
0(Protected)  
CellularRAM 2  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
-40° to +85°C  
-25° to +85°C  
-40° to +85°C  
1(Unprotected[Default  
State])  
0(Sectors Protected)  
1.8V RAM  
Type 4  
1(Unprotected[Default  
State])  
54MHz  
0(Protected)  
CellularRAM 2  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
1.8V RAM  
Type 4  
1(Unprotected[Default  
State])  
Pb-free  
0(Protected)  
CellularRAM 2  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
1.8V RAM  
Type 4  
1(Unprotected[Default  
State])  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
18  
2x 256Mb—WS512N Flash + 64Mb pSRAM  
Temperature  
Range °C  
Burst  
Speed  
Material  
Set  
Order Number  
Package Marking  
DYB Power-up State  
Supplier  
S71WS512NC0BAWAK  
71WS512NC0BAWAK  
0(Protected)  
CellularRAM 2  
1(Unprotected[Default  
State])  
S71WS512NC0BAWAP  
S71WS512NC0BAWAU  
S71WS512NC0BAWAZ  
S71WS512NC0BAWAB  
S71WS512NC0BAWAF  
S71WS512NC0BAIAK  
S71WS512NC0BAIAP  
S71WS512NC0BAIAU  
S71WS512NC0BAIAZ  
S71WS512NC0BAIAB  
S71WS512NC0BAIAF  
S71WS512NC0BFWAK  
S71WS512NC0BFWAP  
S71WS512NC0BFWAU  
S71WS512NC0BFWAZ  
S71WS512NC0BFWAB  
S71WS512NC0BFWAF  
S71WS512NC0BFIAK  
S71WS512NC0BFIAP  
S71WS512NC0BFIAU  
S71WS512NC0BFIAZ  
S71WS512NC0BFIAB  
S71WS512NC0BFIAF  
71WS512NC0BAWAP  
71WS512NC0BAWAU  
71WS512NC0BAWAZ  
71WS512NC0BAWAB  
71WS512NC0BAWAF  
71WS512NC0BAIAK  
71WS512NC0BAIAP  
71WS512NC0BAIAU  
71WS512NC0BAIAZ  
71WS512NC0BAIAB  
71WS512NC0BAIAF  
71WS512NC0BFWAK  
71WS512NC0BFWAP  
71WS512NC0BFWAU  
71WS512NC0BFWAZ  
71WS512NC0BFWAB  
71WS512NC0BFWAF  
71WS512NC0BFIAK  
71WS512NC0BFIAP  
71WS512NC0BFIAU  
71WS512NC0BFIAZ  
71WS512NC0BFIAB  
71WS512NC0BFIAF  
0(Protected)  
CosmoRAM 1  
CellularRAM 1  
-25° to +85°C  
-40° to +85°C  
-25° to +85°C  
-40° to +85°C  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
Pb-free  
compliant  
0(Protected)  
CellularRAM 2  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Sectors Protected)  
CellularRAM 1  
1(Unprotected[Default  
State])  
54MHz  
0(Protected)  
CellularRAM 2  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
CellularRAM 1  
1(Unprotected[Default  
State])  
Pb-free  
0(Protected)  
CellularRAM 2  
CosmoRAM 1  
1(Unprotected[Default  
State])  
0(Protected)  
1(Unprotected[Default  
State])  
0(Protected)  
CellularRAM 1  
1(Unprotected[Default  
State])  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
19  
2x256Mb—WS256N Flash + 128Mb pSRAM  
Te m p e r a t u re  
Range °C  
Burst  
Speed  
Material  
Set  
Order Number  
Package Marking  
DYB Power-up State  
Supplier  
S71WS512ND0BAWEK  
71WS512ND0BAWEK  
0(Protected)  
CellularRAM 2  
1(Unprotected [Default  
State])  
S71WS512ND0BAWEP  
S71WS512ND0BAWE3  
S71WS512ND0BAWE7  
S71WS512ND0BAIEK  
S71WS512ND0BAIEP  
S71WS512ND0BAIE3  
S71WS512ND0BAIE7  
S71WS512ND0BFWEK  
S71WS512ND0BFWEP  
S71WS512ND0BFWE3  
S71WS512ND0BFWE7  
S71WS512ND0BFIEK  
S71WS512ND0BFIEP  
71WS512ND0BAWEP  
71WS512ND0BAWE3  
71WS512ND0BAWE7  
71WS512ND0BAIEK  
71WS512ND0BAIEP  
71WS512ND0BAIE3  
71WS512ND0BAIE7  
71WS512ND0BFWEK  
71WS512ND0BFWEP  
71WS512ND0BFWE3  
71WS512ND0BFWE7  
71WS512ND0BFIEK  
71WS512ND0BFIEP  
-25° to +85°C  
0(Protected)  
1.8V RAM  
Type 4  
1(Unprotected [Default  
State])  
Pb-free  
compliant  
0(Protected)  
CellularRAM 2  
1(Unprotected [Default  
State])  
-40° to +85°C  
0(Protected)  
1.8V RAM  
Type 4  
1(Unprotected [Default  
State])  
54MHz  
0(Protected)  
CellularRAM 2  
1(Unprotected [Default  
State])  
-25° to +85°C  
0(Protected)  
1.8V RAM  
Type 4  
1(Unprotected [Default  
State])  
Pb-free  
0(Protected)  
CellularRAM 2  
1(Unprotected [Default  
State])  
-40° to +85°C  
S71WS512ND0BFIE3  
S71WS512ND0BFIE7  
71WS512ND0BFIE3  
71WS512ND0BFIE7  
0(Protected)  
0(Protected)  
1.8V RAM  
Type 4  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
20  
Physical Dimensions  
FEA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 mm MCP  
Compatible Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
84X  
0.15  
b
M
C
C
A B  
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
FEA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
12.00 mm x 9.00 mm  
PACKAGE  
NOTE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.40  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.10  
1.11  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
1.26  
BODY THICKNESS  
BODY SIZE  
D
12.00 BSC.  
9.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Ø b  
eE  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SD / SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10  
E1,E10,F1,F10,G1,G10  
H1,H10,J1,J10,K1,K10,L1,L10  
M2,M3,M4,M5,M6,M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3423 \ 16-038.21a  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
21  
TSD084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 mm MCP  
Compatible Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
TSD 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
12.00 mm x 9.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.94  
BODY THICKNESS  
BODY SIZE  
D
12.00 BSC.  
9.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
A2,A3,A4,A5,A6,7,A8,A9  
B1,B10,C1,C10,D1,D10  
E1,E10,F1,F10,G1,G10  
H1,H10,J1,J10,K1,K10,L1,L10  
M2,M3,M4,M5,M6,M7,M8,M9  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3426\ 16-038.22  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
22  
TLA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 11.6x8.0x1.2 mm MCP  
Compatible Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
TLA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Ø b  
eE  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SD / SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10,  
E1,E10,F1,F10,G1,G10,  
H1,H10,J1,J10,K1,K10,L1,L10,  
M2,M3,M4,M5,M6,M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3372-2 \ 16-038.22a  
Note: BSC is an ANSI standard for Basic Space Centering  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512Nx0/S71WS256Nx0  
23  
S29WSxxxN MirrorBit™ Flash Family  
For Multi-chip Products  
256/128/64 Megabit (16/8/4 M x 16-Bit) CMOS 1.8 Volt-only  
Simultaneous Read/Write, Burst Mode Flash Memory  
Distinctive Characteristics  
Burst access times of 11.2/13.5 ns  
Synchronous initial latency of 69/69 ns  
Asynchronous random access times of 70/70 ns  
Architectural Advantages  
„
„
„
Single 1.8 volt read, program and erase (1.70 to  
1.95 volt)  
Manufactured on 110 nm MirrorBitTM process  
technology  
„
Program and Erase Performance  
Typical word programming time of 40 µs  
Typical effective word programming time of 9.4 µs  
utilizing a 32-Word Write Buffer at VCC Level  
Typical effective word programming time of 6 µs  
utilizing a 32-Word Write Buffer at ACC Level  
Typical sector erase time of 150 ms for 16 Kword  
sectors and 600 ms sector erase time for 64 Kword  
sectors  
VersatileIO™ (VIO) Feature  
Device generates data output voltages and tolerates  
data input voltages as determined by the voltage on  
the VIO pin  
VIO options available for 1.8 V (1.70 V – 1.95 V)  
„
Simultaneous Read/Write operation  
„
Power dissipation (typical values @ 66 MHz)  
Data can be continuously read from one bank while  
executing erase/program functions in another bank  
Zero latency between read and write operations  
Sixteen bank architecture: Each bank consists of  
16Mb (WS256N) / 8Mb (WS128N) / 4Mb (WS064N)  
Continuous Burst Mode Read: 35 mA  
Simultaneous Operation: 50 mA  
Program: 19 mA  
Erase: 19 mA  
Standby mode: 20 µA  
„
„
„
Programable Burst Interface  
2 Modes of Burst Read Operation  
Linear Burst: 32, 16, and 8 words with or without  
wrap-around  
Hardware Features  
„
Sector Protection  
Continuous Sequential Burst  
Write protect (WP#) function allows protection of  
eight outermost boot sectors, four at top and four at  
bottom of memory, regardless of sector protect  
status  
SecSiTM (Secured Silicon) Sector region  
256 words accessible through a command  
sequence, 128 words for the Factory SecSi Sector  
and 128 words for the Customer SecSi Sector.  
Non-erasable region  
„
Handshaking feature available  
Provides host system with minimum possible latency  
by monitoring RDY  
Sector Architecture  
„
„
Boot Option  
Dual Boot  
Low VCC write inhibit  
S29WS256N: Eight 16 Kword sectors and two-  
hundred-fifty-four 64 Kword sectors  
S29WS128N: Eight 16 Kword sectors and one-  
hundred-twenty-six 64 Kword sectors  
S29WS064N: Eight 16 Kword sectors and sixty-two  
64 Kword sectors  
Banks 0 and 15 each contain 16 Kword sectors and  
64 Kword sectors; Other banks each contain 64  
Kword sectors  
Security Features  
„
Advanced Sector Protection consists of the two  
following modes of operation  
Persistent Sector Protection  
„
A command sector protection method to lock  
combinations of individual sectors to prevent  
program or erase operations within that sector  
Eight 16 Kword boot sectors, four at the top of the  
address range, and four at the bottom of the address  
range  
Sectors can be locked and unlocked in-system at VCC  
level  
„
„
Cycling Endurance: 100,000 cycles per sector  
typical  
„
Password Sector Protection  
Data Retention: 20 years typical  
A sophisticated sector protection method to lock  
combinations of individual sectors to prevent  
program or erase operations within that sector using  
a user-defined 64-bit password  
Performance Characteristics  
„
Read access times at 80/66/54 MHz  
Publication Number S29WSxxxN_MCP00 Revision A Amendment 3 Issue Date August 31, 2004  
Software Features  
„
„
„
Supports Common Flash Memory Interface (CFI)  
Software command set compatible with JEDEC 42.4 standards  
Data# Polling and toggle bits  
Provides a software method of detecting program and erase operation completion  
„
„
„
Erase Suspend/Resume  
Suspends an erase operation to read data from, or program data to, a sector that is not being erased, then resumes  
the erase operation  
Program Suspend/Resume  
Suspends a programming operation to read data from a sector other than the one being programmed, then resume the  
programming operation  
Unlock Bypass Program command  
Reduces overall programming time when issuing multiple program command sequences  
Additional Features  
„
Program Operation  
Ability to perform synchronous and asynchronous program operation independent of burst control register setting  
ACC input  
Acceleration function reduces programming and erase time in a factory setting.  
„
25  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
General Description  
The WSxxxN family consists of 256, 128, and 64 Mbit, 1.8 Volt-only, simultaneous  
Read/Write, Burst Mode Flash memory devices, organized as 16, 8, or 4 Mwords  
of 16 bits. These devices use a single V of 1.70 to 1.95 V to read, program, and  
CC  
erase the memory array. A 9.0-volt V  
on ACC may be used for faster program  
HH  
performance in a factory setting. These devices can be programmed in standard  
EPROM programmers.  
At 66 MHz and 1.8V V , the device provides a burst access of 11.2 ns at 30 pF  
IO  
with an initial latency of 69 ns at 30 pF. At 54 MHz and 1.8V V , the device pro-  
IO  
vides a burst access of 13.5 ns at 30 pF with an initial latency of 69 ns at 30 pF.  
The device operates within the industrial temperature range of -40°C to +85°C  
or wireless temperature range of -25°C to +85°C. These devices are offered in  
MCP compatible FBGA packages. See the product selector guide for details  
The Simultaneous Read/Write architecture provides simultaneous operation  
by dividing the memory space into sixteen banks. The device can improve over-  
all system performance by allowing a host system to program or erase in one  
bank, then immediately and simultaneously read from another bank, with zero  
latency. This releases the system from waiting for the completion of program or  
erase operations.  
The devices are divided into banks and sectors as shown in the following table:  
Quantity of Sectors  
Bank  
(WS256N/WS128N/WS064N)  
Sector Size  
16 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
16 Kwords  
4/4/4  
0
15/7/3  
1
2
16/8/4  
16/8/4  
3
16/8/4  
4
16/8/4  
5
16/8/4  
6
16/8/4  
7
16/8/4  
8
16/8/4  
9
16/8/4  
10  
11  
12  
13  
14  
16/8/4  
16/8/4  
16/8/4  
16/8/4  
16/8/4  
15/7/3  
15  
4/4/4  
The VersatileIO™ (V ) control allows the host system to set the voltage levels  
IO  
that the device generates at its data outputs and the voltages tolerated at its  
data inputs to the same voltage level that is asserted on the V pin.  
IO  
The device uses Chip Enable (CE#), Write Enable (WE#), Address Valid (AVD#)  
and Output Enable (OE#) to control asynchronous read and write operations.  
For burst operations, the device additionally requires Ready (RDY), and Clock  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
26  
(CLK). This implementation allows easy interface with minimal glue logic to a  
wide range of microprocessors/microcontrollers for high performance read  
operations.  
The burst read mode feature gives system designers flexibility in the interface to  
the device. The user can preset the burst length and then wrap or non-wrap  
through the same memory space, or read the flash array in continuous mode.  
The device is entirely command set compatible with the JEDEC 42.4 single-  
power-supply Flash standard. Commands are written to the command regis-  
ter using standard microprocessor write timing. Register contents serve as  
inputs to an internal state-machine that controls the erase and programming  
circuitry. Write cycles also internally latch addresses and data needed for the  
programming and erase operations. Reading data out of the device is similar to  
reading from other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. This  
initiates the Embedded Program Algorithm — an internal algorithm that auto-  
matically times the program pulse widths and verifies proper cell margin. The  
Unlock Bypass mode facilitates faster program times by requiring only two  
write cycles to program data instead of four. The additional Write Buffer Pro-  
gramming feature provides superior programming performance by grouping  
locations being programmed.  
Device erasure occurs by executing the erase command sequence. This initiates  
the Embedded Erase Algorithm — an internal algorithm that automatically pre-  
programs the array (if it is not already fully programmed) before executing the  
erase operation. During erase, the device automatically times the erase pulse  
widths and verifies proper cell margin.  
The Program Suspend/Program Resume feature enables the user to put  
program on hold to read data from any sector that is not selected for program-  
ming. If a read is needed from the SecSi Sector area, Persistent Protection area,  
Dynamic Protection area, or the CFI area, after an program suspend, then the  
user must use the proper command sequence to enter and exit this region. The  
program suspend/resume functionality is also available when programming in  
erase suspend (1 level depth only).  
The Erase Suspend/Erase Resume feature enables the user to put erase on  
hold to read data from, or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved. If a read is needed from  
the SecSi Sector area, Persistent Protection area, Dynamic Protection area, or  
the CFI area, after an erase suspend, then the user must use the proper com-  
mand sequence to enter and exit this region.  
The hardware RESET# pin terminates any operation in progress and resets  
the internal state machine to reading array data. The RESET# pin may be tied to  
the system reset circuitry. A system reset would thus also reset the device, en-  
abling the system microprocessor to read boot-up firmware from the Flash  
memory device.  
The host system can detect whether a memory array program or erase opera-  
tion is complete by using the device status bit DQ7 (Data# Polling), DQ6/DQ2  
(toggle bits), DQ5 (exceeded timing limit), DQ3 (sector erase start timeout state  
indicator), and DQ1 (write to buffer abort). After a program or erase cycle has  
been completed, the device automatically returns to reading array data.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is  
fully erased when shipped from the factory.  
27  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Hardware data protection measures include a low V detector that automat-  
CC  
ically inhibits write operations during power transitions. The device also offers  
two types of data protection at the sector level. When at V , WP# locks the  
IL  
four outermost boot sectors at the top of memory and the four outermost boot  
sectors at the bottom of memory.  
When the ACC pin = V , the entire flash memory array is protected.  
IL  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consump-  
tion is greatly reduced in both modes.  
SpansionTM Flash memory products combine years of Flash memory manufactur-  
ing experience to produce the highest levels of quality, reliability and cost  
effectiveness. The device electrically erases all bits within a sector. The data is  
programmed using hot electron injection.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
28  
Product Selector Guide  
Part Number  
S29WS256N, S29WS128N, S29WS064N  
Speed Option (Burst Frequency) (See Note)  
66 MHz  
69  
54 MHz  
69  
Max Synchronous Latency, ns (tIACC  
)
Max Synchronous Burst Access Time, ns (tBACC  
Max Asynchronous Access Time tCE), ns  
Max CE# Access Time, ns (tCE), ns  
)
11.2  
70  
13.5  
70  
70  
70  
Max OE# Access Time, ns (tOE  
)
11.2  
13.5  
Note: 80 MHz available for standalone applications only, 66 MHz and 54 MHz available for both multi-chip and standalone applications.  
Block Diagram  
DQ15DQ0  
VCC  
VSS  
VIO  
RDY  
Buffer  
RDY  
Erase Voltage  
Generator  
Input/Output  
Buffers  
WE#  
RESET#  
WP#  
State  
Control  
ACC  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Y-Decoder  
Y-Gating  
VCC  
Detector  
Timer  
Cell Matrix  
X-Decoder  
Burst  
State  
Control  
Burst  
Address  
Counter  
AVD#  
CLK  
Amax–A0*  
* WS256N: A23-A0  
WS128N: A22-A0  
WS064N: A21-A0  
29  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Block Diagram of  
Simultaneous Operation Circuit  
V
CC  
V
SS  
V
IO  
Bank Address  
DQ15–DQ0  
Bank 0  
Amax–A0  
X-Decoder  
OE#  
Bank Address  
DQ15–DQ0  
Bank 1  
WP#  
ACC  
X-Decoder  
Amax–A0  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
RESET#  
WE#  
DQ15–DQ0  
Status  
CE#  
AVD#  
RDY  
Control  
DQ15–DQ0  
Amax–A0  
X-Decoder  
Bank 14  
DQ15–DQ0  
Bank Address  
Amax–A0  
Amax–A0  
X-Decoder  
Bank 15  
Bank Address  
DQ15–DQ0  
Note: Amax=A23 for the WS256N, A22 for the WS128N, and A21 for the WS064N.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
30  
Input/Output Descriptions  
A23-A0  
=
Address inputs for WS256N (A22-A0 for WS128 and  
A21-A0 for WS064N).  
DQ15-DQ0  
CE#f1  
=
=
Data input/output.  
Chip Enable input. Asynchronous relative to CLK for  
the Burst mode.  
OE#  
WE#  
=
Output Enable input. Asynchronous relative to CLK  
for the Burst mode.  
Write Enable input.  
=
=
=
=
=
=
V
V
Device Power Supply.  
CC  
Ground.  
SS  
NC  
RDY  
CLK  
No Connect; not connected internally.  
Ready output. Indicates the status of the Burst read.  
Clock input. In burst mode, after the initial word is  
output, subsequent active edges of CLK increment  
the internal address counter. Should be at V or V  
IL  
IH  
while in asynchronous mode.  
AVD#  
=
Address Valid input. Indicates to device that the  
valid address is present on the address inputs.  
Low = for asynchronous mode, indicates valid  
address; for burst mode, causes starting address to  
be latched.  
High = device ignores address inputs.  
RESET#  
WP#  
=
=
Hardware reset input. Low = device resets and  
returns to reading array data.  
Hardware write protect input. At V , disables  
IL  
program and erase functions in the four outermost  
sectors. Should be at V for all other conditions.  
IH  
ACC  
RFU  
=
=
Accelerated input. At V , accelerates.  
programming; automatically places device in unlock  
HH  
bypass mode. At V , disables all program and erase  
IL  
functions. Should be at V for all other conditions.  
IH  
Reserved for future use (see MCP look-ahead pinout  
for use with MCP).  
31  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Logic Symbol  
Max*+1  
Amax*–A0  
16  
DQ15–DQ0  
CLK  
WP#  
ACC  
CE#  
OE#  
WE#  
RDY  
RESET#  
AVD#  
* max = 23 for the WS256N, 22 for the WS128N, and  
21 for the WS064N.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
32  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is com-  
posed of latches that store the commands, along with the address and data  
information needed to execute the command. The contents of the register serve  
as inputs to the internal state machine. The state machine outputs dictate the  
function of the device. Table 1 lists the device bus operations, the inputs and con-  
trol levels they require, and the resulting output. The following subsections  
describe each of these operations in further detail.  
Table 1. Device Bus Operations  
Operation  
CE#  
L
OE#  
L
WE#  
Addresses  
Addr In  
Addr In  
Addr In  
Addr In  
X
DQ15–0  
I/O  
RESET#  
CLK  
X
AVD#  
Asynchronous Read - Addresses Latched  
Asynchronous Read - Addresses Steady State  
Asynchronous Write  
H
H
L
H
H
H
H
H
L
L
L
I/O  
X
L
L
L
H
I/O  
X
Synchronous Write  
L
H
L
I/O  
Standby (CE#)  
H
X
X
X
X
HIGH Z  
HIGH Z  
X
X
X
X
Hardware Reset  
X
X
Burst Read Operations (Synchronous)  
Load Starting Burst Address  
L
L
X
L
H
H
Addr In  
X
X
H
H
Advance Burst to next address with  
appropriate Data presented on the Data Bus  
Burst  
Data Out  
H
Terminate current Burst read cycle  
H
X
X
X
H
H
X
X
HIGH Z  
HIGH Z  
H
L
X
X
Terminate current Burst read cycle via RESET#  
X
Terminate current Burst read cycle and start  
new Burst read cycle  
L
X
H
Addr In  
I/O  
H
Legend: L = Logic 0, H = Logic 1, X = Don’t Care.  
VersatileIO™ (VIO) Control  
The VersatileIO (V ) control allows the host system to set the voltage levels that  
IO  
the device generates at its data outputs and the voltages tolerated at its data in-  
puts to the same voltage level that is asserted on the V pin.  
IO  
Requirements for Asynchronous (Non-Burst)  
Read Operation  
To read data from the memory array, the system must first assert a valid address  
on A23–A0 for WS256N (A22–A0 for the WS128N, A21–A0 for WS064N), while  
driving AVD# and CE# to V . WE# should remain at V . The rising edge of AVD#  
IL  
IH  
latches the address. The data will appear on DQ15–DQ0.  
Address access time (t ) is equal to the delay from stable addresses to valid  
ACC  
output data. The chip enable access time (t ) is the delay from the stable CE#  
CE  
to valid data at the outputs. The output enable access time (t ) is the delay from  
OE  
the falling edge of OE# to valid data at the output.  
The internal state machine is set for reading array data in asynchronous mode  
upon device power-up, or after a hardware reset. This ensures that no spurious  
alteration of the memory content occurs during the power transition.  
33  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Requirements for Synchronous (Burst) Read Operation  
The device is capable of continuous sequential burst read and linear burst read  
of a preset length. When the device first powers up, it is enabled for asynchro-  
nous read operation.  
Prior to entering burst mode, the system should determine how many wait states  
are desired for the initial word (t  
) of each burst access, what mode of burst  
IACC  
operation is desired, and how the RDY signal will transition with valid data. The  
system would then write the configuration register command sequence. See Set  
Configuration Register Command Sequence for further details.  
The initial word is output t  
after the active edge of the first CLK cycle. Sub-  
IACC  
sequent words are output t  
after the active edge of each successive clock  
BACC  
cycle at which point the internal address counter is automatically incremented.  
Note that the device has a fixed internal address boundary that occurs every 128  
words, starting at address 00007Fh. No boundary crossing latency is required  
when the device operates at or below 66 MHz to reach address 000080h. When  
the device operates above 66 MHz, a boundary crossing of one additional wait  
state is required. The timing diagram can be found in Figure 27.  
When the starting burst address is not divisible by four, additional waits are re-  
quired. For example, if the starting burst address is divisible by four A1:0 = 00,  
no additional wait state is required, but if the starting burst address is at address  
A1:0 = 01, 10, or 11, one, two or three wait states are required, respectively,  
until data D4 is read. The RDY output indicates this condition to the system by  
deasserting (see Table 2).  
Table 2. Address Dependent Additional Latency  
Initial  
Address  
A[10]  
Cycle  
X+3  
X
X+1  
X+2  
X+4  
X+5  
X+6  
00  
01  
10  
11  
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
34  
Tables 3–5 show the address latency for variable wait state scheme, as imple-  
mented in WS128N and WS064N.  
Table 3. Address Latency for 5 Wait States (68 MHz)  
Wait  
Word  
Cycle  
States  
5 ws  
5 ws  
5 ws  
5 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
D9  
D9  
D9  
D3  
1 ws  
1 ws  
1 ws  
Table 4. Address Latency for 4 Wait States (54 MHz)  
Wait  
Cycle  
States  
Word  
0
1
2
3
4 ws  
4 ws  
4 ws  
4 ws  
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D4  
D4  
D3  
D4  
D5  
D5  
D4  
D5  
D6  
D6  
D5  
D6  
D7  
D7  
D6  
D7  
D8  
D8  
D7  
D8  
D9  
D9  
D8  
D9  
D3  
D10  
D10  
1 ws  
Table 5. Address Latency for 3 Wait States (40 MHz)  
Wait  
Cycle  
States  
Word  
0
1
2
3
3 ws  
3 ws  
3 ws  
3 ws  
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D4  
D2  
D3  
D4  
D5  
D3  
D4  
D5  
D6  
D4  
D5  
D6  
D7  
D5  
D6  
D7  
D8  
D6  
D7  
D8  
D9  
D7  
D8  
D8  
D9  
D9  
D10  
D11  
D10  
Tables 6-8 show the address/boundary crossing latency for variable wait state if  
a boundary crossing occurs during initial access as implemented in WS128N and  
WS064N.  
Table 6. Address/Boundary Crossing Latency for 5 Wait States (< 68 MHz)  
Wait  
Word  
Cycle  
D4  
States  
5 ws  
5 ws  
5 ws  
5 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
1 ws  
1 ws  
1 ws  
D4  
D4  
D4  
D3  
1 ws  
1 ws  
1 ws  
Table 7. Address/Boundary Crossing Latency for 4 Wait States (< 54 MHz)  
Wait  
Word  
Cycle  
States  
4 ws  
4 ws  
4 ws  
4 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
D9  
D9  
D9  
D3  
1 ws  
1 ws  
1 ws  
35  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 8. Address/Boundary Crossing Latency for 3 Wait States (< 40 MHz)  
Wait  
Word  
Cycle  
States  
3 ws  
3 ws  
3 ws  
3 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D4  
D4  
D3  
D4  
D5  
D5  
D4  
D5  
D6  
D6  
D5  
D6  
D7  
D7  
D6  
D7  
D8  
D8  
D7  
D8  
D9  
D9  
D8  
D9  
D3  
D10  
D10  
1 ws  
Continuous Burst  
The device will continue to output sequential burst data, wrapping around to ad-  
dress 000000h after it reaches the highest addressable memory location, until  
the system drives CE# high, RESET# low, or AVD# low in conjunction with a new  
address. See Table 1.  
If the host system crosses a 128-word line boundary while reading in burst mode,  
and the subsequent word line is not programming or erasing, a one-cycle latency  
is required as described above if the device is operating above 66 MHz. If the de-  
vice is operating at or below 66 MHz, no boundary crossing latency is required. If  
the host system crosses the bank boundary while the subsequent bank is pro-  
gramming or erasing, the device will provide read status information. The clock  
will be ignored. After the host has completed status reads, or the device has com-  
pleted the program or erase operation, the host can restart a burst operation  
using a new address and AVD# pulse.  
8-, 16-, and 32-Word Linear Burst with Wrap Around  
The next three burst read modes are of the linear wrap around design, in which  
a fixed number of words are read from consecutive addresses. In each of these  
modes, the burst addresses read are determined by the group within which the  
starting address falls. The groups are sized according to the number of words  
read in a single burst sequence for a given mode (see Table 9.)  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
36  
Table 9. Burst Address Groups  
Mode  
Group Size  
Group Address Ranges  
0-7h, 8-Fh, 10-17h,...  
0-Fh, 10-1Fh, 20-2Fh,...  
00-1Fh, 20-3Fh, 40-5Fh,...  
8-word  
16-word  
32-word  
8 words  
16 words  
32 words  
For example, if the starting address in the 8-word mode is 3Ch, the address range  
to be read would be 38-3Fh, and the burst sequence would be 3C-3D-3E-3F-38-  
39-3A-3Bh if wrap around is enabled. The burst sequence begins with the starting  
address written to the device, but wraps back to the first address in the selected  
group and stops at the group size, terminating the burst read. In a similar fash-  
ion, the 16-word and 32-word Linear Wrap modes begin their burst sequence on  
the starting address written to the device, and then wrap back to the first address  
in the selected address group. Note that in these three burst read modes the  
address pointer does not cross the boundary that occurs every 128  
words; thus, no wait states are inserted (except during the initial ac-  
cess). (See Figure 14.)  
8-, 16-, and 32-Word Linear Burst without Wrap Around  
If wrap around is not enabled, 8-word, 16-word, or 32-word burst will execute  
linearly up to the maximum memory address of the selected number of words.  
The burst will stop after 8, 16, or 32 addresses and will not wrap around to the  
first address of the selected group. For example: if the starting address in the 8-  
word mode is 3Ch, the address range to be read would be 39-40h, and the burst  
sequence would be 3C-3D-3E-3F-40-41-42-43h if wrap around is not enabled.  
The next address to be read will require a new address and AVD# pulse. Note  
that in this burst read mode, the address pointer may cross the boundary that  
occurs every 128 words.  
Configuration Register  
The device uses a configuration register to set the various burst parameters:  
number of wait states, burst read mode, RDY configuration, and synchronous  
mode active. For more information, see Table 24.  
RDY: Ready  
The RDY is a dedicated output, controlled by CE#. When the device is configured  
in the Synchronous mode and RDY is at logic low, the system should wait 1 clock  
cycle before expecting the next word of data.  
Handshaking  
The device is equipped with a handshaking feature that allows the host system  
to simply monitor the RDY signal from the device to determine when the burst  
data is ready to be read. The host system should use the programmable wait  
state configuration to set the number of wait states for optimal burst mode oper-  
ation. The initial word of burst data is indicated by the rising edge of RDY after  
OE# goes low.  
For optimal burst mode performance, the host system must set the appropriate  
number of wait states in the flash device depending on clock frequency. See Set  
Configuration Register Command Sequence and Requirements for Synchronous  
(Burst) Read Operation for more information.  
37  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Simultaneous Read/Write Operations with Zero Latency  
This device is capable of reading data from one bank of memory while program-  
ming or erasing in another bank of memory. An erase operation may also be  
suspended to read from or program to another location within the same bank (ex-  
cept the sector being erased). Figure 30 shows how read and write cycles may be  
initiated for simultaneous operation with zero latency. Refer to the DC Character-  
istics table for read-while-program and read-while-erase current specifications.  
Writing Commands/Command Sequences  
The device has the capability of performing an asynchronous or synchronous  
write operation. While the device is configured in Asynchronous read it is able to  
perform Asynchronous write operations only. CLK is ignored when the device is  
configured in the Asynchronous mode. When in the Synchronous read mode con-  
figuration, the device is able to perform both Asynchronous and Synchronous  
write operations. CLK- and AVD#-induced address latches are supported in the  
Synchronous programming mode. During a synchronous write operation, to write  
a command or command sequence (which includes programming data to the de-  
vice and erasing sectors of memory), the system must drive AVD# and CE# to  
V , and OE# to V when providing an address to the device, and drive WE# and  
IL  
IH  
CE# to V , and OE# to V when writing commands or data. During an asynchro-  
IL  
IH  
nous write operation, the system must drive CE# and WE# to V and OE# to V  
IL  
IH  
when providing an address, command, and data. Addresses are latched on the  
last falling edge of WE# or CE#, while data is latched on the 1st rising edge of  
WE# or CE# (see Table 24).  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Tables 18–20 indicate the address space that each sector occupies. The device  
address space is divided into sixteen banks: Banks 1 through 14 contain only 64  
Kword sectors, while Banks 0 and 15 contain both 16 Kword boot sectors in ad-  
dition to 64 Kword sectors. A “bank address” is the set of address bits required  
to uniquely select a bank. Similarly, a “sector address” is the address bits re-  
quired to uniquely select a sector.  
I
in “DC Characteristics” represents the active current specification for the  
CC2  
write mode. “AC Characteristics—Synchronous” and “AC Characteristics—Asyn-  
chronous” contain timing specification tables and timing diagrams for write  
operations.  
Unlock Bypass Mode  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once the device enters the Unlock Bypass mode, only two write cycles are re-  
quired to program a set of words, instead of four. See Unlock Bypass Command  
Sequence for more details.  
Accelerated Program/Chip Erase Operations  
The device offers accelerated chip program and erase operations through the A  
CC  
function. This method is faster than the standard chip program and erase com-  
mand sequences. The accelerated chip program and erase functions must  
not be used more than 10 times per sector. In addition, accelerated chip pro-  
gram and erase should be performed at room temperature (25°C 10°C).  
The system can use the Write Buffer Load command sequence. Note that if a  
“Write-to-Buffer-Abort Reset” is required, the full 3-cycle RESET command se-  
quence must be used to reset the device. Removing V  
from the ACC input,  
HH  
upon completion of the embedded program or erase operation, returns the device  
August 31, 2004 S29WSxxxN_MCP00_A3 S29WSxxxN MirrorBit™ Flash Family  
38  
to normal operation. Note that sectors must be unlocked prior to raising ACC to  
. Note that the ACC pin must not be at V for operations other than acceler-  
V
HH  
HH  
ated programming and accelerated chip erase, or device damage may result. In  
addition, the ACC pin must not be left floating or unconnected; inconsistent be-  
havior of the device may result.  
When at V , ACC locks all sectors. ACC should be at V for all other conditions.  
IL  
IH  
Write Buffer Programming Operation  
Write Buffer Programming allows the system to write a maximum of 32 words  
in one programming operation. This results in a faster effective word program-  
ming time than the standard “word” programming algorithms. The Write Buffer  
Programming command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle containing the Write Buffer Load command  
written at the starting address in which programming will occur. At this point, the  
system writes the number of “word locations minus 1” that will be loaded into  
the page buffer at the starting address in which programming will occur. This tells  
the device how many write buffer addresses will be loaded with data and there-  
fore when to expect the “Program Buffer to Flash” confirm command. The number  
of locations to program cannot exceed the size of the write buffer or the operation  
will abort. (NOTE: the number loaded = the number of locations to program  
minus 1. For example, if the system will program 6 address locations, then 05h  
should be written to the device.)  
The system then writes the starting address/data combination. This starting ad-  
dress is the first address/data pair to be programmed, and selects the “write-  
buffer-page” address. All subsequent address/data pairs must fall within the “se-  
lected-write-buffer-page.  
The “write-buffer-page” is selected by using the addresses A  
- A5 where A  
MAX  
MAX  
is A23 for WS256N, A22 for WS128N, and A21 for WS064N.  
The “write-buffer-page” addresses must be the same for all address/data  
pairs loaded into the write buffer. (This means Write Buffer Programming  
cannot be performed across multiple “write-buffer-pages. This also means that  
Write Buffer Programming cannot be performed across multiple sectors. If the  
system attempts to load programming data outside of the selected “write-buffer-  
page, the operation will ABORT.)  
After writing the Starting Address/Data pair, the system then writes the remain-  
ing address/data pairs into the write buffer. Write buffer locations may be loaded  
in any order.  
Note that if a Write Buffer address location is loaded multiple times, the “address/  
data pair” counter will be decremented for every data load operation. Also,  
the last data loaded at a location before the “Program Buffer to Flash” confirm  
command will be programmed into the device. It is the software’s responsibility  
to comprehend ramifications of loading a write-buffer location more than once.  
The counter decrements for each data load operation, NOT for each unique  
write-buffer-address location.  
Once the specified number of write buffer locations have been loaded, the system  
must then write the “Program Buffer to Flash” command at the Sector Address.  
Any other address/data write combinations will abort the Write Buffer Program-  
ming operation. The device will then “go busy.” The Data Bar polling techniques  
should be used while monitoring the last address location loaded into the  
write buffer. This eliminates the need to store an address in memory because  
39  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
the system can load the last address location, issue the program confirm com-  
mand at the last loaded address location, and then data bar poll at that same  
address. DQ7, DQ6, DQ5, DQ2, and DQ1 should be monitored to determine the  
device status during Write Buffer Programming.  
The write-buffer “embedded” programming operation can be suspended using  
the standard suspend/resume commands. Upon successful completion of the  
Write Buffer Programming operation, the device will return to READ mode.  
The Write Buffer Programming Sequence is ABORTED under any of the following  
conditions:  
„ Load a value that is greater than the page buffer size during the “Number of  
Locations to Program” step.  
„ Write to an address in a sector different than the one specified during the  
“Write-Buffer-Load” command.  
„ Write an Address/Data pair to a different write-buffer-page than the one se-  
lected by the “Starting Address” during the “write buffer data loading” stage  
of the operation.  
„ Write data other than the “Confirm Command” after the specified number of  
“data load” cycles.  
The ABORT condition is indicated by DQ1 = 1, DQ7 = DATA# (for the “last ad-  
dress location loaded”), DQ6 = TOGGLE, DQ5 = 0. This indicates that the Write  
Buffer Programming Operation was ABORTED. A “Write-to-Buffer-Abort reset”  
command sequence is required when using the Write-Buffer-Programming fea-  
tures in Unlock Bypass mode. Note that the SecSiTM sector, autoselect, and CFI  
functions are unavailable when a program operation is in progress.  
Use of the write buffer is strongly recommended for programming when  
multiple words are to be programmed. Write buffer programming is allowed  
in any sequence of memory (or address) locations. These flash devices are capa-  
ble of handling multiple write buffer programming operations on the same write  
buffer address range without intervening erases. However, programming the  
same word address multiple times without intervening erases requires a modified  
programming method. Please contact your local SpansionTM representative for  
details.  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output from the internal register  
(separate from the memory array) on DQ15–DQ0. This mode is primarily in-  
tended for programming equipment to automatically match a device to be  
programmed with its corresponding programming algorithm. The autoselect  
codes can also be accessed in-system.  
When verifying sector protection, the sector address must appear on the appro-  
priate highest order address bits (see Tables 18–20). The remaining address bits  
are don’t care. When all necessary bits have been set as required, the program-  
ming equipment may then read the corresponding identifier code on DQ15–DQ0.  
The autoselect codes can also be accessed in-system through the command reg-  
ister. See Command Definition Summary for command sequence requirements.  
Note that if a Bank Address (BA) on the four uppermost address bits is asserted  
during the third write cycle of the autoselect command, the host system can read  
autoselect data from that bank and then immediately read array data from the  
other bank, without exiting the autoselect mode.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
40  
To access the autoselect codes, the host system must issue the autoselect com-  
mand via the command register, as shown in the Command Definition Summary  
section. See Autoselect Command Sequence for more information.  
Advanced Sector Protection and Unprotection  
This advanced security feature provides an additional level of protection to all  
sectors against inadvertant program or erase operations.  
The advanced sector protection feature disables both programming and erase op-  
erations in a sector while the advanced sector unprotection feature re-enables  
both program and erase operations in previously protected sectors. Sector pro-  
tection/unprotection can be implemented using either or both of the two methods  
„ Hardware method  
„ Software method  
Persistent/Password Sector Protection is achieved by using the software method  
while the sector protection with WP# pin is achieved by using the hardware  
method.  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method will be used.  
„ Persistent Mode Lock Bit  
„ Password Mode Lock Bit  
If the customer decides to continue using the Persistent Sector Protection  
method, they must set the Persistent Mode Lock Bit. This will permanently set  
the part to operate using only Persistent Sector Protection. However, if the cus-  
tomer decides to use the Password Sector Protection method, they must set the  
Password Mode Lock Bit. This will permanently set the part to operate using  
only Password Sector Protection.  
It is important to remember that setting either the Persistent Mode Lock Bit  
or the Password Mode Lock Bit permanently selects the protection mode. It is  
not possible to switch between the two methods once a locking bit has been set.  
It is important that one mode is explicitly selected when the device is  
first programmed, rather than relying on the default mode alone. If both  
are selected to be set at the same time, the operation will abort. This is  
done so that it is not possible for a system program or virus to later set the Pass-  
word Mode Locking Bit, which would cause an unexpected shift from the default  
Persistent Sector Protection Mode into the Password Sector Protection Mode.  
The device is shipped with all sectors unprotected. Optional SpansionTM program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for more details.  
Persistent Mode Lock Bit  
A Persistent Mode Lock Bit exists to guarantee that the device remain in software  
sector protection. Once programmed (set to “0”), the Persistent Mode Lock Bit  
prevents programming of the Password Mode Lock Bit. This allows protection  
from potential hackers locking the device by placing the device in password sec-  
tor protection mode and then changing the password accordingly.  
Password Mode Lock Bit  
In order to select the Password Sector Protection scheme, the customer must first  
program the password. It is recommended that the password be somehow cor-  
41  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
related to the unique Electronic Serial Number (ESN) of the particular flash  
device. Each ESN is different for every flash device; therefore each password  
should be different for every flash device. While programming in the password  
region, the customer may perform Password Verify operations.  
Once the desired password is programmed in, the customer must then set the  
Password Mode Locking Bit. This operation achieves two objectives:  
1.It permanently sets the device to operate using the Password Sector Protection  
Mode. It is not possible to reverse this function.  
2.It also disables all further commands to the password region. All program and  
read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Sector Protec-  
tion method is desired when setting the Password Mode Locking Bit. More  
importantly, the user must be sure that the password is correct when the Pass-  
word Mode Locking Bit is set. Due to the fact that read operations are disabled,  
there is no means to verify what the password is after it is set. If the password  
is lost after setting the Password Mode Lock Bit, there will be no way to clear the  
PPB Lock Bit.  
The Password Mode Lock Bit, once set, prevents reading the 64-bit password on  
the DQ bus and further password programming. The Password Mode Lock Bit  
is not erasable. Once the Password Mode Lock Bit is programmed, the Persistent  
Mode Lock Bit is disabled from programming, guaranteeing that no changes to  
the protection scheme are allowed.  
Sector Protection  
The device features several levels of sector protection, which can disable both the  
program and erase operations in certain sectors.  
„ Persistent Sector Protection  
A software enabled command sector protection method that replaces the old 12  
V controlled protection method.  
„ Password Sector Protection  
A highly sophisticated software enabled protection method that requires a pass-  
word before changes to certain sectors or sector groups are permitted  
„ WP# Hardware Protection  
A write protect pin (WP#) can prevent program or erase operations in the outer-  
most sectors.The WP# Hardware Protection feature is always available,  
independent of the software managed protection method chosen.  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the old 12 V controlled protec-  
tion method while at the same time enhancing flexibility by providing three  
different sector protection states:  
„ Persistently Locked—A sector is protected and cannot be changed.  
„ Dynamically Locked—The sector is protected and can be changed by a simple  
command  
„ Unlocked—The sector is unprotected and can be changed by a simple com-  
mand  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
42  
In order to achieve these states, three types of “bits” namely Persistent Protec-  
tion Bit (PPB), Dynamic Protection Bit (DYB), and Persistent Protection Bit Lock  
(PPB Lock) are used to achieve the desired sector protection scheme  
Persistent Protection Bit (PPB)  
PPB is used to as an advanced security feature to protect individual sectors from  
being programmed or erased thereby providing additional level of protection.  
Every sector is assigned a Persistent Protection Bit.  
Each PPB is individually programmed through the PPB Program Command.  
However all PPBs are erased in parallel through the All PPB Erase Command.  
Prior to erasing, these bits don’t have to be preprogrammed. The Embedded  
Erase algorithm automatically preprograms and verifies prior to an electrical  
erase. The system is not required to provide any controls or timings during these  
operations.  
The PPBs retain their state across power cycles because they are Non-Volatile.  
The PPBs have the same endurance as the flash memory.  
Persistent Protection Bit Lock (PPB Lock Bit) in Persistent Sector  
Protection Mode  
PPB Lock Bit is a global volatile bit and provides an additional level of protection  
to the sectors. When programmed (set to “0”), all the PPBs are locked and  
hence none of them can be changed. When erased (cleared to “1”), the PPBs  
are changeable. There is only one PPB Lock Bit in every device. Only a hardware  
reset or a power-up clears the PPB Lock Bit. Note that there is no software solu-  
tion; that is, there is no command sequence that would unlock the PPB Lock Bit.  
Once all PPBs are configured to the desired settings, the PPB Lock Bit may be set  
(programmed to “0”). The PPB Lock Bit is set by issuing the PPB Lock Bit Set Com-  
mand. Programming or setting the PPB Lock Bit disables program and erase  
commands to all the PPBs. In effect, the PPB Lock Bit locks the PPBs into their  
current state. The only way to clear the PPB Lock Bit is to go through a hardware  
or power-up reset. System boot code can determine if any changes to the PPB  
are needed e.g. to allow new system code to be downloaded. If no changes are  
needed then the boot code can disable the PPB Lock Bit to prevent any further  
changes to the PPBs during system operation.  
Dynamic Protection Bit (DYB)  
DYB is another security feature used to protect individual sectors from being pro-  
grammed or erased inadvertently. It is a volatile protection bit and is assigned to  
each sector. Each DYB can be individually modified through the DYB Set Com-  
mand or the DYB Clear Command.  
The Protection Status for a particular sector is determined by the status of the  
PPB and the DYB relative to that sector. For the sectors that have the PPBs cleared  
(erased to “1”), the DYBs control whether or not the sector is protected or unpro-  
tected. By issuing the DYB Set or Clear command sequences, the DYBs will be set  
(programmed to “0”) or cleared (erased to “1”), thus placing each sector in the  
protected or unprotected state respectively. These states are the so-called Dy-  
namic Locked or Unlocked states due to the fact that they can switch back and  
forth between the protected and unprotected states. This feature allows software  
to easily protect sectors against inadvertent changes yet does not prevent the  
easy removal of protection when changes are needed. The DYBs maybe set (pro-  
grammed to “0”) or cleared (erased to “1”) as often as needed.  
43  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
When the parts are first shipped, the PPBs are cleared (erased to “1”) and upon  
power up or reset, the DYBs are set or cleared depending upon the ordering op-  
tion chosen. If the option to clear the DYBs after power up is chosen, (erased to  
“1”), then the sectors may be modified depending upon the PPB state of that sec-  
tor. (See Table 10) If the option to set the DYBs after power up is chosen  
(programmed to “0”), then the sectors would be in the protected state. The PPB  
Lock Bit defaults to the cleared state (erased to “1”) after power up and the PPBs  
retain their previous state as they are non-volatile.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Set command sequence  
is all that is necessary. The DYB Set or Clear command for the dynamic sectors  
signify protected or unprotected state of the sectors respectively. However, if  
there is a need to change the status of the persistently locked sectors, a few more  
steps are required. First, the PPB Lock Bit must be cleared by either putting the  
device through a power-cycle, or hardware reset. The PPBs can then be changed  
to reflect the desired settings. Setting the PPB Lock Bit once again will lock the  
PPBs, and the device operates normally again.  
To achieve the best protection, execute the PPB Lock Bit Set command early in  
the boot code and protect the boot code by holding WP# = V . Note that the PPB  
IL  
and DYB bits have the same function when ACC = V  
as they do when ACC =  
HH  
V .  
IH  
Table 10. Sector Protection Schemes  
DYB  
1
PPB  
1
PPB Lock  
Sector State  
1
1
1
Sector Unprotected  
0
1
Sector Protected through DYB  
Sector Protected through PPB  
1
0
Sector Protected through PPB  
and DYB  
0
0
1
1
0
1
1
1
0
0
0
0
Sector Unprotected  
Sector Protected through DYB  
Sector Protected through PPB  
Sector Protected through PPB  
and DYB  
0
0
0
Table 10 contains all possible combinations of the DYB, PPB, and PPB Lock relating  
to the status of the sector.  
In summary, if the PPB is set (programmed to “0”), and the PPB Lock is set (pro-  
grammed to “0”), the sector is protected and the protection can not be removed  
until the next power cycle clears (erase to “1”) the PPB Lock Bit. Once the PPB  
Lock Bit is cleared (erased to “1”), the sector can be persistently locked or un-  
locked. Likewise, if both PPB Lock Bit or PPB is cleared (erased to “1”) the sector  
can then be dynamically locked or unlocked. The DYB then controls whether or  
not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program or erase command to a pro-  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
44  
tected sector enables status polling and returns to read mode without having  
modified the contents of the protected sector.  
The programming of the DYB, PPB, and PPB Lock for a given sector can be verified  
by writing individual status read commands DYB Status, PPB Status, and PPB  
Lock Status to the device.  
Password Sector Protection  
The Password Sector Protection Mode method allows an even higher level of se-  
curity than the Persistent Sector Protection Mode. There are two main differences  
between the Persistent Sector Protection Mode and the Password Sector Protec-  
tion Mode:  
„ When the device is first powered up, or comes out of a reset cycle, the PPB  
Lock Bit is set to the locked state, rather than cleared to the unlocked  
state.  
„ The only means to clear the PPB Lock Bit is by writing a unique 64-bit Pass-  
word to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
The password is stored in a non-erasable region of the flash memory. Once the  
Password Mode Lock Bit is set, the password is permanently set with no means  
to read, program, or erase it. The password is used to clear the PPB Lock Bit. The  
Password Unlock command must be written to the flash, along with a password.  
The flash device internally compares the given password with the pre-pro-  
grammed password. If they match, the PPB Lock Bit is cleared, and the PPBs can  
be altered. If they do not match, the flash device does nothing. There is a built-  
in 1 µs delay for each “password check.This delay is intended to thwart any ef-  
forts to run a program that tries all possible combinations in order to crack the  
password.  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Verify commands. The password function  
works in conjunction with the Password Mode Locking Bit, which when set, pre-  
vents the Password Verify command from reading the contents of the password  
on the pins of the device.  
Persistent Protection Bit Lock (PPB Lock Bit) in Password Sector  
Protection Mode  
The Persistent Protection Bit Lock (PPB Lock Bit) is a volatile bit that reflects the  
state of the Password Mode Lock Bit after power-up reset. If the Password Mode  
Lock Bit is also set, after a hardware reset (RESET# asserted) or a power-up re-  
set, the ONLY means for clearing the PPB Lock Bit in Password Protection Mode is  
to issue the Password Unlock command. Successful execution of the Password  
Unlock command to enter the entire password clears the PPB Lock Bit, allowing  
for sector PPBs modifications. Asserting RESET# or taking the device through a  
power-on reset, resets the PPB Lock Bit to a “1.  
If the Password Mode Lock Bit is not set (device is operating in the default Per-  
sistent Protection Mode). The Password Unlock command is ignored in Persistent  
Sector Protection Mode.  
45  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Lock Register  
The Lock Register consists of 3 bits. The Customer SecSi Sector Protection Bit is  
DQ0, Persistent Protection Mode Lock Bit is DQ1, and the Password Protection  
Mode Lock Bit is DQ2. Each of these bits are non-volatile. DQ15-DQ3 are reserved  
and will be 1’s.  
Table 11. WS256N Lock Register  
DQ15-3  
DQ2  
DQ1  
DQ0  
Password Protection Mode  
Lock Bit  
Persistent Protection Mode  
Lock Bit  
Customer SecSi Sector  
Protection Bit  
1’s  
Table 12. WS128N/064N Lock Register  
DQ15-5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
DYB Lock Boot Bit  
0 = DYB bits, power up  
protected  
1 = DYB bits, power up  
unprotected  
PPB One-Time Programmable Bit  
0 = All PPB erase command  
disabled  
1 = All PPB Erase command  
enabled  
Password  
Protection  
Mode Lock  
Bit  
Persistent  
Protection  
Mode Lock Protection Bit  
Bit  
SecSi Sector  
Undefined  
Hardware Data Protection Mode  
The device offers two types of data protection at the sector level:  
„ When WP# is at V , the four outermost sectors are locked (device specific).  
IL  
„ When ACC is at V , all sectors are locked.  
IL  
The write protect pin (WP#) adds a final level of hardware program and erase  
protection to the outermost boot sectors. The outermost boot sectors are the sec-  
tors containing both the lower and upper set of outermost sectors in a dual-boot-  
configured device. When this pin is low it is not possible to change the con-  
tents of these outermost sectors. These sectors generally hold system boot  
code. So, the WP# pin can prevent any changes to the boot code that could over-  
ride the choices made while setting up sector protection during system  
initialization.  
The following hardware data protection measures prevent accidental erasure or  
programming, which might otherwise be caused by spurious system level signals  
during V power-up and power-down transitions, or from system noise.  
CC  
Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the four out-  
ermost sectors. This function is provided by the WP# pin and overrides the  
previously discussed Sector Protection/Unprotection method.  
If the system asserts V on the WP# pin during the command sequence, the de-  
IL  
vice disables program and erase functions in the “outermost” boot sectors. The  
outermost boot sectors are the sectors containing both the lower and upper set  
of sectors in a dual-boot-configured device.  
If the system asserts V on the WP# pin, the device reverts to whether the boot  
IH  
sectors were last set to be protected or unprotected after the embedded opera-  
tion. That is, sector protection or unprotection for these sectors depends on  
whether they were last protected or unprotected.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
46  
Note that the WP# pin must not be left floating or unconnected; inconsistent be-  
havior of the device may result. The WP# pin must be held stable during a  
command sequence.  
Low VCC Write Inhibit  
When V is less than V  
, the device does not accept any write cycles. This pro-  
CC  
LKO  
tects data during V power-up and power-down. The command register and all  
CC  
internal program/erase circuits are disabled, and the device resets to reading  
array data. Subsequent writes are ignored until V is greater than V  
. The sys-  
CC  
LKO  
tem must provide the proper signals to the control inputs to prevent unintentional  
writes when V is greater than V  
.
LKO  
CC  
Write Pulse “Glitch” Protection  
Noise pulses of less than t  
on WE# do not initiate a write cycle.  
WEP  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = V , CE# = V or WE# =  
IL  
IH  
V . To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
IH  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = RESET# = V and OE# = V during power up, the device does  
IL  
IH  
not accept commands on the rising edge of WE#. The internal state machine is  
automatically reset to the read mode on power-up  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the standby mode when the CE# and RESET# inputs are both  
held at V . The device requires standard access time (t ) for read access, be-  
CC  
CE  
fore it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
I
in “DC Characteristics” represents the standby current specification.  
CC3  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. While in  
asynchronous mode, the device automatically enables this mode when addresses  
remain stable for t  
+ 20 ns. The automatic sleep mode is independent of the  
ACC  
CE#, WE#, and OE# control signals. Standard address access timings provide  
new data when addresses are changed. While in sleep mode, output data is  
latched and always available to the system. While in synchronous mode, the au-  
tomatic sleep mode is disabled. Note that a new burst operation is required to  
provide new data.  
I
in “DC Characteristics” represents the automatic sleep mode current  
CC6  
specification.  
RESET#: Hardware Reset Input  
The RESET# input provides a hardware method of resetting the device to reading  
array data. When RESET# is driven low for at least a period of t , the device im-  
RP  
47  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
mediately terminates any operation in progress, tristates all outputs, resets the  
configuration register, and ignores all read/write commands for the duration of  
the RESET# pulse. The device also resets the internal state machine to reading  
array data. The operation that was interrupted should be reinitiated once the de-  
vice is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at V , the device draws CMOS standby current (I  
). If RESET# is held at V ,  
IL  
SS  
CC4  
but not at V , the standby current will be greater.  
SS  
RESET# may be tied to the system reset circuitry. A system reset would thus also  
reset the Flash memory, enabling the system to read the boot-up firmware from  
the Flash memory.  
See Hardware Reset (RESET#) for RESET# parameters and to Figure 19 for the  
timing diagram.  
Output Disable Mode  
When the OE# input is at V , output from the device is disabled. The outputs are  
IH  
placed in the high impedance state.  
SecSi™ (Secured Silicon) Sector Flash Memory Region  
The SecSi (Secured Silicon) Sector feature provides an extra Flash memory re-  
gion that enables permanent part identification through an Electronic Serial  
Number (ESN). The SecSi Sector is 256 words in length. All reads outside of the  
256 word address range will return non-valid data. The Factory Indicator Bit,  
DQ7, (at Autoselect address (BAS) + 03h) is used to indicate whether or not the  
Factory SecSi Sector is locked when shipped from the factory. The Customer In-  
dicator Bit (DQ6) is used to indicate whether or not the Customer SecSi Sector is  
locked when shipped from the factory. The Factory SecSi bits are permanently set  
at the factory and cannot be changed, which prevents cloning of a factory locked  
part. This ensures the security of the ESN and customer code once the product is  
shipped to the field.  
The Factory portion of the SecSi Sector is locked when shipped and the Customer  
SecSi Sector that is either locked or is lockable. The Factory SecSi Sector is al-  
ways protected when shipped from the factory, and has the Factory Indicator Bit  
(DQ7) permanently set to a “1. The Customer SecSi Sector is typically shipped  
unprotected (set to “0”), allowing customers to utilize that sector in any manner  
they choose. Once the Customer SecSi Sector area is protected, the Customer  
Indicator Bit will be permanently set to “1.”  
The system accesses the SecSi Sector through a command sequence (see Enter  
SecSi™ Sector/Exit SecSi Sector Command Sequence). After the system has  
written the Enter SecSi Sector command sequence, it may read the SecSi Sector  
by using the addresses normally occupied by sector SA0 within the memory ar-  
ray. This mode of operation continues until the system issues the Exit SecSi  
Sector command sequence, or until power is removed from the device. While  
SecSi Sector access is enabled, Memory Array read access, program operations,  
and erase operations to all sectors other than SA0 are also available. On power-  
up, or following a hardware reset, the device reverts to sending commands to the  
normal address space.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
48  
Factory Locked: Factor SecSi Sector Programmed and Protected  
At the Factory  
In a factory sector locked device, the Factory SecSi Sector is protected when the  
device is shipped from the factory. The Factory SecSi Sector cannot be modified  
in any way. The device is pre programmed with both a random number and a se-  
cure ESN. The Factory SecSi Sector is located at addresses 000000h–00007Fh.  
The device is available pre programmed with one of the following:  
„ A random, secure ESN only within the Factor SecSi Sector  
„ Customer code within the Customer SecSi Sector through the SpansionTM pro-  
gramming service  
„ Both a random, secure ESN and customer code through the SpansionTM pro-  
gramming service.  
Table 13. SecSiTM Sector Addresses  
Sector  
Customer  
Factory  
Sector Size  
128 words  
128 words  
Address Range  
000080h-0000FFh  
000000h-00007Fh  
Customers may opt to have their code programmed through the SpansionTM pro-  
gramming services. Spansion programs the customer’s code, with or without the  
random ESN. The devices are then shipped from the Spansion factory with the  
Factory SecSi Sector and Customer SecSi Sector permanently locked. Contact  
your local representative for details on using SpansionTM programming services.  
Customer SecSi Sector  
If the security feature is not required, the Customer SecSi Sector can be treated  
as an additional Flash memory space. The Customer SecSi Sector can be read  
any number of times, but can be programmed and locked only once. Note that  
the accelerated programming (ACC) and unlock bypass functions are not avail-  
able when programming the Customer SecSi Sector, but reading in Banks 1  
through 15 is available. The Customer SecSi Sector is located at addresses  
000080h–0000FFh.  
The Customer SecSi Sector area can be protected by writing the SecSi Sector  
Protection Bit Lock command sequence.  
Once the Customer SecSi Sector is locked and verified, the system must write the  
Exit SecSi Sector Region command sequence to return to reading and writing the  
memory array. The device returns to the memory array at sector 0.  
The Customer SecSi Sector lock must be used with caution since, once locked,  
there is no procedure available for unlocking the Customer SecSi Sector area and  
none of the bits in the Customer SecSi Sector memory space can be modified in  
any way.  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address (BA)555h any time the device is ready to read array  
49  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
data. The system can read CFI information at valid addresses within that bank  
(see Tables 14– 17). All reads outside of the CFI address range, within the bank,  
will return non-valid data. Reads from other banks are allowed, writes are not. To  
terminate reading CFI data, the system must write the reset command.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Please contact your sales office for copies of these documents.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
50  
Table 14. CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 15. System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0017h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0019h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0006h  
0009h  
000Ah  
0000h  
0003h  
004h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
003h  
0000h  
Table 16. Device Geometry Definition  
Addresses  
Data  
Description  
0019h (WS256N)  
0018h (WS128N)  
0017h (WS064N)  
Device Size = 2N byte  
27h  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ah  
2Bh  
0006h  
0000h  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0003h  
0000h  
0080h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
51  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 16. Device Geometry Definition (Continued)  
Addresses  
Data  
Description  
00FDh (WS256N)  
007Dh (WS128N)  
003Dh (WS064N)  
31h  
Erase Block Region 2 Information  
32h  
33h  
34h  
0000h  
0000h  
0002h  
35h  
36h  
37h  
38h  
0003h  
0000h  
0080h  
0000h  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Table 17. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0034h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
0100h  
Silicon Technology (Bits 5-2) 0100 = 0.11 µm  
Erase Suspend  
46h  
47h  
48h  
49h  
0002h  
0001h  
0000h  
0008h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
08 = Advanced Sector Protection  
00DFh (WS256N)  
006Fh (WS128N)  
0037h (WS064N)  
Simultaneous Operation  
Number of Sectors in all banks except boot bank  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
0001h  
0000h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page, 04 = 16 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
4Fh  
0085h  
0095h  
0001h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
0001h = Dual Boot Device  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
52  
Table 17. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
50h  
0001h  
Program Suspend. 00h = not supported  
Unlock Bypass  
51h  
0001h  
00 = Not Supported, 01=Supported  
SecSi Sector (Customer OTP Area) Size 2N bytes  
52h  
53h  
0007h  
0014h  
Hardware Reset Low Time-out during an embedded algorithm to read mode  
Maximum 2N ns  
Hardware Reset Low Time-out not during an embedded algorithm to read mode  
Maximum 2N ns  
54h  
0014h  
55h  
56h  
57h  
0005h  
0005h  
0010h  
Erase Suspend Time-out Maximum 2N ns  
Program Suspend Time-out Maximum 2N ns  
Bank Organization: X = Number of banks  
0013h (WS256N)  
000Bh (WS128N)  
0007h (WS064N)  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
Bank 0 Region Information. X = Number of sectors in bank  
Bank 1 Region Information. X = Number of sectors in bank  
Bank 2 Region Information. X = Number of sectors in bank  
Bank 3 Region Information. X = Number of sectors in bank  
Bank 4 Region Information. X = Number of sectors in bank  
Bank 5 Region Information. X = Number of sectors in bank  
Bank 6 Region Information. X = Number of sectors in bank  
Bank 7 Region Information. X = Number of sectors in bank  
Bank 8 Region Information. X = Number of sectors in bank  
Bank 9 Region Information. X = Number of sectors in bank  
Bank 10 Region Information. X = Number of sectors in bank  
Bank 11 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
53  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 17. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
64h  
Bank 12 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
65h  
66h  
67h  
Bank 13 Region Information. X = Number of sectors in bank  
Bank 14 Region Information. X = Number of sectors in bank  
Bank 15 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0013h (WS256N)  
000Bh (WS128N)  
0007h (WS064N)  
Table 18. WS256N Sector & Memory Address Map  
Bank  
Sector  
SA0  
Sector Size  
16 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
000000h-003FFFh  
004000h-007FFFh  
008000h-00BFFFh  
00C000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
0000000000  
0000000001  
0000000010  
0000000011  
00000001XX  
00000010XX  
00000011XX  
00000100XX  
00000101XX  
00000110XX  
00000111XX  
00001000XX  
00001001XX  
00001010XX  
00001011XX  
00001100XX  
00001101XX  
00001110XX  
00001111XX  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
Bank 0  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
54  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
00010000XX  
00010001XX  
00010010XX  
00010011XX  
00010100XX  
00010101XX  
00010110XX  
00010111XX  
00011000XX  
00011001XX  
00011010XX  
00011011XX  
00011100XX  
00011101XX  
00011110XX  
00011111XX  
00100000XX  
00100001XX  
00100010XX  
00100011XX  
00100100XX  
00100101XX  
00100110XX  
00100111XX  
00101000XX  
00101001XX  
00101010XX  
00101011XX  
00101100XX  
00101101XX  
00101110XX  
00101111XX  
Bank 1  
Bank 2  
55  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
400000h-40FFFFh  
410000h-41FFFFh  
420000h-42FFFFh  
430000h-43FFFFh  
440000h-44FFFFh  
450000h-45FFFFh  
460000h-46FFFFh  
470000h-47FFFFh  
480000h-48FFFFh  
490000h-49FFFFh  
4A0000h-4AFFFFh  
4B0000h-4BFFFFh  
4C0000h-4CFFFFh  
4D0000h-4DFFFFh  
4E0000h-4EFFFFh  
4F0000h-4FFFFFh  
00110000XX  
00110001XX  
00110010XX  
00110011XX  
00110100XX  
00110101XX  
00110110XX  
00110111XX  
00111000XX  
00111001XX  
00111010XX  
00111011XX  
00111100XX  
00111101XX  
00111110XX  
00111111XX  
01000000XX  
01000001XX  
01000010XX  
01000011XX  
01000100XX  
01000101XX  
01000110XX  
01000111XX  
01001000XX  
01001001XX  
01001010XX  
01001011XX  
01001100XX  
01001101XX  
01001110XX  
01001111XX  
Bank 3  
Bank 4  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
56  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA83  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
500000h-50FFFFh  
510000h-51FFFFh  
520000h-52FFFFh  
530000h-53FFFFh  
540000h-54FFFFh  
550000h-55FFFFh  
560000h-56FFFFh  
570000h-57FFFFh  
580000h-58FFFFh  
590000h-59FFFFh  
5A0000h-5AFFFFh  
5B0000h-5BFFFFh  
5C0000h-5CFFFFh  
5D0000h-5DFFFFh  
5E0000h-5EFFFFh  
5F0000h-5FFFFFh  
600000h-60FFFFh  
610000h-61FFFFh  
620000h-62FFFFh  
630000h-63FFFFh  
640000h-64FFFFh  
650000h-65FFFFh  
660000h-66FFFFh  
670000h-67FFFFh  
680000h-68FFFFh  
690000h-69FFFFh  
6A0000h-6AFFFFh  
6B0000h-6BFFFFh  
6C0000h-6CFFFFh  
6D0000h-6DFFFFh  
6E0000h-6EFFFFh  
6F0000h-6FFFFFh  
01010000XX  
01010001XX  
01010010XX  
01010011XX  
01010100XX  
01010101XX  
01010110XX  
01010111XX  
01011000XX  
01011001XX  
01011010XX  
01011011XX  
01011100XX  
01011101XX  
01011110XX  
01011111XX  
01100000XX  
01100001XX  
01100010XX  
01100011XX  
01100100XX  
01100101XX  
01100110XX  
01100111XX  
01101000XX  
01101001XX  
01101010XX  
01101011XX  
01101100XX  
01101101XX  
01101110XX  
01101111XX  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
Bank 5  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
Bank 6  
57  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
700000h-70FFFFh  
710000h-71FFFFh  
720000h-72FFFFh  
730000h-73FFFFh  
740000h-74FFFFh  
750000h-75FFFFh  
760000h-76FFFFh  
770000h-77FFFFh  
780000h-78FFFFh  
790000h-79FFFFh  
7A0000h-7AFFFFh  
7B0000h-7BFFFFh  
7C0000h-7CFFFFh  
7D0000h-7DFFFFh  
7E0000h-7EFFFFh  
7F0000h-7FFFFFh  
800000h-80FFFFh  
810000h-81FFFFh  
820000h-82FFFFh  
830000h-83FFFFh  
840000h-84FFFFh  
850000h-85FFFFh  
860000h-86FFFFh  
870000h-87FFFFh  
880000h-88FFFFh  
890000h-89FFFFh  
8A0000h-8AFFFFh  
8B0000h-8BFFFFh  
8C0000h-8CFFFFh  
8D0000h-8DFFFFh  
8E0000h-8EFFFFh  
8F0000h-8FFFFFh  
01110000XX  
01110001XX  
01110010XX  
01110011XX  
01110100XX  
01110101XX  
01110110XX  
01110111XX  
01111000XX  
01111001XX  
01111010XX  
01111011XX  
01111100XX  
01111101XX  
01111110XX  
01111111XX  
10000000XX  
10000001XX  
10000010XX  
10000011XX  
10000100XX  
10000101XX  
10000110XX  
10000111XX  
10001000XX  
10001001XX  
10001010XX  
10001011XX  
10001100XX  
10001101XX  
10001110XX  
10001111XX  
Bank 7  
Bank 8  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
58  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
900000h-90FFFFh  
910000h-91FFFFh  
920000h-92FFFFh  
930000h-93FFFFh  
940000h-94FFFFh  
950000h-95FFFFh  
960000h-96FFFFh  
970000h-97FFFFh  
980000h-98FFFFh  
990000h-99FFFFh  
9A0000h-9AFFFFh  
9B0000h-9BFFFFh  
9C0000h-9CFFFFh  
9D0000h-9DFFFFh  
9E0000h-9EFFFFh  
9F0000h-9FFFFFh  
A00000h-A0FFFFh  
A10000h-A1FFFFh  
A20000h-A2FFFFh  
A30000h-A3FFFFh  
A40000h-A4FFFFh  
A50000h-A5FFFFh  
A60000h-A6FFFFh  
A70000h-A7FFFFh  
A80000h-A8FFFFh  
A90000h-A9FFFFh  
AA0000h-AAFFFFh  
AB0000h-ABFFFFh  
AC0000h-ACFFFFh  
AD0000h-ADFFFFh  
AE0000h-AEFFFFh  
AF0000h-AFFFFFh  
10010000XX  
10010001XX  
10010010XX  
10010011XX  
10010100XX  
10010101XX  
10010110XX  
10010111XX  
10011000XX  
10011001XX  
10011010XX  
10011011XX  
10011100XX  
10011101XX  
10011110XX  
10011111XX  
10100000XX  
10100001XX  
10100010XX  
10100011XX  
10100100XX  
10100101XX  
10100110XX  
10100111XX  
10101000XX  
10101001XX  
10101010XX  
10101011XX  
10101100XX  
10101101XX  
10101110XX  
10101111XX  
Bank 9  
Bank 10  
59  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
B00000h-B0FFFFh  
B10000h-B1FFFFh  
B20000h-B2FFFFh  
B30000h-B3FFFFh  
B40000h-B4FFFFh  
B50000h-B5FFFFh  
B60000h-B6FFFFh  
B70000h-B7FFFFh  
B80000h-B8FFFFh  
B90000h-B9FFFFh  
BA0000h-BAFFFFh  
BB0000h-BBFFFFh  
BC0000h-BCFFFFh  
BD0000h-BDFFFFh  
BE0000h-BEFFFFh  
BF0000h-BFFFFFh  
C00000h-C0FFFFh  
C10000h-C1FFFFh  
C20000h-C2FFFFh  
C30000h-C3FFFFh  
C40000h-C4FFFFh  
C50000h-C5FFFFh  
C60000h-C6FFFFh  
C70000h-C7FFFFh  
C80000h-C8FFFFh  
C90000h-C9FFFFh  
CA0000h-CAFFFFh  
CB0000h-CBFFFFh  
CC0000h-CCFFFFh  
CD0000h-CDFFFFh  
CE0000h-CEFFFFh  
CF0000h-CFFFFFh  
10110000XX  
10110001XX  
10110010XX  
10110011XX  
10110100XX  
10110101XX  
10110110XX  
10110111XX  
10111000XX  
10111001XX  
10111010XX  
10111011XX  
10111100XX  
10111101XX  
10111110XX  
10111111XX  
11000000XX  
11000001XX  
11000010XX  
11000011XX  
11000100XX  
11000101XX  
11000110XX  
11000111XX  
11001000XX  
11001001XX  
11001010XX  
11001011XX  
11001100XX  
11001101XX  
11001110XX  
11001111XX  
Bank 11  
Bank 12  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
60  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A23–A14  
(x16) Address Range  
D00000h-D0FFFFh  
D10000h-D1FFFFh  
D20000h-D2FFFFh  
D30000h-D3FFFFh  
D40000h-D4FFFFh  
D50000h-D5FFFFh  
D60000h-D6FFFFh  
D70000h-D7FFFFh  
D80000h-D8FFFFh  
D90000h-D9FFFFh  
DA0000h-DAFFFFh  
DB0000h-DBFFFFh  
DC0000h-DCFFFFh  
DD0000h-DDFFFFh  
DE0000h-DEFFFFh  
DF0000h-DFFFFFh  
E00000h-E0FFFFh  
E10000h-E1FFFFh  
E20000h-E2FFFFh  
E30000h-E3FFFFh  
E40000h-E4FFFFh  
E50000h-E5FFFFh  
E60000h-E6FFFFh  
E70000h-E7FFFFh  
E80000h-E8FFFFh  
E90000h-E9FFFFh  
EA0000h-EAFFFFh  
EB0000h-EBFFFFh  
EC0000h-ECFFFFh  
ED0000h-EDFFFFh  
EE0000h-EEFFFFh  
EF0000h-EFFFFFh  
11010000XX  
11010001XX  
11010010XX  
11010011XX  
11010100XX  
11010101XX  
11010110XX  
11010111XX  
11011000XX  
11011001XX  
11011010XX  
11011011XX  
11011100XX  
11011101XX  
11011110XX  
11011111XX  
11100000XX  
11100001XX  
11100010XX  
11100011XX  
11100100XX  
11100101XX  
11100110XX  
11100111XX  
11101000XX  
11101001XX  
11101010XX  
11101011XX  
11101100XX  
11101101XX  
11101110XX  
11101111XX  
Bank 13  
Bank 14  
61  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 18. WS256N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
A23–A14  
(x16) Address Range  
F00000h-F0FFFFh  
F10000h-F1FFFFh  
F20000h-F2FFFFh  
F30000h-F3FFFFh  
F40000h-F4FFFFh  
F50000h-F5FFFFh  
F60000h-F6FFFFh  
F70000h-F7FFFFh  
F80000h-F8FFFFh  
F90000h-F9FFFFh  
FA0000h-FAFFFFh  
FB0000h-FBFFFFh  
FC0000h-FCFFFFh  
FD0000h-FDFFFFh  
FE0000h-FEFFFFh  
FF0000h-FF3FFFh  
FF4000h-FF7FFFh  
FF8000h-FFBFFFh  
FFC000h-FFFFFFh  
11110000XX  
11110001XX  
11110010XX  
11110011XX  
11110100XX  
11110101XX  
11110110XX  
11110111XX  
11111000XX  
11111001XX  
11111010XX  
11111011XX  
11111100XX  
11111101XX  
11111110XX  
1111111100  
1111111101  
1111111110  
1111111111  
Bank 15  
Table 19. WS128N Sector & Memory Address Map  
Bank  
Sector  
SA0  
Sector Size  
16 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A22–A14  
(x16) Address Range  
000000h-003FFFh  
004000h-007FFFh  
008000h-00BFFFh  
00C000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
000000000  
000000001  
000000010  
000000011  
0000001XX  
0000010XX  
0000011XX  
0000100XX  
0000101XX  
0000110XX  
0000111XX  
0001000XX  
0001001XX  
0001010XX  
0001011XX  
0001100XX  
0001101XX  
0001110XX  
0001111XX  
SA1  
SA2  
SA3  
SA4  
Bank 0  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
Bank 1  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
62  
Table 19. WS128N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A22–A14  
(x16) Address Range  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
0010000XX  
0010001XX  
0010010XX  
0010011XX  
0010100XX  
0010101XX  
0010110XX  
0010111XX  
0011000XX  
0011001XX  
0011010XX  
0011011XX  
0011100XX  
0011101XX  
0011110XX  
0011111XX  
0100000XX  
0100001XX  
0100010XX  
0100011XX  
0100100XX  
0100101XX  
0100110XX  
0100111XX  
0101000XX  
0101001XX  
0101010XX  
0101011XX  
0101100XX  
0101101XX  
0101110XX  
0101111XX  
0110000XX  
0110001XX  
0110010XX  
0110011XX  
0110100XX  
0110101XX  
0110110XX  
0110111XX  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
63  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 19. WS128N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A22–A14  
(x16) Address Range  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
400000h-40FFFFh  
410000h-41FFFFh  
420000h-42FFFFh  
430000h-43FFFFh  
440000h-44FFFFh  
450000h-45FFFFh  
460000h-46FFFFh  
470000h-47FFFFh  
480000h-48FFFFh  
490000h-49FFFFh  
4A0000h-4AFFFFh  
4B0000h-4BFFFFh  
4C0000h-4CFFFFh  
4D0000h-4DFFFFh  
4E0000h-4EFFFFh  
4F0000h-4FFFFFh  
500000h-50FFFFh  
510000h-51FFFFh  
520000h-52FFFFh  
530000h-53FFFFh  
540000h-54FFFFh  
550000h-55FFFFh  
560000h-56FFFFh  
570000h-57FFFFh  
580000h-58FFFFh  
590000h-59FFFFh  
5A0000h-5AFFFFh  
5B0000h-5BFFFFh  
5C0000h-5CFFFFh  
5D0000h-5DFFFFh  
5E0000h-5EFFFFh  
5F0000h-5FFFFFh  
0111000XX  
0111001XX  
0111010XX  
0111011XX  
0111100XX  
0111101XX  
0111110XX  
0111111XX  
1000000XX  
1000001XX  
1000010XX  
1000011XX  
1000100XX  
1000101XX  
1000110XX  
1000111XX  
1001000XX  
1001001XX  
1001010XX  
1001011XX  
1001100XX  
1001101XX  
1001110XX  
1001111XX  
1010000XX  
1010001XX  
1010010XX  
1010011XX  
1010100XX  
1010101XX  
1010110XX  
1010111XX  
1011000XX  
1011001XX  
1011010XX  
1011011XX  
1011100XX  
1011101XX  
1011110XX  
1011111XX  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
64  
Table 19. WS128N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA99  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
A22–A14  
(x16) Address Range  
600000h-60FFFFh  
610000h-61FFFFh  
620000h-62FFFFh  
630000h-63FFFFh  
640000h-64FFFFh  
650000h-65FFFFh  
660000h-66FFFFh  
670000h-67FFFFh  
680000h-68FFFFh  
690000h-69FFFFh  
6A0000h-6AFFFFh  
6B0000h-6BFFFFh  
6C0000h-6CFFFFh  
6D0000h-6DFFFFh  
6E0000h-6EFFFFh  
6F0000h-6FFFFFh  
700000h-70FFFFh  
710000h-71FFFFh  
720000h-72FFFFh  
730000h-73FFFFh  
740000h-74FFFFh  
750000h-75FFFFh  
760000h-76FFFFh  
770000h-77FFFFh  
780000h-78FFFFh  
790000h-79FFFFh  
7A0000h-7AFFFFh  
7B0000h-7BFFFFh  
7C0000h-7CFFFFh  
7D0000h-7DFFFFh  
7E0000h-7EFFFFh  
7F0000h-7F3FFFh  
7F4000h-7F7FFFh  
7F8000h-7FBFFFh  
7FC000h-7FFFFFh  
1100000XX  
1100001XX  
1100010XX  
1100011XX  
1100100XX  
1100101XX  
1100110XX  
1100111XX  
1101000XX  
1101001XX  
1101010XX  
1101011XX  
1101100XX  
1101101XX  
1101110XX  
1101111XX  
1110000XX  
1110001XX  
1110010XX  
1110011XX  
1110100XX  
1110101XX  
1110110XX  
1110111XX  
1111000XX  
1111001XX  
1111010XX  
1111011XX  
1111100XX  
1111101XX  
1111110XX  
111111100  
111111101  
111111110  
111111111  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
Bank 12  
Bank 13  
Bank 14  
Bank 15  
65  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 20. WS064N Sector & Memory Address Map  
Bank  
Sector  
SA0  
Sector Size  
16 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
A21–A14  
(x16) Address Range  
000000h-003FFFh  
004000h-007FFFh  
008000h-00BFFFh  
00C000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
00000000  
00000001  
00000010  
00000011  
000001XX  
000010XX  
000011XX  
000100XX  
000101XX  
000110XX  
000111XX  
001000XX  
001001XX  
001010XX  
001011XX  
001100XX  
001101XX  
001110XX  
001111XX  
010000XX  
010001XX  
010010XX  
010011XX  
010100XX  
010101XX  
010110XX  
010111XX  
011000XX  
011001XX  
011010XX  
011011XX  
011100XX  
011101XX  
011110XX  
011111XX  
100000XX  
100001XX  
100010XX  
100011XX  
SA1  
SA2  
Bank 0  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
66  
Table 20. WS064N Sector & Memory Address Map (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
16 Kwords  
A21–A14  
(x16) Address Range  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3F3FFFh  
3F4000h-3F7FFFh  
3F8000h-3FBFFFh  
3FC000h-3FFFFFh  
100100XX  
100101XX  
100110XX  
100111XX  
101000XX  
101001XX  
101010XX  
101011XX  
101100XX  
101101XX  
101110XX  
101111XX  
110000XX  
110001XX  
110010XX  
110011XX  
110100XX  
110101XX  
110110XX  
110111XX  
111000XX  
111001XX  
111010XX  
111011XX  
111100XX  
111101XX  
111110XX  
11111100  
11111101  
11111110  
11111111  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
Bank 14  
Bank 15  
67  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. The Command Definition Summary section  
defines the valid register command sequences. Writing incorrect address and  
data values or writing them in the improper sequence may place the device in an  
unknown state. The system must write the reset command to return the device  
to reading array data. See “AC Characteristics—Synchronous” and “AC Charac-  
teristics—Asynchronous” for timing diagrams.  
Reading Array Data  
The device is automatically set to reading asynchronous array data after device  
power-up. No commands are required to retrieve data in asynchronous mode.  
Each bank is ready to read array data after completing an Embedded Program or  
Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank  
enters the erase-suspend-read mode, after which the system can read data from  
any non-erase-suspended sector within the same bank. After completing a pro-  
gramming operation in the Erase Suspend mode, the system may once again  
read array data from any non-erase-suspended sector within the same bank. See  
Erase Suspend/Erase Resume Commands for more information.  
After the device accepts a Program Suspend command, the corresponding bank  
enters the program-suspend-read mode, after which the system can read data  
from any non-program-suspended sector within the same bank. See Program  
Suspend/Program Resume Commands for more information.  
The system must issue the reset command to return a bank to the read (or erase-  
suspend-read) mode if DQ5 goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See Reset Command for more  
information. If DQ1 goes high during Write Buffer Programming, the system must  
issue the Write Buffer Abort Reset command.  
See also Requirements for Asynchronous (Non-Burst) Read Operation and Re-  
quirements for Synchronous (Burst) Read Operation for more information. The  
Asynchronous Read and Synchronous/Burst Read tables provide the read param-  
eters, and Figure 13, and Figure 17 show the timings.  
Set Configuration Register Command Sequence  
The device uses a configuration register to set the various burst parameters:  
number of wait states, burst read mode, RDY configuration, and synchronous  
mode active (see Figure 24 for details). The configuration register must be set  
before the device will enter burst mode. On power up or reset, the device is set  
in asynchronous read mode and the configuration register is reset. The configu-  
ration register is not reset after deasserting CE#.  
The configuration register is loaded with a four-cycle command sequence. The  
first two cycles are standard unlock sequences. On the third cycle, the data  
should be D0h and address bits should be 555h. During the fourth cycle, the con-  
figuration code should be entered onto the data bus with the address bus set to  
address 000h. Once the data has been programmed into the configuration regis-  
ter, a software reset command is required to set the device into the correct state.  
The device will power up or after a hardware reset with the default setting, which  
is in asynchronous mode. The register must be set before the device can enter  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
68  
synchronous mode. The configuration register can not be changed during device  
operations (program, erase, or sector lock).  
Read Configuration Register Command Sequence  
The configuration register can be read with a four-cycle command sequence. The  
first two cycles are standard unlock sequences. On the third cycle, the data  
should be C6h and address bits should be 555h. During the fourth cycle, the con-  
figuration code should be read out of the data bus with the address bus set to  
address 000h. Once the data has been read from the configuration register, a  
software reset command is required to set the device into the array read mode.  
Power-up/  
Hardware Reset  
Asynchronous Read  
Mode Only  
Set Burst Mode  
Configuration Register  
Command for  
Set Burst Mode  
Configuration Register  
Command for  
Synchronous Mode  
(D15 = 0)  
Asynchronous Mode  
(D15 = 1)  
Synchronous Read  
Mode Only  
Figure 1. Synchronous/Asynchronous State Diagram  
Read Mode Setting  
This setting allows the system to enable or disable burst mode during system op-  
erations. Configuration Bit CR15 determines this setting: “1’ for asynchronous  
mode, “0” for synchronous mode.  
Programmable Wait State Configuration  
The programmable wait state feature informs the device of the number of clock  
cycles that must elapse after AVD# is driven active before data will be available.  
This value is determined by the input frequency of the device. Configuration Bit  
CR13–CR11 determine the setting (see Table 21).  
The wait state command sequence instructs the device to set a particular number  
of clock cycles for the initial access in burst mode. The number of wait states that  
should be programmed into the device is directly related to the clock frequency.  
69  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 21. Programmable Wait State Settings  
CR13  
0
CR12  
0
CR11  
0
Total Initial Access Cycles  
2
0
0
1
3
0
1
0
4
5
0
1
1
1
0
0
6
1
0
1
7 (default)  
Reserved  
Reserved  
1
1
0
1
1
1
Notes:  
1. Upon power-up or hardware reset, the default setting is seven wait states.  
2. RDY will default to being active with data when the Wait State Setting is set  
to a total initial access cycle of 2.  
It is recommended that the wait state command sequence be written, even if the  
default wait state value is desired, to ensure the device is set as expected. A  
hardware reset will set the wait state to the default setting.  
Programmable Wait State  
If the device is equipped with the handshaking option, the host system should set  
CR13-CR11 to 010 for a clock frequency of 54 MHz, to 011 for a clock frequency  
of 66 MHz, or to 100 for a clock frequency of 80 MHz for the system/device to  
execute at maximum speed.  
Table 22 describes the typical number of clock cycles (wait states) for various  
conditions.  
Boundary Crossing Latency  
If the device is operating above 66 MHz, an additional wait state must be inserted  
to account for boundary crossing latency. This is done by setting CR14 to a ‘1’  
(default). If the device is operating at or below 66 MHz, the additional wait state  
for boundary crossing is not needed. Therefore the CR14 can be changed to a ‘0’  
to remove boundary crossing latency.  
Table 22. Wait States for Handshaking  
Typical No. of Clock Cycles after AVD#  
Low  
Conditions at Address  
54 MHz  
66 MHz  
80 MHz  
Initial address (VIO = 1.8 V)  
4
5
6
Handshaking  
For optimal burst mode performance, the host system must set the appropriate  
number of wait states in the flash device depending on the clock frequency.  
The autoselect function allows the host system to determine whether the flash  
device is enabled for handshaking. See Autoselect Command Sequence for more  
information.  
Burst Length Configuration  
The device supports four different read modes: continuous mode, and 8, 16, and  
32 word linear with or without wrap around modes. A continuous sequence (de-  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
70  
fault) begins at the starting address and advances the address pointer until the  
burst operation is complete. If the highest address in the device is reached during  
the continuous burst read mode, the address pointer wraps around to the lowest  
address.  
For example, an eight-word linear read with wrap around begins on the starting  
address written to the device and then advances to the next 8 word boundary.  
The address pointer then returns to the 1st word after the previous eight word  
boundary, wrapping through the starting location. The sixteen- and thirty-two lin-  
ear wrap around modes operate in a fashion similar to the eight-word mode.  
Table 23 shows the CR2-CR0 and settings for the four read modes.  
Table 23. Burst Length Configuration  
Address Bits  
Burst Modes  
Continuous  
CR2  
0
CR1  
0
CR0  
0
8-word linear  
16-word linear  
32-word linear  
0
1
0
0
1
1
1
0
0
Note: Upon power-up or hardware reset the default setting is continuous.  
Burst Wrap Around  
By default, the device will perform burst wrap around with CR3 set to a ‘1.  
Changing the CR3 to a ‘0’ disables burst wrap around.  
RDY Configuration  
By default, the device is set so that the RDY pin will output V  
whenever there  
OH  
is valid data on the outputs. The device can be set so that RDY goes active one  
data cycle before active data. CR8 determines this setting; “1” for RDY active  
(default) with data, “0” for RDY active one clock cycle before valid data.  
RDY Polarity  
By default, the RDY pin will always indicate that the device is ready to handle a  
new transaction with CR10 set to a ‘1. In this case, the RDY pin is active high.  
Changing the CR10 to a ‘0’ sets the RDY pin to be active low. In this case, the  
RDY pin will always indicate that the device is ready to handle a new transaction  
when low.  
71  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Configuration Register  
Table 24 shows the address bits that determine the configuration register settings  
for various device functions.  
Table 24. Configuration Register  
CR Bit  
Function  
Settings (Binary)  
0 = Synchronous Read (Burst Mode) Enabled  
1 = Asynchronous Mode (default)  
CR15  
Set Device Read Mode  
0 = No extra boundary crossing latency  
CR14  
CR13  
Boundary Crossing  
1 = With extra boundary crossing latency (default)  
000 = Data is valid on the 2nd active CLK edge after addresses are latched  
001 = Data is valid on the 3rd active CLK edge after addresses are latched  
010 = Data is valid on the 4th active CLK edge after addresses are latched  
011 = Data is valid on the 5th active CLK edge after addresses are latched  
100 = Data is valid on the 6th active CLK edge after addresses are latched  
101 = Data is valid on the 7th active CLK edge after addresses are latched (default)  
110 = Reserved  
CR12  
Programmable  
Wait State  
CR11  
CR10  
111 = Reserved  
0 = RDY signal is active low  
RDY Polarity  
1 = RDY signal is active high (default)  
CR9  
CR8  
Reserved  
RDY  
1 = default  
0 = RDY active one clock cycle before data  
1 = RDY active with data (default)  
CR7  
CR6  
CR5  
CR4  
Reserved  
Reserved  
Reserved  
Reserved  
1 = default  
1 = default  
0 = default  
0 = default  
0 = No Wrap Around Burst  
1 = Wrap Around Burst (default)  
CR3  
CR2  
Burst Wrap Around  
000 = Continuous (default)  
010 = 8-Word Linear Burst  
011 = 16-Word Linear Burst  
100 = 32-Word Linear Burst  
(All other bit settings are reserved)  
CR1  
CR0  
Burst Length  
Note:  
1. Device will be in the default state upon power-up or hardware reset.  
2. If CR2 is set to ‘0’, then the CR3 bit will automatically revert to 1 regardless of the user setting.  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins (prior to the third cycle). This re-  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
72  
sets the bank to which the system was writing to the read mode. If the program  
command sequence is written to a bank that is in the Erase Suspend mode, writ-  
ing the reset command returns that bank to the erase-suspend-read mode. Once  
programming begins, however, the device ignores reset commands until  
the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while  
in the Erase Suspend mode, writing the reset command returns that bank to the  
erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the banks to the read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend and program-suspend-read mode if that bank was in Pro-  
gram Suspend).  
Note: If DQ1 goes high during a Write Buffer Programming operation, the system  
must write the “Write to Buffer Abort Reset” command sequence to RESET the  
device to reading array data. The standard RESET command will not work. See  
Table 17 for details on this command sequence.  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
The Command Definition Summary shows the address and data requirements.  
The autoselect command sequence may be written to an address within a bank  
that is either in the read or erase-suspend-read mode. The autoselect command  
may not be written while the device is actively programming or erasing in the  
other bank. Autoselect does not support simultaneous operations nor burst  
mode.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autoselect mode. The system may  
read at any address within the same bank any number of times without initiating  
another autoselect command sequence. Read commands to other banks will re-  
turn data from the array. Writes to other banks is not allowed. The following table  
describes the address requirements for the various autoselect functions, and the  
resulting data. BA represents the bank address. The device ID is read in three  
cycles.  
73  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 25. Autoselect Addresses  
Description  
Manufacturer ID  
Device ID, Word 1  
Address  
Read Data  
(BA) + 00h  
(BA) + 01h  
0001h  
227Eh  
2230 (WS256N)  
Device ID, Word 2  
Device ID, Word 3  
(BA) + 0Eh  
(BA) + 0Fh  
2232 (WS064N)  
2231 (WS128N)  
2200  
DQ15 - DQ8 = Reserved  
DQ7 (Factory Lock Bit): 1 = Locked, 0 = Not Locked  
DQ6 (Customer Lock Bit): 1 = Locked, 0 = Not Locked  
DQ5 (Handshake Bit): 1 = Reserved, 0 = Standard Handshake  
DQ4, DQ3 (WP# Protection Boot Code): 00 = WP# Protects both Top Boot and  
Bottom Boot Sectors. 01, 10, 11 = Reserved  
Indicator Bits  
(See Note)  
(BA) + 03h  
DQ2 = Reserved  
DQ1 (DYB Power up State [Lock Register DQ4]): 1 = Unlocked (user option), 0 =  
Locked (default)  
DQ0 (PPB Eraseability [Lock Register DQ3]): 1 = Erase allowed, 0 = Erase  
disabled  
Sector Block Lock/  
Unlock  
(SA) + 02h  
0001h = Locked, 0000h = Unlocked  
Note: For WS128N and WS064, DQ1 and DQ0 will be reserved.  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the bank was previously in Erase Suspend).  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence  
The SecSi Sector region provides a secured data area containing a random, eight  
word electronic serial number (ESN). The system can access the SecSi Sector re-  
gion by issuing the three-cycle Enter SecSi Sector command sequence. The  
device continues to access the SecSi Sector region until the system issues the  
four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector command  
sequence returns the device to normal operation. The SecSi Sector is not acces-  
sible when the device is executing an Embedded Program or embedded Erase  
algorithm. See Command Definition Summary for address and data requirements  
for both command sequences.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin (see Figure 2).  
When the Embedded Program algorithm is complete, the device then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7 or DQ6. Refer to the Write Op-  
eration Status section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored except the Program Suspend command. Note that the SecSi Sec-  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
74  
tor, autoselect, and CFI functions are unavailable when a program  
operation is in progress. Note that a hardware reset immediately terminates  
the program operation. The program command sequence should be reinitiated  
once the device has returned to the read mode, to ensure data integrity.  
Programming is allowed in any sequence and across sector boundaries. Program-  
ming to the same word address multiple times without intervening erases is  
limited. For such application requirements, please contact your local Spansion  
representative. A “0” cannot be programmed back to a “1.” Attempting to  
do so will cause the device to set DQ5 = 1 (halting any further operation and re-  
quiring a reset command). A succeeding read will show that the data is still “0.”  
Only erase operations can convert a “0” to a “1.See Figure 2.  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Command Definition Summary for program command sequence.  
Figure 2. Word Program Operation  
Write Buffer Programming Command Sequence  
Write Buffer Programming Command Sequence allows for faster programming  
compared to the standard Program Command Sequence. Write Buffer Program-  
ming allows the system to write up to 32 words in one programming operation.  
See Write Buffer Programming Operation section for the program command  
sequence.  
75  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 26. Write Buffer Command Sequence  
Sequence  
Address  
555  
Data  
00AA  
0055  
Comment  
Not required in the Unlock Bypass mode  
Same as above  
Unlock Command 1  
Unlock Command 2  
Write Buffer Load  
2AA  
Starting Address  
0025h  
Specify the Number of Program  
Locations  
Starting Address  
Starting Address  
Word Count  
Number of locations to program minus 1  
All addresses must be within write-buffer-page  
boundaries, but do not have to be loaded in any order  
Load 1st data word  
Program Data  
Write Buffer  
Location  
Load next data word  
...  
Program Data  
...  
Same as above  
Same as above  
Same as above  
...  
Write Buffer  
Location  
Load last data word  
Program Data  
This command must follow the last write buffer location  
loaded, or the operation will ABORT  
Write Buffer Program Confirm  
Device goes busy  
Sector Address  
0029h  
Status monitoring through DQ pins  
(Perform Data Bar Polling on the Last  
Loaded Address)  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
76  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Yes  
Buffer Operation?  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Read DQ15 - DQ0 at  
Last Loaded Address  
Yes  
DQ7 = Data?  
No  
No  
No  
DQ1 = 1?  
Yes  
DQ5 = 1?  
Yes  
Read DQ15 - DQ0 with  
address = Last Loaded  
Address  
Yes  
DQ7 = Data?  
No  
FAIL or ABORT  
PASS  
Figure 3. Write Buffer Programming Operation  
77  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Unlock Bypass Command Sequence  
The unlock bypass feature allows faster programming than the standard word  
program command sequence. The unlock bypass command sequence is initiated  
by first writing two unlock cycles. This is followed by a third write cycle containing  
the unlock bypass command, 20h. The device then enters the unlock bypass  
mode. A two-cycle unlock bypass program command sequence is all that is re-  
quired to program in this mode. The first cycle in this sequence contains the  
unlock bypass program command, A0h; the second cycle contains the program  
address and data. Additional data is programmed in the same manner. This mode  
dispenses with the initial two unlock cycles required in the standard program  
command sequence, resulting in faster total programming time. See Command  
Definition Summary for the unlock bypass command sequences requirements.  
During the unlock bypass mode, only the Read, Unlock Bypass Program, and Un-  
lock Bypass Reset commands are valid. To exit the unlock bypass mode, the  
system must issue the two-cycle unlock bypass reset command sequence. The  
first cycle must contain the bank address and the data 90h. The second cycle  
need only contain the data 00h. The bank then returns to the read mode.  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. See Command Definition Summary for chip erase  
command sequence address and data requirements.  
When the Embedded Erase algorithm is complete, that bank returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7 or DQ6/DQ2. See Write Operation Status for  
information on these status bits.  
Any commands written during the chip erase operation are ignored. However,  
note that a hardware reset immediately terminates the erase operation. If that  
occurs, the chip erase command sequence should be reinitiated once that bank  
has returned to reading array data, to ensure data integrity.  
Figure 4 illustrates the algorithm for the erase operation. See Erase/Program  
Timing for parameters and timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. See Command Definition  
Summary for sector erase command sequence address and data requirements.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
78  
After the command sequence is written, a sector erase time-out of no less than  
occurs. During the time-out period, additional sector addresses and sector  
t
SEA  
erase commands may be written. Loading the sector erase buffer may be done  
in any sequence, and the number of sectors may be from one sector to all sectors.  
The time between these additional cycles must be less than t  
. Any sector erase  
SEA  
address and command following the exceeded time-out (t  
) may or may not be  
SEA  
accepted. Any command other than Sector Erase or Erase Suspend during the  
time-out period resets that bank to the read mode.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See DQ3: Sector Erase Start Timeout State Indicator.) The time-out begins from  
the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading  
array data and addresses are no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read data from the non-erasing  
banks. The system can determine the status of the erase operation by reading  
DQ7 or DQ6/DQ2 in the erasing bank. See Write Operation Status for information  
on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
Figure 4 illustrates the algorithm for the erase operation. See Erase/Program  
Timing for parameters and timing diagrams.  
START  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Command Definition Summary for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Figure 4. Erase Operation  
79  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command allows the system to interrupt a sector erase oper-  
ation and then read data from, or program data to, any sector not selected for  
erasure. The bank address is required when writing this command. This com-  
mand is valid only during the sector erase operation, including the t  
time-out  
SEA  
period during the sector erase command sequence. The Erase Suspend command  
is ignored if written during the chip erase operation.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires t  
(erase suspend latency) to suspend the erase operation.  
ESL  
However, when the Erase Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-out period and suspends  
the erase operation.  
After the erase operation has been suspended, the bank enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to Table 30 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the  
erase-suspend-read mode. The system can determine the status of the program  
operation using the DQ7 or DQ6 status bits, just as in the standard program  
operation.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. See Write Buffer Programming Operation and the Autoselect  
Command Sequence for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command. The bank address of the erase-suspended bank is required when writ-  
ing this command. Further writes of the Resume command are ignored. Another  
Erase Suspend command can be written after the chip has resumed erasing.  
Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded  
programming operation or a “Write to Buffer” programming operation so that  
data can read from any non-suspended sector. When the Program Suspend com-  
mand is written during a programming process, the device halts the  
programming operation within t  
(program suspend latency) and updates the  
PSL  
status bits. Addresses are “don’t-cares” when writing the Program Suspend  
command.  
After the programming operation has been suspended, the system can read array  
data from any non-suspended sector. The Program Suspend command may also  
be issued during a programming operation while an erase is suspended. In this  
case, data may be read from any addresses not in Erase Suspend or Program  
Suspend. If a read is needed from the SecSi Sector area, then user must use the  
proper command sequences to enter and exit this region.  
The system may also write the autoselect command sequence when the device  
is in Program Suspend mode. The device allows reading autoselect codes in the  
suspended sectors, since the codes are not stored in the memory array. When the  
device exits the autoselect mode, the device reverts to Program Suspend mode,  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
80  
and is ready for another valid operation. See “Autoselect Command Sequence”  
for more information.  
After the Program Resume command is written, the device reverts to program-  
ming. The system can determine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard program operation. See “Write  
Operation Status” for more information.  
The system must write the Program Resume command (address bits are “don’t  
care”) to exit the Program Suspend mode and continue the programming opera-  
tion. Further writes of the Program Resume command are ignored. Another  
Program Suspend command can be written after the device has resumed  
programming.  
Lock Register Command Set Definitions  
The Lock Register Command Set permits the user to program the SecSi Sector  
Protection Bit, Persistent Protection Mode Lock Bit, or Password Protection Mode  
Lock Bit one time. The Lock Command Set also allows for the reading of the SecSi  
Sector Protection Bit, Persistent Protection Mode Lock Bit, or Password Protection  
Mode Lock Bit.  
The Lock Register Command Set Entry command sequence must be issued  
prior to any of the following commands to enable proper command execution.  
„ Lock Register Program Command  
„ Lock Register Read Command  
„ Lock Register Exit Command  
Note that issuing the Lock Register Command Set Entry command disables reads  
and writes for Bank 0. Reads from other banks excluding Bank 0 are allowed.  
The Lock Register Command Set Exit command must be issued after the execu-  
tion of the commands to reset the device to read mode, and re-enables reads and  
writes for Bank 0.  
Note that if the Persistent Protection Mode Locking Bit and the Password Protec-  
tion Mode Locking Bit are programmed at the same time, neither will be  
programmed.  
Password Protection Command Set Definitions  
The Password Protection Command Set permits the user to program the 64-bit  
password, verify the programming of the 64-bit password, and then later unlock  
the device by issuing the valid 64-bit password.  
The Password Protection Command Set Entry command sequence must be  
issued prior to any of the following commands to enable proper command  
execution.  
„ Password Program Command  
„ Password Read Command  
„ Password Unlock Command  
Note that issuing the Password Protection Command Set Entry command  
disables reads and writes for Bank 0. Reads and writes for other banks excluding  
Bank 0 are allowed.  
The Password Program Command permits programming the password that is  
used as part of the hardware protection scheme. The actual password is 64 bits  
81  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
long. There is no special addressing order required for programming the  
password.  
Once the Password is written and verified, the Password Mode Locking Bit must  
be set in order to prevent verification. The Password Program Command is only  
capable of programming “0”s. Programming a “1” after a cell is programmed as  
a “0” results in a time-out by the Embedded Program Algorithm with the cell re-  
maining as a “0. The password is all “1”s when shipped from the factory. All 64-  
bit password combinations are valid as a password.  
The Password Verify Command is used to verify the Password. The Password is  
verifiable only when the Password Mode Locking Bit is not programmed. If the  
Password Mode Locking Bit is programmed and the user attempts to verify the  
Password, the device will always drive all “1”s onto the DQ data bus.  
The lower two address bits (A1–A0) are valid during the Password Read, Pass-  
word Program, and Password Unlock.  
The Password Unlock command is used to clear the PPB Lock Bit so that the PPBs  
can be unlocked for modification, thereby allowing the PPBs to become accessible  
for modification. The exact password must be entered in order for the unlocking  
function to occur. This command cannot be issued any faster than 1 µs at a time  
to prevent a hacker from running through all the 64-bit combinations in an at-  
tempt to correctly match a password. If the command is issued before the 1 µs  
execution window for each portion of the unlock, the command will be ignored.  
The Password Unlock function is accomplished by writing Password Unlock com-  
mand and data to the device to perform the clearing of the PPB Lock Bit. The  
password is 64 bits long. A1 and A0 are used for matching. Writing the Password  
Unlock command does not need to be address order specific. An example se-  
quence is starting with the lower address A1–A0= 00, followed by A1–A0= 01,  
A1–A0= 10, and A1–A0= 11.  
Approximately 1 µSec is required for unlocking the device after the valid 64-bit  
password is given to the device. It is the responsibility of the microprocessor to  
keep track of the 64-bit password as it is entered with the Password Unlock com-  
mand, the order, and when to read the PPB Lock bit to confirm successful  
password unlock. In order to re-lock the device into the Password Mode, the PPB  
Lock Bit Set command can be re-issued.  
The Password Protection Command Set Exit command must be issued after  
the execution of the commands listed previously to reset the device to read  
mode, otherwise the device will hang. Note that issuing the Password Protec-  
tion Command Set Exit command re-enables reads and writes for Bank 0.  
Non-Volatile Sector Protection Command Set Definitions  
The Non-Volatile Sector Protection Command Set permits the user to program the  
Persistent Protection Bits (PPBs), erase all of the Persistent Protection Bits (PPBs),  
and read the logic state of the Persistent Protection Bits (PPBs).  
The Non-Volatile Sector Protection Command Set Entry command se-  
quence must be issued prior to any of the following commands to enable proper  
command execution.  
„ PPB Program Command  
„ All PPB Erase Command  
„ PPB Status Read Command  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
82  
Note that issuing the Non-Volatile Sector Protection Command Set Entry  
command disables reads and writes for the bank selected. Reads within that bank  
will return the PPB status for that sector. Reads from other banks are allowed;  
writes are not allowed. All Reads must be performed using the Asynchronous  
mode.  
The PPB Program command is used to program, or set, a given PPB. Each PPB is  
individually programmed (but is bulk erased with the other PPBs). The specific  
sector address (A23–A14 WS256N, A22–A14 WS128N, A21–A14 WS064N) are  
written at the same time as the program command. If the PPB Lock Bit is set, the  
PPB Program command will not execute and the command will time-out without  
programming the PPB.  
The All PPB Erase command is used to erase all PPBs in bulk. There is no means  
for individually erasing a specific PPB. Unlike the PPB program, no specific sector  
address is required. However, when the PPB erase command is written, all Sector  
PPBs are erased in parallel. If the PPB Lock Bit is set the ALL PPB Erase command  
will not execute and the command will time-out without erasing the PPBs.  
The device will preprogram all PPBs prior to erasing when issuing the All PPB  
Erase command. Also note that the total number of PPB program/erase cycles has  
the same endurance as the flash memory array.  
The programming state of the PPB for a given sector can be verified by writing a  
PPB Status Read Command to the device.  
The Non-Volatile Sector Protection Command Set Exit command must be  
issued after the execution of the commands listed previously to reset the device  
to read mode. Note that issuing the Non-Volatile Sector Protection Com-  
mand Set Exit command re-enables reads and writes for Bank 0.  
83  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Enter PPB  
Command Set.  
Addr = BA  
Program PPB Bit.  
Addr = SA  
Read Byte.  
Addr = SA0  
Read Byte.  
Addr = SA0  
No  
DQ6 =  
Toggle?  
Yes  
DQ5 = 1?  
Yes  
Read Byte Twice.  
Addr = SA0  
No  
Read Byte.  
Addr = SA  
DQ6 =  
Toggle?  
Yes  
DQ0 =  
No  
'1' (Erase)  
'0' (Pgm.)?  
FAIL  
Yes  
Issue Reset  
Command  
PASS  
Exit PPB  
Command Set  
Figure 5. PPB Program/Erase Algorithm  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
84  
Global Volatile Sector Protection Freeze Command Set  
The Global Volatile Sector Protection Freeze Command Set permits the user to set  
the PPB Lock Bit and read the logic state of the PPB Lock Bit.  
The Volatile Sector Protection Freeze Command Set Entry command se-  
quence must be issued prior to any of the commands listed following to enable  
proper command execution:  
„ PPB Lock Bit Set Command  
„ PPB Lock Bit Status Read Command  
Reads from all non-busy remaining 15 banks are allowed.  
The PPB Lock Bit Set command is used to set the PPB Lock bit if it is cleared either  
at reset or if the Password Unlock command was successfully executed. There is  
no PPB Lock Bit Clear command. Once the PPB Lock Bit is set, it cannot be cleared  
unless the device is taken through a power-on clear (for Persistent Sector Protec-  
tion Mode) or the Password Unlock command is executed (for Password Sector  
Protection Mode). If the Password Mode Locking Bit is set, the PPB Lock Bit status  
is reflected as set, even after a power-on reset cycle.  
The programming state of the PPB Lock Bit can be verified by executing a PPB  
Lock Bit Status Read Command to the device.  
The Global Volatile Sector Protection Freeze Command Set Exit command  
must be issued after the execution of the commands listed previously to reset the  
device to read mode.  
Volatile Sector Protection Command Set  
The Volatile Sector Protection Command Set permits the user to set the Dynamic  
Protection Bit (DYB), clear the Dynamic Protection Bit (DYB), and read the logic  
state of the Dynamic Protection Bit (DYB).  
The Volatile Sector Protection Command Set Entry command sequence  
must be issued prior to any of the following commands to enable proper com-  
mand execution.  
„ DYB Set Command  
„ DYB Clear Command  
„ DYB Status Read Command  
Note that issuing the Volatile Sector Protection Command Set Entry com-  
mand disables reads and writes for the bank selected with the command. Reads  
within that bank will return the DYB status for that sector. Writes within that bank  
will set the DYB for that sector. Reads for other banks excluding that bank are  
allowed; writes are not allowed. All Reads must be performed using the Asyn-  
chronous mode.  
The DYB Set/Clear command is used to set or clear a DYB for a given sector. The  
high order address bits (A23–A14 for the WS256N, A22–A14 for the WS128N,  
A21–A14 for the WS064N) are issued at the same time as the code 00h or 01h  
on DQ7-DQ0. All other DQ data bus pins are ignored during the data write cycle.  
The DYBs are modifiable at any time, regardless of the state of the PPB or PPB  
Lock Bit. The DYBs are cleared at power-up or hardware reset.  
The programming state of the DYB for a given sector can be verified by writing a  
DYB Status Read Command to the device.  
The Volatile Sector Protection Command Set Exit command must be issued  
after the execution of the commands listed previously to reset the device to read  
85  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
mode. Note that issuing the Volatile Sector Protection Command Set Exit  
command re-enables reads and writes for Bank 0.  
SecSi Sector Entry Command  
The SecSi Sector Entry Command allows the following commands to be executed  
„ Read from SecSi Sector  
„ Program to SecSi Sector  
Sector 0 is remapped from memory array to SecSi Sector array. Reads can be  
performed using the Asynchronous or Synchronous mode. Burst mode reads  
within SecSi Sector will wrap from address FFh back to address 00h. Reads out-  
side of sector 0 will return memory array data. Continuous burst read past the  
maximum address is undefined.  
Simultaneous operations are allowed except for Bank 0. Once the SecSi Sector  
Entry Command is issued, the SecSi Sector Exit command has to be issued to exit  
SecSi Sector Mode.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
86  
Command Definition Summary  
Table 27. Memory Array Commands  
Bus Cycles (Notes 1–5)  
Third Fourth  
Addr  
First  
Addr  
Second  
Fifth  
Addr  
Sixth  
Addr Data  
Command Sequence  
(Notes)  
Data  
RD  
Addr  
Data  
Data  
Addr  
Data  
Data  
Asynchronous Read (6)  
Reset (7)  
Manufacturer ID  
1
1
4
6
RA  
XXX  
555  
555  
F0  
AA  
2AA  
2AA  
55  
55  
[BA]555  
[BA]555  
90  
90  
[BA]X00  
[BA]X01  
0001  
227E  
Device ID (9)  
AA  
BA+X0E  
PA  
Data  
PD  
BA+X0F 2200  
Indicator Bits (10)  
4
555  
AA  
2AA  
55  
[BA]555  
90  
[BA]X03  
Data  
Program  
4
6
1
3
6
6
1
1
4
4
1
3
2
1
555  
555  
SA  
AA  
AA  
29  
AA  
AA  
AA  
B0  
30  
AA  
AA  
98  
AA  
A0  
98  
2AA  
2AA  
55  
55  
555  
PA  
A0  
25  
PA  
PA  
PD  
Write to Buffer (11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (12)  
Chip Erase  
WC  
WBL  
PD  
555  
555  
555  
BA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
F0  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase/Program Suspend (13)  
Erase/Program Resume (14)  
Set Configuration Register (18)  
Read Configuration Register  
CFI Query (15)  
BA  
555  
555  
[BA]555  
555  
XXX  
XXX  
2AA  
2AA  
55  
55  
555  
555  
D0  
C6  
X00  
X00  
CR  
CR  
Entry  
2AA  
PA  
55  
PD  
555  
20  
Program (16)  
CFI (16)  
Reset  
2
XXX  
90  
XXX  
00  
Entry  
3
4
1
555  
555  
00  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
A0  
Program (17)  
Read (17)  
PA  
PD  
00  
Data  
Exit (17)  
4
555  
AA  
2AA  
55  
555  
90  
XXX  
Legend:  
X = Don’t care.  
RA = Read Address.  
RD = Read Data.  
PA = Program Address. Addresses latch on the rising edge of the  
AVD# pulse or active edge of CLK, whichever occurs first.  
SA = Sector Address. WS256N = A23–A14; WS128N = A22–A14;  
WS064N = A21–A14.  
BA = Bank Address. WS256N = A23–A20; WS128N = A22–A20;  
WS064N = A21–A18.  
CR = Configuration Register data bits D15–D0.  
WBL = Write Buffer Location. Address must be within the same write  
buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
PD = Program Data. Data latches on the rising edge of WE# or CE#  
pulse, whichever occurs first.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
12. Command sequence resets device for next command after write-  
to-buffer operation.  
13. System may read and program in non-erasing sectors, or enter  
the autoselect mode, when in the Erase Suspend mode. The  
Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
14. Erase Resume command is valid only during the Erase Suspend  
mode, and requires the bank address.  
15. Command is valid when device is ready to read array data or  
when device is in autoselect mode. Address will equal 55h on all  
future devices, but 555h for WS256N/128N/064N.  
16. Requires Entry command sequence prior to execution. Unlock  
Bypass Reset command is required to return to reading array  
data.  
3. Shaded cells indicate read cycles.  
4. Address and data bits not specified in table, legend, or notes are  
don’t cares (each hex digit implies 4 bits of data).  
5. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state.  
The system must write the reset command to return the device  
to reading array data.  
6. No unlock or command cycles required when bank is reading  
array data.  
7. Reset command is required to return to reading array data (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a bank is in the autoselect mode, or if DQ5 goes high  
(while the bank is providing status information) or performing  
sector lock/unlock.  
17. Requires Entry command sequence prior to execution. SecSi  
Sector Exit Reset command is required to exit this mode; device  
may otherwise be placed in an unknown state.  
8. The system must provide the bank address. See Autoselect  
18. Requires reset command to configure the Configuration Register.  
Command Sequence section for more information.  
9. Data in cycle 5 is 2230 (WS256N), 2232 (WS064N), or 2231  
(WS128N).  
10. See Table 25 for indicator bit values.  
11. Total number of cycles in the command sequence is determined  
by the number of words written to the write buffer. The number  
of cycles in the command sequence is 37 for full page  
programming (32 words).  
87  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Table 28. Sector Protection Commands  
Bus Cycles (Notes 1–4)  
Third Fourth  
Addr Data Addr Data Addr Data Addr Data  
First  
Second  
Fifth  
Sixth  
Seventh  
Command Sequence  
(Notes)  
Addr  
Data  
AA  
Addr  
Data  
55  
Addr  
Data  
Command Set Entry (5)  
3
2
1
2
3
2
4
7
2
3
2
2
1
2
3
2
1
555  
XX  
2AA  
77  
555  
40  
Lock  
Register  
Bits  
Program (6)  
A0  
data  
Read (6)  
77  
data  
90  
Command Set Exit (7)  
Command Set Entry (5)  
Program [0-3] (8)  
Read (9)  
XX  
XX  
2AA  
00  
00  
55  
555  
XX  
AA  
555  
60  
A0  
PWD[0-3]  
PWD1  
03  
Password  
Protection  
0...00 PWD0 0...01  
0...02  
00  
PWD2 0...03 PWD3  
Unlock  
00  
XX  
555  
XX  
XX  
SA  
25  
90  
00  
XX  
PWD0  
01  
PWD1  
02  
PWD2  
03  
PWD3  
00  
29  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Program (10)  
All PPB Erase (10, 11)  
PPB Status Read  
00  
AA  
2AA  
SA  
55  
[BA]555  
C0  
A0  
00  
Non-Volatile  
Sector  
Protection (PPB)  
80  
00  
30  
RD(0)  
90  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Lock Bit Set  
XX  
555  
XX  
BA  
XX  
2AA  
XX  
00  
55  
00  
Global  
Volatile Sector  
Protection  
Freeze  
AA  
[BA]555  
[BA]555  
50  
E0  
A0  
PPB Lock Bit Status Read  
RD(0)  
Command Set Exit (7)  
Command Set Entry (5)  
DYB Set  
2
3
2
2
1
2
XX  
555  
XX  
XX  
SA  
90  
AA  
XX  
2AA  
SA  
00  
55  
00  
01  
(PPB Lock)  
A0  
Volatile Sector  
Protection  
(DYB)  
DYB Clear  
A0  
SA  
DYB Status Read  
Command Set Exit (7)  
RD(0)  
90  
XX  
XX  
00  
Legend:  
X = Don’t care.  
RA = Address of the memory location to be read.  
PD(0) = SecSi Sector Lock Bit. PD(0), or bit[0].  
PD(1) = Persistent Protection Mode Lock Bit. PD(1), or bit[1], must  
be set to ‘0’ for protection while PD(2), bit[2] must be left as ‘1’.  
PD(2) = Password Protection Mode Lock Bit. PD(2), or bit[2], must  
be set to ‘0’ for protection while PD(1), bit[1] must be left as ‘1’.  
BA = Bank Address. WS256N = A23–A20; WS128N = A22–A20;  
WS064N = A21–A18.  
PWD3–PWD0 = Password Data. PD3–PD0 present four 16 bit  
combinations that represent the 64-bit Password  
PWA = Password Address. Address bits A1 and A0 are used to select  
each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
RD(0), RD(1), RD(2) = DQ0, DQ1, or DQ2 protection indicator bit. If  
protected, DQ0, DQ1, or DQ2 = 0. If unprotected, DQ0, DQ1,  
DQ2 = 1.  
PD(3) = Protection Mode OTP Bit. PD(3) or bit[3].  
SA = Sector Address. WS256N = A23–A14; WS128N = A22–A14;  
WS064N = A21–A14.  
Notes:  
1. All values are in hexadecimal.  
6. If both the Persistent Protection Mode Locking Bit and the  
Password Protection Mode Locking Bit are set at the same time,  
the command operation will abort and return the device to the  
default Persistent Sector Protection Mode during 2nd bus cycle.  
Note that on all future devices, addresses will equal 00h, but are  
currently 77h for WS256N, WS128N, and WS064N. See Table 11  
for explanation of lock bits.  
2. Shaded cells indicate read cycles.  
3. Address and data bits not specified in table, legend, or notes are  
don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state.  
The system must write the reset command to return the device  
to reading array data.  
5. Entry commands are required to enter a specific mode to enable  
instructions only available within that mode.  
7. Exit command must be issued to reset the device into read  
mode; device may otherwise be placed in an unknown state.  
8. Entire two bus-cycle sequence must be entered for each portion  
of the password.  
9. Full address range is required for reading password.  
10. See Figure 5 for details.  
11. “All PPB Erase” command will pre-program all PPBs before  
erasure to prevent over-erasure.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
88  
Write Operation Status  
The device provides several bits to determine the status of a program or erase  
operation: DQ1, DQ2, DQ3, DQ5, DQ6, and DQ7. Table 30 and the following sub-  
sections describe the function of these bits. DQ7 and DQ6 each offers a method  
for determining whether a program or erase operation is complete or in progress.  
Please see the figure below for the general purpose data polling algorithm.  
START  
Read 1  
(Note 6)  
YES  
Erase  
Operation  
Complete  
DQ7=valid  
data?  
NO  
YES  
YES  
Read 2  
Read 3  
Read 1  
DQ5=1?  
Read3=  
valid data?  
NO  
NO  
Read 2  
Program  
Operation  
Failed  
YES  
Write Buffer  
Programming?  
YES  
NO  
Programming  
Operation?  
Read 3  
NO  
Device BUSY,  
Re-Poll  
(Note 3)  
(Note 5)  
(Note 1)  
YES  
(Note 1)  
YES  
DQ6  
toggling?  
DQ6  
toggling?  
DEVICE  
ERROR  
TIMEOUT  
NO  
(Note 4)  
NO  
YES  
Read3  
DQ1=1?  
(Note 2)  
YES  
NO  
Device BUSY,  
Re-Poll  
DQ2  
toggling?  
NO  
Read 2  
Read 3  
Device BUSY,  
Re-Poll  
Erase  
Device in  
Erase/Suspend  
Mode  
Operation  
Complete  
Read3  
DQ1=1  
YES  
Write Buffer  
AND DQ7 ≠  
Valid Data?  
Operation  
Failed  
NO  
Notes:  
1) DQ6 is toggling if Read2 DQ6 does not equal Read3 DQ6.  
2) DQ2 is toggling if Read2 DQ2 does not equal Read3 DQ2.  
3) May be due to an attempt to program a 0 to 1. Use the RESET  
command to exit operation.  
Device BUSY,  
Re-Poll  
4) Write buffer error if DQ1 of last read =1.  
5) Invalid state, use RESET command to exit operation.  
6) Valid data is the data that is intended to be programmed or all 1's for  
an erase operation.  
7) Data polling algorithm valid for all operations except advanced sector  
protection.  
Figure 6. Polling Flow Chart  
89  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded  
Program or Erase algorithm is in progress or completed, or whether a bank is in  
Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse  
in the command sequence. Note that the Data# Polling is valid only for the  
last word being programmed in the write-buffer-page during Write  
Buffer Programming. Reading Data# Polling status on any word other  
than the last word to be programmed in the write-buffer-page will return  
false status information.  
During the Embedded Program algorithm, the device outputs on DQ7 the com-  
plement of the datum programmed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to DQ7. The system must  
provide the program address to read valid status information on DQ7. If a pro-  
gram address falls within a protected sector, Data# Polling on DQ7 is active for  
approximately t , then that bank returns to the read mode.  
PSP  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide  
an address within any of the sectors selected for erasure to read valid status in-  
formation on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately t , then the  
ASP  
bank returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7  
may change asynchronously with DQ6–DQ0 while Output Enable (OE#) is as-  
serted low. That is, the device may change from providing status information to  
valid data on DQ7. Depending on when the system samples the DQ7 output, it  
may read the status or valid data. Even if the device has completed the program  
or erase operation and DQ7 has valid data, the data outputs on DQ6-DQ0 may  
be still invalid. Valid data on DQ7-D00 will appear on successive read cycles.  
Table 30 shows the outputs for Data# Polling on DQ7. Figure 6 shows the Data#  
Polling algorithm. Figure 23 in “AC Characteristics—Asynchronous” shows the  
Data# Polling timing diagram.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address in the same bank, and is valid  
after the rising edge of the final WE# pulse in the command sequence (prior to  
the program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. When the operation is complete, DQ6  
stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately t  
(all sectors protected toggle  
ASP  
time), then returns to reading array data. If not all selected sectors are protected,  
August 31, 2004 S29WSxxxN_MCP00_A3 S29WSxxxN MirrorBit™ Flash Family  
90  
the Embedded Erase algorithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately t  
after the program command sequence is written, then returns to  
PSP  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
See the following for additional information: Figure 7, DQ6: Toggle Bit I, Figure  
24 (toggle bit timing diagram), and Table 29.  
Toggle Bit I on DQ6 requires either OE# or CE# to be deasserted and reasserted  
to show the change in state.  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. But DQ2 cannot distinguish whether the sector is ac-  
tively erasing or is erase-suspended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits are required for sector and  
mode information. Refer to Table 29 to compare outputs for DQ2 and DQ6.  
See the following for additional information: Figure 7; DQ6: Toggle Bit I; and Fig-  
ure 24.  
Table 29. DQ6 and DQ2 Indications  
If device is  
and the system reads  
then DQ6  
and DQ2  
programming,  
at any address,  
toggles,  
does not toggle.  
at an address within a sector  
selected for erasure,  
toggles,  
toggles,  
also toggles.  
does not toggle.  
toggles.  
actively erasing,  
erase suspended,  
at an address within sectors not  
selected for erasure,  
at an address within a sector  
selected for erasure,  
does not toggle,  
returns array data,  
toggles,  
at an address within sectors not  
returns array data. The system can read  
from any sector not selected for erasure.  
selected for erasure,  
programming in  
erase suspend  
at any address,  
is not applicable.  
91  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Reading Toggle Bits DQ6/DQ2  
Whenever the system initially begins reading toggle bit status, it must read DQ7–  
DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typi-  
cally, the system would note and store the value of the toggle bit after the first  
read. After the second read, the system would compare the new value of the tog-  
gle bit with the first. If the toggle bit is not toggling, the device has completed  
the program or erase operation. The system can read array data on DQ7–DQ0 on  
the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation. Refer to Figure 7  
for more details.  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified inter-  
nal pulse count limit. Under these conditions DQ5 produces a “1,indicating that  
the program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the device halts the operation,  
and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return  
to the read mode (or to the erase-suspend-read mode if a bank was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Start Timeout State Indicator  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase start timeout state  
indicator does not apply to the chip erase command.) If additional sectors are se-  
lected for erasure, the entire time-out also applies after each additional sector  
erase command. When the time-out period is complete, DQ3 switches from a “0”  
to a “1.If the time between additional sector erase commands from the system  
can be assumed to be less than t  
, the system need not monitor DQ3. See Sec-  
SEA  
tor Erase Command Sequence for more details.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
92  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 30 shows the status of DQ3 relative to the other status bits.  
DQ1: Write to Buffer Abort  
DQ1 indicates whether a Write to Buffer operation was aborted. Under these con-  
ditions DQ1 produces a ‘1. The system must issue the Write to Buffer Abort Reset  
command sequence to return the device to reading array data. See Write Buffer  
Programming Operation for more details.  
Table 30. Write Operation Status  
DQ7  
DQ5  
DQ2  
DQ1  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
(Note 2)  
(Note 4)  
Embedded Program Algorithm  
Embedded Erase Algorithm  
DQ7#  
0
Toggle  
Toggle  
INVALID  
0
0
No toggle  
Toggle  
0
Standard  
Mode  
1
N/A  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
Reading within Program Suspended  
Sector  
Program  
Suspend  
Mode  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
Reading within Non-Program  
Suspended Sector  
(Note 3)  
Data  
1
Data  
No toggle  
Data  
Data  
0
Data  
N/A  
Data  
Toggle  
Data  
Data  
N/A  
Erase  
Suspended Sector  
Erase-Suspend-  
Erase  
Suspend  
Mode  
Read  
Non-Erase  
Data  
Data  
Data  
Data  
Suspended Sector  
Erase-Suspend-Program  
BUSY State  
DQ7#  
DQ7#  
DQ7#  
DQ7#  
Toggle  
Toggle  
Toggle  
Toggle  
0
0
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
Write to  
Buffer  
(Note 5)  
Exceeded Timing Limits  
ABORT State  
0
1
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum  
timing limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection  
for further details.  
3. Data are invalid for addresses in a Program Suspended sector.  
4. DQ1 indicates the Write to Buffer ABORT status during Write Buffer Programming operations.  
5. The data-bar polling algorithm should be used for Write Buffer Programming operations. Note that DQ7#  
during Write Buffer Programming indicates the data-bar for DQ7 data for the LAST LOADED WRITE-  
BUFFER ADDRESS location.  
93  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Absolute Maximum Ratings  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +125°C  
Voltage with Respect to Ground:  
All Inputs and I/Os except  
as noted below (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to VIO + 0.5 V  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +2.5 V  
VIO  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +2.5 V  
ACC (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +9.5 V  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs or  
I/Os may undershoot VSS to –2.0 V for periods of up to 20 ns. See Figure 7. Maximum  
DC voltage on input or I/Os is VCC + 0.5 V. During voltage transitions outputs may  
overshoot to VCC + 2.0 V for periods up to 20 ns. See Figure 8.  
2. Minimum DC input voltage on pin ACC is -0.5V. During voltage transitions, ACC may  
overshoot VSS to –2.0 V for periods of up to 20 ns. See Figure 7. Maximum DC voltage  
on pin ACC is +9.5 V, which may overshoot to 10.5 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short  
circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
data sheet is not implied. Exposure of the device to absolute maximum rating conditions  
for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
+0.8 V  
VCC  
+2.0 V  
–0.5 V  
–2.0 V  
VCC  
+0.5 V  
1.0 V  
20 ns  
20 ns  
20 ns  
Figure 7. Maximum Negative Overshoot  
Waveform  
Figure 8. Maximum Positive Overshoot  
Waveform  
Operating Ranges  
Wireless (W) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Supply Voltages  
VCC Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.70 V to +1.95 V  
VIO Supply Voltages: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.70 V to +1.95 V  
(Contact local sales office for VIO = 1.35 to +1.70 V.)  
Notes: Operating ranges define those limits between which the functionality of the device  
is guaranteed.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
94  
DC Characteristics  
CMOS Compatible  
Parameter  
Description (Notes)  
Test Conditions (Notes 1, 2, 9)  
= V to V , V = V max  
Min  
Typ  
Max  
±1  
±1  
54  
60  
48  
54  
42  
48  
36  
42  
30  
36  
18  
4
Unit  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
mA  
mA  
mA  
µA  
mA  
µA  
µA  
µA  
mA  
µA  
mA  
mA  
V
I
Input Load Current  
V
V
LI  
IN  
SS  
CC  
CC  
CC  
I
Output Leakage Current (3)  
= V to V , V = V max  
OUT SS CC CC CC  
LO  
54 MHz  
66 MHz  
54 MHz  
66 MHz  
54 MHz  
66 MHz  
54 MHz  
66 MHz  
27  
28  
28  
30  
29  
32  
32  
35  
20  
27  
13  
3
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length = 8  
IH  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length = 16  
IH  
I
V
Active burst Read Current  
CCB  
CC  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length = 32  
IH  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length =  
IH  
Continuous  
I
V
V
Non-active Output  
OE# = V  
IH  
IO1  
IO  
10 MHz  
5 MHz  
1 MHz  
Active Asynchronous Read Current  
CE# = V , OE# = V , WE#  
IL IH  
CC  
I
CC1  
(4)  
= V  
IH  
V
1
5
ACC  
CE# = V , OE# = V , ACC  
IL  
IH  
I
I
V
V
Active Write Current (5)  
CC2  
CC3  
CC  
CC  
= V  
IH  
V
19  
1
52.5  
5
CC  
V
ACC  
CE# = RESET# =  
± 0.2 V  
Standby Current (6, 7)  
Reset Current (7)  
V
CC  
V
20  
70  
50  
2
40  
150  
60  
40  
20  
20  
0.4  
CC  
I
I
I
V
V
V
RESET# = V CLK = V  
IL, IL  
CC4  
CC5  
CC6  
CC  
CC  
CC  
Active Current (Read While Write) (7) CE# = V , OE# = V , ACC = V  
IL  
IH  
IH  
IH  
Sleep Current (7)  
CE# = V , OE# = V  
IL  
V
6
ACC  
CE# = V , OE# = V  
ACC  
IL  
IH,  
I
Accelerated Program Current (8)  
ACC  
V
= 9.5 V  
V
14  
CC  
V
Input Low Voltage  
V
V
= 1.8 V  
= 1.8 V  
–0.5  
IL  
IO  
V
Input High Voltage  
V
V
– 0.4  
V
+ 0.4  
V
IH  
IO  
IO  
IO  
V
Output Low Voltage  
I
I
= 100 µA, V = V  
= V  
IO  
0.1  
V
OL  
OH  
HH  
OL  
OH  
CC  
CC min  
V
V
Output High Voltage  
Voltage for Accelerated Program  
= –100 µA, V = V  
= V  
IO  
– 0.1  
8.5  
1.0  
V
CC  
CC min  
IO  
9.5  
1.4  
V
V
Low V Lock-out Voltage  
V
LKO  
CC  
Notes:  
1. Maximum I specifications are tested with V  
= V max.  
CC  
CC  
CC  
2.  
3. CE# must be set high when measuring the RDY pin.  
4. The I current listed is typically less than 3 mA/MHz, with OE# at V  
V
= V .  
CC IO  
.
IH  
CC  
5.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
6. Device enters automatic sleep mode when addresses are stable for t  
+ 20 ns. Typical sleep mode current is equal to I  
.
ACC  
CC3  
7.  
V
= V ± 0.2 V and V > –0.1 V.  
IH CC IL  
8. Total current during accelerated programming is the sum of V  
and V currents.  
ACC  
CC  
9.  
V
= V  
on ACC input.  
ACC  
HH  
95  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Test Conditions  
Device  
Under  
Test  
C
L
Figure 9. Test Setup  
Table 31. Test Specifications  
Test Condition  
All Speed Options  
Unit  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
3.0 @ 54, 66 MHz  
0.0–VIO  
ns  
V
Input timing measurement  
reference levels  
VIO/2  
VIO/2  
V
V
Output timing measurement  
reference levels  
Key to Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
Switching Waveforms  
VIO  
All Inputs and Outputs  
VIO/2  
VIO/2  
Input  
Measurement Level  
Output  
0.0 V  
Figure 10. Input Waveforms and Measurement Levels  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
96  
VCC Power-up  
Parameter  
Description  
Te s t Set up  
Speed  
Unit  
tVCS  
VCC Setup Time  
Min  
1
ms  
Note:  
1. The ramp rate must be greater than 1 V/200 µs and V  
V -100 mV.  
IO  
CC  
2. If the ramp rate is less than 1 V/200 µs, then a Hardware Reset will be required.  
t
tVCS  
VCC  
tVIOS  
VIO  
RESET#  
Figure 11. VCC Power-up Diagram  
97  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
AC Characteristics—Synchronous  
CLK Characterization  
Parameter  
fCLK  
Description  
CLK Frequency  
54 MHz  
54  
66 MHz  
66  
Unit  
MHz  
ns  
Max  
Min  
tCLK  
tCH  
CLK Period  
18.5  
15.1  
CLK High Time  
CLK Low Time  
CLK Rise Time  
CLK Fall Time  
Min  
7.4  
3
6.1  
3
ns  
ns  
tCL  
tCR  
Max  
tCF  
t
CLK  
t
t
CH  
CL  
CLK  
t
t
CF  
CR  
Figure 12. CLK Characterization  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
98  
Synchronous/Burst Read  
Parameter  
JEDEC  
Standard  
tIACC  
tBACC  
tACS  
tACH  
tBDH  
tCR  
Description  
54 MHz  
66 MHz Unit  
Latency  
Max  
Max  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Max  
69  
ns  
Burst Access Time Valid Clock to Output Delay  
Address Setup Time to CLK (Note 1)  
Address Hold Time from CLK (Note 1)  
Data Hold Time from Next Clock Cycle  
Chip Enable to RDY Valid  
13.5  
5
11.2  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
6
4
3
13.5  
13.5  
11.2  
11.2  
tOE  
Output Enable to Output Valid  
Chip Enable to High Z (Note 2)  
Output Enable to High Z (Note 2)  
CE# Setup Time to CLK  
tCEZ  
10  
10  
4
tOEZ  
tCES  
tRDYS  
tRACC  
tAAS  
tAAH  
tCAS  
tAVC  
tAVD  
tAOE  
RDY Setup Time to CLK  
5
13.5  
5
4
11.2  
4
Ready Access Time from CLK  
Address Setup Time to AVD# (Note 1)  
Address Hold Time to AVD# (Note 1)  
CE# Setup Time to AVD#  
7
6
0
4
8
AVD# Low to CLK  
AVD# Pulse  
AVD# Low to OE# Low  
38.4  
Notes:  
1. Addresses are latched on the first of either the active edge of CLK or the rising edge of AVD#.  
2. Not 100% tested.  
99  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Timing Diagrams  
5 cycles for initial access shown.  
18.5 ns typ. (54 MHz)  
tCEZ  
tCES  
CE#  
1
2
3
4
5
6
7
CLK  
tAVC  
AVD#  
tAVD  
tACS  
Addresses  
Aa  
tBACC  
tACH  
Hi-Z  
Data (n)  
OE#  
tIACC  
Da  
Da + 1  
Da + n  
Da + 2  
Da + 3  
tAOE  
tOEZ  
tBDH  
tRACC  
tOE  
Hi-Z  
Hi-Z  
RDY (n)  
tCR  
tRDYS  
Hi-Z  
Hi-Z  
Data (n + 1)  
Da  
Da + 1  
Da + 2  
Da + n  
Da + 2  
Hi-Z  
RDY (n + 1)  
Hi-Z  
Hi-Z  
Data (n + 2)  
Da  
Da + 1  
Da + 1  
Da + n  
Da + 1  
Hi-Z  
RDY (n + 2)  
Hi-Z  
Hi-Z  
Data (n + 3)  
Da  
Da  
Da  
Da + n  
Da  
Hi-Z  
RDY (n + 3)  
Notes:  
1. Figure shows total number of wait states set to five cycles. The total number of wait states can be  
programmed from two cycles to seven cycles.  
2. If any burst address occurs at “address + 1”, “address + 2”, or “address + 3”, additional clock delay cycles  
are inserted, and are indicated by RDY.  
3. The device is in synchronous mode.  
Figure 13. CLK Synchronous Burst Mode Read  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
100  
7 cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
tAOE  
OE#  
RDY  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from two cycles to seven  
cycles. Clock is set for active rising edge.  
2. If any burst address occurs at “address + 1”, “address + 2”, or “address + 3”, additional clock delay cycles are inserted, and are indicated  
by RDY.  
3. The device is in synchronous mode with wrap around.  
4. D8–DF in data waveform indicate the order of data within a given 8-word address range, from lowest to highest. Starting address in figure  
is the 4th address in range (0-F).  
Figure 14. 8-word Linear Burst with Wrap Around  
7 cycles for initial access shown.  
tCES  
CE#  
1
2
3
4
5
6
7
CLK  
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
tCOE  
OE#  
RDY  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from two cycles to seven  
cycles. Clock is set for active rising edge.  
2. If any burst address occurs at “address + 1”, “address + 2”, or “address + 3”, additional clock delay cycles are inserted, and are indicated  
by RDY.  
3. The device is in asynchronous mode with out wrap around.  
4. DC–D13 in data waveform indicate the order of data within a given 8-word address range, from lowest to highest. Starting address in figure  
is the 1st address in range (c-13).  
Figure 15. 8-word Linear Burst without Wrap Around  
101  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
tCEZ  
6 wait cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
tAVC  
AVD#  
tAVD  
tACS  
Aa  
Addresses  
Data  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da+1  
Da+2  
Da+3  
Da + n  
tBDH  
tAOE  
tOEZ  
tRACC  
OE#  
RDY  
tCR  
tOE  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure assumes 6 wait states for initial access and synchronous read.  
2. The Set Configuration Register command sequence has been written with CR8=0; device will output RDY one  
cycle before valid data.  
Figure 16. Linear Burst with RDY Set One Cycle Before Data  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
102  
AC Characteristics—Asynchronous  
Asynchronous Mode Read  
Parameter  
JEDEC  
Standard  
tCE  
Description  
Access Time from CE# Low  
54 MHz  
66 MHz  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
70  
70  
8
tACC  
Asynchronous Access Time  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
AVD# Low Time  
Address Setup Time to Rising Edge of AVD#  
Address Hold Time from Rising Edge of AVD#  
Output Enable to Output Valid  
4
7
6
13.5  
11.2  
Read  
0
10  
10  
0
tOEH  
Output Enable Hold Time  
Toggle and Data# Polling  
tOEZ  
tCAS  
Output Enable to High Z (see Note)  
CE# Setup Time to AVD#  
Note: Not 100% tested.  
Timing Diagrams  
CE#  
Note: RA = Read Address, RD = Read Data.  
Figure 17. Asynchronous Mode Read with Latched Addresses  
103  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Note: RA = Read Address, RD = Read Data.  
Figure 18. Asynchronous Mode Read  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
tRP  
Description  
All Speed Options  
Unit  
µs  
RESET# Pulse Width  
Reset High Time Before Read (See Note)  
Min  
Min  
30  
tRH  
200  
ns  
Note: Not 100% tested.  
CE#, OE#  
tRH  
RESET#  
tRP  
Figure 19. Reset Timings  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
104  
Erase/Program Timing  
Parameter  
JEDEC  
Standard  
Description  
54 MHz  
66 MHz Unit  
t
t
Write Cycle Time (Note 1)  
Min  
Min  
70  
5
ns  
ns  
ns  
AVAV  
WC  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
t
t
Address Setup Time (Notes 2, 3)  
Address Hold Time (Notes 2, 3)  
AVWL  
WLAX  
AS  
0
9
t
t
Min  
ns  
AH  
20  
8
t
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Typ  
Typ  
ns  
AVDP  
t
t
t
Data Setup Time  
45  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
DVWH  
DS  
DH  
t
Data Hold Time  
0
0
WHDX  
t
t
Read Recovery Time Before Write  
CE# Setup Time to AVD#  
CE# Hold Time  
GHWL  
GHWL  
t
0
CAS  
t
t
0
WHEH  
WLWH  
WHWL  
CH  
WP  
t
t
t
Write Pulse Width  
30  
20  
0
t
Write Pulse Width High  
WPH  
t
Latency Between Read and Write Operations  
SR/W  
t
V
V
V
Rise and Fall Time  
500  
1
VID  
ACC  
ACC  
t
Setup Time (During Accelerated Programming)  
VIDS  
t
Setup Time  
CC  
50  
5
VCS  
t
t
CE# Setup Time to WE#  
ELWL  
CS  
t
AVD# Setup Time to WE#  
5
AVSW  
AVHW  
t
AVD# Hold Time to WE#  
5
t
AVD# Setup Time to CLK  
5
AVSC  
AVHC  
t
AVD# Hold Time to CLK  
5
t
Clock Setup Time to WE#  
5
CSW  
t
Noise Pulse Margin on WE#  
Sector Erase Accept Time-out  
Erase Suspend Latency  
3
WEP  
t
50  
20  
20  
100  
1
SEA  
t
ESL  
PSL  
ASP  
t
Program Suspend Latency  
t
Toggle Time During Sector Protection  
Toggle Time During Programming Within a Protected Sector  
t
PSP  
Notes:  
1. Not 100% tested.  
2. Asynchronous read mode allows Asynchronous program operation only. Synchronous read mode allows both Asynchronous and  
Synchronous program operation.  
3. In asynchronous program operation timing, addresses are latched on the falling edge of WE#. In synchronous program operation timing,  
addresses are latched on the rising edge of CLK.  
4. See the “Erase and Programming Performance” section for more information.  
5. Does not include the preprogramming time.  
105  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
AVD  
V
IL  
tAVSW  
tAVHW  
tAVDP  
tAS  
tAH  
Addresses  
Data  
555h  
PA  
VA  
VA  
In  
A0h  
tDS  
Complete  
PD  
Progress  
tCAS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A23–A14 for the WS256N (A22–A14 for the WS128N, A21–A14 for the WS064N) are don’t care during  
command sequence unlock cycles.  
4. CLK can be either V or V  
.
IH  
IL  
5. The Asynchronous programming operation is independent of the Set Device Read Mode bit in the  
Configuration Register.  
Figure 20. Asynchronous Program Operation Timings: WE# Latched Addresses  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
106  
Program Command Sequence (last two cycles)  
tAVCH  
Read Status Data  
CLK  
AVD  
tAS  
tAH  
tAVSC  
tAVDP  
Addresses  
Data  
PA  
VA  
VA  
555h  
In  
Complete  
A0h  
PD  
tDS  
tDH  
Progress  
tCAS  
CE#  
tCH  
OE#  
WE#  
tCSW  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A23–A14 for the WS256N (A22–A14 for the WS128N, A21–A14 for the WS064N) are don’t care during  
command sequence unlock cycles.  
4. Addresses are latched on the first of either the rising edge of AVD# or the active edge of CLK.  
5. Either CE# or AVD# is required to go from low to high in between programming command sequences.  
6. The Synchronous programming operation is dependent of the Set Device Read Mode bit in the Configuration  
Register. The Configuration Register must be set to the Synchronous Read Mode.  
Figure 21. Synchronous Program Operation Timings: CLK Latched Addresses  
107  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
CE#  
AVD#  
WE#  
Addresses  
Data  
PA  
Don't Care  
A0h  
Don't Care  
PD  
Don't Care  
OE#  
ACC  
tVIDS  
1 ms  
V
V
ID  
tVID  
or V  
IL  
IH  
Note: Use setup and hold times from conventional program operation.  
Figure 22. Accelerated Unlock Bypass Programming Timing  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
High Z  
High Z  
Addresses  
Data  
VA  
Status Data  
Status Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, and Data#  
Polling will output true data.  
Figure 23. Data# Polling Timings  
(During Embedded Algorithm)  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
108  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
High Z  
High Z  
Addresses  
VA  
Data  
Status Data  
Status Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, the toggle bits  
will stop toggling.  
Figure 24. Toggle Bit Timings  
(During Embedded Algorithm)  
CE#  
CLK  
AVD#  
Addresses  
OE#  
VA  
VA  
tIACC  
tIACC  
Data  
Status Data  
Status Data  
RDY  
Notes:  
1. The timings are similar to synchronous read timings.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, the toggle bits  
will stop toggling.  
3. RDY is active with data (D8 = 1 in the Configuration Register). When D8 = 0 in the Configuration Register, RDY is active one clock cycle before  
data.  
Figure 25. Synchronous Data Polling Timings/  
Toggle Bit Timings  
109  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Erase  
Erase Suspend  
Read  
Suspend  
Program  
Complete  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#  
to toggle DQ2 and DQ6.  
Figure 26. DQ2 vs. DQ6  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
C128  
80  
C129  
81  
C130  
82  
C131  
83  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
tRACC  
tRACC  
RDY(1)  
latency  
tRACC  
tRACC  
RDY(2)  
Data  
latency  
D124  
D125  
D126  
D127  
D128  
D129  
D130  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY active with data (D8 = 1 in the Configuration Register).  
2. RDY active one clock cycle before data (D8 = 0 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. Figure shows the device not crossing a bank in the process of performing an erase or program.  
5. RDY will not go low and no additional wait states will be required if the Burst frequency is <=66 MHz and the  
Boundary Crossing bit (D14) in the Configuration Register is set to 0  
Figure 27. Latency with Boundary Crossing when Frequency > 66 MHz  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
110  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
RDY(1)  
RDY(2)  
tRACC  
tRACC  
latency  
tRACC  
tRACC  
latency  
Data  
D124  
D125  
D126  
D127  
Read Status  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY active with data (D8 = 1 in the Configuration Register).  
2. RDY active one clock cycle before data (D8 = 0 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. Figure shows the device crossing a bank in the process of performing an erase or program.  
5. RDY will not go low and no additional wait states will be required if the Burst frequency is <=66 MHz and the  
Boundary Crossing bit (D14) in the Configuration Register is set to 0  
Figure 28. Latency with Boundary Crossing into Program/Erase Bank  
111  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Wait State Configuration Register Setup:  
D13, D12, D11 = “111” Reserved  
D13, D12, D11 = “110” Reserved  
D13, D12, D11 = “101” 5 programmed, 7 total  
D13, D12, D11 = “100” 4 programmed, 6 total  
D13, D12, D11 = “011” 3 programmed, 5 total  
D13, D12, D11 = “010” 2 programmed, 4 total  
D13, D12, D11 = “001” 1 programmed, 3 total  
D13, D12, D11 = “000” 0 programmed, 2 total  
Note: Figure assumes address D0 is not at an address boundary, and wait state is set to “101”.  
Figure 29. Example of Wait States Insertion  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
112  
Last Cycle in  
Program or  
Sector Erase  
Read status (at least two cycles) in same bank  
and/or array data from other bank  
Begin another  
write or program  
command sequence  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE#  
OE#  
tOE  
tGHWL  
tOEH  
WE#  
Data  
tWPH  
tOEZ  
tWP  
tDS  
tACC  
tOEH  
tDH  
PD/30h  
RD  
RD  
AAh  
tSR/W  
RA  
Addresses  
AVD#  
PA/SA  
tAS  
RA  
555h  
tAH  
Note: Breakpoints in waveforms indicate that system may alternately read array data from the “non-busy bank” while  
checking the status of the program or erase operation in the “busy” bank. The system should read status twice to ensure  
valid information.  
Figure 30. Back-to-Back Read/Write Cycle Timings  
113  
S29WSxxxN MirrorBit™ Flash Family  
S29WSxxxN_MCP00_A3 August 31, 2004  
Erase and Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
Comments  
64 Kword  
16 Kword  
VCC  
VCC  
0.6  
3.5  
2
Sector Erase Time  
s
<0.15  
153.6 (WS256N)  
77.4 (WS128N)  
39.3 (WS064N)  
308 (WS256N)  
154 (WS128N)  
78 (WS064N)  
Excludes 00h  
programming prior to  
erasure (Note 4)  
VCC  
Chip Erase Time  
s
130.6 (WS256N)  
65.8 (WS128N)  
33.4 (WS064N)  
262 (WS256N)  
132 (WS128N)  
66 (WS064N)  
ACC  
VCC  
ACC  
VCC  
ACC  
VCC  
ACC  
40  
24  
400  
240  
94  
Single Word Programming Time  
(Note 8)  
µs  
µs  
µs  
9.4  
6
Effective Word Programming Time  
utilizing Program Write Buffer  
60  
300  
192  
3000  
1920  
Total 32-Word Buffer  
Programming Time  
157.3 (WS256N)  
78.6 (WS128N)  
39.3 (WS064N)  
314.6 (WS256N)  
157.3 (WS128N)  
78.6 (WS064N)  
VCC  
Excludes system level  
overhead (Note 5)  
Chip Programming Time (Note 3)  
s
100.7 (WS256N)  
50.3 (WS128N)  
25.2 (WS064N)  
201.3 (WS256N)  
100.7 (WS128N)  
50.3 (WS064N)  
ACC  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V V , 10,000 cycles;  
CC  
checkerboard data pattern.  
2. Under worst case conditions of 90°C, V = 1.70 V, 100,000 cycles.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed.  
Based upon single word programming, not page programming.  
4. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before  
erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Command Definition Summary for further information on command definitions.  
6. Contact the local sales office for minimum cycling endurance values in specific applications and operating  
conditions.  
7. Refer to Application Note “Erase Suspend/Resume Timing” for more details.  
8. Word programming specification is based upon a single word programming operation not utilizing the write  
buffer.  
August 31, 2004 S29WSxxxN_MCP00_A3  
S29WSxxxN MirrorBit™ Flash Family  
114  
A d v a n c e I n f o r m a t i o n  
CellularRAM  
128/64/32 Megabit  
Burst CellularRAM  
Features  
„ Single device supports asynchronous, page, and burst operations  
„ VCC Voltages  
1.70V–1.95V VCC  
„ Random Access Time: 70ns  
„ Burst Mode Write Access  
Continuous burst  
„ Burst Mode Read Access  
4, 8, or 16 words, or continuous burst  
„ Page Mode Read Access  
Sixteen-word page size  
Interpage read access: 70ns  
Intrapage read access: 20ns  
„ Low Power Consumption  
Asynchronous READ < 25mA  
Intrapage READ < 15mA  
Initial access, burst READ < 35mA  
Continuous burst READ < 11mA  
Standby: 180µA  
Deep power-down < 10µA  
„ Low-Power Features  
Temperature Compensated Refresh (TCR) On-chip sensor control  
Partial Array Refresh (PAR)  
Deep Power-Down (DPD) Mode  
General Description  
CellularRAM™ products are high-speed, CMOS dynamic random access memories  
developed for low-power, portable applications. These devices include an industry  
standard burst mode Flash interface that dramatically increases read/write band-  
width compared with other low-power SRAM or Pseudo SRAM offerings.  
To operate seamlessly on a burst Flash bus, CellularRAM products incorporate a  
transparent self-refresh mechanism. The hidden refresh requires no additional  
support from the system memory controller and has no significant impact on de-  
vice read/write performance.  
Two user-accessible control registers define device operation. The bus configura-  
tion register (BCR) defines how the CellularRAM device interacts with the system  
memory bus and is nearly identical to its counterpart on burst mode Flash de-  
vices. The refresh configuration register (RCR) is used to control how refresh is  
performed on the DRAM array. These registers are automatically loaded with de-  
fault settings during power-up and can be updated anytime during normal  
operation.  
Special attention has been focused on standby current consumption during self  
refresh. CellularRAM products include three mechanisms to minimize standby  
current. Partial array refresh (PAR) enables the system to limit refresh to only  
that part of the DRAM array that contains essential data. Temperature compen-  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
115  
A d v a n c e I n f o r m a t i o n  
sated refresh (TCR) adjusts the refresh rate to match the device temperature—  
the refresh rate decreases at lower temperatures to minimize current consump-  
tion during standby. Deep power-down (DPD) enables the system to halt the  
refresh operation altogether when no vital information is stored in the device. The  
system-configurable refresh mechanisms are accessed through the RCR.  
A[22:0]  
Address Decode  
Input/  
Output  
MUX  
and  
Buffers  
DQ[7:0]  
Logic  
DRAM  
MEMORY  
ARRAY  
DQ[15:8]  
Refresh Configuration  
Register (RCR)  
Bus Configuration  
Register (BCR)  
CE#  
WE#  
OE#  
CLK  
Control  
Logic  
ADV#  
CRE  
WAIT  
LB#  
UB#  
Note: Functional block diagrams illustrate simplified device operation. See truth table, ball descriptions, and timing di-  
agrams for detailed information.  
Figure 1. Functional Block Diagram  
116  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 1. Signal Descriptions  
SYMBOL  
TYPE  
DESCRIPTION  
128M: A[22:0]  
64M: A[21:0]  
32M: A[20:0]  
Address Inputs: Inputs for addresses during READ and WRITE operations. Addresses are  
internally latched during READ and WRITE cycles. The address lines are also used to define  
the value to be loaded into the BCR or the RCR.  
Input  
Clock: Synchronizes the memory to the system operating frequency during synchronous  
operations. When configured for synchronous operation, the address is latched on the first  
rising CLK edge when ADV# is active. CLK is static (HIGH or LOW) during asynchronous  
access READ and WRITE operations and during PAGE READ ACCESS operations.  
CLK  
Input  
Input  
Address Valid: Indicates that a valid address is present on the address inputs. Addresses  
can be latched on the rising edge of ADV# during asynchronous READ and WRITE  
operations. ADV# can be held LOW during asynchronous READ and WRITE operations.  
ADV#  
CRE  
CE#  
Input  
Input  
Configuration Register Enable: When CRE is HIGH, WRITE operations load the RCR or BCR.  
Chip Enable: Activates the device when LOW. When CE# is HIGH, the device is disabled and  
goes into standby or deep power-down mode.  
Output Enable: Enables the output buffers when LOW. When OE# is HIGH, the output  
buffers are disabled.  
OE#  
WE#  
Input  
Input  
Write Enable: Determines if a given cycle is a WRITE cycle. If WE# is LOW, the cycle is a  
WRITE to either a configuration register or to the memory array.  
LB#  
UB#  
Input  
Input  
Lower Byte Enable. DQ[7:0]  
Upper Byte Enable. DQ[15:8]  
Input/  
Output  
DQ[15:0]  
Data Inputs/Outputs.  
Wait: Provides data-valid feedback during burst READ and WRITE operations. The signal is  
gated by CE#. WAIT is used to arbitrate collisions between refresh and READ/WRITE  
operations. WAIT is asserted when a burst crosses a row boundary. WAIT is also used to  
mask the delay associated with opening a new internal page. WAIT is asserted and should  
be ignored during asynchronous and page mode operations. WAIT is High-Z when CE# is  
HIGH.  
WAIT  
VCC  
Output  
Supply  
Supply  
Supply  
Supply  
Device Power Supply: (1.7V–1.95V) Power supply for device core operation.  
I/O Power Supply: (1.7V–1.95V) Power supply for input/output buffers.  
VSS must be connected to ground.  
VCC  
VSS  
VSS  
Q
Q
VSSQ must be connected to ground.  
Note: The CLK and ADV# inputs can be tied to VSS if the device is always operating in asynchronous or page mode.  
WAIT will be asserted but should be ignored during asynchronous and page mode operations.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
117  
A d v a n c e I n f o r m a t i o n  
Table 2. Bus Operations—Asynchronous Mode  
CLK  
(Note 1) ADV#  
LB#/  
UB#  
WAIT  
(Note 2)  
DQ[15:0]  
(Note 3)  
MODE  
Read  
POWER  
Active  
Active  
Standby  
Idle  
CE#  
L
OE#  
L
WE#  
CRE  
NOTES  
4
X
X
X
X
L
L
H
L
L
L
L
L
L
L
Low-Z  
Low-Z  
High-Z  
Low-Z  
Data-Out  
Data-In  
High-Z  
X
Write  
L
X
4
Standby  
No Operation  
X
X
H
X
X
X
X
X
5, 6  
4, 6  
L
X
Configuration  
Register  
Active  
X
X
L
L
H
X
L
H
X
X
X
Low-Z  
High-Z  
High-Z  
Deep  
Power-down  
DPD  
X
H
X
High-Z  
7
Notes:  
1. CLK may be HIGH or LOW, but must be static during synchronous read, synchronous write, burst suspend, and DPD  
modes; and to achieve standby power during standby and active modes.  
2. The WAIT polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (LOW), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0]  
are affected. When only UB# is in the select mode, DQ[15:8] are affected.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any  
external influence.  
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) to achieve standby current.  
7. DPD is maintained until RCR is reconfigured.  
118  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Bus Operations—Burst Mode  
CLK  
(Note 1) ADV#  
LB#/  
UB#  
WAIT  
(Note 2)  
DQ[15:0]  
(Note 3)  
MODE  
POWER  
Active  
Active  
Standby  
Idle  
CE#  
L
OE#  
L
WE#  
CRE  
NOTES  
4
Async Read  
Async Write  
Standby  
X
X
X
X
L
L
H
L
L
L
L
L
L
L
Low-Z  
Low-Z  
High-Z  
Low-Z  
Data-Out  
Data-In  
High-Z  
X
L
X
4
X
X
H
X
X
X
X
X
5, 6  
4, 6  
No Operation  
L
X
Initial Burst Read  
Initial Burst Write  
Active  
Active  
L
L
L
L
X
H
H
L
L
L
L
Low-Z  
Low-Z  
Data-Out  
Data-In  
4, 8  
4, 8  
X
Data-In or  
Data-Out  
Burst Continue  
Burst Suspend  
Active  
Active  
Active  
H
X
L
L
L
L
X
H
H
X
X
L
L
L
X
X
X
Low-Z  
Low-Z  
Low-Z  
4, 8  
4, 8  
8
X
X
High-Z  
High-Z  
Configuration  
Register  
H
Deep  
Power-Down  
DPD  
X
H
X
X
X
X
High-Z  
High-Z  
7
Notes:  
1. CLK may be HIGH or LOW, but must be static during asynchronous read, synchronous write, burst suspend, and  
DPD modes; and to achieve standby power during standby and active modes.  
2. The WAIT polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (LOW), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0]  
are affected. When only UB# is in the select mode, DQ[15:8] are affected.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any  
external influence.  
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) to achieve standby current.  
7. DPD is maintained until RCR is reconfigured.  
8. Burst mode operation is initialized through the bus configuration register (BCR[15]).  
Functional Description  
The CellularRAM bus interface supports both asynchronous and burst mode  
transfers. Page mode accesses are also included as a bandwidth-enhancing ex-  
tension to the asynchronous read protocol.  
Power-Up Initialization  
CellularRAM products include an on-chip voltage sensor used to launch the  
power-up initialization process. Initialization will configure the BCR and the RCR  
with their default settings (see Table 35 and Table 39). V  
and V Q must be  
CC  
CC  
applied simultaneously. When they reach a stable level at or above 1.7V, the de-  
vice will require 150µs to complete its self-initialization process. During the  
initialization period, CE# should remain HIGH. When initialization is complete, the  
device is ready for normal operation.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
119  
A d v a n c e I n f o r m a t i o n  
>
PU  
V
= 1.7 V  
t
150 µs  
CC  
Device ready for  
normal operation  
V
CC  
Device Initialization  
V
Q
CC  
Figure 2. Power-Up Initialization Timing  
Bus Operating Modes  
CellularRAM products incorporate a burst mode interface found on Flash products  
targeting low-power, wireless applications. This bus interface supports asynchro-  
nous, page mode, and burst mode read and write transfers. The specific interface  
supported is defined by the value loaded into the BCR. Page mode is controlled  
by the refresh configuration register (RCR[7]).  
Asynchronous Mode  
CellularRAM products power up in the asynchronous operating mode. This mode  
uses the industry standard SRAM control bus (CE#, OE#, WE#, LB#/ UB#).  
READ operations (Figure 33) are initiated by bringing CE#, OE#, and LB#/UB#  
LOW while keeping WE# HIGH. Valid data will be driven out of the I/Os after the  
specified access time has elapsed. WRITE operations (Figure 34) occur when  
CE#, WE#, and LB#/ UB# are driven LOW. During asynchronous WRITE opera-  
tions, the OE# level is a “Don't Care,and WE# will override OE#. The data to be  
written is latched on the rising edge of CE#, WE#, or LB#/UB# (whichever occurs  
first). Asynchronous operations (page mode disabled) can either use the ADV  
input to latch the address, or ADV can be driven LOW during the entire READ/  
WRITE operation.  
During asynchronous operation, the CLK input must be held static (HIGH or LOW,  
no transitions). WAIT will be driven while the device is enabled and its state  
should be ignored.  
CE#  
OE#  
WE#  
ADDRESS  
Address Valid  
Data Valid  
DATA  
LB#/UB#  
t
= READ Cycle Time  
RC  
Don't Care  
Note: ADV must remain LOW for page mode operation.  
Figure 3. READ Operation (ADV# LOW)  
120  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
CE#  
OE#  
WE#  
ADDRESS  
Address Valid  
Data Valid  
DATA  
LB#/UB#  
t
= READ Cycle Time  
RC  
Don't Care  
Figure 4. WRITE Operation (ADV# LOW)  
Page Mode READ Operation  
Page mode is a performance-enhancing extension to the legacy asynchronous  
READ operation. In page mode-capable products, an initial asynchronous read  
access is performed, then adjacent addresses can be read quickly by simply  
changing the low-order address. Addresses A[3:0] are used to determine the  
members of the 16-address CellularRAM page. Addresses A[4] and higher must  
remain fixed during the entire page mode access. Figure 35 shows the timing for  
a page mode access. Page mode takes advantage of the fact that adjacent ad-  
dresses can be read in a shorter period of time than random addresses. WRITE  
operations do not include comparable page mode functionality.  
During asynchronous page mode operation, the CLK input must be held LOW.  
CE# must be driven HIGH upon completion of a page mode access. WAIT will be  
driven while the device is enabled and its state should be ignored. Page mode is  
enabled by setting RCR[7] to HIGH. WRITE operations do not include comparable  
page mode functionality. ADV must be driven LOW during all page mode read  
accesses.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
121  
A d v a n c e I n f o r m a t i o n  
CE#  
OE#  
WE#  
ADDRESS  
ADD[0]  
ADD[1] ADD[2] ADD[3]  
t
t
t
t
AA  
APA  
APA  
APA  
D[0]  
D[1]  
D[2]  
D[3]  
DATA  
LB#/UB#  
Don't Care  
Figure 5. Page Mode READ Operation (ADV# LOW)  
Burst Mode Operation  
Burst mode operations enable high-speed synchronous READ and WRITE opera-  
tions. Burst operations consist of a multi-clock sequence that must be performed  
in an ordered fashion. After CE# goes LOW, the address to access is latched on  
the rising edge of the next clock that ADV# is LOW. During this first clock rising  
edge, WE# indicates whether the operation is going to be a READ (WE# = HIGH,  
Figure 36) or WRITE (WE# = LOW, Figure 37).  
The size of a burst can be specified in the BCR either as a fixed length or contin-  
uous. Fixed-length bursts consist of four, eight, or sixteen words. Continuous  
bursts have the ability to start at a specified address and burst through the entire  
memory.  
The latency count stored in the BCR defines the number of clock cycles that  
elapse before the initial data value is transferred between the processor and Cel-  
lularRAM device.  
The WAIT output asserts as soon as a burst is initiated, and de-asserts to indicate  
when data is to be transferred into (or out of) the memory. WAIT will again be  
asserted if the burst crosses a row boundary. Once the CellularRAM device has  
restored the previous row's data and accessed the next row, WAIT will be deas-  
serted and the burst can continue (see Figure 57).  
To access other devices on the same bus without the timing penalty of the initial  
latency for a new burst, burst mode can be suspended. Bursts are suspended by  
stopping CLK. CLK can be stopped HIGH or LOW. If another device will use the  
data bus while the burst is suspended, OE# should be taken HIGH to disable the  
CellularRAM outputs; otherwise, OE# can remain LOW. Note that the WAIT out-  
put will continue to be active, and as a result no other devices should directly  
share the WAIT connection to the controller. To continue the burst sequence, OE#  
is taken LOW, then CLK is restarted after valid data is available on the bus.  
See “How Extended Timings Impact CellularRAM™ Operation” for restrictions on  
the maximum CE# LOW time during burst operations. If a burst suspension will  
122  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
cause CE# to remain LOW for longer than t  
, CE# should be taken HIGH and  
CEM  
the burst restarted with a new CE# LOW/ADV# LOW cycle.  
CLK  
Address  
Valid  
A[22:0]  
ADV#  
Latency Code 2 (3 clocks), variable  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
LB#/UB#  
D[0]  
D[1]  
D[2]  
D[3]  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't care  
Undefined  
Note: Non-default BCR settings: Variable latency; latency code two (three clocks); WAIT active LOW; WAIT asserted  
during delay.  
Figure 6. Burst Mode READ (4-word burst)  
CLK  
Address  
Valid  
A[22:0]  
ADV#  
Latency Code 2 (3 clocks), variable  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
LB#/UB#  
D[0]  
D[1]  
D[2]  
D[3]  
Legend:  
Don't care  
WRITE Burst Identified  
(WE# = LOW)  
Note: Non-default BCR settings: Variable latency; latency code two (three clocks); WAIT active LOW; WAIT asserted  
during delay.  
Figure 7. Burst Mode WRITE (4-word burst)  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
123  
A d v a n c e I n f o r m a t i o n  
Mixed-Mode Operation  
The device can support a combination of synchronous READ and asynchronous  
WRITE operations when the BCR is configured for synchronous operation. The  
asynchronous WRITE operation requires that the clock (CLK) remain static (HIGH  
or LOW) during the entire sequence. The ADV# signal can be used to latch the  
target address, or it can remain LOW during the entire WRITE operation. CE# can  
remain LOW when transitioning between mixed-mode operations with fixed la-  
tency enabled. Note that the t  
period is the same as a READ or WRITE cycle.  
CKA  
This time is required to ensure adequate refresh. Mixed-mode operation facili-  
tates a seamless interface to legacy burst mode Flash memory controllers. See  
Figure 65 for the “Asynchronous WRITE Followed by Burst READ” timing diagram.  
WAIT Operation  
The WAIT output on a CellularRAM device is typically connected to a shared, sys-  
tem-level WAIT signal (see Figure 38 below). The shared WAIT signal is used by  
the processor to coordinate transactions with multiple memories on the synchro-  
nous bus.  
External  
Pull-Up/  
Pull-Down  
Resistor  
CellularRAM  
WAIT  
READY  
WAIT  
WAIT  
Other  
Other  
Device  
Device  
Processor  
Figure 8. Wired or WAIT Configuration  
Once a READ or WRITE operation has been initiated, WAIT goes active to indicate  
that the CellularRAM device requires additional time before data can be trans-  
ferred. For READ operations, WAIT will remain active until valid data is output  
from the device. For WRITE operations, WAIT will indicate to the memory control-  
ler when data will be accepted into the CellularRAM device. When WAIT  
transitions to an inactive state, the data burst will progress on successive clock  
edges.  
CE# must remain asserted during WAIT cycles (WAIT asserted and WAIT config-  
uration BCR[8] = 1). Bringing CE# HIGH during WAIT cycles may cause data  
corruption. (Note that for BCR[8] = 0, the actual WAIT cycles end one cycle after  
WAIT de-asserts, and for row boundary crossings, start one cycle after the WAIT  
signal asserts.)  
When using variable initial access latency (BCR[14] = 0), the WAIT output per-  
forms an arbitration role for READ or WRITE operations launched while an on-chip  
refresh is in progress. If a collision occurs, the WAIT pin is asserted for additional  
clock cycles until the refresh has completed (see Figure 39 and Figure 40). When  
the refresh operation has completed, the READ or WRITE operation will continue  
normally.  
WAIT is also asserted when a continuous READ or WRITE burst crosses the  
boundary between 128-word rows. The WAIT assertion allows time for the new  
row to be accessed, and permits any pending refresh operations to be performed.  
WAIT will be asserted but should be ignored during asynchronous READ and  
WRITE, and page READ operations.  
124  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
LB#/UB# Operation  
The LB# enable and UB# enable signals support byte-wide data transfers. During  
READ operations, the enabled byte(s) are driven onto the DQs. The DQs associ-  
ated with a disabled byte are put into a High-Z state during a READ operation.  
During WRITE operations, any disabled bytes will not be transferred to the RAM  
array and the internal value will remain unchanged. During an asynchronous  
WRITE cycle, the data to be written is latched on the rising edge of CE#, WE#,  
LB#, or UB#, whichever occurs first.  
When both the LB# and UB# are disabled (HIGH) during an operation, the device  
will disable the data bus from receiving or transmitting data. Although the device  
will seem to be deselected, it remains in an active mode as long as CE# remains  
LOW.  
V
V
IH  
IL  
CLK  
A[22:0]  
ADV#  
V
V
IH  
IL  
Address  
Valid  
V
V
IH  
IL  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
LB#/UB#  
High-Z  
V
V
OH  
OL  
WAIT  
V
V
OH  
OL  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
Additional WAIT states inserted to allow refresh completion.  
Legend:  
Don't care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
Figure 9. Refresh Collision During READ Operation  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
125  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
CLK  
A[22:0]  
ADV#  
V
V
IH  
IL  
Address  
Valid  
V
V
IH  
IL  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
LB#/UB#  
High-Z  
V
V
OH  
OL  
WAIT  
V
V
OH  
OL  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
Additional WAIT states inserted to allow refresh completion.  
Legend:  
Don't care  
Note: Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
Figure 10. Refresh Collision During WRITE Operation  
Low-Power Operation  
Standby Mode Operation  
During standby, the device current consumption is reduced to the level necessary  
to perform the DRAM refresh operation. Standby operation occurs when CE# is  
HIGH.  
The device will enter a reduced power state upon completion of a READ or WRITE  
operation, or when the address and control inputs remain static for an extended  
period of time. This mode will continue until a change occurs to the address or  
control inputs.  
Temperature Compensated Refresh  
Temperature compensated refresh (TCR) is used to adjust the refresh rate de-  
pending on the device operating temperature. DRAM technology requires  
increasingly frequent refresh operation to maintain data integrity as tempera-  
tures increase. More frequent refresh is required due to increased leakage of the  
DRAM capacitive storage elements as temperatures rise. A decreased refresh rate  
at lower temperatures will facilitate a savings in standby current.  
TCR allows for adequate refresh at four different temperature thresholds (+15°C,  
+45°C, +70°C, and +85°C). The setting selected must be for a temperature  
higher than the case temperature of the CellularRAM device. For example, if the  
case temperature is 50°C, the system can minimize self refresh current con-  
sumption by selecting the +7°0C setting. The +15°C and +45°C settings would  
result in inadequate refreshing and cause data corruption.  
126  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Partial Array Refresh  
Partial array refresh (PAR) restricts refresh operation to a portion of the total  
memory array. This feature enables the device to reduce standby current by re-  
freshing only that part of the memory array required by the host system. The  
refresh options are full array, one-half array, one-quarter array, three-quarter ar-  
ray, or none of the array. The mapping of these partitions can start at either the  
beginning or the end of the address map (see Table 40). READ and WRITE oper-  
ations to address ranges receiving refresh will not be affected. Data stored in  
addresses not receiving refresh will become corrupted. When re-enabling addi-  
tional portions of the array, the new portions are available immediately upon  
writing to the RCR.  
Deep Power-Down Operation  
Deep power-down (DPD) operation disables all refresh-related activity. This mode  
is used if the system does not require the storage provided by the CellularRAM  
device. Any stored data will become corrupted when DPD is enabled. When re-  
fresh activity has been re-enabled by rewriting the RCR, the CellularRAM device  
will require 150µs to perform an initialization procedure before normal operations  
can resume. During this 150µs period, the current consumption will be higher  
than the specified standby levels, but considerably lower than the active current  
specification.  
DPD cannot be enabled or disabled by writing to the RCR using the software ac-  
cess sequence; the RCR should be accessed using CRE instead.  
Configuration Registers  
Two user-accessible configuration registers define the device operation. The bus  
configuration register (BCR) defines how the CellularRAM interacts with the sys-  
tem memory bus and is nearly identical to its counterpart on burst mode Flash  
devices. The refresh configuration register (RCR) is used to control how refresh  
is performed on the DRAM array. These registers are automatically loaded with  
default settings during power-up, and can be updated any time the devices are  
operating in a standby state.  
Access Using CRE  
The configuration registers can be written to using either a synchronous or an  
asynchronous operation when the configuration register enable (CRE) input is  
HIGH (see Figure 41 and Figure 42). When CRE is LOW, a READ or WRITE oper-  
ation will access the memory array. The register values are written via address  
pins A[21:0]. In an asynchronous WRITE, the values are latched into the config-  
uration register on the rising edge of ADV#, CE#, or WE#, whichever occurs first;  
LB# and UB# are “Don’t Care.The BCR is accessed when A[19] is HIGH; the  
RCR is accessed when A[19] is LOW. For reads, address inputs other than A[19]  
are “Don’t Care,and register bits 15:0 are output on DQ[15:0].  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
127  
A d v a n c e I n f o r m a t i o n  
A[22:0]  
(except A19)  
ADDRESS  
ADDRESS  
OPCODE  
t
t
AVH  
AVS  
Select Control Register  
A19  
(Note)  
CRE  
t
AVS  
t
AVH  
t
VPH  
ADV#  
t
VP  
t
CBPH  
Initiate Control Register Access  
CE#  
OE#  
t
CW  
t
WP  
Write Address  
Bus Value to  
Control Register  
WE#  
LB#/UB#  
DQ[15:0]  
DATA VALID  
Legend:  
Don't care  
Note: A[19] = LOW to load RCR; A[19] = HIGH to load BCR.  
Figure 11. Configuration Register WRITE, Asynchronous Mode Followed by READ  
128  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
CLK  
Latch Control Register Value  
OPCODE  
A[22:0]  
(except A19)  
ADDRESS  
ADDRESS  
t
HD  
Latch Control Register Address  
t
SP  
SP  
A19  
(Note 2)  
t
CRE  
t
t
HD  
t
SP  
ADV#  
HD  
t
CBPH  
(Note 3)  
t
CSP  
CE#  
OE#  
t
SP  
WE#  
t
HD  
LB#/UB#  
t
CEW  
WAIT  
High-Z  
High-Z  
DATA  
VALID  
DQ[15:0]  
Legend:  
Don't care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. A[19] = LOW to load RCR; A[19] = HIGH to load BCR.  
3. CE# must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored—additional WAIT cycles caused  
by refresh collisions require a corresponding number of additional CE# LOW cycles.  
Figure 12. Configuration Register WRITE, Synchronous Mode Followed by READ0  
Bus Configuration Register  
The BCR defines how the CellularRAM device interacts with the system memory  
bus. Page mode operation is enabled by a bit contained in the RCR. Table 35  
below describes the control bits in the BCR. At powerup, the BCR is set to 9D4Fh.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
129  
A d v a n c e I n f o r m a t i o n  
The BCR is accessed using CRE and A[19] HIGH.  
Table 4. Bus Configuration Register Definition  
A[22:20]  
A19  
A[18:16]  
A15  
A14  
A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2 A1 A0  
22–20  
19  
18–16  
15  
14  
13 12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Burst  
Wrap  
Impedance (BW)  
(Note)  
Burst  
Length  
(BL)  
WAIT  
Register  
Select  
Operating  
Mode  
Initial  
Latency  
Latency  
Counter  
WAIT  
Polarity  
Output  
Reserved  
Reserved  
Reserved Configuration Reserved Reserved  
(WC)  
(Note)  
All must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Setting is ignored  
Output Impedance  
BCR[5] BCR[4]  
Initial Access Latency  
Variable (default)  
Fixed  
BCR[14]  
0
0
1
1
0
1
0
1
Full Drive (default)  
1/2 Drive  
0
1
1/4 Drive  
Reserved  
BCR[13] BCR[12] BCR[11]  
Latency Counter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Code 0–Reserved  
Code 1–Reserved  
Code 2  
BCR[3]  
Burst Wrap (Note)  
0
1
Burst wraps within the burst length  
Burst no wrap (default)  
Code 3 (Default)  
Code 4  
Code 5  
Code 6  
Code 7–Reserved  
BCR[8]  
WAIT Configuration  
Asserted during delay  
0
1
Asserted one data cycle before delay (default)  
BCR[10] WAIT Polarity  
0
1
Active LOW  
Active HIGH (default)  
BCR[15]  
Operating Mode  
Burst Length (Note)  
BCR[2] BCR[1] BCR[0]  
0
1
Synchronous burst access mode  
Asynchronous access mode (default)  
0
0
0
1
1
0
1
1
0
1
1
0
1
0
1
4 words  
8 words  
16 words  
Register Select  
BCR[19]  
32 words  
0
1
Select RCR  
Select BCR  
Continuous burst (default)  
Others  
Reserved  
Note: Burst wrap and length apply to READ operations only.  
130  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 5. Sequence and Burst Length  
4-WORD  
STARTING  
ADDRESS LENGTH  
BURST  
8-WORD BURST  
LENGTH  
CONTINUOUS  
BURST  
BURST WRAP  
16-WORD BURST LENGTH  
BCR[3] WRAP (DECIMAL) LINEAR  
LINEAR  
LINEAR  
LINEAR  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10-…  
5-6-7-8-9-10-11-…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13-…  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1  
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2  
4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3  
5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4  
6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5  
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6  
2
3
4
5
0
Yes  
6
7
14  
15  
0
14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13  
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17  
3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18  
4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19  
5-6-7-8-9-10-11-12-13-…-15-16-17-18-19-20  
6-7-8-9-10-11-12-13-14-…-16-17-18-19-20-21  
7-8-9-10-11-12-13-14-…-17-18-19-20-21-22  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21…  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10-…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12…  
7-8-9-10-11-12-13…  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
1
2
2-3-4-5-6-7-8-9  
3
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
4
5
1
No  
6
7
14  
15  
14-15-16-17-18-19-…-23-24-25-26-27-28-29  
5-16-17-18-19-20-…-24-25-26-27-28-29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
Burst Length (BCR[2:0]): Default = Continuous Burst  
Burst lengths define the number of words the device outputs during burst READ  
operations. The device supports a burst length of 4, 8, or 16 words. The device  
can also be set in continuous burst mode where data is accessed sequentially  
without regard to address boundaries. Enabling burst no-wrap with BCR[3] = 1  
overrides the burst-length setting.  
Burst Wrap (BCR[3]): Default = No Wrap  
The burst-wrap option determines if a 4-, 8-, or 16-word READ burst wraps within  
the burst length or steps through sequential addresses. If the wrap option is not  
enabled, the device accesses data from sequential addresses without regard to  
burst boundaries. When continuous burst operation is selected, the internal ad-  
dress wraps to 000000h if the burst goes past the last address. Enabling burst  
nowrap (BCR[3] = 1) overrides the burst-length setting.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
131  
A d v a n c e I n f o r m a t i o n  
Output Impedance (BCR[5:4]): Default = Outputs Use Full Drive  
Strength  
The output driver strength can be altered to full, one-half, or one-quarter  
strength to adjust for different data bus loading scenarios. The reduced-strength  
options are intended for stacked chip (Flash + CellularRAM) environments when  
there is a dedicated memory bus. The reduced-drive-strength option minimizes  
the noise generated on the data bus during READ operations. Normal output drive  
strength should be selected when using a discrete CellularRAM device in a more  
heavily loaded data bus environment. Outputs are configured at full drive  
strength during testing.  
Table 6. Output Impedance  
BCR[5]  
BCR[4]  
DRIVE STRENGTH  
0
0
1
1
0
1
0
1
Full  
1/2  
1/4  
Reserved  
WAIT Configuration (BCR[8]): Default = WAIT Transitions One  
Clock Before Data Valid/Invalid  
The WAIT configuration bit is used to determine when WAIT transitions between  
the asserted and the de-asserted state with respect to valid data presented on  
the data bus. The memory controller will use the WAIT signal to coordinate data  
transfer during synchronous READ and WRITE operations. When BCR[8] = 0,  
data will be valid or invalid on the clock edge immediately after WAIT transitions  
to the de-asserted or asserted state, respectively (Figure 43 and Figure 45).  
When A8 = 1, the WAIT signal transitions one clock period prior to the data bus  
going valid or invalid (Figure 44).  
WAIT Polarity (BCR[10]): Default = WAIT Active HIGH  
The WAIT polarity bit indicates whether an asserted WAIT output should be HIGH  
or LOW. This bit will determine whether the WAIT signal requires a pull-up or pull-  
down resistor to maintain the de-asserted state.  
CLK  
WAIT  
High-Z  
DQ[15:0]  
Data[0]  
Data[1]  
Data immediately valid (or invalid)  
Note: Data valid/invalid immediately after WAIT transitions (BCR[8] = 0). See Figure 45.  
Figure 13. WAIT Configuration (BCR[8] = 0)  
132  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
CLK  
WAIT  
High-Z  
DQ[15:0]  
Data[0]  
Data valid (or invalid) after one clock delay  
Note: Valid/invalid data delayed for one clock after WAIT transitions (BCR[8] = 1). See Figure 45.  
Figure 14. WAIT Configuration (BCR[8] = 1)  
CLK  
BCR[8]  
= 0  
WAIT  
DATA VALID IN CURRENT CYCLE  
BCR[8]  
= 1  
WAIT  
DATA VALID IN NEXT CYCLE  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
Legend:  
Don't care  
Note: Non-default BCR setting: WAIT active LOW.  
Figure 15. WAIT Configuration During Burst Operation  
Latency Counter (BCR[13:11]): Default = Three-Clock Latency  
The latency counter bits determine how many clocks occur between the begin-  
ning of a READ or WRITE operation and the first data value transferred. Latency  
codes from two (three clocks) to six (seven clocks) are allowed (see Table 38 and  
Figure 46 below).  
Table 7. Variable Latency Configuration Codes  
LATENCY (Note)  
REFRESH  
MAX INPUT CLK FREQUENCY (MHz)  
LATENCY  
BCR[13:11]  
010  
CONFIGURATION CODE  
NORMAL  
COLLISION  
70ns/80 MHz  
85ns/66 MHz  
2 (3 clocks)  
3 (4 clocks)—default  
4 (5 clocks)  
2
3
4
4
6
8
75 (13.0ns)  
44 (22.7ns)  
011  
80 (12.5ns)  
66 (15.2ns)  
100  
Note: Latency is the number of clock cycles from the initiation of a burst operation until data appears. Data is trans-  
ferred on the next clock cycle.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
133  
A d v a n c e I n f o r m a t i o n  
V
IH  
CLK  
V
IL  
V
IH  
A[21:0]  
Valid Address  
V
IL  
V
IH  
ADV#  
A/DQ[15:0]  
A/DQ[15:0]  
A/DQ[15:0]  
A/DQ[15:0]  
V
IL  
Code 2  
Code 3  
Code 4  
Code 5  
Code 6  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
(Default)  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
V
OH  
Valid  
Output  
Valid  
Output  
Valid  
Output  
V
OL  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
V
V
OH  
OL  
Valid  
Output  
A/DQ[15:0]  
Legend:  
Don't care  
Undefined  
Figure 16. Latency Counter (Variable Initial Latency, No Refresh Collision)  
Operating Mode (BCR[15]): Default = Asynchronous Operation  
The operating mode bit selects either synchronous burst operation or the default  
asynchronous mode of operation.  
Refresh Configuration Register  
The refresh configuration register (RCR) defines how the CellularRAM device per-  
forms its transparent self refresh. Altering the refresh parameters can  
dramatically reduce current consumption during standby mode. Page mode con-  
trol is also embedded into the RCR. Table 39 below describes the control bits used  
in the RCR. At power-up, the RCR is set to 0070h. The RCR is accessed using CRE  
and A[19] LOW.  
134  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 8. Refresh Configuration Register Mapping  
A[22:20]  
A19  
A[18:8]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus  
22–20  
Reserved  
19  
18–8  
Reserved  
7
6
5
4
3
2
1
0
Read Configuration  
Register  
Register  
Select  
Page  
Reserved  
DPD  
Reserved  
PAR  
Setting is ignored  
Must be set to "0"  
All must be set to "0"  
All must be set to "0"  
RCR[19] Register Select  
RCR[2] RCR[1] RCR[0] Refresh Coverage  
0
1
Select RCR  
Select BCR  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full array (default)  
Bottom 1/2 array  
Bottom 1/4 array  
Bottom 1/8 array  
None of array  
RCR[7]  
Page Mode Enable/Disable  
Page Mode Disabled (default)  
Page Mode Enable  
0
1
Top 1/2 array  
Top 1/4 array  
RCR[4]  
Deep Power-Down  
DPD Enable  
Top 1/8 array  
0
1
DPD Disable (default)  
Partial Array Refresh (RCR[2:0]): Default = Full Array Refresh  
The PAR bits restrict refresh operation to a portion of the total memory array. This  
feature allows the device to reduce standby current by refreshing only that part  
of the memory array required by the host system. The refresh options are full ar-  
ray, one-half array, one-quarter array, three-quarters array, or none of the array.  
The mapping of these partitions can start at either the beginning or the end of  
the address map (see Table 40 through Table 42).  
Table 9. 128Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
ACTIVE SECTION  
Full die  
ADDRESS SPACE  
000000h–7FFFFFh  
000000h–3FFFFFh  
000000h–1FFFFFh  
000000h–0FFFFFh  
0
SIZE  
DENSITY  
128Mb  
64Mb  
32Mb  
16Mb  
0Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 Meg x 16  
4 Meg x 16  
2 Meg x 16  
1 Meg x 16  
0 Meg x 16  
4 Meg x 16  
2 Meg x 16  
1 Meg x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
One-half of die  
One-quarter of die  
One-eighth of die  
400000h–7FFFFFh  
600000h–7FFFFFh  
700000h–7FFFFFh  
64Mb  
32Mb  
16Mb  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
135  
A d v a n c e I n f o r m a t i o n  
Table 10. 64Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
ACTIVE SECTION  
Full die  
ADDRESS SPACE  
000000h–3FFFFFh  
000000h–2FFFFFh  
000000h–1FFFFFh  
000000h–0FFFFFh  
0
SIZE  
DENSITY  
64Mb  
48Mb  
32Mb  
16Mb  
0Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4 Meg x 16  
3 Meg x 16  
2 Meg x 16  
1 Meg x 16  
0 Meg x 16  
3 Meg x 16  
2 Meg x 16  
1 Meg x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
One-half of die  
One-quarter of die  
One-eighth of die  
100000h–3FFFFFh  
200000h–3FFFFFh  
300000h–3FFFFFh  
48Mb  
32Mb  
16Mb  
Table 11. 32Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
ACTIVE SECTION  
Full die  
ADDRESS SPACE  
000000h–1FFFFFh  
000000h–17FFFFh  
000000h–0FFFFFh  
000000h–07FFFFh  
0
SIZE  
DENSITY  
32Mb  
24Mb  
16Mb  
8Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Meg x 16  
1.5 Meg x 16  
1 Meg x 16  
512K x 16  
0 Meg x 16  
1.5 Meg x 16  
1 Meg x 16  
512K x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
0Mb  
One-half of die  
One-quarter of die  
One-eighth of die  
080000h–1FFFFFh  
100000h–1FFFFFh  
180000h–1FFFFFh  
24Mb  
16Mb  
8Mb  
Deep Power-Down (RCR[4]): Default = DPD Disabled  
The deep power-down bit enables and disables all refresh-related activity. This  
mode is used if the system does not require the storage provided by the Cellular-  
RAM device. Any stored data will become corrupted when DPD is enabled. When  
refresh activity has been re-enabled, the CellularRAM device will require 150µs  
to perform an initialization procedure before normal operations can resume.  
Deep power-down is enabled when RCR[4] = 0, and remains enabled until  
RCR[4] is set to “1.”  
Temperature Compensated Refresh (RCR[6:5]): Default = +85ºC  
Operation  
The TCR bits allow for adequate refresh at four different temperature thresholds  
(+15ºC, +45ºC, +70ºC, and +85ºC). The setting selected must be for a temper-  
ature higher than the case temperature of the CellurlarRAM device. If the case  
temperature is +50ºC, the system can minimize self refresh current consumption  
by selecting the +70ºC setting. The +15ºC and +45ºC settings would result in  
inadequate refreshing and cause data corruption.  
Page Mode Operation (RCR[7]): Default = Disabled  
The page mode operation bit determines whether page mode is enabled for asyn-  
chronous READ operations. In the power-up default state, page mode is disabled.  
136  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Voltage to Any Ball Except V , V  
Q
CC  
CC  
Relative to V . . . . . -0.50V to (4.0V or V Q + 0.3V, whichever is less)  
SS  
CC  
Voltage on V Supply Relative to V  
. . . . . . . . . . . . . . . . -0.2V to +2.45V  
SS  
CC  
Voltage on V Q Supply Relative to V  
. . . . . . . . . . . . . . . . -0.2V to +2.45V  
SS  
CC  
Storage Temperature (plastic) . . . . . . . . . . . . . . . . . . . . . . -55ºC to +150ºC  
Operating Temperature (case)  
Wireless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -25ºC to +85ºC  
*Stresses greater than those listed may cause permanent damage to the device. This  
is a stress rating only, and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
137  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
Table 12. Electrical Characteristics and Operating Conditions  
Description  
Conditions  
Symbol  
Min  
1.70  
Max  
1.95  
Units  
V
Notes  
Supply Voltage  
VCC  
W: 1.8V  
J: 1.5V  
1.70  
1.95  
V
I/O Supply Voltage  
VCCQ  
1.35  
1.65  
V
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
VCCQ - 0.4  
-0.20  
VCCQ + 0.2  
0.4  
V
2
3
4
4
V
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
IOH = -0.2mA  
IOL = +0.2mA  
VOH  
VOL  
ILI  
0.80 VCC  
Q
V
0.20 VCC  
Q
V
VIN = 0 to VCC  
Q
1
µA  
OE# = VIH or  
Chip Disabled  
Output Leakage Current  
ILO  
1
µA  
Operating Current  
-70  
-85  
25  
20  
Asynchronous Random READ  
Asynchronous Page READ  
Initial Access, Burst READ  
Continuous Burst READ  
VIN = VCCQ or 0V  
Chip Enabled,  
IOUT = 0  
ICC  
1
mA  
5
5
-70  
-85  
15  
12  
80 MHz  
66 MHz  
80 MHz  
66 MHz  
-70  
35  
VIN = VCCQ or 0V  
Chip Enabled,  
IOUT = 0  
30  
ICC1  
mA  
18  
15  
25  
VIN = VCCQ or 0V  
Chip Enabled  
WRITE Operating Current  
ICC2  
mA  
µA  
-85  
20  
128 M  
64 M  
180  
120  
110  
VIN = VCCQ or 0V  
Standby Current  
ISB  
6
CE# = VCC  
Q
32 M  
Notes:  
1. Wireless Temperature (-25ºC < TC < +85ºC); Industrial Temperature (-40ºC < TC < +85ºC).  
2. Input signals may overshoot to VCCQ + 1.0V for periods less than 2ns during transitions.  
3. Input signals may undershoot to VSS - 1.0V for periods less than 2ns during transitions.  
4. BCR[5:4] = 00b.  
5. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the  
current required to drive output capacitance expected in the actual system.  
6. ISB (MAX) values measured with PAR set to FULL ARRAY and TCR set to +85°C. To achieve low standby current,  
all inputs must be driven to either VCCQ or VSS  
.
138  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 13. Temperature Compensated Refresh Specifications and Conditions  
Standard  
Power  
Tem pe rature (No Desig.)  
Max Case  
Description  
Conditions  
Symbol  
Density  
Units  
+85  
+70  
+45  
+15  
+85  
+70  
+45  
+15  
°
°
°
°
°
°
°
°
C
C
C
C
C
C
C
C
120  
105  
85  
64 Mb  
70  
Temperature Compensated  
Refresh Standby Current  
VIN = VCCQ or 0V,  
CE# = VCCQ  
ITCR  
µA  
110  
95  
32 Mb  
80  
70  
Note: IPAR (MAX) values measured with TCR set to 85°C.  
Table 14. Partial Array Refresh Specifications and Conditions  
Standard  
Power  
Array  
Description  
Conditions  
Symbol  
Density  
Partition  
Full  
1/2  
1/4  
1/8  
0
(No Desig.)  
Units  
120  
115  
110  
105  
70  
64 Mb  
Full  
1/2  
1/4  
1/8  
0
110  
105  
100  
95  
Partially Array Refresh Standby  
Current  
VIN = VCCQ or 0V,  
CE# = VCCQ  
IPAR  
µA  
32 Mb  
70  
Full  
0
180  
50  
128 Mb  
Note:IPAR (MAX) values measured with TCR set to 85°C.  
Table 15. Deep Power-Down Specifications  
Description  
Conditions  
Symbol  
Typ  
Units  
µA  
Deep Power-down  
VIN = VCCQ or 0V; +25°C; VCC = 1.8V  
IZZ  
10  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
139  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
V
CC  
Q
V
Q
/2  
V
Q/2  
CC  
(Note 2)  
CC  
Input  
(Note 1)  
Output  
Test Points  
(Note 3)  
V
SS  
Notes:  
1. AC test inputs are driven at VCCQ for a logic 1 and VSS for a logic 0. Input rise and fall times (10% to 90%) < 1.6ns.  
2. Input timing begins at VCCQ/2.  
3. Output timing ends at VCCQ/2.  
Figure 17. AC Input/Output Reference Waveform  
V
Q
CC  
R1  
Test Point  
DUT  
30pF  
R2  
Note: All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
Figure 18. Output Load Circuit  
Table 16. Output Load Circuit  
V
Q
R1/R2  
2.7K  
CC  
1.8V  
140  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 17. Asynchronous READ Cycle Timing Requirements  
85ns/66 MHz  
70ns/80 MHz  
Units  
Notes  
Parameter  
Address Access Time  
Symbol  
tAA  
Min  
Max  
85  
Min  
Max  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ADV# Access Time  
tAADV  
tAPA  
tAVH  
tAVS  
tBA  
85  
70  
Page Access Time  
25  
20  
Address Hold from ADV# HIGH  
Address Setup to ADV# HIGH  
LB#/UB# Access Time  
5
5
10  
10  
85  
8
70  
8
LB#/UB# Disable to DQ High-Z Output  
LB#/UB# Enable to Low-Z Output  
CE# HIGH between Subsequent Mixed-Mode Operations  
Maximum CE# Pulse Width  
CE# LOW to WAIT Valid  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tCEW  
tCO  
4
3
10  
5
10  
5
4
4
2
1
10  
10  
5
7.5  
85  
1
10  
10  
5
7.5  
70  
Chip Select Access Time  
CE# LOW to ADV# HIGH  
tCVS  
tHZ  
Chip Disable to DQ and WAIT High-Z Output  
Chip Enable to Low-Z Output  
Output Enable to Valid Output  
Output Hold from Address Change  
Output Disable to DQ High-Z Output  
Output Enable to Low-Z Output  
Page Cycle Time  
8
20  
8
8
20  
8
4
3
tLZ  
tOE  
tOH  
tOHZ  
tOLZ  
tPC  
4
3
5
5
25  
85  
10  
10  
20  
70  
10  
10  
READ Cycle Time  
tRC  
ADV# Pulse Width LOW  
tVP  
ADV# Pulse Width HIGH  
tVPH  
Notes:  
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
2. See “How Extended Timings Impact CellularRAM™ Operation” below.  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 48. The Low-Z timings measure a  
4. 100mV transition away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
5. Low-Z to High-Z timings are tested with the circuit shown in Figure 48. The High-Z timings measure a 100mV  
transition from either VOH or VOL toward VCCQ/2.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
141  
A d v a n c e I n f o r m a t i o n  
Table 18. Burst READ Cycle Timing Requirements  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Burst to READ Access Time (Variable Latency)  
CLK to Output Delay  
Symbol  
tABA  
tACLK  
tAVS  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
35  
9
Min  
Max  
55  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
11  
Address Setup to ADV# HIGH  
Burst OE# LOW to Output Delay  
CE# HIGH between Subsequent Mixed-Mode Operations  
CE# LOW to WAIT Valid  
10  
10  
20  
20  
5
1
5
1
7.5  
7.5  
CLK Period  
12.5  
4
15  
5
CE# Setup Time to Active CLK Edge  
Hold Time from Active CLK Edge  
Chip Disable to DQ and WAIT High-Z Output  
CLK Rise or Fall Time  
2
2
tHZ  
8
1.6  
9
8
1.6  
11  
8
2
tKHKL  
tKHTL  
tKHZ  
tKLZ  
tKOH  
tKP  
CLK to WAIT Valid  
CLK to DQ High-Z Output  
3
2
2
3
8
3
2
2
3
CLK to Low-Z Output  
5
5
Output HOLD from CLK  
CLK HIGH or LOW Time  
Output Disable to DQ High-Z Output  
Output Enable to Low-Z Output  
Setup Time to Active CLK Edge  
tOHZ  
tOLZ  
tSP  
8
8
2
3
5
3
5
3
Notes:  
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 48. The High-Z timings measure a 100mV  
transition from either VOH or VOL toward VCCQ/2.  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 48. The Low-Z timings measure a 100mV  
transition away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
142  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 19. Asynchronous WRITE Cycle Timing Requirements  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
Notes  
Address and ADV# LOW Setup Time  
Address Hold from ADV# Going HIGH  
Address Setup to ADV# Going HIGH  
Address Valid to End of Write  
LB#/UB# Select to End of Write  
Maximum CE# Pulse Width  
CE# LOW to WAIT Valid  
tAVH  
tAVS  
tAW  
5
5
ns  
10  
70  
70  
10  
85  
85  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBW  
tCEM  
tCEW  
tCKA  
tCVS  
tCW  
tDH  
4
4
1
1
7.5  
1
7.5  
Async Address-to-Burst Transition Time  
CE# Low to ADV# HIGH  
70  
10  
70  
0
85  
10  
85  
0
Chip Enable to End of Write  
Data Hold from Write Time  
Data WRITE Setup Time  
tDW  
tHZ  
23  
23  
1
Chip Disable to WAIT High-Z Output  
Chip Enable to Low-Z Output  
End WRITE to Low-Z Output  
ADV# Pulse Width  
8
8
tLZ  
10  
5
10  
5
3
3
tOW  
tVP  
tVPH  
tVS  
10  
10  
70  
70  
10  
10  
85  
85  
ADV# Pulse Width HIGH  
ADV# Setup to End of WRITE  
WRITE Cycle Time  
tWC  
tWHZ  
tWP  
WRITE to DQ High-Z Output  
WRITE Pulse Width  
8
8
2
1
46  
10  
0
55  
10  
0
WRITE Pulse Width HIGH  
tWPH  
tWR  
WRITE Recovery Time  
Notes:  
1. See “How Extended Timings Impact CellularRAM™ Operation” below.  
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 48. The High-Z timings measure a 100mV  
transition from either VOH or VOL toward VCCQ/2.  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 48. The Low-Z timings measure a 100mV  
transition away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
Table 20. Burst WRITE Cycle Timing Requirements  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Symbol  
tCBPH  
tCEW  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
Notes  
CE# HIGH between Subsequent Mixed-Mode Operations  
CE# LOW to WAIT Valid  
1
7.5  
1
7.5  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
143  
A d v a n c e I n f o r m a t i o n  
Table 20. Burst WRITE Cycle Timing Requirements (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Symbol  
tCLK  
tCSP  
tHD  
Min  
12.5  
4
Max  
Min  
15  
5
Max  
Units  
ns  
Notes  
Clock Period  
CE# Setup to CLK Active Edge  
Hold Time from Active CLK Edge  
Chip Disable to WAIT High-Z Output  
CLK Rise or Fall Time  
ns  
2
2
ns  
tHZ  
8
1.6  
9
8
ns  
tKHKL  
tKHTL  
tKP  
1.6  
11  
ns  
Clock to WAIT Valid  
ns  
CLK HIGH or LOW Time  
Setup Time to Activate CLK Edge  
3
3
3
3
ns  
tSP  
ns  
Timing Diagrams  
V
(MIN)  
CC  
V
, V Q = 1.7V  
CC CC  
t
PU  
Device ready for  
normal operation  
Figure 19. Initialization Period  
Table 21. Initialization Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Units  
Notes  
Initialization Period (required before normal operations)  
tPU  
150  
150  
µs  
144  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
RC  
V
V
IH  
IL  
VALID ADDRESS  
A[22:0]  
t
AA  
V
V
IH  
IL  
ADV#  
CE#  
t
t
CBPH  
HZ  
V
V
IH  
IL  
t
CO  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
BLZ  
t
LZ  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
t
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 20. Asynchronous READ  
Table 22. Asynchronous READ Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
70  
8
Min  
Max  
85  
85  
8
Units  
ns  
tBA  
ns  
tBHZ  
tBLZ  
ns  
10  
5
10  
5
ns  
tCBPH  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
145  
A d v a n c e I n f o r m a t i o n  
Table 22. Asynchronous READ Timing Parameters (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCEW  
tCO  
Min  
Max  
7.5  
70  
8
Min  
Max  
Units  
ns  
1
1
7.5  
ns  
tHZ  
8
ns  
tLZ  
10  
10  
ns  
tOE  
20  
8
20  
8
ns  
tOHZ  
tOLZ  
tRC  
ns  
5
5
ns  
70  
85  
ns  
146  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AA  
t
t
AVH  
AVS  
t
VPH  
V
V
IH  
IL  
ADV#  
t
AADV  
t
VP  
t
t
CVS  
t
CBPH  
HZ  
V
V
IH  
IL  
CE#  
t
CO  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
BLZ  
t
LZ  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
t
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 21. Asynchronous READ Using ADV#  
Table 23. Asynchronous READ Timing Parameters Using ADV#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
Min  
Max  
85  
Units  
ns  
tAADV  
70  
85  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
147  
A d v a n c e I n f o r m a t i o n  
Table 23. Asynchronous READ Timing Parameters Using ADV# (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCVS  
tAVH  
tAVS  
tBA  
Min  
10  
5
Max  
Min  
10  
5
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
70  
8
85  
8
tBHZ  
tBLZ  
tCBPH  
tCEW  
tCO  
10  
5
10  
5
1
7.5  
70  
1
7.5  
85  
tCVS  
tHZ  
10  
10  
10  
10  
8
8
tLZ  
tOE  
20  
8
20  
8
tOHZ  
tOLZ  
tVP  
5
5
10  
10  
10  
10  
tVPH  
148  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
RC  
V
V
IH  
IL  
A[22:0]  
A[3:0]  
VALID ADDRESS  
V
V
IH  
IL  
VALID  
VALID  
VALID  
ADDRESS  
VALID ADDRESS  
ADDRESS  
ADDRESS  
t
t
PC  
AA  
V
V
IH  
IL  
ADV#  
t
t
CEM  
CBPH  
t
t
t
CBPH  
CO  
HZ  
V
V
IH  
IL  
CE#  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
t
APA  
BLZ  
t
t
OH  
LZ  
V
V
OH  
OL  
High-Z  
t
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 22. Page Mode READ  
Table 24. Asynchronous READ Timing Parameters—Page Mode Operation  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
20  
70  
8
Min  
Max  
85  
25  
85  
8
Units  
ns  
tAPA  
tBA  
ns  
ns  
tBHZ  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
149  
A d v a n c e I n f o r m a t i o n  
Table 24. Asynchronous READ Timing Parameters—Page Mode Operation (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tBLZ  
tCBPH  
tCEM  
tCEW  
tCO  
Min  
10  
5
Max  
Min  
10  
5
Max  
Units  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
7.5  
70  
8
4
7.5  
85  
8
1
1
tHZ  
tLZ  
10  
5
10  
5
tOE  
20  
8
20  
8
tOH  
tOHZ  
tOLZ  
tPC  
5
5
20  
70  
25  
85  
tRC  
150  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
t
KP  
t
KP  
CLK  
V
V
IH  
IL  
CLK  
t
KHKL  
t
t
SP  
HD  
V
V
IH  
IL  
A[22:0]  
ADV#  
VALID ADDRESS  
t
t
SP  
HD  
V
V
IH  
IL  
t
HD  
t
t
HZ  
t
ABA  
CSP  
V
V
IH  
IL  
CE#  
OE#  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
OLZ  
t
t
SP  
SP  
HD  
V
V
IH  
IL  
WE#  
t
t
HD  
V
V
IH  
IL  
LB#/UB#  
t
CEW  
t
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
t
KOH  
ACLK  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Note: Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
Figure 23. Single-Access Burst READ Operation—Variable Latency  
Table 25. Burst READ Timing Parameters—Single Access, Variable Latency  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tABA  
Min  
Max  
35  
9
Min  
Max  
55  
Units  
ns  
tACLK  
11  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
151  
A d v a n c e I n f o r m a t i o n  
Table 25. Burst READ Timing Parameters—Single Access, Variable Latency (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tBOE  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
20  
Min  
Max  
20  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
12.5  
4
7.5  
1
15  
5
7.5  
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
tOLZ  
tSP  
8
8
5
3
5
3
152  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
CLK  
t
t
t
KP  
KHKL  
KP  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
CE#  
t
t
SP  
HD  
V
V
IH  
IL  
t
t
t
t
HD  
CSP  
ABA  
CBPH  
V
V
IH  
IL  
t
HZ  
t
t
OHZ  
BOE  
V
V
IH  
IL  
OE#  
t
OLZ  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
KOH  
t
ACLK  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't Care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
Figure 24. Four-word Burst READ Operation—Variable Latency  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
153  
A d v a n c e I n f o r m a t i o n  
Table 26. Burst READ Timing Parameters—4-word Burst  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tABA  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
35  
9
Min  
Max  
55  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
tOLZ  
tSP  
8
8
5
3
5
3
154  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
CE#  
t
t
SP  
HD  
V
V
IH  
IL  
t
t
t
HD  
CSP  
CBPH  
V
V
IH  
IL  
t
HZ  
t
t
OHZ  
BOE  
V
V
IH  
IL  
OE#  
t
OLZ  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
KOH  
t
ACLK  
t
t
t
KHTL  
KHTL  
KHTL  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
High-Z  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't Care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
Figure 25. Four-word Burst READ Operation (with LB#/UB#)  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
155  
A d v a n c e I n f o r m a t i o n  
Table 27. Burst READ Timing Parameters—4-word Burst with LB#/UB#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
2
2
tHZ  
8
9
8
5
8
11  
8
tKHTL  
tKHZ  
tKLZ  
3
2
2
3
2
2
5
tKOH  
tOHZ  
tOLZ  
tSP  
8
8
5
3
5
3
156  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
CBPH  
t
t
t
CSP  
HZ  
V
V
IH  
IL  
CE#  
OE#  
t
OHZ  
OHZ  
(Note 2)  
V
V
IH  
IL  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
BOE  
t
OLZ  
High-Z  
V
V
High-Z  
IH  
IL  
WAIT  
t
KOH  
t
BOE  
t
ACLK  
t
OLZ  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. OE# can stay LOW during burst suspend. If OE# is LOW, DQ[15:0] will continue to output valid data.  
Figure 26. READ Burst Suspend  
Table 28. Burst READ Timing Parameters—Burst Suspend  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
20  
20  
ns  
5
12.5  
4
5
15  
5
ns  
ns  
tCSP  
ns  
tHD  
2
2
ns  
tHZ  
8
8
8
8
ns  
tKOH  
tOHZ  
tOLZ  
2
5
2
5
ns  
ns  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
157  
A d v a n c e I n f o r m a t i o n  
Table 28. Burst READ Timing Parameters—Burst Suspend (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
Min  
Max  
Min  
Max  
Units  
tSP  
3
3
ns  
V
CLK  
V
IH  
IL  
t
CLK  
V
IH  
IL  
A[22:0]  
V
V
V
IH  
IL  
ADV#  
V
V
IH  
IL  
LB#/UB#  
V
V
IH  
IL  
CE#  
OE#  
WE#  
V
V
IH  
IL  
V
V
IH  
IL  
t
t
KHTL  
KHTL  
V
V
OH  
OL  
(Note 2)  
WAIT  
t
t
KOH  
ACLK  
V
V
OH  
OL  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
Don't Care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. WAIT will assert LC + 1 or 2LC + 1 cycles for variable latency (depending upon refresh status).  
Figure 27. Continuous Burst READ Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition  
Table 29. Burst READ Timing Parameters—BCR[8] = 0  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tCLK  
Min  
12.5  
2
Max  
Min  
15  
2
Max  
Units  
ns  
9
11  
ns  
tKHTL  
tKOH  
9
11  
ns  
ns  
158  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
AA  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
t
AS  
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
WHZ  
LZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
HZ  
t
CEW  
High-Z  
V
V
IH  
IL  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 28. CE#-Controlled Asynchronous WRITE  
Table 30. Asynchronous WRITE Timing Parameters—CE#-Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
tAW  
70  
70  
85  
85  
ns  
tBW  
ns  
tCEM  
4
4
µs  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
159  
A d v a n c e I n f o r m a t i o n  
Table 30. Asynchronous WRITE Timing Parameters—CE#-Controlled (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCEW  
tCW  
Min  
1
Max  
Min  
1
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.5  
7.5  
70  
0
85  
0
tDH  
tDW  
tHZ  
23  
23  
8
8
8
8
tLZ  
10  
70  
10  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
46  
10  
0
55  
10  
0
160  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
WC  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
t
AS  
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
WHZ  
LZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
HZ  
t
CEW  
High-Z  
V
V
IH  
IL  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 29. LB#/UB#-Controlled Asynchronous WRITE  
Table 31. Asynchronous WRITE Timing Parameters—LB#/UB#-Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
tAW  
70  
70  
85  
85  
ns  
tBW  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
161  
A d v a n c e I n f o r m a t i o n  
Table 31. Asynchronous WRITE Timing Parameters—LB#/UB#-Controlled (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCEM  
tCEW  
tCW  
Min  
Max  
4
Min  
Max  
4
Units  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
70  
0
7.5  
1
85  
0
7.5  
tDH  
tDW  
tHZ  
23  
23  
8
8
8
8
tLZ  
10  
70  
10  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
46  
10  
0
55  
10  
0
162  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
WC  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
AS  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
t
OW  
LZ  
WHZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
t
CEW  
HZ  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 30. WE#-Controlled Asynchronous WRITE  
Table 32. Asynchronous WRITE Timing Parameters—WE#-Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
Min  
Max  
Min  
Max  
Units  
tAS  
0
0
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
163  
A d v a n c e I n f o r m a t i o n  
Table 32. Asynchronous WRITE Timing Parameters—WE#-Controlled (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAW  
Min  
70  
Max  
Min  
85  
Max  
Units  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBW  
70  
85  
tCEM  
tCEW  
tCW  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDH  
tDW  
tHZ  
23  
23  
8
8
8
8
tLZ  
10  
5
10  
5
tOW  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
70  
85  
46  
10  
0
55  
10  
0
164  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
t
AVH  
AVS  
t
VS  
t
t
VP  
VPH  
t
AS  
V
V
IH  
IL  
ADV#  
t
AS  
t
AW  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WPH  
WP  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
t
OW  
LZ  
WHZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
t
CEW  
HZ  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 31. Asynchronous WRITE Using ADV#  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
165  
A d v a n c e I n f o r m a t i o n  
Table 33. Asynchronous WRITE Timing Parameters Using ADV#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVH  
tAVS  
tAW  
5
5
10  
70  
70  
10  
85  
85  
tBW  
tCEM  
tCEW  
tCW  
tDH  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDW  
tHZ  
23  
23  
8
8
tLZ  
10  
5
10  
5
tOW  
tAS  
0
0
tVP  
10  
10  
70  
10  
10  
85  
tVPH  
tVS  
tWHZ  
tWP  
8
8
46  
10  
55  
10  
tWPH  
166  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
KHKL  
t
t
KP  
t
KP  
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
t
t
SP  
HD  
V
V
IH  
IL  
t
SP  
t
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CSP  
t
HD  
CBPH  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
t
t
SP  
HD  
V
V
IH  
IL  
WE#  
t
HZ  
t
t
CEW  
KHTL  
High-Z  
V
V
(Note 2)  
IH  
IL  
High-Z  
WAIT  
t
t
HD  
SP  
V
V
OH  
OL  
DQ[15:0]  
D[1]  
D[2]  
D[3]  
D[0]  
Legend:  
READ Burst Identified  
(WE# = LOW)  
Don't Care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay; burst  
length four; burst wrap enabled.  
Figure 32. Burst WRITE Operation  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
167  
A d v a n c e I n f o r m a t i o n  
Table 34. Burst WRITE Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
1
7.5  
1
7.5  
ns  
12.5  
4
15  
5
ns  
ns  
2
2
ns  
tHZ  
8
1.6  
9
8
ns  
tKHKL  
tKHTL  
tKP  
1.6  
11  
ns  
ns  
3
3
3
3
ns  
tSP  
ns  
168  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
CLK  
t
CLK  
V
V
IH  
IL  
A[22:0]  
ADV#  
V
V
IH  
IL  
V
V
IH  
IL  
LB#/UB#  
V
V
IH  
IL  
CE#  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
OE#  
t
t
KHTL  
KHTL  
(Note 2)  
V
V
OH  
OL  
WAIT  
t
t
HD  
SP  
V
V
OH  
OL  
Valid Input  
D[n+3]  
Valid Input  
D[n+2]  
Valid Input Valid Input  
DQ[15:0]  
D[n]  
D[n+1]  
Legend:  
Don't Care  
END OF ROW  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. WAIT will assert LC + 1 or 2LC + 1 cycles for variable latency (depending upon refresh status).  
Figure 33. Continuous Burst WRITE Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition  
Table 35. Burst WRITE Timing Parameters—BCR[8] = 0  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCLK  
Min  
12.5  
2
Max  
Min  
15  
2
Max  
Units  
ns  
tHD  
ns  
tKHTL  
tSP  
8
3
11  
3
ns  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
169  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
t
HD  
SP  
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
SP  
t
t
HD  
SP  
HD  
V
V
IH  
IL  
ADV#  
t
t
t
HD  
KADV  
SP  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
HD  
CSP  
CBPH  
V
V
IH  
IL  
(Note 2)  
t
CSP  
t
OHZ  
V
V
IH  
IL  
OE#  
t
SP  
t
t
HD  
t
SP  
HD  
V
V
IH  
IL  
WE#  
t
BOE  
V
V
High-Z  
High-Z  
OH  
OL  
WAIT  
t
t
KOH  
t
t
HD  
ACLK  
SP  
V
V
V
High-Z  
IH  
IL  
High-Z  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
V
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. To allow self-refresh operations to occur between transactions, CE# must remain HIGH for at least 5ns (tCBPH) to  
schedule the appropriate internal refresh operation. CE# can stay LOW between burst READ and burst WRITE  
operations. See “How Extended Timings Impact CellularRAM™ Operation” for restrictions on the maximum CE#  
LOW time (tCEM).  
Figure 34. Burst WRITE Followed by Burst READ  
Table 36. WRITE Timing Parameters—Burst WRITE Followed by Burst READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCBPH  
tCLK  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
12.5  
4
20  
20  
15  
5
20  
20  
ns  
tCSP  
ns  
tHD  
2
2
ns  
tSP  
3
3
ns  
Table 37. READ Timing Parameters—Burst WRITE Followed by Burst READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
Min  
Max  
Min  
Max  
ns  
Units  
9
11  
20  
20  
ns  
ns  
tCLK  
12.5  
15  
170  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 37. READ Timing Parameters—Burst WRITE Followed by Burst READ (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCSP  
tHD  
Min  
4
Max  
Min  
5
Max  
Units  
ns  
2
2
ns  
tKOH  
tOHZ  
tSP  
2
2
ns  
8
8
ns  
3
3
ns  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
HD  
WC  
WC  
CKA  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
t
t
WR  
AVS  
AVH  
AW  
t
t
HD  
t
SP  
VPH  
V
V
IH  
IL  
ADV#  
t
t
t
VP  
VS  
t
t
t
BW  
SP  
HD  
CVS  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CSP  
CW  
CBPH  
V
V
IH  
IL  
(Note 2)  
t
OHZ  
V
V
IH  
IL  
OE#  
t
WC  
t
t
WP  
t
AS  
WPH  
t
t
HD  
SP  
V
V
IH  
IL  
WE#  
t
t
BOE  
CEW  
V
V
High-Z  
OH  
OL  
WAIT  
t
WHZ  
t
ACLK  
V
V
High-Z  
V
V
High-Z  
IH  
IL  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
t
DH  
DW  
KOH  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. If CE# goes  
HIGH, it must remain HIGH for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation. See “How  
Extended Timings Impact CellularRAM™ Operation” for restrictions on the maximum CE# LOW time (tCEM).  
Figure 35. Asynchronous WRITE Followed by Burst READ  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
171  
A d v a n c e I n f o r m a t i o n  
Table 38. WRITE Timing Parameters—Asynchronous WRITE Followed by Burst READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAVH  
tAS  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
tAVS  
tAW  
10  
70  
70  
70  
10  
70  
0
10  
85  
85  
85  
10  
85  
0
tBW  
tCKA  
tCVS  
tCW  
tDH  
tDW  
tVP  
tVPH  
tVS  
20  
10  
10  
70  
70  
23  
10  
10  
85  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
8
8
46  
10  
0
55  
10  
0
Table 39. READ Timing Parameters—Asynchronous WRITE Followed by Burst READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
20  
20  
ns  
5
1
5
1
ns  
7.5  
7.5  
ns  
12.5  
4
15  
5
ns  
tCSP  
ns  
tHD  
2
2
ns  
tKOH  
tOHZ  
tSP  
2
2
ns  
8
8
ns  
3
3
ns  
172  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
HD  
WC  
WC  
CKA  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
WR  
AW  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
t
SP  
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CSP  
CW  
CSP  
V
V
IH  
IL  
(Note 2)  
t
OHZ  
V
V
IH  
IL  
OE#  
t
WC  
t
t
t
t
HD  
WP  
WPH  
SP  
V
V
IH  
IL  
WE#  
t
t
BOE  
CEW  
V
V
High-Z  
OH  
OL  
WAIT  
t
t
WHZ  
t
t
KOH  
DW  
ACLK  
V
V
High-Z  
V
V
High-Z  
IH  
IL  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
DH  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. If CE# goes  
HIGH, it must remain HIGH for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation. See “How  
Extended Timings Impact CellularRAM™ Operation” for restrictions on the maximum CE# LOW time (tCEM).  
Figure 36. Asynchronous WRITE (ADV# LOW) Followed By Burst READ  
Table 40. Asynchronous WRITE Timing Parameters—ADV# LOW  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAW  
Min  
70  
70  
70  
70  
0
Max  
Min  
85  
85  
85  
85  
0
Max  
Units  
ns  
tBW  
ns  
tCKA  
tCW  
ns  
ns  
tDH  
ns  
tDW  
23  
70  
23  
85  
ns  
tWC  
ns  
tWHZ  
8
8
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
173  
A d v a n c e I n f o r m a t i o n  
Table 40. Asynchronous WRITE Timing Parameters—ADV# LOW (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tWP  
Min  
46  
10  
0
Max  
Min  
55  
10  
0
Max  
Units  
ns  
tWPH  
tWR  
ns  
ns  
Table 41. Burst READ Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
20  
20  
ns  
5
1
5
1
ns  
7.5  
7.5  
ns  
12.5  
4
15  
5
ns  
tCSP  
ns  
tHD  
2
2
ns  
tKOH  
tOHZ  
tSP  
2
2
ns  
8
8
ns  
3
3
ns  
174  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
WC  
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
AW  
SP  
t
WR  
t
HD  
V
V
IH  
IL  
ADV#  
t
CBPH  
t
t
CEM  
HD  
t
t
t
CSP  
CW  
HZ  
V
V
IH  
IL  
CE#  
OE#  
(Note 2)  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
AS  
t
OLZ  
t
t
t
t
t
WPH  
SP  
SP  
HD  
WP  
V
V
IH  
IL  
WE#  
t
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
CEW  
t
t
KHTL  
HZ  
High-Z  
V
V
High-Z  
OH  
OL  
WAIT  
t
DW  
t
DH  
t
t
KOH  
ACLK  
High-Z  
V
V
IH  
IL  
Valid  
Output  
DQ[15:0]  
Valid  
Input  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. If CE# goes  
HIGH, it must remain HIGH for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation. See “How  
Extended Timings Impact CellularRAM™ Operation” for restrictions on the maximum CE# LOW time (tCEM).  
Figure 37. Burst READ Followed by Asynchronous WRITE (WE#-Controlled)  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
175  
A d v a n c e I n f o r m a t i o n  
Table 42. Burst READ Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
tCSP  
tHD  
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
8
8
Table 43. Asynchronous WRITE Timing Parameters—WE# Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
Max  
Units  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
tAW  
70  
70  
85  
85  
tBW  
tCEM  
tCW  
tDH  
4
4
8
70  
0
85  
0
tDW  
tHZ  
tWC  
tWP  
tWPH  
tWR  
23  
23  
8
70  
46  
10  
0
85  
55  
10  
0
176  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
HD  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
AVS  
AVH  
t
t
t
VPH  
VS  
SP  
t
t
HD  
VP  
V
V
IH  
IL  
ADV#  
t
AW  
t
t
AS  
CBPH  
t
t
CEM  
HD  
t
t
t
CSP  
CW  
HZ  
V
V
IH  
IL  
CE#  
OE#  
(Note 2)  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
AS  
t
OLZ  
t
t
t
t
t
WPH  
SP  
SP  
HD  
WP  
V
V
IH  
IL  
WE#  
t
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
CEW  
t
t
KHTL  
HZ  
High-Z  
V
V
High-Z  
OH  
OL  
WAIT  
t
DW  
t
DH  
t
t
KOH  
ACLK  
High-Z  
V
V
OH  
OL  
Valid  
Output  
DQ[15:0]  
Valid  
Input  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. If CE# goes  
HIGH, it must remain HIGH for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation. See “How  
Extended Timings Impact CellularRAM™ Operation” for restrictions on the maximum CE# LOW time (tCEM).  
Figure 38. Burst READ Followed by Asynchronous WRITE Using ADV#  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
177  
A d v a n c e I n f o r m a t i o n  
Table 44. Burst READ Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
tCSP  
tHD  
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
8
8
Table 45. Asynchronous WRITE Timing Parameters Using ADV#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVH  
tAVS  
tAW  
5
5
10  
70  
70  
10  
85  
85  
tBW  
tCEM  
tCEW  
tCW  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDH  
tDW  
tHZ  
23  
23  
8
8
tVP  
10  
10  
70  
46  
10  
10  
10  
85  
55  
10  
tVPH  
tVS  
tWP  
tWPH  
178  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 45. Asynchronous WRITE Timing Parameters Using ADV# (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
Min  
Max  
Min  
Max  
Units  
tWR  
0
0
ns  
V
V
IH  
IL  
Valid  
Address  
Valid  
Valid  
Address  
A[22:0]  
ADV#  
Address  
t
t
WR  
t
AW  
AA  
V
V
IH  
IL  
t
t
t
BHZ  
BW  
BLZ  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CBPH  
CEM  
t
HZ  
CW  
V
V
IH  
IL  
(Note)  
t
LZ  
t
t
OHZ  
OE  
V
V
IH  
IL  
OE#  
t
WC  
t
t
WP  
t
AS  
WPH  
V
V
IH  
IL  
WE#  
t
t
HZ  
HZ  
V
V
OH  
OL  
WAIT  
t
WHZ  
t
OLZ  
High-Z  
High-Z  
V
V
V
V
IH  
IL  
OH  
OL  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
DW  
DH  
Legend:  
Don't Care  
Undefined  
Note: CE# can stay LOW when transitioning between asynchronous operations. If CE# goes HIGH, it must remain HIGH  
for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation. See “How Extended Timings Impact Cel-  
lularRAM™ Operation” for restrictions on the maximum CE# LOW time (tCEM).  
Figure 39. Asynchronous WRITE Followed by Asynchronous READ—ADV# LOW  
Table 46. WRITE Timing Parameters—ADV# LOW  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
tAW  
70  
70  
70  
85  
85  
85  
ns  
tBW  
ns  
tCW  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
179  
A d v a n c e I n f o r m a t i o n  
Table 46. WRITE Timing Parameters—ADV# LOW (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tDH  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
tDW  
23  
23  
ns  
tHZ  
8
8
8
8
ns  
tWC  
70  
85  
ns  
tWHZ  
tWP  
tWPH  
tWR  
ns  
46  
10  
0
55  
10  
0
ns  
ns  
ns  
Table 47. READ Timing Parameters—ADV# LOW  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
8
Min  
Max  
85  
8
Units  
ns  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tHZ  
ns  
10  
5
10  
5
ns  
ns  
4
8
4
8
µs  
ns  
tLZ  
10  
5
10  
5
ns  
tOE  
20  
8
20  
8
ns  
tOHZ  
tOLZ  
ns  
ns  
180  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
t
t
t
AA  
AVS  
AVH  
AW  
WR  
t
t
t
VPH VP  
VS  
V
V
IH  
IL  
ADV#  
t
t
t
BHZ  
t
BW  
BLZ  
CVS  
V
V
IH  
IL  
LB#/UB#  
t
t
CEM  
t
CBPH  
t
HZ  
CW  
V
V
IH  
IL  
CE#  
OE#  
(Note)  
t
t
LZ  
AS  
t
OHZ  
V
V
IH  
IL  
t
WC  
t
t
WP  
t
AS  
WPH  
t
OLZ  
V
V
IH  
IL  
WE#  
V
V
OH  
OL  
WAIT  
t
WHZ  
t
OE  
High-Z  
High-Z  
V
V
V
V
IH  
IL  
OH  
OL  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
DW  
DH  
Legend:  
Don't Care  
Undefined  
Note: CE# can stay LOW when transitioning between asynchronous operations. If CE# goes HIGH, it must remain HIGH  
for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation. See “How Extended Timings Impact Cel-  
lularRAM™ Operation” for restrictions on the maximum CE# LOW time (tCEM).  
Figure 40. Asynchronous WRITE Followed by Asynchronous READ  
Table 48. WRITE Timing Parameters—Asynchronous WRITE Followed by Asynchronous READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
tAVH  
tAVS  
tAW  
5
5
ns  
10  
70  
70  
10  
70  
0
10  
85  
85  
10  
85  
0
ns  
ns  
tBW  
ns  
tCVS  
tCW  
ns  
ns  
tDH  
ns  
tDW  
23  
23  
ns  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
181  
A d v a n c e I n f o r m a t i o n  
Table 48. WRITE Timing Parameters—Asynchronous WRITE Followed by Asynchronous READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tVP  
Min  
10  
10  
70  
70  
Max  
Min  
10  
10  
85  
85  
Max  
Units  
ns  
tVPH  
tVS  
ns  
ns  
tWC  
ns  
tWHZ  
tWP  
tWPH  
tWR  
8
8
ns  
46  
10  
0
55  
10  
0
ns  
ns  
ns  
Table 49. READ Timing Parameters—Asynchronous WRITE Followed by Asynchronous READ  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
8
Min  
Max  
85  
8
Units  
ns  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tHZ  
ns  
10  
5
10  
5
ns  
ns  
4
8
4
8
µs  
ns  
tLZ  
10  
10  
ns  
tOE  
20  
8
20  
8
ns  
tOHZ  
tOLZ  
ns  
5
5
ns  
How Extended Timings Impact CellularRAM™ Operation  
Introduction  
This section describes CellularRAM™ timing requirements in systems that per-  
form extended operations.  
CellularRAM products use a DRAM technology that periodically requires refresh to  
ensure against data corruption. CellularRAM devices include on-chip circuitry that  
performs the required refresh in a manner that is completely transparent in sys-  
tems with normal bus timings. The refresh circuitry imposes constraints on  
timings in systems that take longer than 4µs to complete an operation. WRITE  
operations are affected if the device is configured for asynchronous operation.  
Both READ and WRITE operations are affected if the device is configured for page  
or burst-mode operation.  
182  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
A d v a n c e I n f o r m a t i o n  
Asynchronous WRITE Operation  
The timing parameters provided in Figure 50 require that all WRITE operations  
must be completed within 4µs. After completing a WRITE operation, the device  
must either enter standby (by transitioning CE# HIGH), or else perform a second  
operation (READ or WRITE) using a new address. Figure 71 and Figure 72 dem-  
onstrate these constraints as they apply during an asynchronous (page-mode-  
disabled) operation. Either the CE# active period (t  
in Figure 71) or the ad-  
CEM  
dress valid period (t  
in Figure 72) must be less than 4µs during any WRITE  
TM  
operation, otherwise, the extended WRITE timings must be used.  
t
< 4 µs  
CEM  
CE#  
ADDRESS  
Figure 41. Extended Timing for tCEM  
CE#  
t
<
TM 4µs  
ADDRESS  
Figure 42. Extended Timing for tTM  
Table 50. Extended Cycle Impact on READ and WRITE Cycles  
Page Mode  
Timing Constraint  
Read Cycle  
Write Cycle  
Must use extended WRITE  
timing.  
Asynchronous  
Page Mode Disabled  
tCEM and tTM > 4µs  
(See Figure 71 and Figure 72.)  
No impact.  
(See Figure 72)  
Must use extended WRITE  
timing.  
Asynchronous  
Page Mode Enabled  
tCEM > 4µs  
(See Figure 71.)  
All following intrapage READ  
access times are tAA (not tAPA).  
(See Figure 73)  
Burst  
tCEM > 4µs (See Figure 71.)  
Burst must cross a row boundary within 4µs.  
Extended WRITE Timing— Asynchronous WRITE Operation  
Modified timings are required during extended WRITE operations (see Figure 73).  
An extended WRITE operation requires that both the write pulse width (t ) and  
WP  
the data valid period (t ) be lengthened to at least the minimum WRITE cycle  
DW  
time (t  
[MIN]). These increased timings ensure that time is available for both  
WC  
a refresh operation and a successful completion of the WRITE operation.  
October 4, 2004 cellRAM_00_A0  
CellularRAM  
183  
A d v a n c e I n f o r m a t i o n  
t
or t  
> 4µs  
TM  
CEM  
ADDRESS  
CE#  
LB#/UB#  
t
t
> t  
(MIN)  
(MIN)  
WP  
DW  
WC  
WC  
WE#  
> t  
DATA-IN  
Figure 43. Extended WRITE Operation  
Page Mode READ Operation  
When a CellularRAM device is configured for page mode operation, the address  
inputs are used to accelerate read accesses and cannot be used by the on-chip  
circuitry to schedule refresh. If CE# is LOW longer than the t  
maximum time  
CEM  
of 4µs during a READ operation, the system must allow t  
(not t  
, as would  
AA  
APA  
otherwise be expected) for all subsequent intrapage accesses until CE# goes  
HIGH.  
Burst-Mode Operation  
When configured for burst-mode operation, it is necessary to allow the device to  
perform a refresh within any 4µs window. One of two conditions will enable the  
device to schedule a refresh within 4µs. The first condition is when all burst op-  
erations complete within 4µs. A burst completes when the CE# signal is  
registered HIGH on a rising clock edge. The second condition that allows a refresh  
is when a burst access crosses a row boundary. The row-boundary crossing  
causes WAIT to be asserted while the next row is accessed and enables the  
scheduling of refresh.  
Summary  
CellularRAM products are designed to ensure that any possible asynchronous tim-  
ings do not cause data corruption due to lack of refresh. Slow bus timings on  
asynchronous WRITE operations require that t  
and t  
be lengthened. Slow  
WP  
DW  
bus timings during asynchronous page READ operations cause the next intrapage  
READ data to be delayed to t  
.
AA  
Burst mode timings must allow the device to perform a refresh within any 4µs  
period. A burst operation must either complete (CE# registered HIGH) or cross a  
row boundary within 4µs to ensure successful refresh scheduling. These timing  
requirements are likely to have little or no impact when interfacing a CellularRAM  
device with a low-speed memory bus.  
184  
CellularRAM  
cellRAM_00_A0 October 4, 2004  
P r e l i m i n a r y  
1.8V pSRAM Type 4  
8M x 16-bit Synchronous Burst pSRAM  
Features  
„ Process Technology: CMOS  
„ Organization: 8M x16 bit  
„ Power Supply Voltage: 1.7~2.0V  
„ Three State Outputs  
„ Supports MRS (Mode Register Set)  
„ MRS control - MRS Pin Control  
„ Supports Power Saving modes - Partial Array Refresh mode Internal TCSR  
„ Supports Driver Strength Optimization for system environment power saving  
„ Supports Asynchronous 4-Page Read and Asynchronous Write Operation  
„ Supports Synchronous Burst Read and Asynchronous Write Operation (Ad-  
dress Latch Type and Low ADV Type)  
„ Supports Synchronous Burst Read and Synchronous Burst Write Operation  
„ Synchronous Burst (Read/Write) Operation  
— Supports 4 word / 8 word / 16 word and Full Page(256 word) burst  
— Supports Linear Burst type & Interleave Burst type  
— Latency support:  
Latency 5 @ 66MHz(tCD 10ns)  
Latency 4 @ 54MHz(tCD 10ns)  
— Supports Burst Read Suspend in No Clock toggling  
— Supports Burst Write Data Masking by /UB & /LB pin control  
— Supports WAIT pin function for indicating data availability.  
„ Max. Burst Clock Frequency: 66MHz  
Pin Description  
Pin Name  
CLK  
Function  
Type  
Description  
Clock  
Commands are referenced to CLK  
ADV#  
MRS#  
Address Valid  
Valid Address is latched by ADV falling edge  
MRS# low enables Mode Register to be set  
CS# low enables the chip to be active  
Mode Register set  
CS#  
Chip Select  
CS# high disables the chip and puts it into standby  
mode  
Input  
OE#  
WE#  
LB#  
Output Enable  
Write Enable  
OE# low enables the chip to output the data  
WE# low enables the chip to start writing the data  
Lower Byte (I/O0~7  
)
UB# (LB#) low enables upper byte (lower byte) to  
start operating  
UB#  
Upper Byte (I/O8~15)  
Valid addresses input when ADV is low  
Mode setting input when MRS is low  
A0-A22  
Address 0 ~ Address 22  
Depending on UB# or LB# status, word (16-bit,  
UB# & LB# low) data, upper byte (8-bit, UB# low &  
LB# high) data or lower byte (8-bit, LB# low & UB#  
high) data is loaded  
I/O0-I/O15  
Data Inputs / Outputs  
Input/Output  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
185  
P r e l i m i n a r y  
Pin Name  
VCC  
Function  
Voltage Source  
Type  
Description  
Power  
Power  
GND  
Core Power supply  
I/O Power supply  
Core ground Source  
I/O Ground Source  
VCCQ  
Voltage Source  
VSS  
Ground Source  
VSSQ  
I/O Ground Source  
Valid Data Indicator  
GND  
WAIT#  
Output  
WAIT# indicates whether data is valid or not  
Power Up Sequence  
After applying V up to minimum operating voltage (1.7V), drive CS# high first  
CC  
and then drive MRS# high. This gets the device into power up mode. Wait 200 µs  
minimum to get into the normal operation mode. During power up mode, the  
standby current cannot be guaranteed. To obtain stable standby current levels,  
at least one cycle of active operation should be implemented regardless of wait  
time duration. To obtain appropriate device operation, be sure to follow the  
proper power up sequence.  
1. Apply power.  
2. Maintain stable power (V min.=1.7V) for a minimum 200 µs with CS# and  
CC  
MRS# high.  
186  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Timing Diagrams  
Power Up  
200 µs  
VCC(Min)  
VCC  
Min. 0ns  
Min. 0ns  
MRS#  
CS#  
Min. 200 µs  
PowerUp Mode  
Normal Operation  
Figure 1. Power Up Timing  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS# and MRS# high. This puts the device into normal operation.  
Standby Mode  
CS# = V  
CS# = UB# = LB# = V  
WE# = V , MRS# = V  
CS# = V , UB# or LB# = V  
IL IL  
IH  
IL  
IH  
MRS# = V  
MRS# = V  
CS# = V  
IH  
IH  
IL  
IH  
MRS# = V  
IH  
Initial State  
(wait 200µs)  
Standby  
Mode  
PAR  
Mode  
Power On  
MRS Setting  
Active  
MRS# = V  
IL  
MRS Setting  
CS# = V  
IL  
WE# = V , MRS#=V  
IL IL  
Figure 2. Standby Mode State Machines  
The default mode after power up is Asynchronous mode (4 Page Read and Asyn-  
chronous Write). But this default mode is not 100% guaranteed, so the MRS#  
setting sequence is highly recommended after power up.  
For entry to PAR mode, drive the MRS# pin into V for over 0.5µs or longer (sus-  
IL  
pend period) during standby mode after the MRS# setting has been completed  
(A4=1, A3=0). If the MRS# pin is driven into V during PAR mode, the device  
IH  
reverts to standby mode without the wake up sequence.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
187  
P r e l i m i n a r y  
Functional Description  
Table 1. Asynchronous 4 Page Read & Asynchronous Write Mode (A15/A14=0/0)  
Mode  
CS#  
MRS#  
OE#  
X
WE#  
LB#  
X
UB#  
X
I/O  
I/O  
Power  
Standby  
PAR  
0-7  
8-15  
Deselected  
Deselected  
H
H
L
L
L
L
L
L
L
L
L
H
L
X
X
H
X
H
H
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
X
X
X
Output Disabled  
Outputs Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
H
H
H
H
H
H
H
H
L
H
X
X
X
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
H
L
H
H
L
L
D
OUT  
L
H
L
High-Z  
D
D
OUT  
OUT  
L
L
D
OUT  
Lower Byte Write  
Upper Byte Write  
Word Write  
H
H
H
H
L
H
L
D
High-Z  
IN  
L
H
L
High-Z  
D
D
IN  
IN  
L
L
D
IN  
Mode Register Set  
L
L
L
High-Z  
High-Z  
Legend:X = Don’t care (must be low or high state).  
Notes:  
1. In asynchronous mode, Clock and ADV# are ignored.  
2. The WAIT# pin is High-Z in asynchronous mode.  
188  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Table 2. Synchronous Burst Read & Asynchronous Write Mode (A15/A14=0/1)  
Mode  
CS# MRS# OE# WE# LB# UB#  
I/O  
I/O  
CLK  
ADV#  
Power  
0-7  
8-15  
X
X
Deselected  
H
H
L
H
L
X
X
H
X
X
X
H
X
X
X
X
H
X
X
X
H
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Standby  
(note 2)  
(note 2)  
X
X
Deselected  
PAR  
(note 2)  
(note 2)  
X
Output Disabled  
Outputs Disabled  
H
H
H
H
Active  
Active  
(note 2)  
X
L
(note 2)  
Read Command  
Lower Byte Read  
Upper Byte Read  
L
L
L
H
H
H
X
L
L
H
H
H
X
L
X
H
L
High-Z  
High-Z  
High-Z  
Active  
Active  
Active  
D
H
H
OUT  
H
High-Z  
D
D
OUT  
Word Read  
L
H
L
H
L
L
D
H
Active  
OUT  
OUT  
X
Lower Byte Write  
Upper Byte Write  
Word Write  
L
L
L
L
H
H
H
L
H
H
H
H
L
L
L
L
L
H
L
H
L
L
L
D
High-Z  
Active  
Active  
Active  
Active  
IN  
(note 2)  
or  
or  
or  
or  
X
High-Z  
D
D
IN  
IN  
(note 2)  
X
D
IN  
(note 2)  
X
Mode Register Set  
L
High-Z  
High-Z  
(note 2)  
Notes:  
1. X must be low or high state.  
2. X means “Don’t care” (can be low, high or toggling).  
3. WAIT# is the device output signal and does not have any affect on the mode definition. Please refer to each timing diagram  
for WAIT# pin function.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
189  
P r e l i m i n a r y  
Table 3. Synchronous Burst Read & Synchronous Burst Write Mode(A15/A14=1/0)  
Mode  
CS# MRS#  
OE#  
WE#  
LB#  
UB#  
I/O  
I/O  
CLK  
ADV#  
Power  
0-7  
8-15  
X
X
X
X
X
X
Deselected  
H
H
L
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Standby  
(note1)  
(note1)  
(note1) (note1)  
(note 2)  
(note 2)  
X
X
X
X
X
X
Deselected  
PAR  
(note1)  
(note1)  
(note1) (note1)  
(note 2)  
(note 2)  
Output  
Disabled  
X
H
H
H
H
X
H
X
H
H
H
Active  
Active  
(note 2)  
Outputs  
Disabled  
X
X
X
L
(note1)  
(note1)  
(note 2)  
Read  
X
L
L
L
H
H
H
H
H
H
X
L
X
H
L
High-Z  
High-Z  
High-Z  
Active  
Active  
Active  
Command  
(note1)  
LowerByte  
Read  
L
L
D
H
H
OUT  
UpperByte  
Read  
H
High-Z  
D
D
OUT  
OUT  
Word Read  
L
H
L
H
L
L
D
H
Active  
OUT  
Write  
Command  
X
L
L
L
H
H
H
High-Z  
High-Z  
High-Z  
Active  
Active  
Active  
L
(note1)  
or  
LowerByte  
Write  
X
H
H
L
H
L
D
H
H
IN  
(note1)  
UpperByte  
Write  
X
H
High-Z  
D
D
IN  
IN  
(note1)  
X
Word Write  
L
L
H
L
H
H
L
L
L
L
D
H
Active  
Active  
IN  
(note1)  
Mode  
Register  
Set  
High-Z  
High-Z  
L
or  
Notes:  
1. X must be low or high state.  
2. X means “Don’t care” (can be low, high or toggling).  
3. WAIT# is the device output signal and does not have any affect on the mode definition. Please refer to each timing diagram  
for WAIT# pin function.  
Mode Register Setting Operation  
The device has several modes:  
„ Asynchronous Page Read mode  
„ Asynchronous Write mode  
„ Synchronous Burst Read mode  
„ Synchronous Burst Write mode  
„ Standby mode and Partial Array Refresh (PAR) mode.  
Partial Array Refresh (PAR) mode is defined through the Mode Register Set (MRS)  
option. The MRS option also defines burst length, burst type, wait polarity and  
latency count at synchronous burst read/write mode.  
190  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Mode Register Set (MRS)  
The mode register stores the data for controlling the various operation modes of  
the pSRAM. It programs Partial Array Refresh (PAR), burst length, burst type, la-  
tency count and various vendor specific options to make pSRAM useful for a  
variety of different applications. The default values of mode register are defined,  
therefore when the reserved address is input, the device runs at default modes.  
The mode register is written by driving CS#, ADV#, WE#, UB#, LB# and MRS#  
to V and driving OE# to V during valid addressing. The mode register is di-  
IL  
IH  
vided into various fields depending on the fields of functions. The PAR field uses  
A0~A4, Burst Length field uses A5~A7, Burst Type uses A8, Latency Count uses  
A9~A11, Wait Polarity uses A13, Operation Mode uses A14~A15 and Driver  
Strength uses A16~A17.  
Refer to the Table below for detailed Mode Register Settings. A18~A22 addresses  
are “Don’t care” in the Mode Register Setting.  
Table 4. Mode Register Setting According to Field of Function  
Address  
Function  
A17-A16  
A15-A14  
A13  
A12  
A11-A19  
A8  
A7-A5  
A4-A3  
A2  
A1-A0  
DS  
MS  
WP  
RFU  
Latency  
BT  
BL  
PAR  
PARA  
PARS  
Note: DS (Driver Strength), MS (Mode Select), WP (Wait Polarity), Latency (Latency Count), BT (Burst Type), BL (Burst  
Length), PAR (Partial Array Refresh), PARA (Partial Array Refresh Array), PARS (Partial Array Refresh Size), RFU (Re-  
served for Future Use).  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
191  
P r e l i m i n a r y  
Table 5. Mode Register Set  
Driver Strength  
A16 DS  
Mode Select  
A17  
0
A15  
0
A14  
MS  
0
1
0
Full Drive (note 1)  
1/2 Drive  
0
1
0
Async. 4 Page Read / Async. Write (note 1)  
Sync. Burst Read / Async. Write  
Sync. Burst Read / Sync. Burst Write  
0
0
1
1/4 Drive  
1
WAIT# Polarity  
RFU  
RFU  
Latency Count  
Burst Type  
BT  
Burst Length  
A6 A5  
A13  
WP  
A12  
0
A11 A10 A9  
Latency  
A8  
0
A7  
BL  
Low Enable  
(note 1)  
Must  
(note 1)  
Linear  
(note 1)  
0
1
0
0
0
3
0
1
0
4 word  
High Enable  
1
0
0
0
0
1
1
1
0
1
4
5
6
1
Interleave  
0
1
1
1
0
1
1
0
1
8 word  
16 word (note 1)  
Full (256 word)  
Partial Array Refresh  
PAR Array  
PAR Size  
A0  
A4  
A3  
PAR  
A2  
PARA  
A1  
PARS  
Bottom Array  
(note 1)  
Full Array  
(note 1)  
1
0
PAR Enable  
0
0
0
1
PAR Disable  
(note 1)  
1
1
1
Top Array  
0
3/4 Array  
1
1
0
1
1/2 Array  
1/4 Array  
Notes:  
1. Default mode. The address bits other than those listed in the table above are reserved. For example, Burst Length address  
bits(A7:A6:A5) have 4 sets of reserved bits like 0:0:0, 0:0:1, 1:0:1 and 1:1:0. If the reserved address bits are input, then  
the mode will be set to the default mode. Each field has its own default mode, but this default mode is not 100% guaranteed,  
so the MRS setting sequence is highly recommended after power up. A12 is a reserved bit for future use. A12 must be set as  
“0”. Not all the mode settings are tested. Per the mode settings to be tested, please contact Spansion. The 256 word Full  
page burst mode needs to meet tBC(Burst Cycle time) parameter as max. 2500ns.  
MRS Pin Control Type Mode Register Setting Timing  
In this device, the MRS pin is used for two purposes. One is to get into the mode  
register setting and the other is to execute Partial Array Refresh mode.  
To get into the Mode Register Setting, the system must drive the MRS# pin to V  
IL  
and immediately (within 0.5µs) issue a write command (drive CS#, ADV#, UB#,  
LB# and WE# to V and drive OE# to V during valid address). If the subse-  
IL  
IH  
quent write command (WE# signal input) is not issued within 0.5µs, then the  
device may get into the PAR mode.  
192  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV#  
tWC  
Address  
CS#  
tCW  
tAW  
tBW  
UB#, LB#  
WE#  
tWP  
tAS  
tWU  
tMW  
MRS#  
Register Update Complete  
Register Write Complete  
Register Write Start  
(MRS SETTING TIMING)  
1. Clock input is ignored.  
Figure 3. Mode Register Setting Timing (OE# = VIH  
)
Table 6. MRS AC Characteristics  
Speed  
Parameter List  
Symbol  
tMW  
Min  
0
Max  
500  
Units  
ns  
MRS# Enable to Register Write Start  
End of Write to MRS# Disable  
MRS  
tWU  
0
ns  
Note: VCC=1.7~2.0V, TA=-40 to 85°C, Maximum Main Clock Frequency=66MHz  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
193  
P r e l i m i n a r y  
Asynchronous Operation  
Asynchronous 4 Page Read Operation  
Asynchronous normal read operation starts when CS#, OE# and UB# or LB# are  
driven to V under the valid address without toggling page addresses (A0, A1).  
IL  
If the page addresses (A0, A1) are toggled under the other valid address, the first  
data will be out with the normal read cycle time (tRC) and the second, the third  
and the fourth data will be out with the page cycle time (tPC). (MRS# and WE#  
should be driven to V during the asynchronous (page) read operation) Clock,  
IH  
ADV#, WAIT# signals are ignored during the asynchronous (page) read  
operation.  
Asynchronous Write Operation  
Asynchronous write operation starts when CS#, WE# and UB# or LB# are driven  
to V under the valid address. MRS# and OE# should be driven to V during the  
IL  
IH  
asynchronous write operation. Clock, ADV#, WAIT# signals are ignored during  
the asynchronous (page) read operation.  
Asynchronous Write Operation in Synchronous Mode  
A write operation starts when CS#, WE# and UB# or LB# are driven to V under  
IL  
the valid address. Clock input does not have any affect to the write operation  
(MRS# and OE# should be driven to V during write operation. ADV# can be ei-  
IH  
ther toggling for address latch or held in V ). Clock, ADV#, WAIT# signals are  
IL  
ignored during the asynchronous (page) read operation.  
A22~A2  
A1~A0  
CS#  
UB#, LB#  
OE#  
Data Out  
Figure 4. Asynchronous 4-Page Read  
Address  
CS#  
UB#, LB#  
WE#  
High-Z  
Data in  
High-Z  
High-Z  
Data out  
Figure 5. Asynchronous Write  
194  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Synchronous Burst Operation  
Burst mode operations enable the system to get high performance read and write  
operation. The address to be accessed is latched on the rising edge of clock or  
ADV# (whichever occurs first). CS# should be setup before the address latch.  
During this first clock rising edge, WE# indicates whether the operation is going  
to be a Read (WE# High) or a Write (WE# Low).  
For the optimized Burst Mode of each system, the system should determine how  
many clock cycles are required for the first data of each burst access (Latency  
Count), how many words the device outputs during an access (Burst Length) and  
which type of burst operation (Burst Type: Linear or Interleave) is needed. The  
Wait Polarity should also be determined (See Table 86).  
Synchronous Burst Read Operation  
The Synchronous Burst Read command is implemented when the clock rising is  
detected during the ADV# low pulse. ADV# and CS# should be set up before the  
clock rising. During the Read command, WE# should be held in V . The multiple  
IH  
clock risings (during the low ADV# period) are allowed, but the burst operation  
starts from the first clock rising. The first data will be out with Latency count and  
t
.
CD  
Synchronous Burst Write Operation  
The Synchronous Burst Write command is implemented when the clock rising is  
detected during the ADV# and WE# low pulse. ADV#, WE# and CS# should be  
set up before the clock rising. The multiple clock risings (during the low ADV#  
period) are allowed but, the burst operation starts from the first clock rising. The  
first data will be written in the Latency clock with t  
.
DS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
CLK  
ADV#  
Addr.  
CS#  
UB#, LB#  
OE#  
Data Out  
WAIT#  
Figure 6. Synchronous Burst Read  
Note: Latency 5, BL 4, WP: Low Enable  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
195  
P r e l i m i n a r y  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
CLK  
ADV#  
Addr.  
CS#  
UB#, LB#  
WE#  
Data in  
WAIT#  
Figure 7. Synchronous Burst Write  
Note: Latency 5, BL 4, WP: Low Enable  
Synchronous Burst Operation Terminology  
Clock (CLK)  
The clock input is used as the reference for synchronous burst read and write op-  
eration of the pSRAM. The synchronous burst read and write operations are  
synchronized to the rising edge of the clock. The clock transitions must swing be-  
tween V and V .  
IL  
IH  
Latency Count  
The Latency Count configuration tells the device how many clocks must elapse  
from the burst command before the first data should be available on its data pins.  
This value depends on the input clock frequency. Table 88 shows the supported  
Latency Count.  
Table 7. Latency Count Support  
Clock Frequency  
Latency Count  
Up to 66 MHz  
Up to 54 MHz  
Up to 40 MHz  
5
4
3
Table 8. Number of CLocks for 1st Data  
Set Latency  
Latency 3  
Latency 4  
Latency 5  
# of Clocks for 1st data (Read)  
# of Clocks for 1st data (Write)  
4
2
5
3
6
4
196  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
T
Clock  
ADV#  
Address  
Latency 3  
Latency 4  
Latency 5  
Latency 6  
DQ1  
DQ2  
DQ3  
DQ2  
DQ1  
DQ4  
DQ3  
DQ2  
DQ1  
DQ5  
DQ4  
DQ3  
DQ2  
DQ6  
DQ5  
DQ4  
DQ3  
DQ7  
DQ6  
DQ5  
DQ4  
DQ8  
DQ7  
DQ6  
DQ5  
DQ9  
DQ8  
DQ7  
DQ6  
Data out  
Data out  
Data out  
Data out  
DQ1  
Figure 8. Latency Configuration (Read)  
Note: The first data will always keep the Latency. From the second data on, some period of wait time may be caused  
by WAIT# pin.  
Burst Length  
Burst Length identifies how many data the device outputs during an access. The  
device supports 4 word, 8 word, 16 word and 256 word burst read or write. 256  
word Full page burst mode needs to meet t  
2500ns max.  
(Burst Cycle time) parameter as  
BC  
The first data will be output with the set Latency + t . From the second data on,  
CD  
the data will be output with t  
from each clock.  
CD  
Burst Stop  
Burst stop is used when the system wants to stop burst operation on purpose. If  
driving CS# to V during the burst read operation, the burst operation is  
IH  
stopped. During the burst read operation, the new burst operation cannot be is-  
sued. The new burst operation can be issued only after the previous burst  
operation is finished.  
The burst stop feature is very useful because it enables the user to utilize the un-  
supported burst length such as 1 burst or 2 burst, used mostly in the mobile  
handset application environment.  
Synchronous Burst Operation Terminology  
Wait Control (WAIT#)  
The WAIT# signal is the device’s output signal that indicates to the host system  
when it’s data-out or data-in is valid.  
To be compatible with the Flash interfaces of various microprocessor types, the  
WAIT# polarity (WP) can be configured. The polarity can be programmed to be  
either low enable or high enable.  
For the timing of WAIT# signal, the WAIT# signal should be set active one clock  
prior to the data regardless of Read or Write cycle.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
197  
P r e l i m i n a r y  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV#  
CS#  
Latency 5  
Read  
Data out  
DQ0 DQ1  
DQ2  
DQ3  
High-Z  
High-Z  
WAIT#  
Latency 5  
Write  
Data in  
D0  
D1  
D2  
D3  
WAIT#  
Figure 9. WAIT# and Read/Write Latency Control  
Note: LATENCY: 5, Burst Length: 4, WP: Low Enable  
Burst Type  
The device supports Linear type burst sequence and Interleave type burst se-  
quence. Linear type burst sequentially increments the burst address from the  
starting address. The detailed Linear and Interleave type burst address sequence  
is shown in Table 90.  
Table 9. Burst Sequence  
Burst Address Sequence (Decimal)  
Wrap (note 1)  
Start  
Address  
4 word Burst  
8 word Burst  
Linear  
16 word Burst  
Full Page(256 word)  
Linear  
Linear  
Interleave  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
Interleave  
0-1-2-...-6-7  
1-0-3-...-7-6  
2-3-0-...-4-5  
3-2-1-...-5-4  
4-5-6-...-2-3  
5-4-7-...-3-2  
6-7-4-...-0-1  
7-6-5-...-1-0  
Linear  
Interleave  
0-1-2-3-4...14-15  
1-0-3-2-5...15-14  
2-3-0-1-6...12-13  
3-2-1-0-7...13-12  
4-5-6-7-0...10-11  
5-4-7-6-1...11-10  
6-7-4-5-2...8-9  
7-6-5-4-3...9-8  
~
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-...-5-6-7  
1-2-...-6-7-0  
2-3-...-7-0-1  
3-4-...-0-1-2  
4-5-...-1-2-3  
5-6-...-2-3-4  
6-7-...-3-4-5  
7-0-...-4-5-6  
0-1-2-...-14-15  
1-2-3-...-15-0  
2-3-4-...-0-1  
3-4-5-...-1-2  
4-5-6-...-2-3  
5-6-7-...-3-4  
6-7-8-...-4-5  
7-8-9-...-5-6  
~
0-1-2-...-254-255  
1-2-3-...-255-0  
2
2-3-4-...-255-0-1  
3-4-5-...-255-0-1-2  
4-5-6-...-255-0-1-2-3  
5-6-7-...-255-...-3-4  
6-7-8-...-255-...-4-5  
7-8-9-...-255-...-5-6  
~
3
4
5
6
7
~
14  
15  
~
14-15-0-...-12-13  
15-0-1-...-13-14  
14-15-12-...-0-1  
15-14-13-...-1-0  
14-15-...-255-...-12-13  
15-16-...-255-...-13-14  
~
255  
255-0-1-...-253-254  
198  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Low Power Features  
Internal TCSR  
The internal Temperature Compensated Self Refresh (TCSR) feature is a very  
useful tool for reducing standby current at room temperature (below 40°C).  
DRAM cells have weak refresh characteristics in higher temperatures. High tem-  
peratures require more refresh cycles, which can lead to standby current  
increase.  
Without the internal TCSR, the refresh cycle should be set at worst condition so  
as to cover the high temperature (85°C) refresh characteristics. But with internal  
TCSR, a refresh cycle below 40°C can be optimized, so the standby current at  
room temperature can be greatly reduced. This feature is beneficial since most  
mobile phones are used at or below 40°C in the phone standby mode.  
0.5 µs  
MRS#  
Normal  
Operation  
Normal  
Operation  
Suspend  
PAR mode  
MODE  
CS#  
Figure 10. PAR Mode Execution and Exit  
Table 10. PAR Mode Characteristics  
Address (Bottom Array) Address (Top Array)  
Memory Cell  
Standby Current  
(µA, Max)  
Wait  
Time (µs)  
Power Mode  
(note 2)  
(note 2)  
Data  
Standby (Full Array)  
Partial Refresh(3/4 Block)  
Partial Refresh(1/2 Block)  
Partial Refresh(1/4 Block)  
000000h ~ 7FFFFFh  
000000h ~ 5FFFFFh  
000000h ~ 3FFFFFh  
000000h ~ 1FFFFFh  
000000h ~ 7FFFFFh  
200000h ~ 7FFFFFh  
400000h ~ 7FFFFFh  
600000h ~ 7FFFFFh  
200  
170  
150  
140  
Valid (note 1)  
0
Notes:  
1. Only the data in the refreshed block are valid.  
2. The PAR Array can be selected through Mode Register Set (see “Mode Register Setting Operation” on page 191).  
Driver Strength Optimization  
The optimization of output driver strength is possible through the mode register  
setting to adjust for the different data loadings. Through this driver strength op-  
timization, the device can minimize the noise generated on the data bus during  
read operation. The device supports full drive, 1/2 drive and 1/4 drive.  
Partial Array Refresh (PAR) mode  
The PAR mode enables the user to specify the active memory array size. The  
pSRAM consists of 4 blocks and the user can select 1 block, 2 blocks, 3 blocks or  
all blocks as active memory arrays through the Mode Register Setting. The active  
memory array is periodically refreshed whereas the disabled array is not re-  
freshed, so the previously stored data is lost. Even though PAR mode is enabled  
through the Mode Register Setting, PAR mode execution by the MRS# pin is still  
needed. The normal operation can be executed even in refresh-disabled array as  
long as the MRS# pin is not driven to the Low condition for over 0.5µs. Driving  
the MRS# pin to the High condition puts the device back to the normal operation  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
199  
P r e l i m i n a r y  
mode from the PAR executed mode. Refer to Figure 83 and Table 91 for PAR op-  
eration and PAR address mapping.  
Absolute Maximum Ratings  
Item  
Symbol  
VIN , VOUT  
VCC  
Ratings  
-0.2 to VCC+0.3V  
-0.2 to 2.5V  
1.0  
Unit  
V
Voltage on any pin relative to VSS  
Power supply voltage relative to VSS  
Power Dissipation  
V
PD  
W
Storage temperature  
TSTG  
-65 to 150  
-40 to 85  
°C  
°C  
Operating Temperature  
TA  
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
Functional operation should be restricted to use under recommended operating conditions only. Exposure to absolute  
maximum rating conditions longer than one second may affect reliability.  
DC Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Ground  
Min  
1.7  
Typ  
1.85  
0
Max  
Unit  
2.0  
VSS  
0
0
VCC + 0.2 (note 2)  
0.4  
V
VIH  
Input High Voltage  
Input Low Voltage  
0.8 x VCC  
-0.2 (note 3)  
VIL  
Notes:  
1. TA=-40 to 85°C, unless otherwise specified.  
2. Overshoot: VCC+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
VIN = 0V  
Min  
Max  
8
Unit  
pF  
Input Capacitance  
CIO  
Input/Output Capacitance  
VOUT = 0V  
10  
pF  
Note: This parameter is sampled periodically and is not 100% tested.  
200  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
DC and Operating Characteristics  
Common  
Item  
Symbol  
Test Conditions  
Min  
-1  
Typ  
Max  
Unit  
µA  
Input Leakage Current  
Output Leakage Current  
I
V
=V to V  
CC  
1
1
LI  
IN  
SS  
I
CS#=V , MRS#=V , OE#=V or WE#=V , V =V to V  
CC  
-1  
µA  
LO  
IH  
IH  
IH  
IL  
IO  
SS  
Average Operating  
Current  
Cycle time=t +3t , I =0mA, 100% duty, CS#=V , MRS#=V  
,
RC  
IH  
PC IO  
IL  
IH  
I
40  
mA  
CC2  
V
=V or V  
IN  
IL  
Output Low Voltage  
Output High Voltage  
V
I
I
=0.1mA  
1.4  
0.2  
V
V
OL  
OL  
V
=-0.1mA  
OH  
OH  
< 40°C  
< 85°C  
TBD  
200  
TBD  
TBD  
TBD  
170  
150  
140  
µA  
µA  
CS# V -0.2V, MRS# V -0.2V, Other  
inputs = V to V  
CC  
CC  
Standby Current (CMOS)  
Partial Refresh Current  
Notes:  
I
SB1  
SS  
CC  
3/4 Block  
1/2 Block  
1/4 Block  
3/4 Block  
1/2 Block  
1/4 Block  
< 40°C  
< 85°C  
µA  
µA  
I
MRS# 0.2V, CS# V -0.2V Other inputs =  
V
SBP  
CC  
(note 1)  
to V  
SS CC  
1. Full Array Partial Refresh Current (ISBP) is same as Standby Current (ISB1).  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
201  
P r e l i m i n a r y  
AC Operating Conditions  
Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.2 to V -0.2V  
CC  
„ Input rising and falling time: 3ns  
„ Input and output reference voltage: 0.5 x V  
„ Output load (See Figure 84): CL=50pF  
CC  
Vtt = 0.5 x V  
DDQ  
50  
Dout  
Z0=50  
30pF  
Figure 11. Output Load  
202  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Asynchronous AC Characteristics  
(V =1.7~2.0V, TA=-40 to 85 °C)  
CC  
Speed Bins  
Symbol  
tRC  
Parameter  
Read Cycle Time  
Min  
70  
25  
10  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPC  
Page Read Cycle Time  
tAA  
Address Access Time  
70  
tPA  
Page Access Time  
20  
tCO  
Chip Select to Output  
70  
tOE  
Output Enable to Valid Output  
UB#, LB# Access Time  
35  
tBA  
35  
tLZ  
Chip Select to Low-Z Output  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB#, LB# Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold  
tBLZ  
tOLZ  
tCHZ  
tBHZ  
tOHZ  
tOH  
5
0
7
0
7
0
7
3
tWC  
tCW  
tADV  
tAS  
Write Cycle Time  
70  
60  
7
Chip Select to End of Write  
ADV# Minimum Low Pulse Width  
Address Set-up Time to Beginning of Write  
Address Set-up Time to ADV# Falling  
Address Hold Time from ADV# Rising  
0
tAS(A)  
tAH(A)  
tCSS(A)  
tAW  
0
7
CS# Setup Time to ADV# Rising  
Address Valid to End of Write  
UB#, LB# Valid to End of Write  
Write Pulse Width  
10  
60  
60  
tBW  
tWP  
55 (Note 1)  
tWHP  
tWR  
tWLRL  
tDW  
WE# High Pulse Width  
5 ns  
0
Latency-1 clock  
Write Recovery Time  
ns  
clock  
ns  
ns  
WE# Low to Read Latency  
Data to Write Time Overlap  
Data Hold from Write Time  
1
30  
0
tDH  
Notes:  
1. tWP (min)=70ns for continuous write operation over 50 times.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
203  
P r e l i m i n a r y  
Timing Diagrams  
Asynchronous Read Timing Waveform  
MRS# = V , WE# = V , WAIT# = High-Z  
IH  
IH  
tRC  
Address  
tAA  
tOH  
tCO  
CS#  
tCHZ  
tBA  
UB#, LB#  
tBHZ  
tOE  
OE#  
t
OLZ  
tLBZLZ  
tOHZ  
t
Data out  
High-Z  
Data Valid  
Figure 12. Timing Waveform Of Asynchronous Read Cycle  
Notes:  
1. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to  
output voltage levels.  
2. At any given temperature and voltage condition, tCHZ(Max.) is less than tLZ(Min.) both for a given device and from device to  
device interconnection.  
3. In asynchronous read cycle, Clock, ADV# and WAIT# signals are ignored.  
Table 11. Asynchronous Read AC Characteristics  
Speed  
Speed  
Symbol  
tRC  
Min  
70  
3
Max  
Units  
Symbol  
tOLZ  
tBLZ  
Min  
5
Max  
7
Units  
tAA  
70  
70  
35  
35  
5
tCO  
tLZ  
10  
0
ns  
ns  
tBA  
tCHZ  
tBHZ  
tOHZ  
tOE  
0
7
tOH  
0
7
204  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Page Read  
MRS# = V , WE# = V , WAIT# = High-Z  
IH  
IH  
t
RC  
Valid  
Address  
A22~A2  
A1~A0  
tOH  
t
AA  
Valid  
Valid  
Valid  
Valid  
Address  
Address Address Address  
tPC  
tCO  
CS#  
tBA  
UB#, LB#  
tBHZ  
tOE  
OE#  
t
CHZ  
t
tBOLZLZ  
t
OHZ  
t
PA  
t
LZ  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data out  
High Z  
Figure 13. Timing Waveform Of Page Read Cycle  
Notes:  
1. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to  
output voltage levels.  
2. At any given temperature and voltage condition, tCHZ(Max.) is less than tLZ(Min.) both for a given device and from device to  
device interconnection.  
3. In asynchronous 4 page read cycle, Clock, ADV# and WAIT# signals are ignored.  
Table 12. Asynchronous Page Read AC Characteristics  
Speed  
Speed  
Symbol  
tRC  
Min  
70  
Max  
Units  
Symbol  
tOH  
Min  
3
Max  
7
Units  
tAA  
70  
tOLZ  
tBLZ  
tLZ  
5
tPC  
25  
5
tPA  
20  
70  
35  
35  
ns  
10  
0
ns  
tCO  
tCHZ  
tBHZ  
tOHZ  
tBA  
0
7
tOE  
0
7
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
205  
P r e l i m i n a r y  
Asynchronous Write Timing Waveform  
Asynchronous Write Cycle - WE# Controlled  
tWC  
Address  
tWR  
tCW  
CS#  
tAW  
t
BW  
UB#, LB#  
WE#  
tWP  
tAS  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data out  
Data Valid  
High-Z  
High-Z  
Figure 14. Timing Waveform Of Write Cycle  
Notes:  
1. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low with  
asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write  
ends at the earliest transition when CS# goes high or WE# goes high. The tWP is measured from the beginning of write to the  
end of write.  
2. tCW is measured from the CS# going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS# or WE# going  
high.  
5. In asynchronous write cycle, Clock, ADV# and WAIT# signals are ignored.  
Table 13. Asynchronous Write AC Characteristics  
Speed  
Speed  
Symbol  
tWC  
Min  
Max  
Units  
Symbol  
tAS  
Min  
0
Max  
Units  
70  
tCW  
60  
60  
tWR  
0
ns  
tAW  
ns  
tDW  
30  
0
tBW  
60  
tDH  
tWP  
55 (note 1)  
Notes:  
1. tWP(min) = 70ns for continuous write operation over 50 times.  
206  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Write Cycle 2  
MRS# = V , OE# = V , WAIT# = High-Z, UB# & LB# Controlled  
IH  
IH  
tWC  
Address  
tWR  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
tAS  
tWP  
WE#  
tDH  
tDW  
Data Valid  
Data in  
Data out  
High-Z  
High-Z  
Figure 15. Timing Waveform of Write Cycle(2)  
Notes:  
1. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low with  
asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write  
ends at the earliest transition when CS# goes high or WE# goes high. The tWP is measured from the beginning of write to the  
end of write.  
2. tCW is measured from the CS# going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS# or WE# going  
high.  
5. In asynchronous write cycle, Clock, ADV# and WAIT# signals are ignored.  
Table 14. Asynchronous Write AC Characteristics (UB# & LB# Controlled)  
Speed  
Speed  
Symbol  
tWC  
Min  
Max  
Units  
Symbol  
tAS  
Min  
0
Max  
Units  
70  
tCW  
60  
60  
tWR  
0
ns  
tAW  
ns  
tDW  
30  
0
tBW  
60  
tDH  
tWP  
55 (note 1)  
Notes:  
1. tWP(min) = 70ns for continuous write operation over 50 times.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
207  
P r e l i m i n a r y  
Write Cycle (Address Latch Type)  
MRS# = V , OE# = V , WAIT# = High-Z, WE# Controlled  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
tADV  
ADV#  
tAS(A)  
tAH(A)  
Address  
Valid  
tCSS(A)  
tCW  
CS#  
t
tBW  
AW  
UB#, LB#  
tWLRL  
tWP  
WE#  
tAS  
tDW  
tDH  
Data in  
Data Valid  
Read Latency5  
High-Z  
High-Z  
Data out  
Figure 16. Timing Waveform Of Write Cycle (Address Latch Type)  
Notes:  
1. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low with  
asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for word operation. A write ends at  
the earliest transition when CS# goes high or WE# goes high. The tWP is measured from the beginning of write to the end of  
write.  
2.  
t
AW is measured from the address valid to the end of write. In this address latch type write timing, tWC is same as tAW  
.
3. tCW is measured from the CS# going low to the end of write.  
4. tBW is measured from the UB# and LB# going low to the end of write.  
5. Clock input does not have any affect to the write operation if the parameter tWLRL is met.  
Table 15. Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Symbol  
tADV  
Min  
7
Max  
Units  
Symbol  
tBW  
Min  
Max  
Units  
ns  
60  
tAS(A)  
tAH(A)  
tCSS(A)  
tCW  
0
tWP  
55 (note 2)  
7
tWLRL  
tAS  
1
0
clock  
ns  
10  
60  
60  
tDW  
30  
0
ns  
tAW  
tDH  
Notes:  
1. Address Latch Type, WE# Controlled.  
2. WP(min) = 70ns for continuous write operation over 50 times.  
t
208  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Asynchronous Write Timing Waveform in Synchronous Mode  
Write Cycle (Low ADV# Type)  
MRS# = V , OE# = V , WAIT# = High-Z, WE# Controlled  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
tWC  
Address  
tWR  
tCW  
tAW  
CS#  
tBW  
UB#, LB#  
tWLRL  
tWP  
WE#  
tAS  
tDH  
tDW  
Data in  
Data Valid  
Read Latency 5  
High-Z  
Data out  
High-Z  
Figure 17. Timing Waveform Of Write Cycle (Low ADV# Type)  
Notes:  
1. Low ADV# type write cycle - WE# Controlled.  
2. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low with  
asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write  
ends at the earliest transition when CS# goes high or WE# goes high. The tWP is measured from the beginning of write to the  
end of write.  
3. tCW is measured from the CS# going low to the end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS# or WE# going  
high.  
6. Clock input does not have any affect to the write operation if the parameter tWLRL is met.  
Table 16. Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Symbol  
tWC  
Min  
Max  
Units  
Symbol  
tWLRL  
tAS  
Min  
1
Max  
Units  
70  
clock  
tCW  
60  
60  
0
tAW  
ns  
tWR  
0
ns  
tBW  
60  
tDW  
30  
0
tWP  
55 (note 2)  
tDH  
Notes:  
1. Low ADV# Type, WE# Controlled.  
2. tWP(min) = 70ns for continuous write operation over 50 times.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
209  
P r e l i m i n a r y  
Write Cycle (Low ADV# Type)  
MRS# = V , OE# = V , WAIT# = High-Z, UB# & LB# Controlled  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
tWC  
Address  
CS#  
tWR  
tCW  
t
AW  
tBW  
UB#, LB#  
WE#  
tAS  
tWLRL  
tWP  
tDH  
tDW  
Data Valid  
Data in  
Read Latency 5  
High-Z  
Data out  
High-Z  
Figure 18. Timing Waveform Of Write Cycle (Low ADV# Type)  
Notes:  
1. Low ADV# type write cycle - UB# and LB# Controlled.  
2. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low with  
asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write  
ends at the earliest transition when CS# goes high or WE# goes high. The tWP is measured from the beginning of write to the  
end of write.  
3. tCW is measured from the CS# going low to the end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS# or WE# going  
high.  
6. Clock input does not have any affect to the write operation if the parameter tWLRL is met.  
Table 17. Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Symbol  
tWC  
Min  
Max  
Units  
Symbol  
tWLRL  
tAS  
Min  
1
Max  
Units  
70  
clock  
tCW  
60  
60  
0
tAW  
ns  
tWR  
0
ns  
tBW  
60  
tDW  
30  
0
tWP  
55 (note 2)  
tDH  
Notes:  
1. Low ADV# type multiple write, UB#, LB# controlled.  
2. tWP(min) = 70ns for continuous write operation over 50 times.  
210  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Multiple Write Cycle (Low ADV# Type)  
MRSE = V , OE# = V , WAIT# = High-Z, WE# Controlled  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
Address  
tWC  
tWC  
tWR  
tWR  
t
AW  
tCW  
t
AW  
tCW  
CS#  
tBW  
tBW  
UB#, LB#  
tWHP  
tWP  
tWP  
WE#  
tAS  
tAS  
tDH  
tDH  
tDW  
tDW  
Data in  
Data Valid  
DataValid  
Data out  
High-Z  
High-Z  
Figure 19. Timing Waveform Of Multiple Write Cycle (Low ADV# Type)  
Notes:  
1. Low ADV# type multiple write cycle.  
2. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low with  
asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write  
ends at the earliest transition when CS# goes high or WE# goes high. The tWP is measured from the beginning of write to the  
end of write.  
3. tCW is measured from the CS# going low to the end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS# or WE# going  
high.  
6. Clock input does not have any affect on the asynchronous multiple write operation if tWHP is shorter than the (Read Latency  
- 1) clock duration.  
7.  
tWP(min) = 70ns for continuous write operation over 50 times.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
211  
P r e l i m i n a r y  
Table 18. Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
5ns  
0
Max  
t
t
t
t
70  
t
Latency-1 clock  
WC  
CW  
AW  
BW  
WHP  
60  
60  
t
AS  
ns  
t
0
WR  
DW  
ns  
60  
t
30  
0
t
55 (note 2)  
t
DH  
WP  
Notes:  
1. Low ADV# type multiple write, WE# Controlled.  
2.  
tWP(min) = 70ns for continuous write operation over 50 times.  
212  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
AC Operating Conditions  
Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.2 to V -0.2V  
CC  
„ Input rising and falling time: 3ns  
„ Input and output reference voltage: 0.5 x V  
„ Output load (See Figure 84): CL = 30pF  
CC  
Vtt = 0.5 x V  
DDQ  
50  
Dout  
Z0=50  
30pF  
Figure 20. AC Output Load Circuit  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
213  
P r e l i m i n a r y  
Table 19. Synchronous AC Characteristics  
Speed  
Parameter List  
Symbol  
Units  
Min  
15  
0
Max  
200  
2500  
Clock Cycle Time  
T
Burst Cycle Time  
t
BC  
Address Set-up Time to ADV# Falling (Burst)  
Address Hold Time from ADV# Rising (Burst)  
ADV# Setup Time  
t
AS(B)  
AH(B)  
t
7
t
t
5
ADVS  
ADVH  
ADV# Hold Time  
7
CS# Setup Time to Clock Rising (Burst)  
Burst End to New ADV# Falling  
Burst Stop to New ADV# Falling  
CS# Low Hold Time from Clock  
CS# High Pulse Width  
t
5
CSS(B)  
t
7
BEADV  
Burst Operation  
(Common)  
ns  
t
12  
7
BSADV  
t
CSLH  
CSHP  
ADHP  
t
55  
1
ADV# High Pulse Width  
t
Chip Select to WAIT# Low  
t
10  
10  
12  
7
WL  
ADV# Falling to WAIT# Low  
Clock to WAIT# High  
t
AWL  
t
WH  
Chip De-select to WAIT# High-Z  
UB#, LB# Enable to End of Latency Clock  
Output Enable to End of Latency Clock  
UB#, LB# Valid to Low-Z Output  
Output Enable to Low-Z Output  
Latency Clock Rising Edge to Data Output  
Output Hold  
t
WZ  
BEL  
OEL  
t
clock  
clock  
t
1
t
5
BLZ  
OLZ  
t
5
t
3
10  
CD  
Burst Read Operation  
t
OH  
ns  
Burst End Clock to Output High-Z  
Chip De-select to Output High-Z  
Output Disable to Output High-Z  
UB#, LB# Disable to Output High-Z  
t
10  
7
HZ  
t
CHZ  
OHZ  
t
7
t
7
BHZ  
WE# Set-up Time to Command Clock  
WE# Hold Time from Command Clock  
WE# High Pulse Width  
tWES  
tWEH  
tWHP  
tBS  
5
5
5
5
5
7
7
5
3
UB#, LB# Set-up Time to Clock  
UB#, LB# Hold Time from Clock  
Byte Masking Set-up Time to Clock  
Byte Masking Hold Time from Clock  
Data Set-up Time to Clock  
Burst Write Operation  
tBH  
ns  
tBMS  
tBMH  
tDS  
Data Hold Time from Clock  
tDHC  
Note: (VCC = 1.7~2.0V, TA=-40 to 85 °C, Maximum Main Clock Frequency = 66MHz.  
214  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Synchronous Burst Operation Timing Waveform  
Latency = 5, Burst Length = 4 (MRS# = V )  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
Undefined  
Data out  
Data in  
DQ0 DQ1 DQ2 DQ3  
D0  
D1  
D2  
D3  
D0  
Burst Command Clock  
Burst Read End Clock  
Burst Write End Clock  
Figure 21. Timing Waveform Of Basic Burst Operation  
Table 20. Burst Operation AC Characteristics  
Speed  
Speed  
Symbol  
Min  
15  
5
Max  
200  
2500  
Units  
Symbol  
tAS(B)  
Min  
0
Max  
Units  
T
tBC  
tAH(B)  
7
ns  
ns  
tADVS  
tADVH  
tCSS(B)  
tBEADV  
5
7
7
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
215  
P r e l i m i n a r y  
Synchronous Burst Read Timing Waveform  
Read Timings  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = V , MRS# = V ). CS#  
IH  
IH  
Toggling Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
t
CSHP  
tCSS(B)  
tBC  
tBHZ  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOHZ  
tOEL  
t
t
CHZ  
t
OLZ  
Latency 5  
tCD  
tOH  
HZ  
Undefined  
Data out  
WAIT#  
DQ0 DQ1 DQ2 DQ3  
tWZ  
t
WL  
t
WH  
tWH  
tWL  
High-Z  
Figure 22. Timing Waveform of Burst Read Cycle (1)  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge).  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
216  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Table 21. Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tCSHP  
tBEL  
Min  
5
Max  
Units  
Symbol  
tOHZ  
tBHZ  
tCD  
Min  
3
Max  
7
Units  
ns  
1
7
clock  
ns  
tOEL  
1
10  
10  
12  
7
tBLZ  
5
tOH  
ns  
tOLZ  
tHZ  
5
tWL  
10  
7
tWH  
tCHZ  
tWZ  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = V , MRS# = V ).  
IH  
IH  
CS# Low Holding Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
Latency 5  
tCD  
tOH  
tHZ  
Undefined  
Data out  
WAIT#  
DQ0 DQ1 DQ2 DQ3  
tAWL  
tWH  
t
WL  
t
WH  
High-Z  
Figure 23. Timing Waveform of Burst Read Cycle (2)  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge).  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The consecutive multiple burst read operation with holding CS# low is possible only through issuing a new ADV# and  
address.  
5. Burst Cycle Time (tBC) should not be over 2.5µs.  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
217  
P r e l i m i n a r y  
Table 22. Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tBEL  
Min  
1
Max  
Units  
Symbol  
tCD  
Min  
3
Max  
10  
Units  
clock  
tOEL  
tBLZ  
tOLZ  
tHZ  
1
tOH  
5
tWL  
10  
10  
12  
ns  
5
ns  
tAWL  
tWH  
10  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = V , MRS# = V ).  
IH  
IH  
Last data sustaining  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
t
CSS(B)  
tBC  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
tOH  
tCD  
Latency 5  
Undefined  
Data out  
WAIT#  
DQ0 DQ1 DQ2 DQ3  
t
WL  
t
WH  
High-Z  
Figure 24. Timing Waveform of Burst Read Cycle (3)  
Notes:  
1. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge).  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. Burst Cycle Time (tBC) should not be over 2.5µs.  
218  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Table 23. Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tBEL  
Min  
1
Max  
Units  
Symbol  
tCD  
Min  
3
Max  
10  
Units  
clock  
tOEL  
1
tOH  
ns  
tBLZ  
5
tWL  
10  
12  
ns  
tOLZ  
5
tAWL  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
219  
P r e l i m i n a r y  
Write Timings  
Latency = 5, Burst Length = 4, WP = Low enable (OE# = V , MRS# = V ).  
IH  
IH  
CS# Toggling Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tCSHP  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Valid  
Don’t Care  
tBC  
tCSS(B)  
tBS  
tBMS  
tBH  
tBMH  
LB#, UB#  
WE#  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
WAIT#  
D0  
D1  
D2  
D3  
D0  
tWZ  
tWL  
tWL  
High-Z  
Figure 25. Timing Waveform of Burst Write Cycle (1)  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
4. D2 is masked by UB# and LB#.  
5. Burst Cycle Time (tBC) should not be over 2.5µs.  
220  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Table 24. Burst Write AC Characteristics  
Speed  
Speed  
Symbol  
tCSHP  
tBS  
Min  
5
Max  
Units  
Symbol  
tWHP  
tDS  
Min  
5
Max  
Units  
5
5
tBH  
5
tDHC  
tWL  
3
ns  
tBMS  
tBMH  
tWES  
tWEH  
7
ns  
10  
12  
7
7
tWH  
5
tWZ  
5
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
221  
P r e l i m i n a r y  
Latency = 5, Burst Length = 4, WP = Low enable (OE# = V , MRS# = V ).  
IH  
IH  
CS# Low Holding Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
ADV  
t
ADVH  
ADVS  
t
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Valid  
Don’t Care  
t
CSS(B)  
tBC  
tBS  
tBMS  
tBH  
tBMH  
LB#, UB#  
WE#  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
Latency 5  
Data in  
WAIT#  
D0  
D1  
D2  
D3  
D0  
tWL  
tAWL  
tWH  
tWH  
High-Z  
Figure 26. Timing Waveform of Burst Write Cycle (2)  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
4. D2 is masked by UB# and LB#.  
5. The consecutive multiple burst read operation with holding CS# low is possible only through issuing a new ADV# and  
address.  
6. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 25. Burst Write AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
5
Max  
Min  
5
Max  
t
t
t
WHP  
BS  
5
t
5
BH  
DS  
t
7
t
3
BMS  
BMH  
WES  
WEH  
DHC  
ns  
ns  
t
t
7
t
10  
10  
12  
WL  
5
t
AWL  
t
5
t
WH  
222  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Synchronous Burst Read Stop Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (WE#= V , MRS# = V ).  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBSADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
Valid  
tCSHP  
tCSS(B)  
tCSLH  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
tOH  
tCHZ  
tCD  
Latency 5  
Undefined  
Data  
DQ0  
DQ1  
tWZ  
t
WL  
tWL  
tWH  
High-Z  
High-Z  
WAIT#  
Figure 27. Timing Waveform of Burst Read Stop by CS#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Table 26. Burst Read Stop AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
3
Max  
10  
t
t
BSADV  
CD  
t
t
ns  
t
CSLH  
CSHP  
OH  
5
t
7
CHZ  
ns  
t
1
t
10  
12  
7
BEL  
OEL  
BLZ  
WL  
WH  
WZ  
clock  
ns  
t
t
1
t
5
t
t
5
OLZ  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
223  
P r e l i m i n a r y  
Synchronous Burst Write Stop Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (OE#= V , MRS# = V ).  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBSADV  
tAH(B)  
tAS(B)  
Don’t Care  
Address  
CS#  
Valid  
Valid  
tCSHP  
t
CSS(B)  
tCSLH  
tBS  
tBH  
LB#, UB#  
WE#  
tWHP  
t
WEH  
t
WES  
tDS  
tDHC  
Latency 5  
Latency 5  
Data in  
WAIT#  
D0  
D1  
D0  
D1  
D2  
tWZ  
t
WL  
t
WL  
tWH  
tWH  
High-Z  
High-Z  
Figure 28. Timing Waveform of Burst Write Stop by CS#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Table 27. Burst Write Stop AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
5
Max  
t
t
WHP  
BSADV  
t
t
t
5
CSLH  
CSHP  
DS  
5
t
3
DHC  
ns  
t
5
t
10  
12  
7
ns  
BS  
WL  
WH  
WZ  
t
5
t
t
BH  
t
5
WES  
WEH  
t
5
224  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Synchronous Burst Read Suspend Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (WE#= V , MRS# = V ).  
IH  
IH  
0
1
2
3
4
5
6
7
8
9
10  
11  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
tCSS(B)  
tBC  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
Latency 5  
tOHZ  
tOLZ  
tOH  
tCD  
tHZ  
High-Z  
Undefined  
Data out  
WAIT#  
DQ0 DQ1  
DQ1 DQ2 DQ3  
tWZ  
t
WL  
t
WH  
High-Z  
Figure 29. Timing Waveform of Burst Read Suspend Cycle (1)  
Notes:  
1. If the clock input is halted during burst read operation, the data output will be suspended. During the burst read suspend  
period, OE# high drives data output to high-Z. If the clock input is resumed, the suspended data will be output first.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. During the suspend period, OE# high drives DQ to High-Z and OE# low drives DQ to Low-Z. If OE# stays low during suspend  
period, the previous data will be sustained.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 28. Burst Read Suspend AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
1
Max  
Min  
Max  
10  
7
t
t
HZ  
BEL  
OEL  
BLZ  
OLZ  
clock  
t
t
1
t
OHZ  
5
t
10  
12  
7
WL  
WH  
WZ  
ns  
t
5
t
t
ns  
t
3
10  
CD  
OH  
t
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
225  
P r e l i m i n a r y  
Transition Timing Waveform Between Read And Write  
Latency = 5, Burst Length = 4, WP = Low enable (MRS# = V ).  
IH  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tADV  
tAH(A)  
tBEADV  
tAS(A)  
tAH(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tAW  
tCW  
tBC  
tCSS(A)  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Data out  
WAIT#  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
Read Latency 5  
Figure 30. Synchronous Burst Read to Asynchronous Write (Address Latch Type)  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 29. Burst Read to Asynchronous Write (Address Latch Type) AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
t
1
clock  
BEADV  
WLRL  
Latency = 5, Burst Length = 4 (MRS# = V ).  
IH  
226  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
Valid Adderss  
tWR  
tAW  
tCW  
tCSS(B)  
tBC  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Data out  
WAIT#  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
Read Latency 5  
Figure 31. Synchronous Burst Read to Asynchronous Write (Low ADV# Type)  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 30. Burst Read to Asynchronous Write (Low ADV# Type) AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
t
1
clock  
BEADV  
WLRL  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
227  
P r e l i m i n a r y  
Latency = 5, Burst Length = 4 (MRS# = V ).  
IH  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADVS  
ADV#  
tADV  
tAH(A)  
tAS(A)  
tAS(B)  
Address  
CS#  
Dont Care  
tAW  
tCW  
Dont Care  
tBC  
Valid  
Valid  
tCSS(A)  
tCSS(B)  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
Data out  
High-Z  
Read Latency 5  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
WAIT#  
Figure 32. Asynchronous Write (Address Latch Type) to Synchronous Burst Read Timing  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 31. Asynchronous Write (Address Latch Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
1
clock  
WLRL  
228  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Latency = 5, Burst Length = 4 (MRS# = V ).  
IH  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADtHAPDVS  
ADV#  
Address  
CS#  
tAS(B)  
tWC  
Valid  
Valid  
Dont Care  
tBC  
tAW  
tCW  
tWR  
tCSS(B)  
tWLRL  
tWP  
tBW  
WE#  
OE#  
tAS  
tOEL  
tBEL  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
Data out  
High-Z  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
Read Latency 5  
WAIT#  
Figure 33. Asynchronous Write (Low ADV# Type) to Synchronous Burst Read Timing  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 32. Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
1
clock  
t
ns  
WLRL  
ADHP  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
229  
P r e l i m i n a r y  
Latency = 5, Burst Length = 4 (MRS# = V ).  
IH  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE#  
OE#  
tOEL  
tBEL  
tBS  
tBH  
LB#, UB#  
Data in  
tDS  
Latency 5  
tDHC  
tWZ  
D0 D1 D2 D3  
High-Z  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tHZ  
High-Z  
Data out  
WAIT#  
tWH  
tWL  
tWH  
tWL  
High-Z  
Figure 34. Synchronous Burst Read to Synchronous Burst Write Timing  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 33. Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
BEADV  
230  
1.8V pSRAM Type 4  
pSRAM_Type04_17A0 July 30, 2004  
P r e l i m i n a r y  
Latency = 5, Burst Length = 4 (MRS# = V ).  
IH  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE#  
OE#  
tOEL  
tBS  
tBH  
tBEL  
LB#, UB#  
tDS  
Latency 5  
tDHC  
D0 D1 D2  
D3  
High-Z  
Data in  
Data out  
WAIT#  
Latency 5  
tCD  
tOH  
tHZ  
DQ0 DQ1 DQ2 DQ3  
High-Z  
tWL  
tWH  
tWZ  
tWH  
tWL  
High-Z  
Figure 35. Synchronous Burst Write to Synchronous Burst Read Timing  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low (tWL or tAWL): Data not available (driven by CS# low going edge or ADV# low going edge)  
/WAIT High (tWH): Data available (driven by Latency-1 clock)  
/WAIT High-Z (tWZ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (tBC) should not be over 2.5µs.  
Table 34. Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
BEADV  
July 30, 2004 pSRAM_Type04_17A0  
1.8V pSRAM Type 4  
231  
P r e l i m i n a r y  
CosmoRAM  
32Mbit (2M word x 16-bit)  
64Mbit (4M word x 16-bit)  
Features  
„ Asynchronous SRAM Interface  
„ Fast Access Time  
— t = t = 70ns max  
CE  
AA  
„ 8 words Page Access Capability  
— t = 20ns max  
PAA  
„ Low Voltage Operating Condition  
— V = +1.65V to +1.95V (32M)  
DD  
— +1.70V to +1.95V (64M)  
„ Wide Operating Temperature  
— TA = -30°C to +85°C  
„ Byte Control by LB# and UB#  
„ Low Power Consumption  
— I  
— I  
= 30mA max (32M), TBDmA max (64M)  
= 80mA max (32M), TBDmA max (64M)  
DDA1  
DDS1  
„ Various Power Down mode  
— Sleep, 4M-bit Partial or 8M-bit Partial (32M)  
— Sleep, 8M-bit Partial or 16M-bit Partial (64M)  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
233  
P r e l i m i n a r y  
Pin Description (32M)  
Pin Name  
A21 to A0  
CE1#  
CE2  
Description  
Address Input: A20 to A0 for 32M, A21 to A0 for 64M  
Chip Enable (Low Active)  
Chip Enable (High Active)  
Write Enable (Low Active)  
Output Enable (Low Active)  
Upper Byte Control (Low Active)  
Lower Byte Control (Low Active)  
Clock Input  
WE#  
OE#  
UB#  
LB#  
CLK  
ADV#  
WAIT#  
Address Valid Input (Low Active)  
Wait Signal Output  
DQ16 9  
-
Upper Byte Data Input/Output  
Lower Byte Data Input/Output  
Power Supply  
DQ8-1  
VDD  
VSS  
Ground  
234  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Functional Description  
Asynchronous Operation (Page Mode)  
Mode  
Standby (Deselect)  
Output Disable (Note 1)  
Output Disable (No Read)  
Read (Upper Byte)  
Read (Lower Byte)  
Read (Word)  
CE2 CE1# CLK  
H
ADV#  
WE#  
OE#  
X
LB# UB#  
A
DQ  
DQ  
16-9  
WAIT#  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
21-0  
8-1  
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
H
Note 5  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
X
H
H
L
H
L
High-Z  
High-Z  
High-Z  
Output Valid  
High-Z  
H
L
H
L
Output Valid  
L
Output Valid Output Valid  
L
(Note 3)  
Page Read  
L/H  
H
H
L
L/H  
H
L
Note 6  
Invalid  
Note 6  
Invalid  
No Write  
Write (Upper Byte)  
Write (Lower Byte)  
Write (Word)  
Invalid  
Input Valid  
Invalid  
H
L
(Note 4)  
H
L
Input Valid  
Input Valid  
High-Z  
L
Input Valid  
High-Z  
Power Down (Note 2)  
X
X
X
X
X
X
Legend:L = V , H = V , X can be either V or V , High-Z = High Impedance.  
IL  
IH  
IL  
IH  
Notes:  
1. Should not be kept at this logic condition longer than 1µs.  
2. Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the  
selection of Partial Size. Refer to the "Power Down" section in the Functional Description for details.  
3. “L” for address pass through and “H” for address latch on the rising edge of ADV#.  
4. OE# can be VIL during Write operation if the following conditions are satisfied:  
(1) Write pulse is initiated by CE1# (refer to CE1# Controlled Write timing), or cycle time of the previous operation cycle is  
satisfied.  
(2) OE# stays VIL during Write cycle  
5. Can be either VIL or VIH but must be valid before Read or Write.  
6. Output is either Valid or High-Z depending on the level of UB# and LB# input.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
235  
P r e l i m i n a r y  
Functional Description  
Synchronous Operation (Burst Mode)  
Mode  
CE2 CE1#  
CLK  
ADV#  
WE#  
OE#  
LB#  
UB#  
A
DQ  
DQ  
16-9  
WAIT#  
21-0  
8-1  
Standby (Deselect)  
H
X
X
X
X
X
X
X
High-Z  
High-Z  
High-Z  
Start Address  
Latch  
(Note 1)  
VE  
(Note 3)  
X
X
Valid  
(Note 7)  
High-Z  
(Note 8)  
High-Z  
(Note 8) (Note 11)  
High-Z  
PELP  
(Note 4) (Note 4)  
Advance Burst  
Read to Next  
Address (Note 1)  
Output  
Valid  
(Note 9)  
Output  
Output  
Valid  
(Note 9)  
VE  
(Note 3)  
L
Valid  
H
Burst Read  
Suspend  
(Note 1)  
VE  
(Note 3)  
High  
High-Z  
L
H
High-Z  
(Note 12)  
H
X
X
Input  
Advance Burst  
Write to Next  
Address (Note 1)  
(Note 6) (Note 6)  
Input  
Valid  
(Note 10)  
VE  
(Note 3)  
L
(Note 5)  
H
Valid  
(Note  
10)  
High  
(Note 13)  
H
X
Burst Write  
Suspend (Note 1)  
VE  
(Note 3)  
H
Iput  
Invalid  
Iput  
Invalid  
High  
(Note 12)  
(Note 5)  
Terminate Burst  
Read  
VE  
VE  
X
X
X
H
X
X
X
H
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Terminate Burst  
Write  
Power Down  
(Note 2)  
L
X
X
X
X
X
Legend:L = V , H = V , X can be either V or V , VE = Valid Edge, PELP = Positive Edge of Low Pulse, High-  
IL  
IH  
IL  
IH  
Z = High Impedance.  
Notes:  
1. Should not be kept this logic condition longer than the specified time of 8µs for 32M and 4µs for 64M.  
2. Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the  
selection of Partial Size. Refer to the "Power Down" section for details.F  
3. Valid clock edge shall be set on either positive or negative edge through CR Set. CLK must be started and stable prior to  
memory access.  
4. Can be either VIL or VIH except for the case the both of OE# and WE# are VIL. It is prohibited to bring the both of OE# and  
WE# to VIL  
.
5. When device is operating in “WE# Single Clock Pulse Control” mode, WE# is don’t care once write operation is determined by  
WE# Low Pulse at the beginning of write access together with address latching. Write suspend feature is not supported in  
“WE# Single Clock Pulse Control” mode.  
6. Can be either VIL or VIH but must be valid before Read or Write is determined. And once UB# and LB# inputs are  
determined, they must not be changed until the end of burst.  
7. Once valid address is determined, input address must not be changed during ADV#=L.  
8. If OE#=L, output is either Invalid or High-Z depending on the level of UB# and LB# input. If WE#=L, Input is Invalid. If  
OE#=WE#=H, output is High-Z.  
9. Output is either Valid or High-Z depending on the level of UB# and LB# input.  
10. Input is either Valid or Invalid depending on the level of UB# and LB# input.  
11. Output is either High-Z or Invalid depending on the level of OE# and WE# input.  
12. Keep the level from previous cycle except for suspending on last data. Refer to “WAIT# Output Function” for details.  
13. WAIT# output is driven in High level during write operation.  
236  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
State Diagrams  
Initial/Standby State  
Asynchronous Operation  
(Page Mode)  
Power Up  
Synchronous Operation  
(Burst Mode)  
Common State  
CR Set  
Pause Time  
Power  
Down  
Power  
Down  
@M=1  
@M=0  
CE2=H  
CE2=L  
CE2=L  
CE2=H  
@RP=1  
Standby  
Standby  
CE2=H  
@RP=0  
Figure 1. Initial Standby State Diagram  
(64M Only)  
Asynchronous Operation State  
CE2 = CE1# = H  
Standby  
CE1# = L  
CE1# = L &  
WE# = L  
CE1# = H  
CE1# = L &  
OE# = L  
CE1# = H  
Output  
Disable  
CE1# = H  
OE# = L  
WE# = H  
WE# = L  
OE# = H  
Address Change  
or Byte Control  
Read  
Write  
Byte Control  
Byte Control @ OE# = L  
Figure 2. Asynchronous Operation State Diagram  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
237  
P r e l i m i n a r y  
Synchronous Operation State  
CE2 = CE1# = H  
Standby  
CE1# = H  
CE1# = H  
CE1# = H  
Read  
CE1# = H  
Write  
Suspend  
Suspend  
OE# = H  
WE# = H  
CE1# = L  
CE1# = L  
OE# = L  
ADV# Low Pulse  
& OE# = L  
ADV# Low Pulse  
& WE# = L  
WE# = L  
ADV# Low Pulse  
ADV# Low Pulse  
Read  
Write  
ADV# Low Pulse  
(@BL = 8 or 16, and after burst  
operation is completed)  
Figure 3. Synchronous Operation Diagram  
Notes:  
1. Assumes all the parameters specified in the "AC Characteristics" section are satisfied. Refer to the "Functional Description"  
section, "AC Characteristics" section, and the "Timing Diagrams" section for details. RP (Reset to Page) mode is available  
only for 64M.  
Functional Description  
This device supports asynchronous page read & normal write operation and syn-  
chronous burst read & burst write operation for faster memory access and  
features three kinds of power down modes for power saving as a user config-  
urable option.  
Power-up  
It is required to follow the power-up timing to start executing proper device op-  
eration. Refer to POWER-UP Timing. After Power-up, the device defaults to  
asynchronous page read & normal write operation mode with sleep power down  
feature.  
Configuration Register  
The Configuration Register (CR) is used to configure the type of device function  
among optional features. Each selection of features is set through CR Set se-  
quence after Power-up. If CR Set sequence is not performed after power-up, the  
device is configured for asynchronous operation with sleep power down feature  
as default configuration.  
CR Set Sequence  
The CR Set requires total 6 read/write operations with unique address. Between  
each read/write operation requires the device to be in standby mode. The follow-  
ing table shows the detail sequence.  
Cycle #  
1st  
Operation  
Read  
Address  
3FFFFFh (MSB)  
3FFFFFh  
Data  
Read Data (RDa)  
RDa  
2nd  
Write  
238  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Cycle #  
3rd  
Operation  
Write  
Address  
3FFFFFh  
Data  
RDa  
4th  
Write  
3FFFFFh  
X
5th  
Write  
3FFFFFh  
X
6th  
Read  
Address Key  
Read Data (RDb)  
The first cycle is to read from most significant address (MSB).  
The second and third cycle are to write to MSB. If the second or third cycle is writ-  
ten into the different address, the CR Set is cancelled and the data written by the  
second or third cycle is valid as a normal write operation. It is recommended to  
write back the data (RDa) read by first cycle to MSB in order to secure the data.  
The forth and fifth cycle is to write to MSB. The data of forth and fifth cycle is  
don’t-care. If the forth or fifth cycle is written into different address, the CR Set  
is also cancelled but write data may not be written as normal write operation.  
The last cycle is to read from specific address key for mode selection. And read  
data (RDb) is invalid.  
Once this CR Set sequence is performed from an initial CR set to the other new  
CR set, the written data stored in memory cell array may be lost. So, CR Set se-  
quence should be performed prior to regular read/write operation if necessary to  
change from default configuration.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
239  
P r e l i m i n a r y  
Address Key  
The address key has the following format.  
Description  
Note  
Address  
Pin  
Register  
Name  
Function  
Key  
32M  
64M  
Unused bits muse be 1  
16M Partial  
A21  
1
1
00  
01  
10  
11  
8M Partial  
4M Partial  
8M Partial  
A20-A19  
PS  
Partial Size  
Reserved for future use  
Sleep [Default]  
2
2
000 to 001 Reserved for future use  
010  
011  
8 words  
A18-A16  
BL  
M
Burst Length  
16 words  
100 to 110 Reserved for future use  
2
111  
0
Continuous  
Synchronous Mode (Burst Read / Write)  
3
4
2
A15  
Mode  
1
Asynchronous Mode [Default] (Page Read / Normal Write)  
000  
001  
010  
011  
100  
Reserved for future use  
3 clocks  
4 clocks  
A14-A12  
RL  
Read Latency  
5 clocks  
Reserved for future use  
6 clocks  
101 to 111 Reserved for future use  
2
2
0
1
0
1
0
1
0
1
Reserved for future use  
Sequential  
Burst  
A11  
A10  
A9  
BS  
SW  
VE  
Sequence  
Burst Read & Burst Write  
Burst Read & Single Write  
Falling Clock Edge  
Single Write  
5
Valid Clock  
Edge  
Rising Clock Edge  
Reset to Page mode  
6
5
1
A8  
RP  
Reset to Page  
Unused bits must be 1  
Remain the previous mode  
WE# Single Clock Pulse Control without Write Suspend  
Function  
0
A7  
WC  
Write Control  
1
1
WE# Level Control with Write Suspend Function  
Unused bits muse be 1  
A6-A0  
Notes:  
1. A21 and A6 to A0 must be all “1” in any case.  
2. It is prohibited to apply this key.  
3. If M=0, all the registers must be set with appropriate Key input at the same time.  
4. If M=1, PS must be set with appropriate Key input at the same time. Except for PS, all the other key inputs must be “1”.  
5. Burst Read & Single Write is not supported at WE# Single Clock Pulse Control.  
6. Effective only when PS=11. RP (Reset to Page) mode is available only for 64M.  
240  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Power Down  
The Power Down is low power idle state controlled by CE2. CE2 Low drives the  
device in power down mode and maintains low power idle state as long as CE2 is  
kept Low. CE2 High resumes the device from power down mode. These devices  
have three power down mode. These can be programmed by series of read/write  
operations. Each mode has following features.  
32M  
Data Retention Size  
No  
64M  
Data Retention Size  
No  
Mode  
Retention Address  
N/A  
Mode  
Retention Address  
N/A  
Sleep (default)  
4M Partial  
Sleep (default)  
8M Partial  
4M bit  
000000h to 03FFFFh  
000000h to 07FFFFh  
8M bit  
000000h to 07FFFFh  
000000h to 0FFFFFh  
8M Partial  
8M bit  
16M Partial  
16M bit  
The default state is Sleep and it is the lowest power consumption but all data will  
be lost once CE2 is brought to Low for Power Down. It is not required to program  
to Sleep mode after power-up.  
64M supports Reset to Page (RP) mode. When RP=0, Power Down comprehends  
a function to reset the device to default configuration (asynchronous mode). After  
resuming from power down mode, the device is back in default configurations.  
This is effective only when PS is set on Sleep mode. When Partial mode is se-  
lected, RP=0 is not effective.  
Burst Read/Write Operation  
Synchronous burst read/write operation provides faster memory access that syn-  
chronized to microcontroller or system bus frequency. Configuration Register Set  
is required to perform burst read & write operation after power-up. Once CR Set  
sequence is performed to select synchronous burst mode, the device is config-  
ured to synchronous burst read/write operation mode with corresponding RL and  
BL that is set through CR Set sequence together with operation mode. In order  
to perform synchronous burst read & write operation, it is required to control new  
signals, CLK, ADV# and WAIT# that Low Power SRAMs don’t have.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
241  
P r e l i m i n a r y  
CLK  
ADDRESS  
Valid  
ADV#  
CE1#  
OE#  
High  
WE#  
DQ  
RL  
High-Z  
High-Z  
Q1  
QBL  
Q2  
BL  
WAIT#  
Figure 4. Burst Read Operation  
CLK  
ADDRESS  
Valid  
ADV#  
CE1#  
High  
OE#  
WE#  
DQ  
RL-1  
High-Z  
High-Z  
D1  
DBL  
D2  
BL  
WAIT#  
Figure 5. Burst Write Operation  
CLK Input Function  
The CLK is input signal to synchronize memory to microcontroller or system bus  
frequency during synchronous burst read & write operation. The CLK input incre-  
ments device internal address counter and the valid edge of CLK is referred for  
latency counts from address latch, burst write data latch, and burst read data out.  
During synchronous operation mode, CLK input must be supplied except for  
standby state and power down state. CLK is don’t care during asynchronous  
operation.  
242  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
ADV# Input Function  
The ADV# is input signal to indicate valid address presence on address inputs. It  
is applicable to synchronous operation as well as asynchronous operation. ADV#  
input is active during CE1#=L and CE1#=H disables ADV# input. All addresses  
are determined on the positive edge of ADV#.  
During synchronous burst read/write operation, ADV#=H disables all address in-  
puts. Once ADV# is brought to High after valid address latch, it is inhibited to  
bring ADV# Low until the end of burst or until burst operation is terminated.  
ADV# Low pulse is mandatory for synchronous burst read/write operation mode  
to latch the valid address input.  
During asynchronous operation, ADV#=H also disables all address inputs. ADV#  
can be tied to Low during asynchronous operation and it is not necessary to con-  
trol ADV# to High.  
WAIT# Output Function  
The WAIT# is output signal to indicate data bus status when the device is oper-  
ating in synchronous burst mode.  
During burst read operation, WAIT# output is enabled after specified time dura-  
tion from OE#=L or CE1#=L whichever occurs last. WAIT# output Low indicates  
data out at next clock cycle is invalid, and WAIT# output becomes High one clock  
cycle prior to valid data out. During OE# read suspend, WAIT# output doesn’t  
indicate data bus status but carries the same level from previous clock cycle (kept  
High) except for read suspend on the final data output. If final read data out is  
suspended, WAIT# output become high impedance after specified time duration  
from OE#=H.  
In case of continuous burst read operation of 32M, an additional output delay may  
occur when a burst sequence crosses it’s device-row boundary. The WAIT# out-  
put indicates this delay. Refer to the "Burst Length" section for the additional  
delay cycles in details.  
During burst write operation, WAIT# output is enabled to High level after speci-  
fied time duration from WE#=L or CE1#=L whichever occurs last and kept High  
for entire write cycles including WE# write suspend. The actual write data latch-  
ing starts on the appropriate clock edge with respect to Valid Clock Edge, Read  
Latency and Burst Length. During WE# write suspend, WAIT# output doesn’t in-  
dicate data bus status but carries the same level from previous clock cycle (kept  
High) except for write suspend on the final data input. If final write data in is sus-  
pended, WAIT# output become high impedance after specified time duration  
from WE#=H.  
The burst write operation of 32M and the both burst read/write operation of 64M  
are always started after fixed latency with respect to Read Latency set in CR.  
When the device is operating in asynchronous mode, WAIT# output is always in  
High Impedance.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
243  
P r e l i m i n a r y  
Latency  
Read Latency (RL) is the number of clock cycles between the address being  
latched and first read data becoming available during synchronous burst read op-  
eration. It is set through CR Set sequence after power-up. Once specific RL is set  
through CR Set sequence, write latency, that is the number of clock cycles be-  
tween address being latched and first write data being latched, is automatically  
set to RL-1.The burst operation is always started after fixed latency with respect  
to Read Latency set in CR. RL=6 is available only for 64M.  
CLK  
0
3
4
5
6
1
2
ADDRESS  
ADV#  
Valid  
CE1#  
OE# or WE#  
RL=3  
DQ [Out]  
WAIT#  
Q1  
Q2  
Q3  
Q4  
Q5  
D5  
High-Z  
DQ [In]  
WAIT#  
D1  
D2  
D3  
D4  
D5  
High-Z  
RL=4  
DQ [Out]  
WAIT#  
Q1  
D2  
Q2  
D3  
Q3  
D4  
Q4  
D5  
High-Z  
DQ [In]  
WAIT#  
D1  
High-Z  
RL=5  
DQ [Out]  
WAIT#  
Q1  
D2  
Q2  
D3  
Q3  
D4  
High-Z  
DQ [In]  
WAIT#  
D1  
High-Z  
RL=6  
DQ [Out]  
WAIT#  
Q1  
D2  
Q2  
D3  
High-Z  
DQ [In]  
WAIT#  
D1  
High-Z  
Figure 6. Read Latency Diagram  
244  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Address Latch by ADV#  
The ADV# indicates valid address presence on address inputs. During synchro-  
nous burst read/write operation mode, all the address are determined on the  
positive edge of ADV# when CE1#=L. The specified minimum value of ADV#=L  
setup time and hold time against valid edge of clock where RL count begin must  
be satisfied for appropriate RL counts. Valid address must be determined with  
specified setup time against either the negative edge of ADV# or negative edge  
of CE1# whichever comes late. And the determined valid address must not be  
changed during ADV#=L period.  
Burst Length  
Burst Length is the number of word to be read or write during synchronous burst  
read/write operation as the result of a single address latch cycle. It can be set on  
8, 16 words boundary or continuous for entire address through CR Set sequence.  
The burst type is sequential that is incremental decoding scheme within a bound-  
ary address. Starting from initial address being latched, device internal address  
counter assign +1 to the previous address until reaching the end of boundary ad-  
dress and then wrap round to least significant address (=0). After completing  
read data out or write data latch for the set burst length, operation automatically  
ended except for continuous burst length. When continuous burst length is set,  
read/write is endless unless it is terminated by the positive edge of CE1#.  
During continuous burst read of 32M, an additional output delay may occur when  
a burst sequence cross it’s device-row boundary. This is the case when A0 to A6  
of starting address is either 7Dh, 7Eh, or 7Fh as shown in the following table. The  
WAIT# signal indicates this delay. The 64M device has no additional output delay.  
Read Address Sequence  
Start Address  
(A6-A0)  
00h  
01h  
02h  
03h  
...  
BL = 8  
BL = 16  
Continuous  
00-01-02-03-04-...  
01-02-03-04-05-...  
02-03-04-05-06-...  
03-04-05-06-07-...  
...  
00-01-02-...-06-07  
01-02-03-...-07-00  
02-03-...-07-00-01  
03-...-07-00-01-02  
...  
00-01-02-...-0E-0F  
01-02-03-...-0F-00  
02-03-...-0F-00-01  
03-...-0F-00-01-02  
...  
7Ch  
7Dh  
7Eh  
7Fh  
7C-...-7F-78-...-7B  
7D-7E-7F-78-...-7C  
7E-7F-78-79-...-7D  
7F-78-79-7A-...-7E  
7C-...-7F-70-...-7B  
7D-7E-7F-70-...-7C  
7E-7F-70-71-...-7D  
7F-70-71-72-...-7E  
7C-7D-7E-7F-80-81-...  
7D-7E-7F-WAIT-80-81-...  
7E-7F-WAIT-WAIT-80-81-...  
7F-WAIT WAIT  
-
-WAIT-80-81  
Note: Read address in Hexadecimal.  
Single Write  
Single Write is synchronous write operation with Burst Length =1. The device can  
be configured either to “Burst Read & Single Write” or to “Burst Read & Burst  
Write” through CR set sequence. Once the device is configured to “Burst Read &  
Single Write” mode, the burst length for synchronous write operation is always  
fixed 1 regardless of BL values set in CR, while burst length for read is in accor-  
dance with BL values set in CR.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
245  
P r e l i m i n a r y  
Write Control  
The device has two types of WE# signal control method, “WE# Level Control” and  
“WE# Single Clock Pulse Control, for synchronous write operation. It is config-  
ured through CR set sequence.  
CLK  
0
3
4
5
6
1
2
ADDRESS  
Valid  
ADV#  
CE1#  
RL=5  
WE# Level Control  
WE#  
tWLD  
DQ [In]  
WAIT#  
D1  
D2  
D3  
D4  
tWLTH  
High-Z  
WE# Single Clock Pulse Control  
tWSCK  
WE#  
tCKWH  
DQ [In]  
D1  
D2  
D3  
D4  
tCLTH  
tWLTH  
WAIT#  
High-Z  
Figure 7. Write Controls  
Burst Read Suspend  
Burst read operation can be suspended by OE# High pulse. During burst read op-  
eration, OE# brought to High suspends burst read operation. Once OE# is  
brought to High with the specified set up time against clock where the data being  
suspended, the device internal counter is suspended, and the data output be-  
come high impedance after specified time duration. It is inhibited to suspend the  
first data out at the beginning of burst read.  
OE# brought to Low resumes burst read operation. Once OE# is brought to Low,  
data output become valid after specified time duration, and internal address  
counter is reactivated. The last data out being suspended as the result of OE#=H  
and first data out as the result of OE#=L are from the same address.  
In order to guarantee to output last data before suspension and first data after  
resumption, the specified minimum value of OE#=L hold time and setup time  
against clock edge must be satisfied respectively.  
246  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
CLK  
OE#  
t
CKOH  
t
OSCK  
t
CKOH  
tOSCK  
t
AC  
t
OHZ  
t
AC  
t
AC  
t
AC  
Q
1
Q2  
Q3  
DQ  
Q2  
Q
4
tCKQX  
t
OLZ  
t
CKQX  
t
CKQX  
t
CKTV  
WAIT#  
Figure 8. Burst Read Suspend Diagram  
Burst Write Suspend  
Burst write operation can be suspended by WE# High pulse. During burst write  
operation, WE# brought to High suspends burst write operation. Once WE# is  
brought to High with the specified set up time against clock where the data being  
suspended, device internal counter is suspended, data input is ignored. It is in-  
hibited to suspend the first data input at the beginning of burst write.  
WE# brought to Low resumes burst write operation. Once WE# is brought to Low,  
data input become valid after specified time duration, and internal address  
counter is reactivated. The write address of the cycle where data being sus-  
pended and the first write address as the result of WE#=L are the same address.  
In order to guarantee to latch the last data input before suspension and first data  
input after resumption, the specified minimum value of WE#=L hold time and  
setup time against clock edge must be satisfied respectively. Burst write suspend  
function is available when the device is operating in WE# level controlled burst  
write only.  
CLK  
tCKWH  
t
WSCK  
t
CKWH  
t
WSCK  
WE#  
tDSCK  
tDSCK  
tDSCK  
t
DSCK  
DQ  
D1  
D2  
D2  
D3  
D4  
t
DHCK  
t
DHCK  
t
DHCK  
High  
Figure 9. Burst Write Suspend Diagram  
WAIT#  
Burst Read Termination  
Burst read operation can be terminated by CE1# brought to High. If BL is set on  
Continuous, burst read operation is continued endless unless terminated by  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
247  
P r e l i m i n a r y  
CE1#=H. It is inhibited to terminate burst read before first data out is completed.  
In order to guarantee last data output, the specified minimum value of CE1#=L  
hold time from clock edge must be satisfied. After termination, the specified min-  
imum recovery time is required to start new access.  
CLK  
ADDRESS  
Valid  
ADV#  
CE1#  
tTRB  
tCKCLH  
tCKOH  
tCHZ  
tOHZ  
OE#  
WAIT#  
DQ  
High-Z  
tCHTZ  
tCKQX  
tAC  
Q1  
Q2  
Figure 10. Burst Read Termination Diagram  
Burst Write Termination  
Burst write operation can be terminated by CE1# brought to High. If BL is set on  
Continuous, burst write operation is continued endless unless terminated by  
CE1#=H. It is inhibited to terminate burst write before first data in is completed.  
In order to guarantee last write data being latched, the specified minimum values  
of CE1#=L hold time from clock edge must be satisfied. After termination, the  
specified minimum recovery time is required to start new access.  
CLK  
ADDRESS  
Valid  
ADV#  
CE1#  
tTRB  
tCKCLH  
tCKWH  
tCHCK  
WE#  
WAIT#  
DQ  
tCHTZ  
High-Z  
tDSCK  
tDSCK  
D1  
D2  
tDHCK  
tDHCK  
Figure 11. Burst Write Termination Diagram  
248  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Item  
Voltage of VDD Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Storage temperature  
Symbol  
VDD  
Value  
Unit  
V
-0.5 to +3.6  
-0.5 to +3.6  
±50  
VIN, VOUT  
IOUT  
V
mA  
°C  
TSTG  
-55 to +125  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions (See Warning Below)  
32M  
64M  
Parameter  
Symbol  
VDD  
VSS  
VIH  
Min  
1.65  
0
Max  
1.95  
Min  
1.7  
Max  
1.95  
Unit  
V
Supply Voltage  
0
0
0
V
High Level Input Voltage (Note 1)  
High Level Input Voltage (Note 2)  
Ambient Temperature  
VDD x 0.8  
-0.3  
VDD+0.2  
VDD x 0.2  
85  
VDD x 0.8  
-0.3  
VDD+0.2  
VDD x 0.2  
85  
V
VIL  
V
TA  
-30  
-30  
°C  
Notes:  
1. Maximum DC voltage on input and I/O pins are VDD+0.2V. During voltage transitions, inputs may positive overshoot to  
VDD+1.0V for periods of up to 5 ns.  
2. Minimum DC voltage on input or I/O pins are -0.3V. During voltage transitions, inputs may negative overshoot VSS to -1.0V  
for periods of up to 5ns.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the de-  
vice’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may  
adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Package Pin Capacitance  
Test conditions: T = 25°C, f = 1.0 MHz  
A
Symbol  
Description  
Te st Se tup  
VIN = 0V  
VIN = 0V  
VIO = 0V  
Typ  
Max  
5
Unit  
pF  
CIN1  
CIN2  
CIO  
Address Input Capacitance  
Control Input Capacitance  
Data Input/Output Capacitance  
5
pF  
8
pF  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
249  
P r e l i m i n a r y  
DC Characteristics  
(Under Recommended Conditions Unless Otherwise Noted)  
32M  
64M  
Parameter  
Symbol  
Test Conditions  
Unit  
Min.  
Max.  
Min.  
Max.  
Input Leakage  
Current  
I
V
V
V
= V to V  
DD  
-1.0  
+1.0  
-1.0  
+1.0  
µA  
µA  
V
LI  
IN  
SS  
Output Leakage  
Current  
I
= V to V , Output Disable  
-1.0  
2.4  
+1.0  
-1.0  
2.4  
+1.0  
LO  
OUT  
SS  
DD  
Output High Voltage  
Level  
V
= V (min), I  
= –0.5mA  
OH  
DD  
DD  
OH  
Output Low Voltage  
Level  
V
I
= 1mA  
OL  
0.4  
0.4  
V
OL  
I
I
I
SLEEP  
10  
40  
50  
TBD  
µA  
µA  
µA  
DDPS  
DDP4  
DDP8  
4M Partial  
8M Partial  
16M Partial  
N/A  
V
V
= V  
max.,  
DD  
DD  
IN  
V
Power Down  
DD  
= V or V  
,
IH  
IL  
Current  
CE2 0.2V  
TBD  
TBD  
I
N/A  
DDP16  
V
V
= V  
max.,  
DD  
DD  
IN  
I
(including CLK)= V or V ,  
CE1# = CE2 = V  
1.5  
TBD  
mA  
DDS  
IH  
IL  
IH  
V
V
V
= V  
max.,  
DD  
TA +85°C  
TA +40°C  
80  
80  
TBD  
TBD  
µA  
µA  
DD  
IN  
IN  
V
Standby  
(including CLK) 0.2V or  
(including CLK) V  
DD  
I
DDS1  
Current  
– 0.2V,  
DD  
CE1# = CE2 V  
– 0.2V  
DD  
V
V
= V  
max., t =min.  
DD CK  
DD  
IN  
0.2V or V V  
– 0.2V,  
200  
TBD  
µA  
IN  
DD  
– 0.2V  
CE1# = CE2 V  
DD  
t
t
/ t  
=
WC  
RC  
I
I
30  
3
35  
5
mA  
mA  
DDA1  
V
V
= V  
max.,  
DD  
DD  
IN  
minimum  
= V or V  
,
IH  
IL  
V
V
Active Current  
Page Read  
DD  
DD  
CE1# = V and CE2= V  
,
IH  
IL  
/ t  
1µs  
=
WC  
RC  
I
=0mA  
OUT  
DDA2  
V
= V  
max., V = V or V  
,
,
DD  
DD  
IN  
IH  
IH  
IL  
I
CE1# = V and CE2= V ,  
10  
15  
TBD  
TBD  
mA  
mA  
DDA3  
DDA4  
IL  
Current  
I
=0mA, t  
= min.  
PRC  
OUT  
V
= V  
max., V = V or V  
DD IN IH  
IL IH  
DD  
IL  
V
Burst Access  
CE1# = V and CE2= V ,  
DD  
I
Current  
t
I
= t min., BL = Continuous,  
=0mA  
CK CK  
OUT  
Notes:  
1. All voltages are referenced to VSS  
2. DC Characteristics are measured after following POWER-UP timing.  
3. OUT depends on the output load conditions.  
.
I
250  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
AC Characteristics  
(Under Recommended Operating Conditions Unless Otherwise Noted)  
Read Operation  
32M  
64M  
Parameter  
Symbol  
tRC  
Min.  
70  
Max.  
1000  
70  
40  
70  
70  
30  
20  
1000  
Min.  
70  
Max.  
1000  
70  
40  
70  
70  
30  
20  
1000  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Read Cycle Time  
CE1# Access Time  
OE# Access Time  
1, 2  
tCE  
3
tOE  
3
Address Access Time  
tAA  
3, 5  
ADV# Access Time  
tAV  
3
LB# / UB# Access Time  
tBA  
20  
5
20  
5
3
Page Address Access Time  
Page Read Cycle Time  
tPAA  
tPRC  
tOH  
3,6  
1, 6, 7  
Output Data Hold Time  
3
4
4
4
3
3
3
CE1# Low to Output Low-Z  
OE# Low to Output Low-Z  
LB# / UB# Low to Output Low-Z  
CE1# High to Output High-Z  
OE# High to Output High-Z  
LB# / UB# High to Output High-Z  
Address Setup Time to CE1# Low  
Address Setup Time to OE# Low  
ADV# Low Pulse Width  
tCLZ  
tOLZ  
tBLZ  
tCHZ  
tOHZ  
tBHZ  
tASC  
tASO  
tVPL  
tVPH  
tASV  
tAHV  
tAX  
5
5
10  
0
0
0
–5  
10  
10  
15  
5
20  
20  
20  
–5  
10  
10  
15  
5
20  
20  
20  
8
8
ADV# High Pulse Width  
Address Setup Time to ADV High  
Address Hold Time from ADV# High  
Address Invalid Time  
10  
–5  
–5  
15  
15  
5
10  
–5  
–5  
25  
15  
10  
5, 9  
10  
Address Hold Time from CE1# High  
Address Hold Time from OE# High  
WE# High to OE# Low Time for Read  
CE1# High Pulse Width  
tCHAH  
tOHAH  
tWHOL  
tCP  
10  
1000  
1000  
11  
Notes:  
1. Maximum value is applicable if CE#1 is kept at Low without change of address input of A3 to A21.  
2. Address should not be changed within minimum tRC  
3. The output load 50pF with 50ohm termination to VDD*0.5 V.  
.
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
251  
P r e l i m i n a r y  
4. The output load 5pF without any other load.  
5. Applicable to A3 to A21 when CE1# is kept at Low.  
6. Applicable only to A0, A1 and A2 when CE1# is kept at Low for the page address access.  
7. In case Page Read Cycle is continued with keeping CE1# stays Low, CE1# must be brought to High within 4µs. In other  
words, Page Read Cycle must be closed within 4µs.  
8. tVPL is specified from the negative edge of either CE1# or ADV# whichever comes late. The sum of tVPL and tVPH must be  
equal or greater than tRC for each access.  
9. Applicable to address access when at least two of address inputs are switched from previous state.  
10. tRC(min) and tPRC(min) must be satisfied.  
11. If actual value of tWHOL is shorter than specified minimum values, the actual tAA of following Read may become longer by the  
amount of subtracting actual value from specified minimum value.  
252  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Write Operation  
32M  
64M  
Parameter  
Symbol  
tWC  
tAS  
Min.  
70  
0
Max.  
1000  
Min.  
70  
0
Max.  
1000  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
1, 2  
3
Write Cycle Time  
Address Setup Time  
ADV# Low Pulse Width  
tVPL  
tVPH  
tASV  
tAHV  
tCW  
tWP  
10  
15  
5
10  
15  
5
4
ADV# High Pulse Width  
Address Setup Time to ADV# High  
Address Hold Time from ADV# High  
CE1# Write Pulse Width  
WE# Write Pulse Width  
LB# / UB# Write Pulse Width  
LB# / UB# Byte Mask Setup Time  
LB# / UB# Byte Mask Hold Time  
CE1# Write Recovery Time  
Write Recovery Time  
10  
45  
45  
45  
-5  
-5  
15  
15  
15  
15  
15  
15  
0
5
45  
45  
45  
-5  
-5  
15  
15  
15  
15  
15  
15  
0
3
3
3
5
6
7
7
tBW  
tBS  
tBH  
tWRC  
tWR  
tCP  
1000  
1000  
CE1# High Pulse Width  
WE# High Pulse Width  
tWHP  
tBHP  
tDS  
1000  
1000  
1000  
1000  
LB# / UB# High Pulse Width  
Data Setup Time  
Data Hold Time  
tDH  
OE# High to CE1# Low Setup Time for Write  
OE# High to Address Setup Time for Write  
LB# / UB# Write Pulse Overlap  
tOHCL  
tOES  
-5  
0
-5  
0
8
9
tBWO  
30  
30  
Notes:  
1. Maximum value is applicable if CE1# is kept at Low without any address change.  
2. Minimum value must be equal or greater than the sum of write pulse (tCW, tWP or tBW) and write recovery time (tWR).  
3. Write pulse is defined from High to Low transition of CE1#, WE#, or LB# / UB#, whichever occurs last.  
4. tVPL is specified from the negative edge of either CE#1 or ADV# whichever comes late. The sum of tVPL and tVPH must be  
equal or greater than tWC for each access.  
5. Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of CE1# or WE# whichever  
occurs last.  
6. Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1# or WE# whichever  
occurs first.  
7. Write recovery is defined from Low to High transition of CE1#, WE#, or LB# / UB#, whichever occurs first.  
8. If OE# is Low after minimum tOHCL, read cycle is initiated. In other words, OE# must be brought to High within 5ns after  
CE1# is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tRC is met.  
9. If OE# is Low after new address input, read cycle is initiated. In other word, OE# must be brought to High at the same time  
or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tRC is met and data  
bus is in High-Z.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
253  
P r e l i m i n a r y  
Synchronous Operation - Clock Input (Burst Mode)  
32M  
64M  
Parameter  
Symbol  
Min.  
Max.  
Min.  
13  
15  
18  
30  
4
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
RL = 6  
RL = 5  
RL = 4  
RL = 3  
N/A  
15  
20  
30  
5
3
Clock Period  
tCK  
1
Clock High Time  
Clock Low Time  
Clock Rise/Fall Time  
Notes:  
tCKH  
tCKL  
tCKT  
3
5
4
2
1. Clock period is defined between valid clock edges.  
2. Clock rise/fall time is defined between VIH Min. and VIL Max.  
Synchronous Operation - Address Latch (Burst Mode)  
32M  
64M  
Parameter  
Symbol  
tASVL  
tASCL  
tAHV  
Min.  
-5  
Max.  
Min.  
-5  
-5  
5
Max.  
Unit  
Notes  
Address Setup Time to ADV# Low  
Address Setup Time to CE1# Low  
Address Hold Time from ADV# High  
ADV# Low Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
-5  
10  
10  
tVPL  
10  
5
3
4
4
4
4
4
RL = 6, 5  
ADV# Low Setup Time to CLK  
tVSCK  
7
7
RL = 4, 3  
RL = 6, 5  
RL = 4, 3  
7
5
CE1 Low Setup Time to CLK  
tCLCK  
7
ADV# Low Hold Time from CLK  
tCKVH  
tVHVL  
1
1
Burst End ADV# High Hold Time from CLK  
15  
13  
Notes:  
1. tASCL is applicable if CE1# is brought to Low after ADV# is brought to Low.  
2. ASVL is applicable if ADV# is brought to Low after CE1# is brought to Low.  
t
3. tVPL is specified from the negative edge of either CE1# or ADV# whichever comes late.  
4. Applicable to the 1st valid clock edge.  
254  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Synchronous Read Operation (Burst Mode)  
32M  
64M  
Parameter  
Burst Read Cycle Time  
Symbol  
Min.  
Max.  
Min.  
3
Max.  
4000  
10  
12  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
tRCB  
8000  
RL = 6, 5  
RL = 4, 3  
1
1
CLK Access Time  
tAC  
12  
Output Hold Time from CLK  
CE1# Low to WAIT# Low  
tCKQX  
tCLTL  
tOLTL  
tVLTL  
tCKTV  
tCKTX  
tCLZ  
3
5
0
20  
20  
1
5
20  
20  
20  
10  
1
OE# Low to WAIT# Low  
0
1, 2  
1
ADV# Low to WAIT# Low  
N/A  
0
CLK to WAIT# Valid Time  
3
12  
14  
14  
14  
20  
20  
3
1, 3  
1
WAIT# Valid Hold Time from CLK  
CE1# Low to Output Low-Z  
OE# Low to Output Low-Z  
LB#, UB# Low to Output Low-Z  
CE1# High to Output High-Z  
OE# High to Output High-Z  
LB#, UB# High to Output High-Z  
CE1# High to WAIT High-Z  
OE# High to WAIT High-Z  
OE# Low Setup Time to 1st Data-out  
5
5
4
tOLZ  
10  
0
10  
0
4
tBLZ  
4
tCHZ  
30  
30  
5
30  
26  
5
20  
20  
20  
20  
20  
1
tOHZ  
tBHZ  
1
1
tCHTZ  
tOHTZ  
tOLQ  
1
1
UB#, LB# Setup Time to 1st Data-out  
OE# Setup Time to CLK  
tBLQ  
5
tOSCK  
tCKOH  
tCKCLH  
tCKBH  
OE# Hold Time from CLK  
5
5
Burst End CE1# Low Hold Time from CLK  
Burst End UB#, LB# Hold Time from CLK  
5
5
5
5
BL=8, 16  
BL=Continuous  
30  
70  
26  
70  
6
6
Burst Terminate Recovery Time  
tTRB  
Notes:  
1. The output load 50pF with 50ohm termination to VDD*0.5 V.  
2. WAIT# drives High at the beginning depending on OE# falling edge timing.  
3. tCKTV is guaranteed after tOLTL (max) from OE# falling edge and tOSCK must be satisfied.  
4. The output load is 5pF without any other load.  
5. Once they are determined, they must not be changed until the end of burst.  
6. Defined from the Low to High transition of CE1# to the High to Low transition of either ADV# or CE1# whichever occurs late.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
255  
P r e l i m i n a r y  
Synchronous Write Operation (Burst Mode)  
32M  
64M  
Parameter  
Burst Write Cycle Time  
Symbol  
tWCB  
Min.  
7
Max.  
8000  
Min.  
5
Max.  
4000  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Data Setup Time to Clock  
tDSCK  
tDHCK  
tWLD  
Data Hold Time from CLK  
3
3
WE# Low Setup Time to 1st Data In  
UB#, LB# Setup Time for Write  
WE# Setup Time to CLK  
30  
-5  
5
30  
-5  
5
tBS  
1
tWSCK  
tCKWH  
tCLTH  
tWLTH  
tCHTZ  
tWHTZ  
tCKCLH  
tCHCK  
tCKBH  
tWRB  
WE# Hold Time from CLK  
5
5
CE1# Low to WAIT# High  
5
20  
20  
20  
20  
5
20  
20  
20  
20  
2
2
2
2
WE# Low to WAIT# High  
0
0
CE1# High to WAIT# High-Z  
WE# High to WAIT# High-Z  
5
5
Burst End CE1# Low Hold Time from CLK  
Burst End CE1# High Setup Time to next CLK  
Burst End UB#, LB# Hold Time from CLK  
Burst Write Recovery Time  
5
5
5
5
30  
30  
70  
26  
26  
70  
BL=8, 16  
Burst Terminate Recovery Time  
BL=Continuous  
tTRB  
3
4
tTRB  
Notes:  
1. Defined from the valid input edge to the High to Low transition of either ADV#, CE1#, or WE#, whichever occurs last. And  
once they are determined, they must not be changed until the end of burst.  
2. The output load 50pF with 50ohm termination to VDD*0.5 V.  
3. Defined from the valid clock edge where last data-in being latched at the end of burst write to the High to Low transition of  
either ADV# or CE1# whichever occurs late for the next access.  
4. Defined from the Low to High transition of CE1# to the High to Low transition of either ADV# or CE1# whichever occurs late  
for the next access.  
256  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Power Down Parameters  
32M  
64M  
Parameter  
Symbol  
tCSP  
Min.  
20  
Max.  
Min.  
10  
Max.  
Unit  
ns  
Notes  
CE2 Low Setup Time for Power Down Entry  
CE2 Low Hold Time after Power Down Entry  
CE2 Low Hold Time for Reset to Asynchronous Mode  
tC2LP  
70  
70  
ns  
tC2LPR  
N/A  
50  
µs  
1
2
CE1# High Hold Time following CE2 High after Power  
Down Exit [SLEEP mode only]  
tCHH  
tCHHP  
tCHS  
300  
70  
0
300  
70  
0
µs  
µs  
ns  
CE1# High Hold Time following CE2 High after Power  
Down Exit [not in SLEEP mode]  
3
2
CE1# High Setup Time following CE2 High after Power  
Down Exit  
Notes:  
1. Applicable when RP=0 (Reset to Page mode). RP (Reset to Page) mode is available only for 64M.  
2. Applicable also to power-up.  
3. Applicable when Partial mode is set.  
Other Timing Parameters  
32M  
64M  
Parameter  
CE1 High to OE Invalid Time for Standby Entry  
CE1 High to WE Invalid Time for Standby Entry  
CE2 Low Hold Time after Power-up  
CE1 High Hold Time following CE2 High after Power-up  
Input Transition Time  
Symbol  
tCHOX  
tCHWX  
tC2LH  
tCHH  
Min.  
10  
10  
50  
300  
1
Max.  
Min.  
10  
10  
50  
300  
1
Max.  
Unit  
ns  
Notes  
ns  
1
µs  
µs  
tT  
25  
25  
ns  
2
Notes:  
1. Some data might be written into any address location if tCHWX(min) is not satisfied.  
2. Except for clock input transition time.  
3. The Input Transition Time (tT) at AC testing is 5ns for Asynchronous operation and 3ns for Synchronous operation  
respectively. If actual tT is longer than 5ns or 3ns specified as AC test condition, it may violate AC specification of some  
timing parameters. See the "AC Test Conditions" section  
AC Test Conditions  
Symbol  
VIH  
Description  
Tes t Se tup  
Value  
VDD * 0.8  
VDD * 0.2  
VDD * 0.5  
5
Unit  
V
Note  
Input High Level  
Input Low Level  
VIL  
V
VREF  
Input Timing Measurement Level  
V
Async.  
Sync.  
ns  
ns  
tT  
Input Transition Time  
Between VIL and VIH  
3
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
257  
P r e l i m i n a r y  
AC Measurement Output Load Circuit  
V
*0.5V  
DD  
50ohm  
V
DD  
DEVICE  
UNDER  
TEST  
OUT  
0.1µF  
V
SS  
50pF  
Figure 12. Output Load Circuit  
258  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Timing Diagrams  
tRC  
ADDRESS VALID  
ADDRESS  
ADV#  
CE1#  
Low  
tASC  
tCE  
tCHAH  
tASC  
tCP  
tCHZ  
tOE  
OE#  
tOHZ  
tBHZ  
tBA  
LB# / UB#  
tBLZ  
tOLZ  
DQ  
(Output)  
VALID DATA OUTPUT  
Figure 13. Asynchronous Read Timing #1-1 (Basic Timing)  
tOH  
Note: This timing diagram assumes CE2=H and WE#=H.  
tRC  
ADDRESS VALID  
ADDRESS  
ADV#  
tAHV  
tAV  
tVPL  
tASC  
tASC  
tCE  
CE1#  
tCP  
tOE  
tCHZ  
OE#  
tOHZ  
tBHZ  
tBA  
LB# / UB#  
tBLZ  
tOLZ  
DQ  
(Output)  
VALID DATA OUTPUT  
Figure 14. Asynchronous Read Timing #1-2 (Basic Timing)  
tOH  
Note: This timing diagram assumes CE2=H and WE#=H.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
259  
P r e l i m i n a r y  
tAX  
tRC  
tRC  
ADDRESS  
CE1#  
ADDRESS VALID  
ADDRESS VALID  
tAA  
tAA  
tOHAH  
Low  
tASO  
tOE  
OE#  
LB# / UB#  
tOLZ  
tOH  
tOHZ  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
Figure 15. Asynchronous Read Timing #2 (OE# & Address Access)  
VALID DATA OUTPUT  
Note: This timing diagram assumes CE2=H, ADV#=L and WE#=H.  
tAX  
tRC  
tAX  
ADDRESS  
ADDRESS VALID  
tAA  
Low  
CE1#, OE#  
LB#  
tBA  
tBA  
tBA  
UB#  
tBHZ  
tOH  
tBHZ  
tOH  
tBLZ  
tBLZ  
DQ1-8  
(Output)  
VALID DATA  
OUTPUT  
tBHZ  
VALID DATA  
OUTPUT  
tOH  
tBLZ  
DQ9-16  
(Output)  
VALID DATA OUTPUT  
Figure 16. Asynchronous Read Timing #3 (LB# / UB# Byte Access)  
Note: This timing diagram assumes CE2=H, ADV#=L and WE#=H.  
260  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
tRC  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
tRC  
tPRC  
tPRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS VALID  
tPAA  
tPAA  
tPAA  
tASC  
tCHAH  
ADV#  
CE1#  
tCHZ  
tCE  
OE#  
LB# / UB#  
tOH  
tCLZ  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Figure 17. Asynchronous Read Timing #4 (Page Address Access after CE1# Control Access)  
Note: This timing diagram assumes CE2=H and WE#=H.  
tRC  
tAX  
tRC  
tAX  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
ADDRESS VALID  
tRC  
tPRC  
tRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAA  
tPAA  
tAA  
tPAA  
CE1#  
Low  
tASO  
tOE  
OE#  
tBA  
LB# / UB#  
tOLZ  
tBLZ  
tOH  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Figure 18. Asynchronous Read Timing #5 (Random and Page Address Access)  
Notes:  
1. This timing diagram assumes CE2=H, ADV#=L and WE#=H.  
2. Either or both LB# and UB# must be Low when both CE1# and OE# are Low.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
261  
P r e l i m i n a r y  
tWC  
ADDRESS  
ADV#  
ADDRESS VALID  
Low  
tAS  
tCW  
tWP  
tBW  
tWRC  
tWR  
tBR  
tAS  
CE1#  
tAS  
tAS  
WE#  
tAS  
tAS  
LB#, UB#  
tOHCL  
OE#  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Figure 19. Asynchronous Write Timing #1-1 (Basic Timing)  
Note: This timing diagram assumes CE2=H and ADV#=L.  
tWC  
ADDRESS  
ADV#  
ADDRESS VALID  
tVPL  
tAHV  
tCW  
tAS  
tWRC  
tWR  
tBR  
tAS  
CE1#  
tAS  
tWP  
tAS  
WE#  
tAS  
tBW  
tAS  
LB#, UB#  
tOHCL  
OE#  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Figure 20. Asynchronous Write Timing #1-2 (Basic Timing)  
Note: This timing diagram assumes CE2=H.  
262  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
tOHAH  
Low  
tAS  
tWP  
tWR  
tAS  
tWP  
tWR  
WE#  
UB#, LB#  
OE#  
tOES  
tOHZ  
tDS  
tDH  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
VALID DATA INPUT  
Figure 21. Asynchronous Write Timing #2 (WE# Control)  
Note: This timing diagram assumes CE2=H and ADV#=L.  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tAS  
tWP  
tAS  
tWP  
WE#  
LB#  
UB#  
tBH  
tBR  
tBS  
tBR  
tBS  
tBH  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 22. Asynchronous Write Timing #3-1 (WE# / LB# / UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H, ADV#=L and OE#=H.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
263  
P r e l i m i n a r y  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tWR  
tWR  
WE#  
LB#  
UB#  
tAS  
tBW  
tBS  
tBH  
tAS  
tBW  
tBH  
tBS  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 23. Asynchronous Write Timing #3-2 (WE# / LB# / UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H, ADV#=L and OE#=H.  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
UB#  
tAS  
tBW  
tBR  
tBS  
tBH  
tAS  
tBW  
tBR  
tBS  
tBH  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 24. Asynchronous Write Timing #3-3 (WE# / LB# / UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H, ADV#=L and OE#=H.  
264  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tAS  
tBW  
tBR  
tAS  
tBW  
tBR  
tBWO  
tDH  
tDS  
tDH  
tDS  
DQ1-8  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
tAS  
tBW  
tBR  
tAS  
tBR  
tBWO  
tBW  
UB#  
tDS  
tDH  
tDS  
tDH  
DQ9-16  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
Figure 25. Asynchronous Write Timing #3-4 (WE# / LB# / UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H, ADV#=L and OE#=H.  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tCW  
tWRC  
tASC  
tCE  
tCHAH  
tCP  
tCP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tCHZ  
tOH  
tDS  
tDH  
tCLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 26. Asynchronous Read / Write Timing #1-1 (CE1# Control)  
Notes:  
1. This timing diagram assumes CE2=H and ADV#=L.  
2. Write address is valid from either CE1# or WE# of last falling edge.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
265  
P r e l i m i n a r y  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
tWP  
WE#  
UB#, LB#  
OE  
tOHCL  
tOE  
tCHZ  
tOH  
tDS  
tDH  
tOLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
READ DATA OUTPUT  
Figure 27. Asynchronous Read / Write Timing #1-2 (CE1# / WE# / OE# Control)  
Notes:  
1. This timing diagram assumes CE2=H and ADV#=L.  
2. OE# can be fixed Low during write operation if it is CE1# controlled write at Read-Write-Read Sequence.  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tOHAH  
tOHAH  
tAA  
Low  
tAS  
tWR  
tWP  
WE#  
tOES  
UB#, LB#  
OE#  
tASO  
tOE  
tOHZ  
tOH  
tOHZ  
tOH  
tDS  
tDH  
tOLZ  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 28. Asynchronous Read / Write Timing #2 (OE#, WE# Control)  
Notes:  
1. This timing diagram assumes CE2=H and ADV#=L.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
266  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tAA  
tOHAH  
tOHAH  
Low  
WE#  
tOES  
tAS  
tBW  
tBR  
tBA  
UB#, LB#  
OE#  
tBHZ  
tASO  
tBHZ  
tOH  
tDS  
tDH  
tBLZ  
tOH  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 29. Asynchronous Read / Write Timing #3 (OE,# WE#, LB#, UB# Control)  
Notes:  
1. This timing diagram assumes CE2=H and ADV#=L.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
tCK  
CLK  
tCK  
tCKH  
tCKL  
tCKT  
tCKT  
Figure 30. Clock Input Timing  
Notes:  
1. Stable clock input must be required during CE1#=L.  
2. CK is defined between valid clock edges.  
t
3. tCKT is defined between VIH Min. and VIL Max  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
267  
P r e l i m i n a r y  
Case #1  
Case #2  
CLK  
ADDRESS  
Valid  
Valid  
tASCL  
tCKVH  
tAHV  
tVSCK  
tCKVH  
tAHV  
tASVL  
tVSCK  
ADV#  
CE1#  
tVPL  
tVPL  
tVLCL  
tCLCK  
Low  
Figure 31. Address Latch Timing (Synchronous Mode)  
Notes:  
1. Case #1 is the timing when CE1# is brought to Low after ADV# is brought to Low. Case #2 is the timing when ADV# is  
brought to Low after CE1# is brought to Low.  
2.  
t
VPL is specified from the negative edge of either CE1# or ADV# whichever comes late. At least one valid clock edge must be  
input during ADV#=L.  
3. tVSCK and tCLCK are applied to the 1st valid clock edge during ADV#=L.  
268  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tRCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tVSCK  
tVSCK  
tCKVH  
ADV#  
CE1#  
tVPL  
tVHVL  
tVPL  
tASCL  
tASCL  
tCLCK  
tCLCK  
tCKOH  
tCP  
OE#  
WE#  
tOLQ  
High  
tCKBH  
tBLQ  
LB#, UB#  
WAIT#  
DQ  
tOHTZ  
tCKTV  
tCKTV  
High-Z  
High-Z  
tOHZ  
tOLTL  
tCKTX  
tAC  
tAC  
tAC  
tCKTX  
QBL  
Q1  
tOLZ  
tCKQX  
tCKQX  
Figure 32. 32M Synchronous Read Timing #1 (OE# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
269  
P r e l i m i n a r y  
RL=5  
CLK  
tRCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
ADV#  
tVPL  
tVHVL  
tVPL  
tASCL  
tASCL  
CE1#  
tCP  
tCLCK  
tCKCLH  
tCLCK  
OE#  
WE#  
High  
tCKBH  
LB#, UB#  
WAIT#  
DQ  
tCKTV  
tCKTV  
tCHTZ  
tCLTL  
tCLZ  
tCLTL  
tCKTX  
tAC  
tAC  
tAC  
tCKTX  
tCHZ  
Q1  
QBL  
tCLZ  
tCKQX  
tCKQX  
Figure 33. 32M Synchronous Read Timing #2 (CE1# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
270  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tRCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
tCKVH  
ADV#  
tVPL  
tVHVL  
tVPL  
CE1#  
Low  
OE#  
WE#  
Low  
High  
LB#, UB#  
WAIT#  
DQ  
tCKTV  
tCKTV  
tCKTX  
tAC  
tAC  
tAC  
tCKTX  
QBL  
Q1  
tCKQX  
tCKQX  
Figure 34. 32M Synchronous Read Timing #3 (ADV# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
271  
P r e l i m i n a r y  
RL=5  
CLK  
ADDRESS  
XXX7Fh  
tASVL  
tAHV  
tCKVH  
tVSCK  
ADV#  
CE1#  
OE#  
tVPL  
tASCL  
tCLCK  
tOLQ  
High  
WE#  
tBLQ  
LB#, UB#  
WAIT#  
DQ  
tCKTV  
tCKTV  
tCKTV  
High-Z  
High-Z  
tCKTX  
tOLTL  
tCKTX  
tAC  
tAC  
tCKTX  
tAC  
tAC  
tAC  
Q1  
Q2  
Q3  
tOLZ  
tCKQX  
tCKQX  
tCKQX  
Figure 35. Synchronous Read - WAIT# Output Timing (Continuous Read)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
272  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tRCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tVSCK  
tVSCK  
tCKVH  
ADV#  
CE1#  
tVPL  
tVHVL  
tVPL  
tASCL  
tASCL  
tCLCK  
tCLCK  
tCKOH  
tCP  
OE#  
WE#  
tOLQ  
High  
tCKBH  
tBLQ  
LB#, UB#  
tCKTV  
tOHTZ  
tOHZ  
WAIT#  
DQ  
High-Z  
High-Z  
tOLTL  
tCKTX  
tAC  
tAC  
tAC  
Q1  
QBL  
tOLZ  
tCKQX  
tCKQX  
Figure 36. 64M Synchronous Read Timing #1 (OE# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
273  
P r e l i m i n a r y  
RL=5  
CLK  
tRCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
ADV#  
CE1#  
tVPL  
tVHVL  
tVPL  
tASCL  
tASCL  
tCP  
tCLCK  
tCKCLH  
tCLCK  
OE#  
WE#  
High  
tCKBH  
LB#, UB#  
tCKTV  
tCHTZ  
tCLTL  
WAIT#  
DQ  
tCLZ  
tCLTL  
tCKTX  
tAC  
tAC  
tAC  
tCHZ  
Q1  
QBL  
tCLZ  
tCKQX  
tCKQX  
Figure 37. 64M Synchronous Read Timing #2 (CE1# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
274  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tRCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
ADV#  
tVPL  
tVHVL  
tVPL  
CE1#  
Low  
OE#  
WE#  
Low  
High  
LB#, UB#  
WAIT#  
DQ  
tCKTV  
tVLTL  
tVLTL  
tCKTX  
tAC  
tAC  
tAC  
Q1  
QBL  
tCKQX  
tCKQX  
Figure 38. 64M Synchronous Read Timing #3 (ADV# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
275  
P r e l i m i n a r y  
RL=5  
CLK  
tWCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
tVHVL  
tWRB  
ADV#  
CE1#  
tVPL  
tVPL  
tCLCK  
tASCL  
tASCL  
tCLCK  
tCP  
High  
OE#  
WE#  
tWLD  
tCKWH  
tBS  
tCKBH  
tBS  
LB#, UB#  
WAIT#  
DQ  
High-Z  
tWLTH  
tDSCK  
tDSCK  
tDSCK  
tWHTZ  
D1  
D2  
DBL  
tDHCK  
tDHCK  
Figure 39. Synchronous Write Timing #1 (WE# Level Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
276  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tWCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
tVHVL  
tWRB  
ADV#  
CE1#  
tVPL  
tVPL  
tCLCK  
tASCL  
tASCL  
tCLCK  
tCP  
tCKCLH  
High  
OE#  
WE#  
tWSCK  
tCKWH  
tWSCK  
tCKWH  
tBS  
tCKBH  
tBS  
LB#, UB#  
WAIT#  
High-Z  
tWLTH  
tDSCK  
tDSCK  
tDSCK  
tCHTZ  
tWLTH  
D1  
D2  
DBL  
DQ  
tDHCK  
tDHCK  
Figure 40. Synchronous Write Timing #2 (WE# Single Clock Pulse Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
277  
P r e l i m i n a r y  
RL=5  
CLK  
tWCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tCKVH  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
ADV#  
CE1#  
tVHVL  
tVPL  
tVPL  
tWRB  
High  
OE#  
WE#  
tBS  
tCKBH  
tBS  
LB#, UB#  
WAIT#  
DQ  
High  
tDSCK  
tDSCK  
tDSCK  
D1  
D2  
DBL  
tDHCK  
tDHCK  
Figure 41. Synchronous Write Timing #3 (ADV# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
278  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tWCB  
ADDRESS  
Valid  
Valid  
tASVL  
tAHV  
tASVL  
tAHV  
tCKVH  
tVSCK  
tVSCK  
tCKVH  
tVHVL  
tWRB  
ADV#  
CE1#  
tVPL  
tVPL  
tCLCK  
tASCL  
tASCL  
tCLCK  
tCP  
High  
OE#  
WE#  
tWLD  
tCKWH  
tBS  
tCKBH  
tBS  
LB#, UB#  
WAIT#  
DQ  
High-Z  
tWLTH  
tDSCK  
tWHTZ  
tWLTH  
D1  
tDHCK  
Figure 42. Synchronous Write Timing #4 (WE# Level Control, Single Write)  
Notes:  
1. This timing diagram assumes CE2=H, the valid clock edge on rising edge and single write operation.  
2. Write data is latched on the valid clock edge.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
279  
P r e l i m i n a r y  
RL=5  
CLK  
tWCB  
ADDRESS  
Valid  
tASVL  
tVHVL  
tAHV  
tCKVH  
tVSCK  
ADV#  
CE1#  
tVPL  
tCLCK  
tCKCLH  
tCKCLH  
tASCL  
tCP  
OE#  
WE#  
LB#, UB#  
WAIT#  
DQ  
tCKBH  
tBS  
tCKBH  
tCHTZ  
tCKTV  
tCHZ  
tCLTH  
tAC  
tCKTX  
QBL  
tDSCK  
tDSCK  
tDSCK  
tDSCK  
QBL-1  
D1  
D2  
D3  
DBL  
tDHCK  
tDHCK  
tDHCK  
tDHCK  
tCKQX  
tCKQX  
Figure 43. 32M Synchronous Read to Write Timing #1(CE1# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
280  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
ADDRESS  
Valid  
tASVL  
tAHV  
tVSCK  
tCKVH  
ADV#  
CE1#  
tVPL  
tVHVL  
tCKOH  
OE#  
tWLD  
tCKWH  
WE#  
tCKBH  
tBS  
tCKBH  
LB#, UB#  
tOHTZ  
tCKTV  
WAIT#  
DQ  
tOHZ  
tAC  
tCKTX  
tWLTH  
tDSCK  
tDSCK  
tDSCK  
tDSCK  
QBL-1  
QBL  
D1  
D2  
D3  
DBL  
tDHCK  
tDHCK  
tDHCK  
tDHCK  
tCKQX  
tCKQX  
Figure 44. 32M Synchronous Read to Write Timing #2(ADV# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
281  
P r e l i m i n a r y  
RL=5  
CLK  
tWCB  
ADDRESS  
Valid  
tASVL  
tAHV  
tCKVH  
tVSCK  
ADV#  
tVHVL  
tASCL  
tVPL  
tCLCK  
tCKCLH  
tCKCLH  
CE1#  
tCP  
OE#  
WE#  
tCKBH  
tBS  
tCKBH  
LB#, UB#  
WAIT#  
DQ  
tCHTZ  
tCHZ  
tAC  
tCLTH  
tDSCK  
tDSCK  
tDSCK  
tDSCK  
QBL-1  
QBL  
D1  
D2  
D3  
DBL  
tDHCK  
tDHCK  
tDHCK  
tDHCK  
tCKQX  
tCKQX  
Figure 45. 64M Synchronous Read to Write Timing #1(CE1# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
282  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
ADDRESS  
Valid  
tASVL  
tAHV  
tVSCK  
tCKVH  
ADV#  
tVPL  
tVHVL  
CE1#  
tCKOH  
OE#  
WE#  
tWLD  
tCKWH  
tCKBH  
tBS  
tCKBH  
LB#, UB#  
WAIT#  
DQ  
tOHTZ  
tOHZ  
tAC  
tWLTH  
tDSCK  
tDSCK  
tDSCK  
tDSCK  
QBL-1  
QBL  
D1  
D2  
D3  
DBL  
tDHCK  
tDHCK  
tDHCK  
tDHCK  
tCKQX  
tCKQX  
Figure 46. 64M Synchronous Read to Write Timing #2(ADV# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
283  
P r e l i m i n a r y  
RL=5  
CLK  
tCKT  
ADDRESS  
Valid  
tASVL  
tAHV  
tVSCK  
tCKVH  
ADV#  
CE1#  
tVPL  
tASCL  
tCKCLH  
tCP  
tCLCK  
tWRB  
OE#  
WE#  
tCKBH  
LB#, UB#  
tCKTV  
High-Z  
WAIT#  
tDSCK  
tDSCK  
tCHTZ  
tCLTL  
tCKTX  
tAC  
tAC  
DBL-1  
DBL  
Q1  
Q2  
DQ  
tDHCK  
tDHCK  
tCLZ  
tCKQX  
tCKQX  
Figure 47. Synchronous Write to Read Timing #1 (CE1# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
284  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
RL=5  
CLK  
tCKT  
ADDRESS  
Valid  
tASVL  
tVSCK  
tAHV  
tCKVH  
ADV#  
CE1#  
tVPL  
tWRB  
Low  
OE#  
WE#  
tOLQ  
tCKWH  
tCKBH  
tBLQ  
LB#, UB#  
WAIT#  
tCKTV  
High-Z  
tDSCK  
tDSCK  
tWHTZ  
tOLTL  
tCKTX  
tAC  
tAC  
DBL-1  
DBL  
Q1  
Q2  
DQ  
tDHCK  
tDHCK  
tOLZ  
tCKQX  
tCKQX  
Figure 48. Synchronous Write to Read Timing #2 (ADV# Control)  
Note: This timing diagram assumes CE2=H, the valid clock edge on rising edge and BL=8 or 16.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
285  
P r e l i m i n a r y  
CE1#  
CE2  
tCHS  
tC2LH  
tCHH  
V
DD  
VDD min  
0V  
Figure 49. Power-up Timing #1  
Note: The tC2LH specifies after VDD reaches specified minimum level.  
CE1#  
tCHH  
CE2  
VDD  
VDD min  
0V  
Figure 50. Power-up Timing #2  
Note: The tCHH specifies after VDD reaches specified minimum level and applicable to both CE1# and CE2.  
CE1#  
tCHS  
CE2  
DQ  
tCSP  
t
C2LP  
tCHH (tCHHP)  
High-Z  
Power Down Entry  
Power Down Mode  
Power Down Exit  
Figure 51. Power Down Entry and Exit Timing  
Note: This Power Down mode can be also used as a reset timing if the POWER-UP timing above could not be satisfied  
and Power-Down program was not performed prior to this reset.  
286  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
CE1#  
OE#  
t
CHOX  
t
CHWX  
WE#  
Active (Read)  
Standby  
Active (Write)  
Standby  
Figure 52. Standby Entry Timing after Read or Write  
Note: Both tCHOX and tCHWX define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes  
tRC (min) period for Standby mode from CE1# Low to High transition.  
tRC  
tWC  
tWC  
tWC  
tWC  
tRC  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
Key*2  
ADDRESS  
CE1#  
tCP*3  
(tRC)  
tCP  
tCP  
tCP  
tCP  
tCP  
OE#  
WE#  
LB#, UB#  
DQ*3  
RDa  
Cycle #1  
RDa  
Cycle #2  
RDa  
Cycle #3  
X
X
RDb  
Cycle #6  
Cycle #4  
Cycle #5  
Figure 53. Configuration Register Set Timing #1 (Asynchronous Operation)  
Notes:  
1. The all address inputs must be High from Cycle #1 to #5.  
2. The address key must confirm the format specified in the "Functional Description" section. If not, the operation and data are  
not guaranteed.  
3. After tCP or tRC following Cycle #6, the Configuration Register Set is completed and returned to the normal operation. tCP and  
tRC are applicable to returning to asynchronous mode and to synchronous mode respectively.  
4. Byte read or write is available in addition to Word read or write. At least one byte control signal (LB# or UB#) need to be  
Low.  
October 5, 2004 CosmoRAM_00_A0  
CosmoRAM  
287  
P r e l i m i n a r y  
CLK  
ADDRESS  
MSB  
MSB  
MSB  
MSB  
MSB  
Key  
tRCB  
tWCB  
tWCB  
tWCB  
tWCB  
tRCB  
ADV#  
CE1#  
tTRB  
tTRB  
tTRB  
tTRB  
tTRB  
tTRB  
OE#  
WE#  
LB#, UB#  
WAIT#  
RL  
RL-1  
RDa  
Cycle#2  
RL-1  
RDa  
Cycle#3  
RL-1  
RL-1  
RL  
RDa  
X
X
RDb  
Cycle#6  
DQ  
Cycle#1  
Cycle#4  
Cycle#5  
Figure 54. Configuration Register Set Timing #2 (Synchronous Operation)  
Notes:  
1. The all address inputs must be High from Cycle #1 to #5.  
2. The address key must confirm the format specified in the "Functional Description" section. If not, the operation and data are  
not guaranteed.  
3. After tTRB following Cycle #6, the Configuration Register Set is completed and returned to the normal operation.  
4. Byte read or write is available in addition to Word read or write. At least one byte control signal (LB# or UB#) need to be  
Low.  
288  
CosmoRAM  
CosmoRAM_00_A0 October 5, 2004  
P r e l i m i n a r y  
Revision Summary  
Revision A0 (October 26, 2004)  
Initial release.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by  
Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright © 2003 Spansion LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of Span-  
sion LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective compa-  
nies.  
October 26, 2004 S71WS512/256Nx0_00  
S71WS512N/256N Based MCPs  
289  

相关型号:

S71WS256ND0BAWE30

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE32

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE33

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE60

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE62

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE63

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE70

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE72

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWE73

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWEJ0

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWEJ2

Stacked Multi-Chip Product (MCP)
SPANSION

S71WS256ND0BAWEJ3

Stacked Multi-Chip Product (MCP)
SPANSION