W164 [SPECTRALINEAR]

Spread Spectrum Desktop/Notebook System Frequency Generator; 扩频台式机/笔记本电脑系统频率发生器
W164
型号: W164
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Spread Spectrum Desktop/Notebook System Frequency Generator
扩频台式机/笔记本电脑系统频率发生器

电脑
文件: 总11页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W164  
Spread Spectrum Desktop/Notebook System Frequency Generator  
Features  
Key Specifications  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum technology  
Supply Voltages:....................................... VDDQ3 = 3.3V±±5  
...............................................................................................  
VDDQ2 = 2.±V±±5  
• Reduces measured EMI by as much as 10 dB  
• I2C programmable to 153 MHz (16 selectable  
frequencies)  
CPU Cycle to Cycle Jitter: .......................................... 200 ps  
CPU, PCI Output Edge Rate:ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀt1 V/ns  
CPU0:1 Output Skew: ................................................ 17± ps  
PCI_F, PCI1:6 Output Skew: ...................................... ±00 ps  
CPU to PCI Skew: ..............................1 to 4 ns (CPU Leads)  
REF2X/SEL48#, SCLOCK, SDATA ................2±0-k: pull-up  
• Two skew-controlled copies of CPU output  
• SEL100/66# selects CPU frequency (100 or 66.8 MHz)  
• Seven copies of PCI output (synchronous w/CPU  
output)  
• One copy of 14.31818-MHz IOAPIC output  
• One copy of 48-MHz USB output  
Note: Internal pull-up resistors should not be relied upon for  
setting I/O pins HIGH.  
• Selectable 24-/48-MHz output is determined by resistor  
straps on power-up  
Table 1. Pin Selectable Frequency  
SEL100/66#  
CPU(0:1)  
100 MHz  
66.8 MHz  
PCI  
• One high-drive output buffer that produces a copy of  
the 14.318-MHz reference  
1
0
33.3 MHz  
33.4 MHz  
• Isolated core VDD pin for noise reduction  
Rev 1.0, November 28, 2006  
Page 1 of 11  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
W164  
Block Diagram  
Pin Configuration  
VDDQ3  
X1  
X2  
GND  
PCI_F  
PCI1  
PCI2  
1
2
3
4
±
6
7
8
28  
27  
26  
2±  
24  
23  
22  
21  
20  
19  
18  
17  
16  
1±  
GND  
REF2X/SEL48#  
GND  
REF2X/SEL48#  
VDDQ3  
VDDQ2  
IOAPIC  
VDDQ2  
CPU0  
CPU1  
VDDQ3  
GND  
X1  
X2  
XTAL  
OSC  
VDDQ3  
IOAPIC  
PLL Ref Freq  
PCI3  
PCI4  
VDDQ3  
PCI±  
9
10  
11  
12  
13  
14  
PCI6  
SDATA  
VDDQ3  
48MHz  
24/48MHz  
SCLOCK  
SEL100/66#  
GND  
VDDQ2  
CPU0  
CPU1  
GND  
100/66#_SEL  
PLL 1  
÷2/÷3/÷4  
VDDQ3  
PCI_F  
PCI1  
PCI2  
PCI3  
PCI4  
PCI±  
PCI6  
GND  
2
SDATA  
I C  
LOGIC  
SCLOCK  
VDDQ3  
48MHz  
PLL2  
24/48MHz  
GND  
Rev 1.0,November 28, 2006  
Page 2 of 11  
W164  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU0:1  
22, 21  
O
O
CPU Clock Outputs 0 through 1: These two CPU clocks run at a frequency set by  
SEL100/66#. Output voltage swing is set by the voltage applied to VDDQ2.  
PCI1:6  
PCI_F  
±, 6, 7, 8, 10,  
11, 4  
PCI Clock Outputs 1 through 6 and PCI_F: These seven PCI clock outputs run  
synchronously to the CPU clock. Voltage swing is set by the power connection to  
VDDQ3.  
IOAPIC  
48MHz  
24  
13  
O
O
I/O APIC Clock Output: Provides 14.318-MHz fixed frequency. The output voltage  
swing is set by the power connection to VDDQ2.  
48-MHz Output: Fixed 48-MHz USB clock. Output voltage swing is controlled by  
voltage applied to VDDQ3.  
24/48MHz  
14  
27  
O
24-MHz or 48-MHz Output: Frequency is set by the state of pin 27 on power-up.  
REF2X/SEL48#  
I/O  
I/O Dual-Function REF2X and SEL48# pin: Upon power-up, the state of SEL48#  
is latched. The initial state is set by either a 10K resistor to GND or to VDD. A 10K  
resistor to GND causes pin 14 to output 48 MHz. If the pin is strapped to VDD, pin  
14 will output 24 MHz. After 2 ms, the pin becomes a high-drive output that produces  
a copy of 14.318 MHz.  
SEL100/66#  
SDATA  
SCLOCK  
X1  
16  
I
I/O  
I
Frequency Selection Input: Selects CPU clock frequency as shown in Table 1 on  
page 1.  
18  
I2C Data Pin: Data should be presented to this input as described in the I2C section  
of this data sheet. Internal 2±0-k: pull-up resistor.  
I2C Clock Pin: The I2C data clock should be presented to this input as described in  
the I2C section of this data sheet.  
17  
1
I
Crystal Connection or External Reference Frequency Input: Connect to either  
a 14.318-MHz crystal or other reference signal.  
X2  
2
I
Crystal Connection: An input connection for an external 14.318-MHz crystal. If  
using an external reference, this pin must be left unconnected.  
VDDQ3  
VDDQ2  
GND  
9, 12, 20, 26  
23, 2±  
P
P
G
Power Connection: Power supply for core logic and PLL circuitry, PCI, 48-/24-MHz,  
and Reference output buffers. Connect to 3.3V supply.  
Power Connection: Power supply for IOAPIC and CPU output buffers. Connect to  
2.±V supply.  
3, 1±, 19, 28  
Ground Connections: Connect all ground pins to the common system ground  
plane.  
of the 2-ms period, the established logic “0” or “1” condition of  
the l/O pin is then latched. Next the output buffer is enabled  
which converts the l/O pin into an operating clock output. The  
2-ms timer is started when VDD reaches 2.0V. The input bit can  
Functional Description  
I/O Pin Operation  
Pin 27 is a dual-purpose l/O pin. Upon power-up this pin acts  
as a logic input, allowing the determination of assigned device  
functions. A short time after power-up, the logic state of the pin  
is latched and the pin becomes a clock output. This feature  
reduces device pin count by combining clock outputs with  
input select pins.  
only be reset by turning VDD off and then back on again.  
It should be noted that the strapping resistor has no significant  
effect on clock output signal integrity. The drive impedance of  
clock output is 2±: (nominal) which is minimally affected by  
the 10-k: strap to ground or VDD. As with the series termi-  
nation resistor, the output strapping resistor should be placed  
as close to the l/O pin as possible in order to keep the inter-  
connecting trace short. The trace from the resistor to ground  
or VDD should be kept less than two inches in length to prevent  
system noise coupling during input logic sampling.  
An external 10-k: “strapping” resistor is connected between  
the l/O pin and ground or VDD. Connection to ground sets a  
latch to “0,” connection to VDD sets a latch to “1.” Figure 1 and  
Figure 2 show two suggested methods for strapping resistor  
connections.  
When the clock output is enabled following the 2-ms input  
period, a 14.318-MHz output frequency is delivered on the pin,  
assuming that VDD has stabilized. If VDD has not yet reached  
full value, output frequency initially may be below target but will  
increase to target once VDD voltage has stabilized. In either  
Upon W164 power-up, the first 2 ms of operation is used for  
input logic selection. During this period, the Reference clock  
output buffer is three-stated, allowing the output strapping  
resistor on the l/O pin to pull the pin and its associated capac-  
itive clock load to either a logic HIGH or LOW state. At the end  
Rev 1.0,November 28, 2006  
Page 3 of 11  
W164  
case, a short output clock cycle may be produced from the  
CPU clock outputs when the outputs are enabled.  
VDD  
Output Strapping Resistor  
Series Termination Resistor  
10 k:  
(Load Option 1)  
Clock Load  
W164  
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k:  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
Jumper Options  
Output Strapping Resistor  
VDD  
Series Termination Resistor  
10 k:  
Clock Load  
W164  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Resistor Value R  
Hold  
Output  
Low  
Output Three-state  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
outputs of the chipset. Clock device register changes are  
normally made upon system initialization, if required. The  
interface can also be used during system operation for power  
management functions. Table 2 summarizes the control  
functions of the serial data interface.  
Serial Data Interface  
The W164 features a two-pin, serial data interface that can be  
used to configure internal register settings that control  
particular device functions. Upon power-up, the W164  
initializes with default register settings. Therefore, the use of  
this serial data interface is optional. The serial interface is  
write-only (to the clock chip) and is the dedicated function of  
device pins SDATA and SCLOCK. In motherboard applica-  
tions, SDATA and SCLOCK are typically driven by two logic  
Operation  
Data is written to the W164 in ten bytes of eight bits each.  
Bytes are written in the order shown in Table 3.  
Table 2. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable  
Any individual clock output(s) can be disabled.  
Disabled outputs are actively held LOW.  
Unused outputs are disabled to reduce EMI  
and system power. Examples are clock  
outputs to unused PCI slots.  
CPU Clock Frequency  
Selection  
Provides CPU/PCI frequency selections beyond  
the 100- and 66.6-MHz selections that are provided management options. Smooth frequency  
by the SEL100/66# pin. Frequency is changed in a transition allows CPU frequency change  
For alternate microprocessors and power  
smooth and controlled fashion.  
under normal system operation.  
Output Three-state  
Test Mode  
Puts all clock outputs into a high-impedance state. Production PCB testing.  
All clock outputs toggle in relation to X1 input,  
internal PLL is bypassed. Refer to Table 4.  
Production PCB testing.  
(Reserved)  
Reserved function for future device revision or  
production device testing.  
No user application. Register bit must be  
written as 0.  
Rev 1.0,November 28, 2006  
Page 4 of 11  
W164  
Table 3. Byte Writing Sequence  
Byte  
Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address  
11010010  
Commands the W164 to accept the bits in Data Bytes 3–6 for internal  
register configuration. Since other devices may exist on the same  
common serial data bus, it is necessary to have a specific slave address  
for each potential receiver. The slave receiver address for the W164 is  
11010010. Register setting will not be made if the Slave Address is not  
correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Don’t Care  
Don’t Care  
Don’t Care  
Unused by the W164, therefore bit values are ignored (“don’t care”). This  
byte must be included in the data write sequence to maintain proper byte  
allocation. The Command Code Byte is part of the standard serial  
communication protocol and may be used when writing to another  
addressed slave receiver on the serial data bus.  
Byte Count  
Unused by the W164, therefore bit values are ignored (“don’t care”). This  
byte must be included in the data write sequence to maintain proper byte  
allocation. The Byte Count Byte is part of the standard serial communi-  
cation protocol and may be used when writing to another addressed slave  
receiver on the serial data bus.  
4
±
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte ±  
Data Byte 6  
Refer to Cypress SDRAM drivers.  
6
7
Refer to Table 4 The data bits in these bytes set internal W164 registers that control device  
operation. The data bits are only accepted when the Address Byte bit  
sequence is 11010010, as noted above. For description of bit control  
functions, refer to Table 4, Data Byte Serial Configuration Map.  
8
9
10  
Rev 1.0,November 28, 2006  
Page ± of 11  
W164  
Writing Data Bytes  
Table 5 details additional frequency selections that are  
available through the serial data interface.  
Each bit in the data bytes controls a particular device function  
except for the “reserved” bits, which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
7. Table 4 gives the bit formats for registers located in Data  
Bytes 3–6.  
Table 6 details the select functions for Byte 3, bits 1 and 0.  
Table 4. Data Bytes 3–6 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 3  
7
6
±
4
3
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
SEL_3  
--  
--  
0
0
0
0
0
SEL_2  
SEL_1  
SEL_0  
Refer to Table 5  
Refer to Table 5  
Refer to Table 5  
Frequency Table  
Selection  
Frequency Controlled Frequency Controlled  
by BYT3 SEL_(3:0)  
Table 5  
by external SEL100/  
66# pin Table 1  
2
--  
--  
--  
--  
(Reserved)  
Bit 1 Bit 0  
--  
--  
0
1–0  
Function (See Table 6 for function details)  
Normal Operation  
Test Mode  
Spread Spectrum on  
All Outputs Three-stated  
00  
0
0
1
1
0
1
0
1
Data Byte 4  
7
--  
14  
--  
--  
(Reserved)  
--  
--  
Active  
--  
0
1
0
0
0
1
0
1
6
24/48MHz Clock output Disable  
Low  
--  
±
--  
--  
(Reserved)  
4
--  
(Reserved)  
--  
--  
3
--  
--  
(Reserved)  
--  
--  
2
21  
--  
CPU1  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
1
0
22  
CPU0  
Clock Output Disable  
Low  
Active  
Data Byte 5  
7
4
11  
10  
-
PCI_F  
PCI6  
PCI±  
--  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
(Reserved)  
Low  
Low  
Low  
--  
Active  
Active  
Active  
--  
1
1
1
0
1
1
1
1
6
±
4
3
8
PCI4  
PCI3  
PCI2  
PCI1  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
2
7
1
6
0
±
Data Byte 6  
7
6
±
4
3
2
1
0
--  
--  
--  
(Reserved)  
--  
--  
--  
--  
0
0
--  
IOAPIC  
--  
(Reserved)  
24  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
1
0
--  
--  
(Reserved)  
--  
--  
0
--  
--  
(Reserved)  
--  
--  
0
27  
27  
REF2X  
REF2X  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
1[1]  
1[1]  
Note:  
1. Both Bits 0 and 1 of Byte 6 in Table 4 must be programmed as the same value.  
Rev 1.0,November 28, 2006  
Page 6 of 11  
W164  
Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Output Frequency  
If Spread Is On  
Data Byte 3, Bit 3 = 1  
Bit 7  
SEL_3  
Bit 6  
SEL_2  
Bit 5  
SEL_1  
Bit 4  
SEL_0  
CPU, SDRAM  
PCI Clocks  
(MHz)  
Clocks (MHz)  
68.±  
7±  
Spread Percentage  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
±0.±5 Center  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
34.2±  
37.±  
83.3  
66.8  
103  
41.6  
33.4  
34.2±  
37.3  
112  
133.3  
100  
33.3  
33.3  
117  
39.0  
117  
29.2±  
31.0  
124  
129  
32.2±  
34.±  
138  
143  
3±.7±  
37.0  
148  
1±3  
38.2±  
Table 6. Select Function for Data Byte 3, Bits 0:1  
Input Conditions  
Output Conditions  
REF2X,  
Data Byte 3  
Function  
Normal Operation  
Test Mode  
Bit 1  
Bit 0  
CPU0:1  
Note 2  
X1/2  
PCI_F, PCI1:6  
IOAPIC  
14.318 MHz  
X1  
48MHZ  
24MHZ  
24 MHz  
X1/4  
0
0
1
1
0
1
0
1
Note 2  
48 MHz  
X1/2  
CPU/2, 3, or 4  
Spread Spectrum  
±0.±5  
Hi-Z  
±0.±5  
Hi-Z  
14.318 MHz  
Hi-Z  
48 MHz  
Hi-Z  
24 MHz  
Hi-Z  
Three-state  
Note:  
2. CPU and PCI frequency selections are listed in Table 1 and Table 5.  
Rev 1.0,November 28, 2006  
Page 7 of 11  
W164  
Absolute Maximum Ratings[3]  
Stresses greater than those listed in this table may cause  
permanent damage to the device. These represent a stress  
rating only. Operation of the device at these or any other condi-  
tions above those specified in the operating sections of this  
specification is not implied. Maximum conditions for extended  
periods may affect reliability.  
Parameter  
DD, VIN  
TSTG  
TA  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
–0.± to +7.0  
–6± to +1±0  
0 to +70  
Unit  
V
V
°C  
°C  
°C  
kV  
Operating Temperature  
TB  
Ambient Temperature under Bias  
Input ESD Protection  
–±± to +12±  
2 (min.)  
ESDPROT  
DC Electrical Characteristics: TA = 0°C to +70°C, VDDQ3 = 3.3V±±5, VDDQ2 = 2.±V±±5  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
IDDQ3  
Combined 3.3V Supply Current  
CPU0:1 =100 MHz  
Outputs Loaded[4]  
8±  
30  
mA  
mA  
IDDQ3  
Combined 2.±V Supply Current  
CPU0:1 =100 MHz  
Outputs Loaded[4]  
Logic Inputs  
VIL  
Input Low Voltage  
Input High Voltage  
GND –  
0.3  
0.8  
V
V
VIH  
2.0  
VDD  
0.3  
+
IIL  
IIH  
IIL  
IIH  
Input Low Current[±]  
–2±  
10  
–±  
±
µA  
µA  
µA  
µA  
Input High Current[±]  
Input Low Current (SEL100/66#)  
Input High Current (SEL100/66#)  
Clock Outputs  
VOL Output Low Voltage  
Output High Voltage  
IOL = 1 mA  
±0  
mV  
V
VOH  
VOH  
IOL  
IOH = –1 mA  
3.1  
2.2  
±0  
Output High Voltage CPU0:1/IOAPIC IOH = –1 mA  
V
Output Low Current CPU0:1  
PCI_F, PCI1:6  
VOL = 1.2±V  
VOL = 1.±V  
VOL = 1.2±V  
VOL = 1.±V  
70  
80  
100  
120  
140  
1±2  
76  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
60  
IOAPIC  
REF2X  
40  
8±  
100  
40  
130  
±0  
48MHz, 24MHz VOL = 1.±V  
IOH  
Output High Current CPU0:1  
VOH = 1.2±V  
VOH = 1.±V  
VOH = 1.2±V  
VOH = 1.±V  
±0  
70  
100  
120  
1±±  
1±0  
94  
PCI_F, PCI1:6  
IOAPIC  
60  
70  
40  
87  
REF2X  
100  
40  
130  
±0  
48MHz, 24MHz VOH = 1.±V  
Notes:  
3. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
4. All clock outputs loaded with maximum lump capacitance test load specified in the AC Electrical Characteristics section.  
±. W164 logic inputs have internal pull-up resistors, except SEL100/66# (pull-ups not full CMOS level).  
Rev 1.0,November 28, 2006  
Page 8 of 11  
W164  
DC Electrical Characteristics: TA = 0°C to +70°C, VDDQ3 = 3.3V±±5, VDDQ2 = 2.±V±±5 (continued)  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Crystal Oscillator  
VTH  
X1 Input Threshold Voltage[6]  
VDDQ3 = 3.3V  
1.6±  
13  
V
CLOAD  
Load Capacitance, as seen by  
External Crystal[7]  
pF  
CIN,X1  
X1 Input Capacitance[8]  
Pin X2 unconnected  
Except X1 and X2  
26  
pF  
Pin Capacitance/Inductance  
CIN Input Pin Capacitance  
COUT  
LIN  
pF  
pF  
nH  
Output Pin Capacitance  
Input Pin Inductance  
7
AC Electrical Characteristics  
TA = 0°C to +70°C, VDDQ3 = 3.3V 5ꢀ,VDDQ2 = 2.5V± 5ꢀ, fXTL = 14.31818 MHz  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output; Spread Spectrum clocking is disabled.  
CPU Clock Outputs, CPU0:1 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 100 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.2±V  
Duration of clock cycle above 2.0V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
tP  
tH  
tL  
1±  
±.2  
±.0  
1
1±.±  
10  
3.0  
2.8  
1
10.±  
ns  
ns  
High Time  
Low Time  
ns  
tR  
tF  
tD  
Output Rise Edge Rate Measured from 0.4V to 2.0V  
Output Fall Edge Rate Measured from 2.0V to 0.4V  
4
4
4
4
V/ns  
V/ns  
5
1
1
Duty Cycle  
Measured on rising and falling edge at  
1.2±V  
4±  
±±  
4±  
±±  
tJC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.2±V.  
Maximum difference of cycle time  
between two adjacent cycles.  
200  
2±0  
ps  
tSK  
fST  
Output Skew  
Measured on rising edge at 1.2±V  
Assumes full supply voltage reached  
17±  
3
17±  
3
ps  
Frequency Stabili-  
ms  
zation from Power-up within 1 ms from power-up. Short cycles  
(cold start) exist prior to frequency stabilization.  
Zo  
AC Output Impedance Average value during switching  
transition. Used for determining series  
termination value.  
20  
20  
:
Notes:  
6. X1 input threshold voltage (typical) is V /2.  
DD  
7. The W164 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 14 pF;  
this includes typical stray capacitance of short PCB traces to crystal.  
8. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
Rev 1.0,November 28, 2006  
Page 9 of 11  
W164  
PCI Clock Outputs, PCI1:6 and PCI_F (Lump Capacitance Test Load = 30 pF  
CPU = 66.8/100 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.±V  
Min.  
30  
12  
12  
1
Typ.  
Max.  
Unit  
ns  
tP  
tH  
tL  
High Time  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
ns  
Low Time  
ns  
tR  
tF  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
V/ns  
V/ns  
5
Measured from 2.4V to 0.4V  
1
tD  
tJC  
Measured on rising and falling edge at 1.±V  
4±  
±±  
2±0  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.±V. Maximum  
difference of cycle time between two adjacent cycles.  
ps  
tSK  
tO  
Output Skew  
Measured on rising edge at 1.±V  
±00  
4
ps  
ns  
CPU to PCI Clock Skew Covers all CPU/PCI outputs. Measured on rising  
edge at 1.±V. CPU leads PCI output.  
1
fST  
Frequency Stabilization  
from Power-up (cold  
start)  
Assumes full supply voltage reached within 1 ms  
from power-up. Short cycles exist prior to frequency  
stabilization.  
3
ms  
Zo  
AC Output Impedance  
Average value during switching transition. Used for  
determining series termination value.  
20  
:
IOAPIC Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8/100 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.0V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
5
f
14.31818  
tR  
tF  
tD  
fST  
1
1
4
4
Measured from 2.0V to 0.4V  
Measured on rising and falling edge at 1.2±V  
4±  
±±  
1.±  
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Averagevalueduringswitchingtransition.Used  
for determining series termination value.  
1±  
:
REF2X Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8/100 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max. Unit  
f
14.318  
MHz  
tR  
0.±  
0.±  
4±  
2
2
V/ns  
V/ns  
5
tF  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.±V  
±±  
3
fST  
FrequencyStabilizationfrom Assumes full supply voltage reached within  
1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
ms  
Power-up (cold start)  
Zo  
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
1±  
:
Rev 1.0,November 28, 2006  
Page 10 of 11  
W164  
48-MHz and 24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8/100 MHz  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ.  
Max. Unit  
f
Frequency, Actual  
Determined by PLL divider ratio (see m/n below)  
48.008  
24.004  
MHz  
fD  
Deviation from 48 MHz  
PLL Ratio  
(48.008 – 48)/48  
+167  
ppm  
m/n  
tR  
(14.31818 MHz x ±7/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
±7/17, ±7/34  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.±  
0.±  
4±  
2
2
V/ns  
V/ns  
5
tF  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.±V  
±±  
3
fST  
Frequency Stabilization  
Assumes full supply voltage reached within 1 ms  
ms  
from Power-up (cold start) from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
2±  
:
Ordering Information  
Ordering Code  
Package Name  
Package Type  
W164  
G
28-pin SOIC (300 mils)  
Package Diagram  
28-Lead Molded  
SOIC S28  
DIMENSIONS IN INCHES[MM]  
MIN.  
MAX.  
PART #  
DETAIL  
A
S28.4 STANDARD PKG.  
SZ28.4 LEAD FREE PKG.  
EXTERNAL LEAD DESIGN  
PIN 1 ID  
14  
1
.395[10.033]  
.405[10.287]  
.530[13.462]  
.545[13.843]  
.026[0.660]  
.032[0.812]  
.013[0.330]  
.019[0.482]  
.015[0.381]  
.020[0.508]  
15  
28  
OPTION 1  
OPTION 2  
SEATING PLANE  
.720[18.288]  
.730[18.542]  
.090[2.286]  
.109[2.768]  
A
0.004[0.102]  
.050[1.270]  
TYP.  
.007[0.177]  
.013[0.330]  
.015[0.381]  
.050[1.270]  
.002[0.050]  
.014[0.355]  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 28, 2006  
Page 11 of 11  

相关型号:

W164G

Industrial Control IC
ETC

W164GT

Processor Specific Clock Generator, 100MHz, CMOS, PDSO28, 0.300 INCH, SOIC-28
CYPRESS

W164_02

Spread Spectrum Desktop/Notebook System Frequency Generator
CYPRESS

W166

Spread Spectrum Frequency Timing Generator
CYPRESS

W166-6

Phase Locked Loop, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
CYPRESS

W166G

PLL Frequency Synthesizer, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
CYPRESS

W166GT

PLL Frequency Synthesizer, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
CYPRESS

W167B

133-MHz Spread Spectrum FTG for Pentium II Platforms
CYPRESS

W167BH

Processor Specific Clock Generator, 160MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48
CYPRESS

W167BHT

Processor Specific Clock Generator, 160MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48
CYPRESS

W1699B

Off-Line Digital Green-Mode Quasi-Resonant PWM Controller
ETC

W169XGD

Single Color LED, Green, Diffused, 3mm,
KINGBRIGHT