SS6639-30CXTR [SSC]

1-Cell, 3-Pin, Step-Up DC/DC Controller; 1节, 3芯,升压型DC / DC控制器
SS6639-30CXTR
型号: SS6639-30CXTR
厂家: SILICON STANDARD CORP.    SILICON STANDARD CORP.
描述:

1-Cell, 3-Pin, Step-Up DC/DC Controller
1节, 3芯,升压型DC / DC控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总12页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SS6639  
1-Cell, 3-Pin, Step-Up DC/DC Controller  
FEATURES  
GENERAL DESCRIPTION  
n
n
n
·
·
·
·
·
·
·
·
Guaranteed start-up from less than 0.9 V.  
The SS6639 is a high efficiency step-up DC/DC  
controller for applications using 1 to 4 battery cells. Only  
three external components are required to deliver a  
fixed output voltage of 2.7, 3.0V, 3.3V, or 5V. The  
SS6639 starts up from less than 0.9V input with a 1mA  
load. The Pulse Frequency Modulation scheme offers  
optimized performance for applications with light output  
loading and low input voltages. The output ripple and  
noise are lower than with circuits operating in PSM  
mode.  
High efficiency.  
Low quiescent current.  
Fewer external components needed.  
Low ripple and low noise.  
Fixed output voltage: 2.7, 3.0V, 3.3V, and 5V.  
Driver for external transistor.  
Space-saving package: SOT-89 and TO-92.  
APPLICATIONS  
Pagers.  
The PFM control circuit operating up to 100 KHz  
switching rate results in smaller passive components.  
The space-saving SOT-89 and TO-92 packages make  
the SS6639 an ideal choice of DC/DC controller for  
space-conscious applications, such as pagers,  
electronic cameras, and wireless microphones.  
·
·
·
·
·
·
Cameras.  
Wireless Microphones.  
Pocket Organizers.  
Battery Backup Suppliers.  
Portable Instruments.  
Using an external transistor driver pin (EXT), the  
SS6639 is recommended for applications requiring  
currents from several tens to several hundreds of  
milliamperes.  
TYPICAL APPLICATION CIRCUIT  
n
V
IN  
D1  
V
OUT  
L1  
33mH  
+
GS SS14  
C1  
47mF  
SS6639-27  
SS6639-30  
SS6639-33  
SS6639-50  
R1  
VOUT  
EXT  
300  
*Q1  
2SD1803  
+
C3  
100mF  
GND  
C2  
10nF  
*Q1: Sanyo 25D1803S-TC 60V/5A/20W  
100mA Load Current Step-Up Converter  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
1 of 12  
SS6639  
ORDERINGINFORMATION  
n
SS6639-XXCXXX  
PIN CONFIGURATION  
PACKING TYPE  
TR: TAPE & REEL  
BG: BAG  
SOT-89  
TOP VIEW  
1: GND  
2: VOUT  
3: EXT  
PACKAGE TYPE  
X: SOT-89  
Z: TO-92  
1
2
3
OUTPUT VOLTAGE  
27: 2.7V  
TO-92  
30: 3.0V  
TOP VIEW  
1: GND  
2: VOUT  
3: EXT  
33: 3.3V  
50: 5.0V  
1
2
3
EX: SS6639-27CXTR  
à 2.7V Version, in SOT-89 Package in  
Tape and Reel Packing  
ABSOLUTE MAXIMUM RATINGS  
n
n
Supply Voltage (VOUT Pin) ……………….………………………………………………….12V  
EXT pin Voltage ……………………………………………………..……….-0.3V to Vout+0.3V  
EXT pin Current …………………………………………………..……………………….± 50mA  
Operating Temperature Range  
………………………………..……………….-40°C to 85°C  
Storage Temperature Range ……………………………………..…………… -65°C to 150 °C  
Lead Temperature (Soldering 10 Sec.) ………………………..…………………………260°C  
TEST CIRCUIT  
SS6639  
2.5V  
F
VOUT  
EXT  
OUT  
GND  
Oscillator Test Circuit  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
2 of 12  
SS6639  
ELECTRICAL CHARACTERISTICS  
n
(TA=25°C, IO=10mA, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
SYMBOL  
SS6639-27 VIN=1.8V  
SS6639-30 VIN=1.8V  
SS6639-33 VIN=2.0V  
SS6639-50 VIN=3.0V  
2.633  
2.925  
3.218  
4.875  
2.700  
3.000  
3.300  
5.000  
2.767  
3.075  
3.382  
5.125  
Output Voltage  
VOUT  
V
Input Voltage  
VIN  
VSTART  
VHOLD  
IIN  
8
V
V
0.8  
0.9  
Start-Up Voltage  
Hold-on Voltage  
No-Load Input Current  
I
I
OUT=1mA, VIN:0® 2V  
OUT=1mA, VIN:2® 0V  
0.6  
V
IOUT=0mA  
18  
mA  
SS6639-27  
SS6639-30  
SS6639-33  
SS6639-50  
45  
50  
60  
80  
IDD1  
mA  
mA  
Supply Current 1  
EXT at no load, VIN=VOUT x 0.95  
Measurement of the IC input  
current (VOUT Pin)  
SS6639-27  
SS6639-30  
SS6639-33  
SS6639-50  
7
7
7
7
IDD2  
Supply Current 2  
EXT at no load, VIN=VOUT + 0.95  
Measurement of the IC input  
current (VOUT Pin)  
SS6639-27  
SS6639-30  
SS6639-33  
SS6639-50  
300  
200  
185  
130  
EXT “H” On-Resistance  
EXT “L” On-Resistance  
REXTH  
W
W
VEXT=VOUT – 0.4V  
SS6639-27  
SS6639-30  
SS6639-33  
SS6639-50  
VEXT= 0.4V  
110  
80  
70  
REXTL  
60  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
3 of 12  
SS6639  
ELECTRICAL CHARACTERISTICS  
(Continued)  
n
PARAMETER  
TEST CONDITIONS  
VIN=VOUT x 0.95  
MIN.  
TYP.  
MAX. UNIT  
SYMBOL  
Oscillator Duty Cycle  
DUTY  
65  
75  
85  
%
Measurement of the EXT Pin  
Waveform  
VIN=VOUT x 0.95  
Max. Oscillator Freq.  
Efficiency  
FOSC  
80  
105  
80  
130  
KHz  
%
Measurement of the EXT Pin  
Waveform  
h
TYPICAL PERFORMANCE CHARACTERISTICS  
n
Inductor (L1): 33mH (Pin Type)  
Capacitor (C1): 47mF (Tantalum Type)  
Diode (D1): 1N5819 Schottky Type  
Transistor (Q1): 2SD1803  
2.80  
2.75  
2.70  
90  
85  
80  
75  
70  
VIN=2.0V  
VIN=2.0  
2.65  
VIN=1.8V  
VIN=1.8V  
VIN=1.5  
V
2.60  
VIN=1.2  
V
VIN=1.5V  
VIN=1.2V  
2.55  
2.50  
65  
60  
55  
50  
VIN=0.9V  
2.45  
VIN=0.9V  
2.40  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
Output Current (mA)  
Fig. 2 SS6639-27 Efficiency (L=33uH)  
Output Current (mA)  
Fig. 1 SS6639-27 Load Regulation (L=33 H)  
3.1  
90  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
5
8
VIN=2.0V  
VIN=2.0V  
80  
75  
70  
65  
60  
VIN=1.8V  
VIN=1.5V  
VIN=1.2V  
VIN=1.8V  
VIN=1.5V  
VIN=0.9V  
VIN=1.2V  
VIN=0.9V  
50  
100  
150  
200  
250  
300  
350  
400  
450  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
Output Current (mA)  
Fig. 4 SS6639-30 Efficiency (L=33 H)  
Output Current (mA)  
Fig. 3 SS6639-30 Load Regulation (L=33 H)  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
4 of 12  
SS6639  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
90  
85  
80  
75  
70  
65  
60  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
VIN=2.0V  
VIN=1.5V  
VIN=2.0V  
VIN=1.2V  
VIN=1.5V  
VIN=0.9V  
0
50  
100  
150  
200  
250  
300  
350  
400  
400  
700  
200  
0
50  
100  
150  
200  
250  
300  
350  
Output Current (mA)  
Fig. 6 SS6639-33 Efficiency (L=33 H)  
Output Current (mA)  
Fig. 5 SS6639-33 Loading Regulation (L=33 H)  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=3.0V  
VIN=3.0V  
VIN=2.0V  
VIN=1.5V  
VIN=1.2V  
VIN=2.0V  
VIN=0.9V  
VIN=1.5V  
VIN=0.9V  
VIN=1.2V  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
700  
Output Current (mA)  
Output Current (mA)  
m
Fig. 7 SS6639-50 Load Regulation (L=33 H)  
Fig. 8 SS6639-50 Efficiency (L=33 H)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Start up  
Hold on  
Start up  
Hold on  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
0
20  
40  
60  
120  
140  
160  
Output C8u0rrent 1(m00A)  
Output Current (mA)  
Fig. 10 SS6639-30 Start-up & Hold-on Voltage (L=33 H)  
Fig. 9 SS6639-27 Start-up & Hold-on Voltage (L=33mH)  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
5 of 12  
SS6639  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Start up  
Start up  
Hold on  
Hold on  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Output Current (mA)  
Output Current (mA)  
Fig. 12 SS6639-50 Start-up & Hold-on Voltage (L=33uH)  
Fig. 11 SS6639-33 Start-up & Hold-on Voltage (L=33mH)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Start up  
Start up  
Hold on  
Hold on  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Output Current (mA)  
Output Current (mA)  
Fig. 13 SS6639-33 Start-up & Hold-on Voltage (L=33mH)  
Fig. 14 SS6639-50 Start-up & Hold-on Voltage (L=33uH)  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
135  
130  
125  
120  
115  
110  
105  
100  
95  
VOUT = 5.0V  
VOUT = 3.3V  
VOUT =5.0V  
V
V
OUT = 3.0V  
OUT = 2.7V  
VOUT = 3.3V  
VOUT = 3.0V  
V
OUT = 2.7V  
90  
85  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Fig. 15 SS6639 Output Voltage vs. Temperature  
Output Current (mA)  
Fig. 16 SS6639 Switching Frequency vs.Temperature  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
6 of 12  
SS6639  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
80  
75  
80  
79  
VOUT = 5.0V  
VOUT = 3.3V  
VOUT  
2.7V  
VOUT  
3.0V  
V
=
=
=
70  
65  
60  
55  
50  
45  
40  
35  
30  
78  
77  
76  
75  
74  
73  
72  
71  
70  
V
V
OUT = 3.0V  
OUT = 2.7V  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
20  
0
20  
40  
60  
80  
100  
-
°
Temperature ( C)  
Output Current (mA)  
Fig. 18 SS6639 Supply Current vs. Temperature  
Fig. 17 SS6639 Maximum Duty Cycle vs. Temperature  
400  
360  
320  
280  
240  
200  
160  
120  
80  
130  
120  
110  
100  
90  
VOUT = 2.7V  
VOUT = 3.0V  
VOUT = 2.7V  
VOUT = 3.0V  
VOUT = 3.3V  
OUT = 5.0V  
VOUT = 3.3V  
OUT = 5.0V  
V
V
80  
70  
60  
50  
40  
-40  
40  
-40  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
°
Temperature ( C)  
Temperature (°C)  
Fig. 20 SS6639 EXT "H" On-Resistance  
Fig. 19 SS6639 EXT "L" On-Resistance  
BLOCK DIAGRAM  
n
1.25V REF.  
VOUT  
1M  
-
EXT  
+
Enable  
OSC, 100KHz  
GND  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
7 of 12  
SS6639  
PIN DESCRIPTIONS  
n
n
Pin 1: GND:  
Ground. Must be low impedance;  
Pin 3: EXT:  
Push-pull driver output for external  
power. Switch.  
solder directly to ground plane.  
Pin 2: VOUT:  
IC supply pin. Connect Vout to the  
regular output.  
APPLICATION INFORMATION  
General Description  
The SS6639 PFM (pulse frequency modulation)  
As the load increases, the output capacitor  
discharges faster and the error comparator initiates  
cycles sooner, increasing the switching frequency.  
The maximum duty cycle ensures adequate time for  
energy transfer to the output during the second half  
of each cycle. Depending on the circuit, PFM  
controllers can operate in either discontinuous mode  
or continuous conduction mode. The continuous  
conduction mode means that the inductor current  
does not ramp to zero during each cycle.  
controller IC combines a switch mode regulator, a  
push-pull driver, a precision voltage reference, and a  
voltage detector in a single monolithic device. It  
offers extremely low quiescent current, high  
efficiency, and very low gate-threshold voltage to  
ensure start-up with low battery voltage (0.8V typ.).  
Designed to maximize battery life in portable  
products, it minimizes switching losses by only  
switching as needed to service the load.  
PFM controllers transfer a discrete amount of energy  
per cycle and regulate the output voltage by  
modulating the switching frequency with a constant  
turn-on time. Switching frequency depends on load,  
input voltage, and inductor value and can range up  
to 100 KHz.  
VIN  
IIN  
ID  
IOUT  
SW  
VOUT  
+
EXT  
When the output voltage drops, the error comparator  
enables the 100 kHz oscillator which turns the  
MOSFET on for around 7.5us and off for 2.5ms.  
Turning on the MOSFET allows inductor current to  
ramp up, storing energy in the magnetic field.  
When the MOSFET turns off, the inductor forces  
current through the diode to the output capacitor and  
the load. As the stored energy is depleted, the  
current ramps down until the diode turns off. At this  
point, the inductor may ring due to residual energy  
and stray capacitance. The output capacitor stores  
charge when current flowing through the diode is  
high, and releases it when current is low, thereby  
maintaining a steady voltage across the load.  
Isw  
Ico  
Discontinuous Conduction Mode  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
8 of 12  
SS6639  
At the boundary between continuous and  
discontinuous modes, the output current (IOB) is  
determined by  
VEXT  
VIN  
VOUT + VD  
1
2
VIN  
L
æ
ö
÷
ø
IOB =  
*
*
* TON *  
(1- x  
)
ç
IIN  
è
IPK  
where VD is the diode drop,  
TON  
X = (RON + RS) *  
L
ISW  
RON= Switch turn on resistance, RS= Inductor DC  
resistance  
Charge Co.  
TON = Switch ON time  
ID  
IOUT  
In the discontinuous mode, the switching frequency  
(Fsw) is  
TDIS  
Discharge Co.  
VSW  
2(L) * (VOUT + VD - VIN) * (IOUT)  
FSW =  
* (1+ x)  
2
2
VIN * TON  
t
In the continuous mode, the switching frequency is  
(
*
)
1
VOUT + VD - VIN  
fsw =  
TON (VOUT + VD - VSW)  
Discontinuous Conduction Mode  
x
VIN - VSW  
2 VOUT + VD - VSW  
VOUT + VD - VIN  
* [1+  
(
)]  
1
æ
ö
VEXT  
@
*
ç
÷
è
VOUT + VD - VSW ø  
TON  
where Vsw = switch drop and is proportional to  
output current.  
IIN  
IPK  
INDUCTOR SELECTION  
To operate as an efficient energy transfer element,  
the inductor must fulfill three requirements. First, the  
inductance must be low enough for the inductor to  
store adequate energy under the worst case  
condition of minimum input voltage and switch ON  
time. Second, the inductance must also be high  
enough so the maximum current rating of the  
SS6639 and the inductor are not exceeded at the  
other worst case condition of maximum input voltage  
and ON time. Lastly, the inductor must have  
sufficiently low DC resistance so excessive power is  
not lost as heat in the windings. Unfortunately this is  
inversely related to physical size.  
ISW  
ID  
IOUT  
VSW  
t
Continuous Conduction Mode  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
9 of 12  
SS6639  
Minimum and maximum input voltage, output voltage  
and output current must be established before an  
inductor can be selected.  
Power required from the inductor per cycle must be  
equal to, or greater than  
PL  
1
= (VOUT + VD - VIN) * (IOUT) * (  
)
fSW  
fsw  
In discontinuous mode operation, at the end of the  
switch ON time, peak current and energy in the  
inductor build according to  
in order for the converter to regulate the output.  
When the loading exceeds IOB, the PFM controller  
operates in continuous mode. Inductor peak current  
can be derived from  
VIN  
RON + RS ø è  
RON + RS  
æ
ö æ  
* 1- exp(-  
÷ ç  
ö
÷
ø
IPK =  
* TON)  
ç
L
è
VIN  
L
x
æ
ö
æ
ö
÷
ø
VOUT + VD - VSW  
x
æ
ö
÷
@
*
(
TON  
)
* 1-  
ç
÷
ç
IPK =  
-
ç
è
2
è
ø
è
VIN - VSW  
2
ø
VIN  
VIN - VSW  
x
æ
ö
÷
ø
æ
ö
÷
ø
@
* TON  
* IOUT +  
* TON * 1-  
ç
ç
L
2L  
2
è
è
(simple lossless equation), where  
TON  
Valley current (Iv) is  
VOUT + VD - VSW  
X = (RON + RS) *  
L
x
æ
ö
÷
ø
IV =  
-
* IOUT  
ç
1
2
VIN - VSW  
2
EL = L * IPK  
è
2
VIN - VDE  
x
æ
ö
÷
ø
æ
ö
÷
ø
*
* TON * 1-  
ç
ç
2L  
2
è
è
Table 1 Indicates resistance and height for each coil.  
Power Inductor Type  
Inductance ( mH ) Resistance ( W ) Rated Current (A) height (mm)  
47  
0.25  
0.7  
Sumida SMT Type CD54  
4.5  
4.5  
100  
0.50  
0.5  
47  
100  
33  
0.25  
0.50  
0.11  
40m  
0.7  
0.5  
1.2  
2
Hold SMT Type PM54  
Hold SMT Type PM75  
5.0  
Huan Feng PIN Type V0810  
33  
10.0  
CAPACITOR SELECTION  
A poor choice for an output capacitor can result in poor  
efficiency and high output ripple. Ordinary aluminum  
electrolytic capacitors, while inexpensive, may have  
unacceptably poor ESR and ESL. There are low ESR  
aluminum capacitors for switch mode DC-DC  
converters which work much better than  
general-purpose components. Tantalum capacitors  
provide still better performance but are more  
expensive. OS-CON capacitors have extremely low  
ESR in a small size. If the capacitance is reduced, the  
output ripple will increase.  
As most of the input supply is applied across the input  
bypass capacitor, the capacitor voltage rating should  
be at least 1.25 times greater than the maximum input  
voltage.  
DIODE SELECTION  
Speed, forward drop, and leakage current are three  
main considerations in selecting a rectifier diode. The  
best performance is obtained with a Schottky rectifier  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
10 of 12  
SS6639  
where POUT=VOUT * IOUT ; RS=Inductor DC R;  
diode such as the 1N5819. Motorola makes the  
MBR0530 for surface mount. For lower output power a  
1N4148 can be used although efficiency and start-up  
voltage will suffer substantially.  
VD = Diode drop.  
The power dissipated in switching losses is  
2
3
TON  
æ
ö
÷
ø
PDsw =  
*
*
(
RON  
)
*
(
IOUT * (POUT )  
)
ç
L
è
COMPONENT POWER DISSIPATION  
Operating in discontinuous mode, the power loss in  
the winding resistance of the inductor is approximately  
equal to  
The power dissipated in the rectifier diode is  
VD  
æ
ö
÷
ø
PDD =  
*
(POUT  
)
ç
VOUT  
è
2
3
TON  
VOUT +VD  
æ
æ
ö
÷
ø
ö
÷
ø
PDL  
=
*
*
(RS  
)
*
*
(POUT  
)
ç
ç
L
VOUT  
è
è
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
11 of 12  
SS6639  
PHYSICAL DIMENSIONS  
n
· SOT-89 (unit: mm)  
A
D
SYMBOL  
MIN  
1.40  
0.36  
0.35  
4.40  
1.62  
2.29  
MAX  
1.60  
0.48  
0.44  
4.60  
1.83  
2.60  
D1  
A
B
C
C
D
H
E
D1  
E
L
e
1.50 (TYP.)  
3.00 (TYP.)  
B
e
e1  
H
e1  
3.94  
0.89  
4.25  
1.20  
L
SOT-89 MARKING  
l
Part No.  
Marking  
AU27  
AU30  
AU33  
AU50  
SS6639-27  
SS6639-30  
SS6639-33  
SS6639-50  
· TO-92 (unit: mm)  
SYMBOL  
MIN  
4.32  
MAX  
5.33  
E
L
A
A
C
D
E
C
0.38 (TYP.)  
e1  
4.40  
3.17  
5.20  
4.20  
D
e1  
L
1.27 (TYP.)  
12.7  
-
Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no  
guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no  
responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its  
use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including  
without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to  
the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of  
Silicon Standard Corporation or any third parties.  
Rev.2.01 6/26/2003  
www.SiliconStandard.com  
12 of 12  

相关型号:

SS6639-30CZBG

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-30CZTR

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-33CXBG

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-33CXTR

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-33CZBG

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-33CZTR

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-50CXBG

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-50CXTR

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-50CZBG

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639-50CZTR

1-Cell, 3-Pin, Step-Up DC/DC Controller
SSC

SS6639U

Rectifier Diode, 1 Element, 0.3A, Silicon, DO-35, HERMETIC SEALED, GLASS PACKAGE-2
SENSITRON

SS6640

Low Voltage Step-Up DC/DC Converter
SSC