SS8000G [SSC]

GSM Power-Management System; GSM电源管理系统
SS8000G
型号: SS8000G
厂家: SILICON STANDARD CORP.    SILICON STANDARD CORP.
描述:

GSM Power-Management System
GSM电源管理系统

GSM
文件: 总14页 (文件大小:784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SS8000G  
GSM Power-Management System  
FEATURES  
DESCRIPTION  
Handles all GSM baseband power management  
Input range 2.8V to 5.5V  
Charger input up to 15V  
The SS8000 is a power-management system chip  
optimized for GSM handsets. It contains seven LDOs,  
one to power each of the critical GSM sub-blocks.  
Seven LDOs optimized for specific GSM  
subsystems  
High operating efficiency and low stand-by  
current  
Li-Ion and NiMH battery charge function  
SIM card interface  
Sophisticated controls are available for power-up  
during battery charging, keypad interface, and RTC alarm.  
The SS8000 is optimized for maximum battery life  
featuring a ground current of only 107µA in standby and  
187µA when the phone is in operation.  
Three open-drain output switches to control  
the LED, alerter and vibrator  
Thermal overload protection  
Under-voltage lock-out protection  
Over-voltage protection  
The SS8000 battery charger can be used with lithium  
ion (Li-Ion) and nickel metal hydride (NiMH) batteries.  
The SS8000 contains three open-drain output  
switches for LED, alerter and vibrator control. The SIM  
interface provides the level shift between SIM card and  
microprocessor.  
Power-on reset and start-up timer  
QFN-48 package  
The SS8000 is available in a 48-pin QFN package. The  
operating temperature range is from -25°C to +85°C.  
APPLICATIONS  
GSM/GPRS Mobile Handsets  
Basic and High-end Phones  
This device is supplied with a Pb-free lead finish (second-level interconnect).  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
1 of 14  
SS8000G  
ORDERING INFORMATION  
SS8000GQXX  
Packing:  
TR: Tape and reel  
TY: Tray  
Package type  
GQ: QFN-48L, Pb-free lead finish  
PIN CONFIGURATION  
LEDEN  
CHRIN  
GATEDRV  
36  
35  
34  
33  
32  
1
2
ALERTEREN  
VIBRATOREN  
PWRBB  
NC  
3
4
ISENSE  
CHRCNTL  
CHRDET  
PWRKEY  
5
31 SRCLKEN  
6
7
SS8000  
VREF  
30  
BATSNS  
VSIM  
NC  
29  
28  
27  
8
AGND  
VA  
SIMIO  
9
SIMRST  
10  
26 AVBAT  
25 VTCXO  
SIMCLK 11  
SIMVCC 12  
ABSOLUTE MAXIMUM RATINGS  
CHRIN and GATEDRV relative to GND……………………………………………….-0.3V to 15V  
All other pins relative to GND………………………………………………….….……-0.3V to 7V  
Operating Temperature Ranges…………………………..………….……..………...-25°C to +85°C  
Maximum Junction Temperature……………………………………………………….+165°C  
Storage Temperature Range……………………………………………………….……-65°C to +165°C  
Thermal Impedance, qJA ……………………………………………………………………………………………………….23°C/W  
Lead Temperature (soldering, 10sec).……………………………………………......+260°C  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
2 of 14  
SS8000G  
ELECTRICAL CHARACTERISTICS  
(Vbat = 3V-5.5V, CVa=10µF, CVcore =CVm=4.7mF, CVrtc=0.22µF, CVref=CVtcxo=CVsim=CVio=1µF, minimum loads applied on all  
outputs, unless otherwise noted. Typical values are at TA=+25°C.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Main Controller  
Battery Input Voltage Range  
Charger Input Voltage Range  
Shutdown Supply Current  
3
5.5  
15  
V
V
Vbat<2.5V  
5
20  
2.5V<Vbat<3.2V  
3.2V<Vbat  
30  
55  
µA  
µA  
45  
80  
Operation Ground Current  
All Output on  
187  
148  
108  
3.18  
200  
2.6  
100  
165  
25  
500  
200  
150  
3.2  
Vtcxo off, all others on  
Va, Vtcxo off, all others on  
UVLO on Threshold  
Vbat  
Vbat  
3.15  
V
mV  
V
UVLO Hysteresis  
Deep Discharging Lockout on Threshold  
Deep Discharging Lockout Hysteresis  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
LDO Enable Response Time  
Power Key Input High Voltage  
Power Key Input Low Voltage  
PWRBB Input High Voltage  
PWRBB Input Low Voltage  
Control Input High Voltage  
Control Input Low Voltage  
Digital Core Voltage LDO (Vcore)  
Output Voltage  
mV  
°C  
°C  
µs  
V
250  
PWRKEY  
0.7xVbat  
PWRKEY  
0.3xVbat  
0.2  
V
PWRBB  
1
2
PWRBB  
VMSEL,SIMSEL,SIMVCC,SRCLKEN,VASEL,  
BATUSE,LEDEN,VIBRATOREN,ALERTEREN  
V
V
0.5  
1.7  
2.7  
2.7  
1.8  
430  
1.3  
3.3  
1.9  
V
Output Short Current Limit  
Load Regulation  
mA  
mV  
mV  
0.05mA < I_load< 200mA  
3.2V < Vbat < 5.5V  
10  
5
Line Regulation  
Digital IO Voltage LDO (Vio)  
Output Voltage  
2.8  
275  
3
2.9  
V
Output Short Current Limit  
Load Regulation  
mA  
mV  
mV  
0.05mA<I_load<100mA at Vbat=3.6V  
3.2V<Vbat<5.5V  
10  
5
Line Regulation  
4.6  
Analog Voltage LDO (Va)  
Output Voltage  
2.8  
400  
3.3  
0.4  
50  
2.9  
V
mA  
Output Short Current Limit  
Load Regulation  
0.05mA<I_load<150mA at Vbat=3.6V  
3.2V<Vbat<5.5V  
10  
5
mV  
Line Regulation  
mV  
Output Noise Voltage  
Frequency from 10Hz to 100kHz  
Frequency from 10Hz to 3kHz  
Frequency from 3kHz to 1MHz  
µVrms  
Ripple Rejection  
65  
dB  
40  
VTCXO Voltage LDO (Vtcxo)  
Output Voltage  
2.7  
2.8  
45  
2.9  
V
mA  
Output Short Current Limit  
Load Regulation  
0.05mA<I_load<20mA at Vbat=3.6V  
3.2V<Vbat<5.5V  
0.1  
0.4  
50  
2
3
mV  
Line Regulation  
mV  
Output Noise Voltage  
Ripple Rejection  
Frequency from 10Hz to 100kHz  
Frequency from 10Hz to 3kHz  
Frequency from 3kHz to 1MHz  
µVrms  
65  
dB  
40  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
3 of 14  
SS8000G  
ELECTRICAL CHARACTERISTICS (cont.)  
PARAMETER  
RTC Voltage LDO (Vrtc)  
Output Voltage  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
1.3  
1.5  
1.65  
1
V
Output Short Current Limit  
Off Reverse Input Current  
Memory Voltage LDO (Vm)  
1.8V Output Voltage  
1.35  
0.02  
mA  
µA  
1.7  
2.7  
1.8  
2.8  
315  
2.7  
4.4  
2.6  
2.8  
1.9  
2.9  
V
V
2.8V Output Voltage  
Output Short Current Limit  
Load Regulation(1.8V)  
Load Regulation(2.8V)  
Line Regulation(1.8V)  
Line Regulation(2.8V)  
SIM Voltage LDO (Vsim)  
1.8V Output Voltage  
mA  
0.05mA<I_load<150mA at Vbat=3.6V  
3.2V<Vbat<5.5V  
10  
10  
5
mV  
mV  
5
1.65  
2.75  
1.8  
3.0  
38  
1
1.95  
3.1  
V
V
3.0V Output Voltage  
Output Short Current Limit  
Load Regulation(1.8V)  
Load Regulation(3.0V)  
Line Regulation(1.8V)  
Line Regulation(3.0V)  
Reference Voltage Output  
Reference Voltage  
mA  
0.05mA<I_load<20mA at Vbat=3.6V  
3.2V<Vbat<5.5V  
2
2
3
3
mV  
mV  
1.7  
1.2  
1.235  
0.3  
40  
V
mV  
Line Regulation  
2.7V<Vbat<5.5V without load  
Frequency from 10Hz to 100kHz  
Frequency at 217Hz  
2
Output Noise Voltage  
µVrms  
dB  
Ripple Rejection  
65  
75  
Reset Generator  
Reset Output High Voltage  
Reset Output Low Voltage  
Reset Output Current  
Vio-0.5  
V
V
0.2  
1
2
mA  
Reset on Delay Time per unit Cap.  
LED/Alerter/Vibrator Driver  
Sink Current of LED Driver  
Sink Current of Alerter Driver  
Sink Current of Vibrator Driver  
Battery Charger  
ms/nF  
Von<0.3V  
Von<0.3V  
Von<0.5V  
150  
300  
250  
mA  
mA  
mA  
Charge Output Voltage (Li-ion Battery)  
BATUSE=0  
4.2  
5.1  
3.75  
2.5  
50  
V
V
Charge Output Voltage (NiMH Battery) BATUSE=1  
Chr_Det On Threshold  
Chr_Det Off Threshold  
Pre-charging Current  
GSM Interface  
(Chrin-Vbat)/Vbat , Chrin>4V  
%
(Chrin-Vbat)/Vbat , Chrin>4V  
%
I_charge@Vbat=3V(UVLO Active), R1=0.2W  
mV  
Vih(SIMCLK,SIMRST)  
Vil (SIMCLK,SIMRST)  
Vilsimio  
Vio-0.6  
V
V
0.6  
0.23  
0.335  
Vol? 0.4V, Iol=1mA  
Vol? 0.4V, Iol=0mA  
Iih,Ioh=± 20µA  
Vil=0V  
V
V
Vihsimio , Vohsimio  
Iilsimio  
Vio-0.6  
16  
V
-0.9  
0.42  
24  
mA  
V
Volsimio  
Vil=0.4V  
SIMIO Pull-up Resistance to Vio  
20  
KW  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
4 of 14  
SS8000G  
ELECTRICAL CHARACTERISTICS (cont.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Interface to 3V SIM card  
Volrst  
I=20µA  
0.4  
0.4  
0.4  
V
V
Vohrst  
I=-200µA  
I=20µA  
0.9Vsim  
0.9Vsim  
Vsim-0.4  
Volclk  
V
Vohclk  
I=-200µA  
V
Vil  
V
Vihsio , Vohsio  
I=± 20µA  
V
Iil  
Vil=0V  
-1  
mA  
V
Vol  
Iol=1mA , SIMIO? 0.23V  
0.4  
Interface to 1.8V SIM card  
Volrst  
I=20µA  
0.2Vsim  
0.2Vsim  
0.4  
V
V
Vohrst  
I=-200µA  
I=20µA  
0.9Vsim  
0.9Vsim  
Vsim-0.4  
Volclk  
V
Vohclk  
I=-200µA  
V
Vil  
V
Vihsio , Vohsio  
I=± 20µA  
V
Iil  
Vil=0V  
-1  
mA  
V
Vol  
Iol=1mA , SIMIO? 0.23V  
0.4  
SIM Card Interface Timing  
SIO Pull-up Resistance to Vsim  
SRST , SIO rise/fall time  
SCLK rise/fall time  
8
10  
30  
12  
1
KW  
µS  
nS  
Vsim=3/1.8V, load with 30pF  
Vsim=3V, CLK load with 30pF  
Vsim=1.8V, CLK load with 30pF  
CLK load with 30pF  
18  
50  
nS  
SCLK frequency  
SCLK duty cycle  
SCLK Prop. Delay  
5
Mhz  
%
SIMCLK Duty=50%, fsimclk=5Mhz  
47  
53  
50  
nS  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
5 of 14  
SS8000G  
PIN DESCRIPTIONS  
PIN  
1
NAME  
CHRIN  
GATEDRV  
NC  
FUNCTION  
Charger Input Voltage  
Gate Drive Output  
2
3,29  
4
ISENSE  
CHRCNTL  
CHRDET  
BATSNS  
VSIM  
Charger Current Sense Input  
5
Microprocessor Control Input Signal for Gate Drive  
Charger Detect Output  
6
7
Battery Input Voltage Sense  
SIM Supply  
8
9
SIMIO  
Non-Level-Shifted Bidirectional Data I/O  
Non-Level-Shifted SIM Reset Input  
Non-Level-Shifted SIM Clock Input  
SIM Enable  
10  
11  
12  
13  
14  
15  
16  
17,21,46  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
30  
31  
32  
33  
34  
35  
36  
37,40  
38  
39  
41  
42  
43  
44  
45  
47  
48  
SIMRST  
SIMCLK  
SIMVCC  
SIMSEL  
SIO  
High for Vsim=3.0V, Low for Vsim=1.8V  
Level-Shifted SIM Bidirectional Data Input/Output  
Level-Shifted SIM Reset Output  
Level-Shifted SIM Clock Output  
Digital Ground  
SRST  
SCLK  
DGND  
VM  
Memory Supply  
VBAT  
Battery Input Voltage  
VIO  
Digital IO Supply  
VRTC  
Real Time Clock Supply  
RSTCAP  
/RESET  
VTCXO  
AVBAT  
VA  
Reset Delay Time Capacitance  
System Reset, Low Active  
TCXO Supply  
Battery Input Voltage for Analog Block Circuits  
Analog Supply  
AGND  
Analog Ground  
VREF  
Reference Voltage Output  
VTCXO and VA Enable  
SRCLKEN  
PWRKEY  
PWRBB  
VIBRATOREN  
ALERTEREN  
LEDEN  
PGND  
Power on/off Key  
Power on/off Signal from Microprocessor  
Vibrator Driver Enable  
Alerter Driver Enable  
LED Driver Enable  
Power Ground  
VIBRATOR  
ALERTER  
LED  
Vibrator Driver Input  
Alerter Driver Input  
LED Driver Input  
BATUSE  
BATDET  
VASEL  
VMSEL  
VBAT  
Battery Type Selection, High for NiMH, Low for Li-ion  
Battery Detect Output  
High for VA enabled with VTCXO, Low for VA enabled with VD  
High for Vm=2.8 V, Low for Vm=1.8V  
Battery Input Voltage  
VCORE  
Digital Core Supply  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
6 of 14  
SS8000G  
APPLICATION INFORMATION  
The SS8000 is a power management chip optimized for use with GSM baseband chipsets in handset applications.  
Figure 1 shows the block diagram of the SS8000.  
Seven low-dropout regulators (core, digital I/O,  
analog, crystal oscillator, real-time clock,  
memory, SIM)  
SIM card interface  
Vibrator, alerter, and LED drivers  
Power sequence and protection logic  
Reset generator  
Under-voltage lockout  
Deep discharge lockout  
Battery charger  
DIGITAL CORE LDO  
VBAT  
48  
OUT  
VREF  
EN  
VCORE  
DGND  
UVLO  
DDLO  
DIGITAL IO LDO  
VBAT  
OVER  
TEMP  
20  
18  
8
32  
33  
OUT  
VIO  
VREF  
EN  
PWRKEY  
PWRBB  
DGND  
MOMORY LDO  
VBAT  
VREF  
OUT  
EN  
VM  
45  
VSEL  
VMSEN  
DGND  
CHARGER  
DETECT  
SIM LDO  
VBAT  
VREF  
OUT  
VSIM  
EN  
12  
SIMVCC  
VSEL  
DGND  
6
CHRDET  
BATDET  
RTC LDO  
VBAT  
43  
22  
26  
27  
OUT  
VREF  
EN  
VRTC  
DGND  
31  
SRCLKEN  
AVBAT  
VA  
ANALOG LDO  
VBAT  
1
2
4
CHRIN  
GATEDRV  
ISENSE  
OUT  
VREF  
EN  
AGND  
BATTERY  
5
7
CHARGER  
CHRCNTL  
BATSNS  
BATUSE  
VASEL  
TCXO LDO  
VBAT  
42  
44  
25  
30  
OUT  
VREF  
EN  
VTCXO  
VREF  
AGND  
13  
SIMSEL  
REFERENCE  
VBAT  
OUT  
EN  
14  
15  
16  
AGND  
SIO  
SRST  
SCLK  
SIM  
28  
LOGIC  
LEVEL  
SHIFTER  
AGND  
DGND  
RESET  
GENERATOR  
17,21,46  
Figure 1. Functional Block Diagram  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
7 of 14  
SS8000G  
APPLICATION INFORMATION (cont.)  
Low Dropout Regulator ( LDOs ) and Reference  
The SS8000 integrates seven LDOs that are optimized  
for their given functions by balancing quiescent current,  
dropout voltage, line/load regulation, ripple rejection,  
and output noise.  
SIM LDO (Vsim)  
The SIM LDO is a regulator that can source 20mA (max)  
with 1.8V or 3.0V output voltage, selected according to  
the supply specs of the subscriber identity modules (SIM)  
card. It supplies the SIMs in the handset. The LDO is  
controlled independently of the others LDO.  
Digital Core LDO (Vcore)  
The digital core LDO is a regulator that can source  
200mA (max) with 1.8V output voltage. It supplies the  
baseband circuitry in the handset. The LDO is optimized  
for very low quiescent current.  
Reference Voltage Output (Vref)  
The reference voltage output is a low noise, high PSRR  
and high precision reference with a guaranteed accuracy  
of 1.5% over temperature. It is used as an internal system  
reference within the SS8000. However, to maintain ac-  
curate specs on every LDO output voltage, it is important  
to avoid loading the reference voltage and it should be  
bypassed to GND with 100 nF minimum.  
Digital IO LDO (Vio)  
The digital I/O LDO is a regulator that can source  
100mA (max) with 2.8V output voltage. It supplies the  
baseband circuitry in the handset. The LDO is optimized  
for very low quiescent current and will power up at the  
same time as the digital core LDO.  
SIM Card Interface  
The SIM card interface circuitry of the SS8000 meets  
all ETSI and IMT-2000 SIM interface requirements. It  
provides level shifting needs for the low-voltage GSM  
controller to communicate with either 1.8V or 3V SIM  
cards. All SIM cards contain a clock input, a reset input,  
and a bi-directional data input/output. The clock and  
reset inputs to SIM cards are level shifted from the sup-  
ply of the digital IO (Vio) of the baseband chipset to the  
SIM supply (Vsim). The bi-directional data bus is inter-  
nally pulled high with a 20kohm resistor on the controller  
side and with a 10kohm resistor on the SIM side.  
Analog LDO (Va)  
The analog LDO is a regulator that can source 150mA  
(max) with 2.8V output voltage. It supplies the analog  
sections of the baseband chipsets. The LDO is opti-  
mized for low frequency ripple rejection in order to reject  
the ripple coming from the RF power amplifier burst fre-  
quency at 217kHz.  
TCXO LDO (Vtcxo)  
The TCXO LDO is a regulator that can source 20mA (max)  
with 2.8V output voltage. It supplies the temperature com-  
pensated crystal oscillator, which needs its own ultra low  
noise supply and very good ripple rejection ratio.  
All pins that connect to the SIM card (Vsim, SRST,  
SCLK, SIO) withstand over 5kV of human-body-mode  
ESD. In order to ensure proper ESD protection, careful  
board layout is required.  
RTC LDO (Vrtc)  
The RTC LDO is a regulator that can source 200µA  
(max) with 1.5V output voltage. It charges up a capaci-  
tor-type backup coin cell to run the real-time clock mod-  
ule. The LDO features the reverse current protection  
and is optimized for ultra low quiescent current since it is  
always on except when the battery voltage is below  
2.5V.  
Vibrator, Alerter, LED Switches  
Three built-in open-drain output switches drive the vi-  
brator motor, alerter beeper and LEDs in the handset.  
Each switch is controlled by the baseband chipset with  
enable pins. The LED switch can sink 150mA to drive up  
to 10 LEDs simultaneously for backlight. The vibrator  
switch can sink 250mA for a vibrator motor. The alerter  
switch can sink 300mA to drive the beeper. All the  
open-drain output switches are high impedance when  
disabled.  
Memory LDO (Vm)  
The memory LDO is a regulator that can source 150mA  
(max) with 1.8V or 2.8V output voltage, selected ac-  
cording to the supply specs of the memory chips. It sup-  
plies the memory circuitry in the handset. The LDO is  
optimized for very low quiescent current and will power  
up at the same time as the digital core LDO.  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
8 of 14  
SS8000G  
APPLICATION INFORMATION (cont.)  
Power Sequence and Protection Logic  
The SS8000 handles the power-ON and -OFF of the  
handset. It is possible to start the power-on sequence in  
three different ways:  
are turned on when SRCLKEN is high. The microproc-  
essor then starts and pulls PWRBB high after which the  
PWRKEY can be released. Pulling PWRBB high will  
also turn on the handset. This is the case when the  
alarm in the RTC expires.  
n
n
Pulling PWRKEY low  
Pulling PWRBB high  
Applying an external supply on CHRIN will also turn the  
handset on. If the SS8000 is in the UVLO state, ap-  
plying the adapter will not start up the LDOs.  
n
CHRIN exceeds Chr_Det threshold  
Pulling PWRKEY low is the normal way of turning on the  
handset. This will turn on Vcore, Vio, Vm LDOs as long  
as the PWRKEY is held low. The Vtcxo and Va LDOs  
Table 1 shows states of the handset and the LDOs  
Table 1. States of Mobile Handset and LDO  
Phone State  
No Battery or Vbat < 2.5V  
2.5V < Vbat < 3.2V  
Pre-Charging  
Charger-on  
Chr_on -UV  
PWRBB (–PWRKEY) SRCLKEN Vrtc  
Vd,Vio,Vm Va, Vtcxo  
X
L
L
L
X
X
X
X
L
X
X
X
X
X
L
Off  
On  
On  
On  
On  
On  
On  
Off  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
On  
Off  
On  
On  
H
H
L
L
H
H
H
H
Switched off  
Stand-by  
L
H
H
Active  
L
H
Undervoltage Lockout (UVLO)  
RSTCAP:  
tRESET = 2  
The UVLO function in the SS8000 prevents startup  
when initial voltage of the main battery is below the 3.2V  
threshold. When the battery voltage is greater than 3.2V,  
the UVLO comparator trips and the threshold is reduced  
to 3.0V. This allows the handset to start normally until  
the battery decays to below 3.0V.  
ms  
nF  
´ CRSTCAP  
(1)  
At power-off, RESET will be kept low.  
Over-temperature Protection  
If the die temperature of the SS8000 exceeds 165°C,  
the SS8000 will disable all the LDOs except the RTC  
LDO. Once the over-temperature state is resolved, a  
new power-on sequence is required to enable the LDOs.  
Once the SS8000 enters a UVLO state, it draws very  
low quiescent current, typically 30µA. The RTC LDO is  
still running until the DDLO disables it. In this mode the  
SS8000 draws 5µA of quiescent current.  
Battery Charger  
Deep Discharge Lockout (DDLO)  
The SS8000 battery charger can be used with Li-ion  
and NiMH batteries. The BATUSE pin can set SS8000  
to fit the battery type. BATUSE is set low when a Li-ion  
battery is used, and set high when a NiMH battery is  
used. The SS8000 charges the battery in three phases:  
pre-charging, constant current mode charging, and con-  
stant voltage mode charging. Figure 2 shows the flow  
chart of charger behavior. The circuitry of the SS8000  
combines a PMOS transistor, diode, current-sense re-  
sistor externally to form a simple and low cost linear  
charger shown in Figure 3. The SS8000 provides a  
pulsed top-off charging algorithm through the CHRCNTL  
pin from the baseband chipset.  
The DDLO in the SS8000 has two functions:  
l To turn off the Vrtc LDO.  
l To shut down the handset when the software fails to  
turn off the phone when the battery drops below 3.0V.  
The DDLO will shut down the handset when the bat-  
tery falls below 2.5 V to prevent further discharge and  
damage to the cells.  
Reset  
The SS8000 contains a reset circuit that is active at  
both power-up and power-down. The RESET pin is held  
low at initial power-up, and the reset delay timer is  
started. The delay is set by an external capacitor on  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
9 of 14  
SS8000G  
APPLICATION INFORMATION (cont.)  
NO-CHARGING  
CHARGER  
DETECTOR  
NO  
CHRIN > BATSNS  
YES  
YES  
VBAT > UVLO  
NO  
NiMH  
BATTERY  
TYPE  
PRE-CHARGING  
Li+  
BATUSE=LOW  
BATUSE=HIGH  
CONSTANT  
CURRENT MODE  
PULSE CHARGE  
MODE  
NO  
NO  
VBAT > 4.2V  
YES  
VBAT > 5.1V  
YES  
CONSTANT  
VOLTAGE MODE  
CHARGER OFF  
GATEDRV=HIGH  
NO  
NO  
VBAT < 4.3V  
YES  
VBAT < 5.1V  
YES  
CHARGER  
OFF  
NO  
VBAT < 4.3V  
YES  
Figure 2. Batter Charger Flow Chart  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
10 of 14  
SS8000G  
APPLICATION INFORMATION (cont.)  
Battery Used  
LED SW  
Battery Detect  
Va Selection  
Vm Selection  
Vcore  
Alerter SW  
Vibrator SW  
C17  
4.7µF  
R4  
PGND  
100K  
DGND  
1
36  
35  
34  
33  
32  
LEDEN  
Charger In  
LED SW Enable  
CHRIN  
GATEDRV  
NC  
2
ALERTEREN  
VIBRATOREN  
Q1  
Alerter SW Enable  
1µF  
DGND  
3
4
Power On  
CLK ON  
PWRBB  
PWRKEY  
SRCLKEN  
ISENSE  
CHRCNTL  
D1  
5
6
31  
Charge Control  
Charger Detect  
CHRDET  
7
8
30  
29  
28  
BATSNS  
VSIM  
VREF  
NC  
SWI  
SW-PB  
C16  
1µF  
R1  
0.2W  
9
SIMIO  
AGND  
10  
27  
26  
25  
SIMRST  
SIMCLK  
SIMVCC  
VA  
AVBAT  
VTCXO  
LI or NiMH  
BATTERY  
11  
12  
DGND  
C15  
10µF  
AGND  
Vsim  
DGND PGND  
C2  
1µF  
C13  
1µF  
SIM Pin of  
GSM Processor  
10µF  
AGND  
DGND  
Vsim Enable  
Vsim Slectioin  
AGND  
C12  
C4  
I/O To SIM Card  
RST To SIM Card  
CLK To SIM Card  
0.1µF  
1µF  
C3  
C11  
0.22µF  
4.7µF  
DGND  
Figure 3. Typical Application Circuit  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
11 of 14  
SS8000G  
APPLICATION INFORMATION (cont.)  
Charge Detection  
If the battery voltage is below 4.2V when charging a  
Li-ion battery (5.1V for a NiMH battery), the constant  
current charging mode is used.  
The SS8000 charger block has a detection circuit that  
determines via the CHRIN pin if an adapter has been  
connected. If the adapter voltage exceeds the battery  
voltage by 3.75%, the CHRDET output will go high. If  
the adapter is then removed and the voltage at the  
CHRIN pin drops to only 2.5% above the VBAT pin,  
CHRDET goes low.  
Constant Voltage Charging Mode  
This mode only applies to Li-ion battery charging. If the  
battery has reached the final charge voltage, a constant  
voltage is applied to the battery and keeps it at 4.2V.  
This termination of charging is determined by the base-  
band chip internally, which will pull the CHRCNTL low to  
stop the charger.  
Pre-Charging mode  
When the battery voltage is below the UVLO threshold,  
the charge current is in the pre-charging mode. There  
are two steps in this mode. While the battery voltage is  
deeply discharged below 2V, a 10mA trickle current from  
the SS8000 charges the battery. When the battery  
voltage exceeds 2V, the pre-charge current is enabled,  
which allows 10mV (typically) across the external cur-  
rent sense resistor. This pre-charge current can be cal-  
culated:  
Once the battery voltage exceeds 4.3V for a Li-ion bat-  
tery (5.1V for a NiMH battery), a hardware over-voltage  
protection (OV) should be activated to turn off the  
charger block of the SS8000.  
Pulsed Charging Algorithm  
The SS8000 provide a pulsed top-off charging algo-  
rithm via the CHRCNTL pin. The control signal from the  
baseband chipset limits the charging duty cycle. This  
charging algorithm combines the efficiency of  
switch-mode chargers with the simplicity and low cost of  
linear chargers.  
VSENSE 10mV  
IPRE _ CHARGING  
=
=
(2)  
R1  
R1  
Constant Current Charging Mode  
Once the battery voltage has exceeded the UVLO  
threshold, the charger will switch to the constant current  
charging mode. The SS8000 allows 160mV (typically)  
across the external current sense resistor. This constant  
current can be calculated.  
Battery Voltage Monitor  
As Table 2 shows, the relationship between battery  
voltage and charger control with the corresponding sig-  
nals is listed. When Vbat <3.2V, an UVB signal is active  
low. When Vbat >/= 4.3V, an OV signal is active and  
charging is halted.  
VSENSE 160mV  
ICONSTANT  
=
=
(3)  
R1  
R1  
Table 2. Charger and Voltage Detection  
Chr_Det  
Output  
Charger  
Condition  
Vbat  
Charger_on  
Chr_cntl  
-UV  
Batuse  
Any Vbat  
L
X
H
H
H
H
X
L
L
X
H
H
H
H
X
X
L
X
X
X
L
No-Charging  
No-Charging  
Pre-Charging  
CC mode  
Vbat > 3.2V  
Vbat < UV  
X
H
H
H
3.2V<Vbat<4.2V  
Vbat = 4.2V  
3.2V<Vbat  
H
H
H
L
CV mode  
H
CC mode  
Notes: OV terminates charging at 4.3V for Li-ion battery or 5.1V for NiMH battery.  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
12 of 14  
SS8000G  
APPLICATION INFORMATION (cont.)  
External Components Selection  
Charger FET Selection  
Input Capacitor Selection  
In selecting the P-channel MOSFET for the charger,  
consider the minimum drain-source breakdown voltage  
(BVDS), the minimum turn-on threshold voltage (VGS),  
and current-handling and power-dissipation capabilities.  
For each of the input pins (VBAT) of the SS8000, a  
10µF, low ESR capacitor is recommended for local by-  
pass. MLCC capacitors provide the best combination of  
low ESR and small size. Using a 10µF tantalum capaci-  
tor with a small (1µF or 2.2µF) ceramic in parallel is an  
alternative low cost solution.  
Charger Diode Selection  
The diode shown in Figure 3 is used to prevent the bat-  
tery from discharging through the P-channel MOSFETs  
body-diode into the charger’s internal circuits. Choose a  
diode with a current rating high enough to handle the  
battery charging current and a voltage rating greater  
than Vbat.  
For the charger input pin (CHRIN), a 1µF ceramic ca-  
pacitor is recommended for bypass.  
LDO Capacitor Selection  
The digital core, analog, and memory LDOs require a  
4.7µF capacitor, the digital IO and SIM TCXO LDOs  
require a 1µF capacitor and the RTC LDO requires a  
0.22µF capacitor. Larger value capacitors may be used  
for improved noise or PSRR performance, but do not  
forget to consider the settling time that is acceptable for  
the application. For these, MLCC is recommended.  
Layout Guidelines  
Use the following general guidelines when designing the  
printed circuit boards:  
1. Split the battery connection to the VBAT, AVBAT pins  
of the SS8000. Locate the input capacitor as close  
to the pins as possible.  
2. Va and Vtcxo capacitors should be returned to AGND.  
3. Split the ground connection. Use separate traces or  
planes for the analog, digital, and power grounds (i.e.  
AGND, DGND, PGND pins of the SS8000, respec-  
tively) and tie them together at a single point, prefera-  
bly close to the battery return.  
RESET Capacitor Selection  
RESET is held low during power-up for a delay until the  
LDOs are up. The delay is set by an external capacitor  
on the RESCAP pin. It can be determined by Eq.(1). A  
100nF capacitor will produce a 200ms delay.  
4. Run a separate trace from the BATSNS pin to the  
battery to prevent any voltage drop error in the meas-  
urement.  
5. Kelvin-connect the charge-current sense-resistor by  
running separate traces to the BATSNS and ISENSE  
pins. Make sure that the traces are terminated as  
close to the resistor’s body as possible.  
Setting the Charge Current  
The SS8000 is capable of charging the battery with a  
charging current programmed by an external sense re-  
sistor, Rsen. It is calculated using Eq.(3). If the charge  
current is defined, Rsen can be found.  
Appropriate sense resistors are available from the fol-  
lowing vendors: Vishay Dale, IRC, Panasonic.  
6. Careful use of copper area, weight, and multi-layer  
construction will help to improve thermal performance.  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
13 of 14  
SS8000G  
PHYSICAL DIMENSIONS  
C
C
0.1  
0.08  
C
B
A
D
M
PIN 1 CORNER  
E
M
A2  
A1  
C
0.1  
A
J
0.1  
C
A B  
PIN 1 CORNER  
48  
37  
Taping Specification  
36  
1
P
K
e
0.1  
C A B  
e/2  
Feed Direction  
Typical QFN Package Orientation  
12  
25  
EXPOSED DIE  
ATTACH PAD  
24  
13  
48X L  
M
0.1  
C
A B  
48X b  
VIEW M-M  
Note:  
Coplanarity applies to leads, corner leads and die attach pad.  
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOL  
MIN.  
0.80  
0
0.75  
0.20  
NOM.  
-----  
-----  
-----  
0.25  
MAX.  
1.00  
0.05  
1.00  
0.30  
MIN.  
0.031  
0
0.030  
0.008  
NOM.  
-----  
-----  
-----  
0.010  
MAX.  
0.039  
0.002  
0.039  
0.012  
A
A1  
A2  
b
D
E
e
J
K
7 BSC  
7 BSC  
0.5 BSC  
4.60  
4.60  
0.40  
0.276 BSC  
0.276 BSC  
0.020 BSC  
0.181  
4.50  
4.50  
0.35  
4.70  
4.70  
0.45  
0.177  
0.177  
0.014  
0.185  
0.185  
0.018  
0.181  
0.016  
L
P
45° REF  
45° REF  
Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no  
guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no  
responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its  
use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including  
without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to  
the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of  
Silicon Standard Corporation or any third parties.  
12/06/2004 Rev.2.10  
www.SiliconStandard.com  
14 of 14  

相关型号:

SS8000GQTR

GSM Power-Management System
SSC

SS8000GQTY

GSM Power-Management System
SSC

SS8012G

Rail-to-Rail I/O Op. Amp.
SSC

SS8012GTR

Rail-to-Rail I/O Op. Amp.
SSC

SS8014

300mA Low-Noise LDO Regulators
SSC

SS8014-15GTR

300mA Low-Noise LDO Regulators
SSC

SS8014-18GTR

300mA Low-Noise LDO Regulators
SSC

SS8014-25GTR

300mA Low-Noise LDO Regulators
SSC

SS8014-27GTR

300mA Low-Noise LDO Regulators
SSC

SS8014-28GTR

300mA Low-Noise LDO Regulators
SSC

SS8014-29GTR

300mA Low-Noise LDO Regulators
SSC

SS8014-30GTR

300mA Low-Noise LDO Regulators
SSC