SST89C58-33-AC-TQJ [SST]

FlashFlex51 MCU; FlashFlex51 MCU
SST89C58-33-AC-TQJ
型号: SST89C58-33-AC-TQJ
厂家: SILICON STORAGE TECHNOLOGY, INC    SILICON STORAGE TECHNOLOGY, INC
描述:

FlashFlex51 MCU
FlashFlex51 MCU

文件: 总50页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
FEATURES:  
High Current Drive on Port 1 (5, 6, 7) pins  
Three 16-bit Timer/Counter  
Multi-Purpose 8-bit 8051 Family Compatible  
Microcontroller Unit (MCU) with Embedded  
SuperFlash Memory  
1
Programmable Serial Port (UART)  
Six Interrupt Sources at 2 Priority Levels  
Selectable Watchdog Timer (WDT)  
Four 8-bit I/O Ports (32 I/O Pins)  
Fully Software and Development Toolset  
Compatible as well as Pin-For-Pin Package  
Compatible with Standard 8xC5x  
Microcontrollers  
2
3
256 Bytes Register/Data RAM  
TTL- and CMOS-Compatible Logic Levels  
Extended Power-Saving Modes  
20/36 KByte Embedded High Performance  
Flexible SuperFlash EEPROM  
4
– Idle Mode  
– Power Down Mode with External Interrupt  
Wake-up  
– One 16/32 KByte block (128-Byte  
sector size)  
– One 4 KByte block (64-Byte sector size)  
– Individual Block Security Lock with Softlock™  
feature  
– 87C5x Programmer Compatible  
– Concurrent Operation during In-Application  
Programming™(IAP™)  
– Memory Re-Mapping for Interrupt Support  
during IAP  
5
– Standby (Stop Clock) Mode  
High Speed Operation at 5 Volts (0 to 33MHz)  
Low Voltage (2.7V) Operation (0 to 12MHz)  
PDIP-40, PLCC-44 and TQFP-44 Packages  
Temperature Ranges:  
6
7
– Commercial (0°C to +70°C)  
– Industrial (-40°C to +85°C)  
Support External Address Range up to  
64 KByte of Program and Data Memory  
8
PRODUCT DESCRIPTION  
via a standard 87C5x OTP EPROM programmer fitted  
with a special adapter and firmware for SST89C54/58  
devices. During the power-on reset, the SST89C54/58  
can be configured as a master for source code storage  
or as a slave to an external host for In-Application  
Programming (IAP) operation. SST89C54/58 is de-  
signed to be programmed “In-System” and “In-Applica-  
tion” on the printed circuit board for maximum flexibility.  
The device is pre-programmed with a sample bootstrap  
loader in the memory (see Note 1), demonstrating the  
initial user program code loading or subsequent user  
code updating via the “IAP” operation.  
SST89C54 and SST89C58 are members of the  
FlashFlex51 family of 8-bit microcontrollers. The  
FlashFlex51 family is a family of embedded  
microcontrollerproductsdesignedandmanufacturedon  
the state-of-the-art SuperFlash CMOS semiconductor  
process technology.  
9
10  
11  
12  
13  
14  
15  
16  
As a member of the FlashFlex51 controller family, the  
SST89C54/58 uses the same powerful instruction set,  
has the same architecture, and is pin-for-pin compatible  
with standard 8xC5x microcontroller devices.  
In addition to 20/36 KByte of SuperFlash EEPROM  
program memory on-chip, the SST89C54/58 can ad-  
dress up to 64 KByte of program memory external to the  
chip. The SST89C54/58 have 256 x 8 bits of on-chip  
RAM. Up to 64 KByte of external data memory (RAM)  
can be addressed.  
SST89C54/58 comes with 20/36 KByte of  
integrated on-chip flash EEPROM program memory  
using the patented and proprietary Silicon Storage  
Technology, Inc. (SST) CMOS SuperFlash EEPROM  
technology with the SST field enhancing tunneling  
injector split-gate memory cells. The SuperFlash  
memory is partitioned into 2 independent program  
memory blocks. The primary SuperFlash Block 0 occu-  
pies16/32KByteofinternalprogrammemoryspaceand  
the secondary SuperFlash Block 1 occupies 4 KByte of  
SST89C54/58’s internal program memory space. The 4  
KByte secondary SuperFlash block can be mapped to  
the highest or lowest location of the 64 KByte address  
space; it can also be hidden from the program counter  
and used as an independent EEPROM-like data  
memory. The flash memory blocks can be programmed  
Thehighlyreliable,patentedSuperFlashtechnologyand  
memory cell architecture have a number of important  
advantages for designing and manufacturing flash  
EEPROMs, when compared with other approaches.  
These advantages translate into significant cost and  
reliability benefits for our customers.  
Note 1: The sample bootstrap loader is for the user’s reference and  
convenience only. SST does not guarantee the functionality  
or the usefulness of the sample bootstrap loader. Chip-Erase  
or Block-Erase operations will erase the pre-programmed  
sample code.  
© 2000 Silicon Storage Technology, Inc. The SST logo and SuperFlash are registered trademarks of Silicon Storage Technology, Inc. FlashFlex, In-Application Programming, IAP and SoftLock are  
344-2 8/00 trademarks of Silicon Storage Technology, Inc. These specifications are subject to change without notice.  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE OF CONTENTS  
PRODUCT FEATURES ......................................................................................................................................... 1  
PRODUCT DESCRIPTION .................................................................................................................................... 1  
FUNCTIONAL BLOCKS ......................................................................................................................................... 4  
Functional Block Diagram ............................................................................................................................... 4  
PIN ASSIGNMENTS .............................................................................................................................................. 5  
Pin Descriptions .............................................................................................................................................. 6  
MEMORY ORGANIZATION ................................................................................................................................... 8  
Program Memory ............................................................................................................................................ 8  
Memory Re-Mapping..................................................................................................................................... 10  
Activation and Deactivation of Memory Re-Mapping ............................................................................... 11  
Data Memory ................................................................................................................................................ 13  
Special Function Registers (SFR) ................................................................................................................. 13  
CPU Related SFRs.................................................................................................................................. 13  
Flash Memory Programming SFRs.......................................................................................................... 14  
Watchdog Timer SFRs ............................................................................................................................ 17  
Timer/Counters SFRs .............................................................................................................................. 18  
Interface SFRs......................................................................................................................................... 18  
FLASH MEMORY PROGRAMMING .................................................................................................................... 18  
External Host Programming Mode ................................................................................................................ 18  
Product Identification ............................................................................................................................... 20  
External Host Mode Commands .............................................................................................................. 20  
External Host Mode Clock Source ........................................................................................................... 21  
Arming Command.................................................................................................................................... 21  
Programming a SST89C54/58 ................................................................................................................. 21  
Flash Operation Status Detection (Ext. Host Handshake) ....................................................................... 22  
In-Application Programming Mode ................................................................................................................ 26  
In-Application Programming Mode Clock Source..................................................................................... 26  
IAP Enable Bit ......................................................................................................................................... 26  
In-Application Programming Mode Commands........................................................................................ 26  
Polling...................................................................................................................................................... 29  
Interrupt Temination................................................................................................................................. 30  
TIMERS/COUNTERS........................................................................................................................................... 31  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
2
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
SERIAL I/O (UART).............................................................................................................................................. 31  
WATCHDOG TIMER ............................................................................................................................................ 32  
1
SECURITY LOCK ................................................................................................................................................ 32  
2
Hard Lock................................................................................................................................................. 32  
SoftLock ................................................................................................................................................... 32  
3
Status of the Security Lock ........................................................................................................................... 33  
RESET ................................................................................................................................................................ 34  
Power-On Reset ........................................................................................................................................... 34  
POWER-SAVING MODES ................................................................................................................................... 35  
CLOCK INPUT OPTIONS .................................................................................................................................... 37  
4
5
ELECTRICAL SPECIFICATION ........................................................................................................................... 38  
Absolute Maximum Ratings .......................................................................................................................... 38  
Operation Range........................................................................................................................................... 38  
6
Reliability Characteristics .............................................................................................................................. 38  
DC Electrical Characteristics......................................................................................................................... 39  
AC Electrical Characteristics ......................................................................................................................... 42  
Explanation Of Symbols .......................................................................................................................... 43  
External Clock Drive ................................................................................................................................ 44  
Serial Port Timing - Shift Register Mode .................................................................................................. 45  
7
8
9
PRODUCT ORDERING INFORMATION ............................................................................................................. 46  
Part Number Valid Combinations .................................................................................................................. 46  
10  
11  
12  
13  
14  
15  
16  
PART NUMBER CROSS REFERENCE GUIDE .................................................................................................. 47  
PACKAGING DIAGRAMS .................................................................................................................................... 48  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
3
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
FUNCTIONAL BLOCKS  
FUNCTIONAL BLOCK DIAGRAM  
Program/Erase  
SuperFlash  
EEPROM  
4K x 8  
8
SuperFlash EEPROM  
16/32K x 8  
Port 0  
I/O  
& IAP  
Control  
8
T0  
RST  
Power Mode  
Management  
I/O  
SFRs  
Port 1  
V
SS  
T1  
T2  
V
DD  
CPU  
8
ALE/PROG#  
PSEN#  
EA#  
I/O  
Security  
Lock  
Bus Controller  
Oscillator  
Port 2  
WDT  
8
I/O  
Mode Interrupt  
Control Control  
RAM  
256 x 8  
8-bit  
UART  
Port 3  
&
Timing  
344 ILL B1.1  
XTAL1 XTAL2  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
4
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
PIN ASSIGNMENTS  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
DD  
(T2) P1.0  
(T2 Ex) P1.1  
P1.2  
1
1
P0.0 (AD0)  
P0.1 (AD1)  
P0.2 (AD2)  
P0.3 (AD3)  
P0.4 (AD4)  
P0.5 (AD5)  
P0.6 (AD6)  
P0.7 (AD7)  
EA#  
2
3
P1.3  
4
44 43 42 41 40 39 38 37 36 35 34  
33  
2
P1.4  
5
1
P1.5  
P1.6  
P0.4 (AD4)  
P0.5 (AD5)  
P0.6 (AD6)  
P0.7 (AD7)  
EA#  
P1.5  
6
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
2
P1.6  
7
40-Pin PDIP  
Top View  
3
P1.7  
P1.7  
8
3
4
RST  
RST  
9
5
(RXD) P3.0  
NC  
(RXD) P3.0  
(TXD) P3.1  
(INT0#) P3.2  
(INT1#) P3.3  
(T0) P3.4  
(T1) P3.5  
(WR#) P3.6  
(RD#) P3.7  
XTAL2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
44-Pin TQFP  
Top View  
6
ALE/PROG#  
PSEN#  
NC  
4
7
(TXD) P3.1  
(INT0#) P3.2  
(INT1#) P3.3  
(T0) P3.4  
(T1) P3.5  
ALE/PROG#  
PSEN#  
P2.7 (A15)  
P2.6 (A14)  
P2.5 (A13)  
P2.4 (A12)  
P2.3 (A11)  
P2.2 (A10)  
P2.1 (A9)  
P2.0 (A8)  
8
9
P2.7 (A15)  
P2.6 (A14)  
P2.5 (A13)  
5
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
6
XTAL1  
V
SS  
7
344 ILL F18.1  
344 ILL F19.1  
FIGURE 1: PIN ASSIGNMENTS FOR 40-PIN PLASTIC DIP  
FIGURE 2: PIN ASSIGNMENTS FOR 44-PIN TQFP  
8
PI-PACKAGE  
TQJ-PACKAGE  
9
10  
11  
12  
13  
14  
15  
16  
6
5
4
3
2
1
44 43 42 41 40  
7
P1.5  
P1.6  
P0.4 (AD4)  
P0.5 (AD5)  
P0.6 (AD6)  
P0.7 (AD7)  
EA#  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
8
9
P1.7  
10  
11  
12  
13  
14  
15  
16  
17  
RST  
(RXD) P3.0  
NC  
44-Pin PLCC  
Top View  
NC  
(TXD) P3.1  
(INT0#) P3.2  
(INT1#) P3.3  
(T0) P3.4  
(T1) P3.5  
ALE/PROG#  
PSEN#  
P2.7 (A15)  
P2.6 (A14)  
P2.5 (A13)  
18 19 20 21 22 23 24 25 26 27 28  
344 ILL F20.1  
FIGURE 3: PIN ASSIGNMENTS FOR 44-PIN PLCC  
NJ-PACKAGE  
Note: NC pins must be left unconnected.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
5
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 1: PIN DESCRIPTIONS  
Symbol  
Type1  
Name and Functions  
P0[7:0]  
I/O1  
Port 0: Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each  
pin can sink several LS TTL inputs. Port 0 pins that have 1s written to them  
float, and in that state can be used as high-impedance inputs. Port 0 is also the  
multiplexed low-order address and data bus during accesses to external  
memory. In this application it uses strong internal pull-ups when transitioning  
to 1s. Port 0 also receives the code bytes during FLASH MEMORY  
programming, and outputs the code bytes during program verification. External  
pull-ups are required during program verification.  
P1[7:0]  
I/O with internal Port 1: Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1  
pull-ups  
output buffers can drive LS TTL inputs. Port 1 pins that have 1s written to them  
are pulled high by the internal pull-ups, and in that state can be used as  
inputs. As inputs, Port 1 pins that are externally pulled low will source current  
(IIL, on the data sheet) because of the internal pull-ups. P1(5, 6, 7) have high  
current drive of 16mA. Port 1 also receives the low-order address bytes during  
FLASH MEMORY programming and program verification.  
P1[0]  
I
I
T2: (external count input to Timer/Counter 2), clock-out  
P1[1]  
T2EX: (Timer/Counter 2 capture/reload trigger and direction control)  
P2[7:0]  
I/O with internal Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins  
pull-ups  
that have 1s written to them are pulled high by the internal pull-ups, and  
in that state can be used as inputs. As inputs, Port 2 pins that are externally  
pulled low will source current (IIL, on the data sheet) because of the internal  
pull-ups. Port 2 sends the high-order address byte during fetches from external  
Program memory and during accesses to external Data Memory that use 16-bit  
address (MOVX@DPTR). In this application it uses strong internal pull-ups  
when outputting 1s. During accesses to external Data Memory that use 8-bit  
addresses (MOVX@Ri), Port 2 sends the contents of the P2 Special Function  
Register. Port 2 also receives some control signals and a partial of high-order  
address bits during FLASH MEMORY programming and program verification.  
P3[7:0]  
I/O with internal Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3  
pull-ups  
output buffers could drive LS TTL inputs. Port 3 pins that have 1s written to them  
are pulled high by the internal pull-ups, and in that state can be used as inputs.  
As inputs, Port 3 pins that are externally pulled low will source current (IIL, on the  
data sheet) because of the pull-ups. Port 3 also serves the functions of various  
special features of the FlashFlex51 Family. Port 3 also receives some control  
signals and a partial of high-order address bits during FLASH MEMORY  
programming and program verification.  
P3[0]  
P3[1]  
P3[2]  
P3[3]  
P3[4]  
P3[5]  
P3[6]  
P3[7]  
I
O
I
RXD: Serial input line  
TXD: Serial output line  
INT0#: External Interrupt 0  
INT1#: External Interrupt 1  
T0: Timer 0 external input  
I
I
I
T1: Timer 1 external input  
O
O
WR#: External Data Memory Write strobe  
RD#: External Data Memory Read strobe  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
6
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
PIN DESCRIPTIONS (CONTINUED)  
Symbol  
Type1  
Name and Functions  
PSEN#  
O/I  
Program Store Enable: PSEN# is the Read strobe to External Program  
Memory. When the SST89C54/58 are executing from Internal Program  
Memory, PSEN# is inactive (high). When the device is executing code from  
External Program Memory, PSEN# is activated twice each machine cycle,  
except that two PSEN# activations are skipped during each access to External  
Data Memory. While the RST input is continually held high (for more than ten  
machine cycles), a forced high-to-low input transition on the PSEN# pin will bring  
the device into the External Hostmode for the internal flash memory  
programming operation.  
1
2
3
RST  
I
I
Reset: A high logic state on this pin for two machine cycles (at least 24 oscillator  
periods), while the oscillator is running resets the device. After a successful reset  
is completed, if the PSEN# pin is driven by an input force with a high-to-low  
transition while the RST input pin is continually held high, the device will enter the  
External Hostmode for the internal flash memory programming operation,  
otherwise the device will enter the Normaloperation mode.  
4
5
EA#  
External Access Enable: EA# must be connected to VSS in order to enable the  
SST89C54/58 to fetch code from External Program Memory locations starting  
at 0000h up to FFFFh. Note, however, that if the Security Lock is activated on  
either block, the logic level at EA# is internally latched during reset. EA# must be  
connected to VDD for internal program execution. The EA# pin can tolerate a high  
voltage2 of 12V (see Electrical Specification).  
6
7
ALE/PROG#  
I/O  
Address Latch Enable: ALE is the output signal for latching the low byte of the  
address during accesses to external memory. This pin is also the programming  
pulse input (PROG#).  
8
XTAL1  
XTAL2  
I
Oscillator: Input and output to the inverting oscillator amplifier. XTAL1 is input to  
O
internal clock generation circuits from an external clock source.  
9
VDD  
I
Power Supply: Supply voltage during normal, Idle, Power Down, and Standby  
Mode operations.  
Vss  
I
Ground: Circuit ground. (0V reference)  
10  
11  
12  
13  
14  
15  
16  
344 PGM T1.6  
Note: 1)  
2)  
I
= Input  
O = Output  
It is not necessary to receive a 12V programming supply voltage during flash programming.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
7
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
MEMORY ORGANIZATION  
The 4K x8 secondary SuperFlash block is organized as  
64 uniform sectors with sector address from A15 to A6.  
Each sector contains 2 rows with row address from A15  
to A5. Each row contains 32 Bytes with byte address  
fromA4toA0.Figure4showsthesectororganizationfor  
SST89C54/58.  
The SST89C54/58 have separate address spaces for  
program and data memory.  
Program Memory  
There are two internal flash memory blocks in the  
SST89C54/58. The primary flash memory Block 0 has  
16/32 KByte and occupies the address space 0000h to  
3FFFh/7FFFh.ThesecondaryflashmemoryBlock1has  
4 KByte and occupies the address space F000h to  
FFFFh.  
When internal code operation is enabled (EA# = 1), the  
primary 16/32 KByte flash memory block is always  
visible to the program counter for code fetching. Figures  
5 and 6 show the program memory organizations for the  
SST89C54/58.  
When internal code operation is enabled (EA# = 1), the  
secondary 4 KByte flash memory block is selectively  
visible for code fetching. The secondary block is always  
accessible through the SuperFlash mailbox registers:  
SFCM, SFCF, SFAL, SFAH, SFDT and SFST. When bit  
7 of the SuperFlash Configuration mailbox register  
(SFCF[7]),SFRaddresslocationB1h,isset,thesecond-  
ary 4 KByte block will be visible by program counter.  
The16/32Kx8primarySuperFlashblockisorganizedas  
128/256uniformsectorswithsectoraddressfromA15to  
A7. Each sector contains 2 rows with row address from  
A15toA6.Eachrowhas64Byteswithbyteaddressfrom  
A5 to A0.  
7FFFh  
FFFFh  
Sector 255  
7F80h  
Sector 63  
FFC0h  
4000h  
89C58  
3FFFh  
Sector 127  
3F80h  
89C54  
F03Fh  
007Fh  
Sector 0  
Sector 0  
0000h  
F000h  
Block 0 (16/32 KByte)  
Block 1 (4 KByte)  
344 ILL F47.6  
Primary  
Secondary  
FIGURE 4: SECTOR ORGANIZATION  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
8
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
EA# = 1 & SFCF[7] = 1  
EA# = 1 & SFCF[7] = 0  
FFFFh  
EA# = 0  
1
FFFFh  
FFFFh  
4 KByte  
INTERNAL  
(Block 1)  
F000h  
EFFFh  
2
48 KByte  
EXTERNAL  
3
64 KByte  
44 KByte  
EXTERNAL  
EXTERNAL  
4
5
4000h  
3FFFh  
4000h  
3FFFh  
6
16 KByte  
16 KByte  
INTERNAL  
(Block 0)  
INTERNAL  
(Block 0)  
7
0000h  
0000h  
0000h  
344 ILL F21.1  
8
FIGURE 5: SST89C54 PROGRAM MEMORY ORGANIZATION  
9
10  
11  
12  
13  
14  
15  
16  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
9
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
EA# = 1 & SFCF[7] = 1  
EA# = 1 & SFCF[7] = 0  
FFFFh  
EA# = 0  
FFFFh  
FFFFh  
4 KByte  
INTERNAL  
(Block 1)  
F000h  
EFFFh  
32 KByte  
EXTERNAL  
28 KByte  
EXTERNAL  
64 KByte  
EXTERNAL  
8000h  
7FFFh  
8000h  
7FFFh  
32 KByte  
32 KByte  
INTERNAL  
(Block 0)  
INTERNAL  
(Block 0)  
0000h  
0000h  
0000h  
344 ILL F11.1  
FIGURE 6: SST89C58 PROGRAM MEMORY ORGANIZATION  
Memory Re-mapping  
The SST89C54/58 memory re-mapping feature allows  
users to reorganize internal Flash memory sectors so  
that interrupts may be serviced when Block 0 of the  
internal Flash is being programmed. Since Block 0  
occupies the low order program address space of the  
8051 architecture where the interrupt vectors reside,  
those interrupt vectors will normally not be available  
when Block 0 is being programmed.  
SST89C54/58 provides four options of Memory Re-  
mapping (Refer to Table 2). When the lowest 4 KBytes  
are remapped, any program access within logical ad-  
dress range 0000h 0FFFh will have the 4 most signifi-  
cant address bits forced to 1, redirecting the access to  
F000h FFFFh. Note that the physical contents of the  
re-mapped portion of Block 0 (i.e. physical locations  
0000h 0FFFh in the current example) will not be  
accessible. Block 1 will still also be accessible through  
F000h FFFFh. Figures 7 and 8 show re-mapped  
program memory organization for the SST89C54/58.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
10  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Activation and Deactivation of Memory Re-mapping  
The contents of MAP_EN[1:0] are only updated accord-  
ing to Re-Map[1:0] on a successful reset. Any subse-  
quentalterationtotheRe-Map[1:0]bitswillnotautomati-  
cally change the MAP_EN[1:0] bits without a reset.  
Similarly, changes to MAP_EN[1:0] during program ex-  
ecution will not change Re-Map[1:0] bits.  
The actual amount of memory that is re-mapped is  
controlledbyMAP_EN[1:0]bitsasshowninTable2.The  
MAP_EN[1:0] bits are the same bits as SFCF[1:0]. The  
MAP_EN[1:0]bitsareundersoftwarecontrolandcanbe  
changed during program execution. Since changing re-  
mapping will cause program re-location, it is advisable  
that the instruction that changes the MAP_EN[1:0] be in  
the portion of memory that is not affected by the re-  
mapping change.  
1
2
To deactivate memory re-mapping, a CHIP-ERASE op-  
eration will revert Re-Map[1:0] to the default status of  
11, disabling re-mapping. Programming 00b to  
SFCF[1:0] register also deactivates memory re-map-  
ping.TheeffectofprogrammingRe-Map[1:0]isavailable  
only after the next reset. Refer to In-Application Mode  
Commands section for more detailed information.  
3
The MAP_EN[1:0] bits are initialized at Reset according  
to the contents of two non-volatile register bits, Re-  
Map[1:0](asshowninTable2).TheRe-Map[1:0]bitsare  
programmed via PROG_RB1 and PROG_RB0 External  
HostModecommands. RefertoExternalHostProgram-  
ming Mode section for PROG_RB1 and PROG_RB0  
commands.  
4
5
6
TABLE 2: RE-MAPPING TABLE  
Re-Map [1:0]1  
MAP_EN2,3  
Comments  
7
11  
00  
Re-mapping is turned off. Program memory is in normal  
configuration.  
10  
01  
00  
01  
10  
11  
1 KByte of flash memory location is re-mapped. Program access  
8
to location 0000h-03FFh is redirected to F000h F3FFh.  
2 KBytes of flash memory location are re-mapped. Program access  
to location 0000h-07FFh is redirected to F000h F7FFh.  
9
4 KBytes of flash memory location is re-mapped. Program access  
to location 0000h-0FFFh is redirected to F000h FFFFh.  
344 PGM T2.3  
10  
11  
12  
13  
14  
15  
16  
1 Re-Map[1:0] are nonvolatile registers which are examined only during Reset.  
2 MAP_EN[1:0] are initialized according to Re-Map[1:0] during Reset.  
3 MAP_EN[1:0] are located in SFCF[1:0], they determine the Re-Mapping configuration. They may be changed by the program at run time.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
11  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
EA# = 1 & SFCF[7] = 1 EA# = 1 & SFCF[7] = 0  
SFCF [1:0] = 01/10/11 SFCF [1:0] = 01/10/11  
FFFFh  
FFFFh  
4 KByte  
INTERNAL  
(Block 1)  
F000h  
EFFFh  
48 KByte  
EXTERNAL  
44 KByte  
EXTERNAL  
4000h  
3FFFh  
4000h  
3FFFh  
15/14/12  
KByte  
15/14/12  
KByte  
INTERNAL  
(Block 0)  
INTERNAL  
(Block 0)  
1/2/4 KByte  
1/2/4 KByte  
INTERNAL  
(Block 1)  
INTERNAL  
(Block 1)  
0000h  
0000h  
344 ILL F35.3  
FIGURE 7: SST89C54 RE-MAPPED PROGRAM MEMORY ORGANIZATION  
EA# = 1 & SFCF[7] = 1 EA# = 1 & SFCF[7] = 0  
SFCF [1:0] = 01/10/11 SFCF [1:0] = 01/10/11  
FFFFh  
FFFFh  
4 KByte  
INTERNAL  
(Block 1)  
F000h  
EFFFh  
32 KByte  
EXTERNAL  
28 KByte  
EXTERNAL  
8000h  
7FFFh  
8000h  
7FFFh  
31/30/28  
KByte  
31/30/28  
KByte  
INTERNAL  
(Block 0)  
INTERNAL  
(Block 0)  
1/2/4 KByte  
1/2/4 KByte  
INTERNAL  
(Block 1)  
INTERNAL  
(Block 1)  
0000h  
0000h  
344 ILL F36.1  
FIGURE 8: SST89C58 RE-MAPPED PROGRAM MEMORY ORGANIZATION  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
12  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Data Memory  
SST89C54/58 have 256 x 8 bits of on-chip RAM and can address up to 64 KBytes of external data memory.  
1
Special Function Registers (SFR)  
Most of the unique features of the FlashFlex51 microcontroller family are controlled by bits in special function registers  
(SFRs) located in the FlashFlex51 SFR Memory Map shown below. Individual descriptions of each SFR are provided  
and Reset values indicated in Tables 3A to 3E.  
2
3
8 BYTES  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
B0  
A8  
A0  
98  
90  
88  
80  
FF  
F7  
EF  
E7  
DF  
D7  
CF  
C7  
BF  
B7  
AF  
A7  
9F  
97  
4
B*  
ACC*  
5
PSW*  
T2CON*  
WDTC*  
IP*  
P3*  
IE*  
RCAP2L RCAP2H TL2  
TH2  
6
SFCF SFCM SFAL SFAH SFDT SFST  
7
P2*  
SCON* SBUF  
P1*  
TCON* TMOD TL0  
8F  
87  
TL1  
TH0  
TH1  
8
P0*  
SP  
DPL  
DPH  
WDTD PCON  
FlashFlex51 SFR Memory Map  
* = Bit Addressable SFRs  
All addresses are hexadecimal  
9
344 ILL F23.1  
10  
11  
12  
13  
14  
15  
16  
SST89C54/58 Special Function Registers  
TABLE 3A: CPU RELATED SFRS  
Symbol Description  
Direct  
Bit Address, Symbol, or Alternative Port Function  
RESET  
LSBValue  
Address MSB  
ACC*  
B*  
Accumulator  
B Register  
E0h  
F0h  
ACC[7:0]  
B[7:0]  
00h  
00h  
00h  
PSW*  
Program Status  
Word  
D0h  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
SP  
Stack Pointer  
81h  
82h  
SP[7:0]  
07h  
00h  
DPL  
Data Pointer  
Low 0  
DPL[7:0]  
DPH[7:0]  
DPH  
Data Pointer  
High 0  
83h  
00h  
IE*  
Interrupt Enable  
Interrupt Priority  
Power Control  
A8h  
B8h  
87h  
EA  
-
-
-
-
ET2  
PT2  
-
ES0  
ET1  
PT1  
GF1  
EX1  
PX1  
GF0  
ET0  
PT0  
PD  
EX0  
PX0  
IDL  
40h  
IP*  
PS  
-
xx000000b  
PCON  
SMOD  
0xxx0000b  
344 PGM T3A.3  
* = Bit Addressable SFRs  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
13  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 3B: FLASH MEMORY PROGRAMMING SFRS  
Symbol Description  
Direct  
Address  
B6h  
Bit Address, Symbol, or Alternative Port Function  
RESET  
Value  
MSB  
LSB  
SFST  
SFCF  
SuperFlash Status  
SECD[2:0]  
IAPEN  
-
-
BUSY Flash_busy  
-
-
xxx00000b  
000000xxb  
SuperFlash  
Configuration  
B1h  
VIS  
FIE  
-
-
-
MAP_EN  
SFCM  
SuperFlash  
Command  
B2h  
FCM  
00h  
SFDT  
SFAL  
SuperFlash Data  
B5h  
B3h  
SuperFlash Data Register  
00h  
00h  
SuperFlash  
Address Low  
SuperFlash Low Order Byte Address Register A7 to A0 (SFAL)  
SuperFlash High Order Byte Address Register A15 to A8 (SFAH)  
SFAH  
SuperFlash  
B4h  
00h  
Address High  
344 PGM T3B.4  
SuperFlash Status Register (SFST) (Read Only Register)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
0B6h  
SECD2 SECD1 SECD0  
Busy Flash_busy  
xxx00000b  
Symbol  
Function  
Security bit 1.  
SECD2  
SECD1  
SECD0  
Security bit 2.  
Security bit 3.  
Please refer to Table 8 for security lock options.  
BUSY  
Burst-Program completion polling bit.  
1: Device is busy with flash operation.  
0: Device is available for next Burst-Program operation.  
Flash_busy  
Flash operation completion polling bit.  
1: Device is busy with flash operation.  
0: Device has fully completed the last command, including Burst-Program.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
14  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
SuperFlash Configuration Register (SFCF)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
1
0B1h  
VIS  
IAPEN  
MAP_EN1 MAP_EN0 000000xxb  
Symbol  
VIS  
Function  
Upper flash block visibility.  
2
1: 4 KByte flash block visible from F000-FFFF.  
0: 4 KByte flash block not visible.  
3
IAPEN  
Enable IAP operation.  
1: IAP commands are enabled.  
0: IAP commands are disabled.  
4
MAP_EN1  
MAP_EN0  
Map enable bit 1.  
Map enable bit 0.  
5
MAP_EN[1:0] are initialized to default value according to Re-map [1:0] during Reset.  
Refer to Table 2.  
6
SuperFlash Command Register (SFCM)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
7
0B2h  
FIE  
FCM6  
FCM5  
FCM4  
FCM3  
FCM2  
FCM1  
FCM0  
00000000b  
8
Symbol  
FIE  
Function  
Flash Interrupt Enable.  
1: INT1# is re-assigned to signal IAP operation completion.  
External INT1# interrupts are ignored.  
0: INT1# is not reassigned.  
9
FCM[6:0]  
Flash operation command.  
000_0001b Chip-Erase.  
000_0110b Burst-Program.  
000_1011b Sector-Erase.  
000_1100b Byte-Verify. (1)  
000_1101b Block-Erase.  
000_1110b Byte-Program.  
10  
11  
12  
13  
14  
15  
16  
All other combinations are not implemented, and reserved for future use.  
(1) Byte-Verify has a single machine cycle latency and will not generate any INT1# interrupt regardless of FIE.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
15  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
SuperFlash Data Register (SFDT)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
0B5h  
SuperFlash Data Register  
00000000b  
Symbol  
SFDT  
Function  
Mailbox register for interfacing with flash memory block (Data register).  
SuperFlash Address Registers (SFAL)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
0B3h  
SuperFlash Low Order Byte Address Register  
00000000b  
Symbol  
SFAL  
Function  
Mailbox register for interfacing with flash memory block. (Low order address register).  
SuperFlash Address Registers (SFAH)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
0B4h  
SuperFlash High Order Byte Address Register  
00000000b  
Symbol  
SFAH  
Function  
Mailbox register for interfacing with flash memory block. (High order address register).  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
16  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 3C: WATCHDOG TIMER SFRS  
WDTC* Watchdog Timer  
Control  
C0h  
-
-
-
-
WDRE WDTS WDT SWDT  
WDRL  
X0h  
1
WDTD Watchdog Timer  
Data/Reload  
86h  
00h  
344 PGM T3C.1  
* = Bit Addressable SFRs  
2
3
Watchdog Timer Control Register (WDTC)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
4
0C0h  
WDRE  
WDTS  
WDT  
SWDT  
00000000b  
5
Symbol  
Function  
WDRE  
Watchdog timer reset enable.  
1: Enable watchdog timer reset.  
2: Disable watchdog timer reset.  
6
WDTS  
Watchdog timer reset flag.  
1: Hardware sets the flag on watchdog overflow.  
0: External hardware reset clears the flag.  
Flag can also be cleared by writing a 1.  
7
Flag survives if chip reset happened because of watchdog timer overflow.  
8
WDT  
Watchdog timer refresh.  
1: Software sets the bit to force a watchdog timer refresh.  
0: Hardware resets the bit when refresh is done.  
9
SWDT  
Start watchdog timer.  
1: Start WDT.  
10  
11  
12  
13  
14  
15  
16  
0: Stop WDT.  
Watchdog Timer Data/Reload Register (WDTD)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
086h  
Watchdog Timer Data/Reload  
00000000b  
Symbol  
WDTD  
Function  
Initial/Reload value in Watchdog Timer.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
17  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 3D: TIMER/COUNTERS SFRS  
TMOD Timer/Counter  
Mode Control  
89h  
Timer 1  
M1  
Timer 0  
C/T#  
00h  
00h  
GATE  
TF1  
C/T#  
TR1  
M0  
GATE  
IE1  
M1  
IE0  
M0  
IT0  
TCON* Timer/Counter  
Control  
88h  
TF0  
TR0  
IT1  
TH0  
TL0  
TH1  
TL1  
Timer 0 MSB  
Timer 0 LSB  
Timer 1 MSB  
Timer 1 LSB  
8Ch  
8Ah  
8Dh  
8Bh  
C8h  
TH0[7:0]  
TL0[7:0]  
TH1[7:0]  
TL1[7:0]  
00h  
00h  
00h  
00h  
T2CON* Timer / Counter 2  
Control  
TF2  
EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2# 00h  
TH2  
TL2  
Timer 2 MSB  
Timer 2 LSB  
CDh  
CCh  
CBh  
CAh  
TH2[7:0]  
TL2[7:0]  
00h  
00h  
RCAP2H Timer 2 Capture MSB  
RCAP2L Timer 2 Capture LSB  
* = Bit Addressable SFRs  
RCAP2H[7:0]  
RCAP2L[7:0]  
00h  
00h  
344 PGM T3D.0  
TABLE 3E: INTERFACE SFRS  
SBUF  
Serial Data Buffer  
99h  
98h  
80h  
90h  
A0h  
B0h  
SBUF[7:0]  
Indeterminate  
00h  
SCON* Serial Port Control  
SM0  
-
SM1  
-
SM2  
-
REN  
P0[7:0]  
-
TB8  
-
RB8  
T1  
R1  
T2  
P0*  
P1*  
P2*  
P3*  
Port 0  
Port 1  
Port 2  
Port 3  
FFh  
T2 EX  
FFh  
P2[7:0]  
T0  
FFh  
RD#  
WR#  
T1  
INT1# INT0# TXD0 RXD0  
FFh  
344 PGM T3E.3  
* = Bit Addressable SFRs  
enteredbyforcingPSEN#fromalogichightoalogiclow  
while RST input is being held continuously high. The  
SST89C54/58 will stay in External Host Mode as long as  
RST = 1 and PSEN# = 0.  
FLASH MEMORY PROGRAMMING  
The SST89C54/58 internal flash memory can be pro-  
grammed or erased using the following two methods:  
External Host Mode (parallel only)  
In-Application Programming (IAP) Mode  
(parallel or serial)  
A READ-ID operation is necessary to armthe device,  
no other External Host Mode command can be enabled  
untilaREAD-IDisperformed.InExternalHostMode,the  
internal Flash memory blocks are accessed through the  
re-assigned I/O port pins (see Figure 9 for details) by an  
external host, such as an MCU programmer, PCB tester  
or a PC controlled development board.  
EXTERNAL HOST PROGRAMMING MODE  
ExternalHostProgrammingModeprovidestheuserwith  
direct Flash memory access to program the Flash  
memory without using the CPU. External Host Mode is  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
18  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
The insertion of an armingcommand prior to entering  
the External Host Mode by utilizing the READ-IDop-  
eration provides additional protection for inadvertent  
writes to the internal flash memory caused by a noisy or  
unstablesystemenvironmentduringpower-uporbrown-  
out conditions.  
When the chip is in the External Host Mode, Port 0 pins  
areassignedtobetheparalleldatainputandoutputpins.  
Port 1 pins are assigned to be the non-multiplexed low  
order address bus signals for the internal flash memory  
(A7-A0). The first six bits of Port 2 pins (P2[5:0]) are  
assignedtobethenon-multiplexedupperorderaddress  
bussignalsfortheinternalflashmemory(A13-A8)along  
with two of the Port 3 pins (P3[5] as A15 and P3[4] as  
A14). Two upper order Port 2 pins (P2[7] and P2[6]) and  
two upper order Port 3 pins (P3[7] and P3[6]) along with  
RST, PSEN#, PROG#/ALE, EA# pins are assigned as  
the control signal pins. The Port 3 pin (P3[3]) is assigned  
tobetheready/busystatussignal, whichcanbeusedfor  
handshaking with the external host during a flash  
memory programming operation. The flash memory  
programming operation (Erase, Program, Verify, etc.) is  
internally self-timed.  
1
2
The External Host Mode uses twelve (12) hardware  
commands, which are decoded from the control signal  
pins, to facilitate the internal flash memory erase, pro-  
gram and verify processes. The External Host Mode is  
enabledonthefallingedgeofPSEN#.TheExternalHost  
ModeCommandsareenabledonthefallingedgeofALE/  
PROG#. The list in Table 4 outlines all the commands  
and the respective control signal assignment.  
3
4
5
6
7
TABLE 4: EXTERNAL HOST MODE COMMANDS  
Operation  
RST  
PSEN# PROG# EA# P3[7] P3[6] P2[7] P2[6] P0[7:0] P1[7:0] P3[5:4]  
/ALE  
P2[5:0]  
8
READ-ID  
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
H
H
L
DO  
X
AL  
X
AH  
CHIP-ERASE  
X
9
BLOCK-ERASE  
SECTOR-ERASE  
BYTE-PROGRAM  
BURST-PROGRAM  
H
H
H
L
H
L
L
X
X
A[15:12]  
AH  
H
H
H
L
X
AL  
AL  
AL  
AL  
10  
11  
12  
13  
14  
15  
16  
H
H
H
DI  
DI  
DO  
AH  
L
AH  
BYTE-VERIFY  
(Read)  
H
H
L
AH  
PROG-SB1  
PROG-SB2  
PROG-SB3  
PROG-RB0  
PROG-RB1  
H
H
H
H
H
L
L
L
L
L
H
H
H
H
H
H
L
H
L
H
H
L
H
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
H
H
L
L
L
H
X
344 PGM T4.4  
Note: Symbol signifies a negative pulse and the command is asserted during the low state of PROG#/ALE input. All other  
combinations of the above input pins are invalid and may result in unexpected behaviors.  
Note: L = Logic low level; H = Logic high level; X = Dont care; AL = Address low order byte; AH = Address high order byte;  
DI = Data Input; DO = Data Output; A[15:12] = 0xxxb for Block 0 and A[15:12} = Fhfor Block 1.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
19  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
VSS VDD RST  
Port 0  
Input/  
Output  
Data  
0
XTAL1  
XTAL2  
6
7
Bus  
0
1
0
2
3
4
5
Address Bus  
A13-A8  
1
2
3
4
Port 2  
Port 3  
Busy/Ready  
A14  
Address Bus  
A15  
A15-A14  
6
7
0
Flash  
Control Signals  
5
6
Flash  
Control Signals  
7
Address Bus  
A7-A0  
Port 1  
6
7
EA# ALE / PSEN#  
PROG#  
344 ILL F01.1  
FIGURE 9: I/O PIN ASSIGNMENTS FOR EXTERNAL HOST MODE  
Product Identification  
programmed must be in the erased state prior to  
programming. Selection of the Erase command to use,  
priortoprogrammingthedevice, willbedependentupon  
the contents already in the array and the desired field  
size to be programmed.  
The READ-ID command accesses the Signature Bytes  
that identifies the device as an SST89C54/58 and the  
manufacturer as SST. External programmers primarily  
use these Signature Bytes, shown in Table 5, in the  
selectionofprogrammingalgorithms.TheRead-IDcom-  
mand is selected by the byte code of 00h on  
P2[7:6]andP3[7:6].SeeFigure10fortimingwaveforms.  
The CHIP-ERASE command erases all bytes in both  
memory blocks (Block 0 and Block 1) of the SST89C54/  
58. This command ignores the Security Lock status and  
will erase the Security bits and the Re-Map bits. The  
CHIP-ERASE command is selected by the binary code  
of 00b on P3[7:6] and 01b on P2[7:6]. See Figure 11 for  
timing waveforms.  
TABLE 5: SIGNATURE BYTES TABLE  
Address  
30h  
Data  
BFh  
E4h  
Manufacturers Code  
SST89C54 Device Code  
SST89C58 Device Code  
31h  
TheBLOCK-ERASEcommanderasesallbytesinoneof  
the memory blocks (16/32K or 4K) of the SST89C54/58.  
This command will not be enabled if the security lock is  
enabled on the selected memory block. The selection of  
thememoryblocktobeerasedisdeterminedbyA[15:12]  
(P3[5], P3[4], P2[5], P1[4]). If A15 is a 0, then the  
primary flash memory Block 0 (16/32K), is selected. If  
A[15:12] = Fh, then the secondary flash memory Block  
1 (4K) is selected. The BLOCK-ERASE command is  
selectedbythebinarycodeof11bonP3[7:6]and01bon  
P2[7:6]. See Figure 12 for the timing waveforms.  
31h  
E2h  
344 GPM T5.1  
External Host Mode Commands  
The twelve SST89C54/58 External Host Mode Com-  
mands are READ-ID, CHIP-ERASE, BLOCK-ERASE  
SECTOR-ERASE, BYTE-PROGRAM, BURST-PRO-  
GRAM, BYTE-VERIFY, PROG-SB1, PROG-SB2,  
PROG-SB3, PROG-RB0 and PROG-RB1. See Table 4  
for all signal logic assignments and Table 7 for all timing  
parameter values for the External Host Mode Com-  
mands. The critical timing for all Erase and Program  
commands, is self-generated by the on-chip flash  
memory controller. The high-to-low transition of the  
PROG# signal initiates the Erase and Program com-  
mands, which are synchronized internally. The Read  
commandsareasynchronousreads, independentofthe  
PROG# signal level.  
The SECTOR-ERASE command erases all of the bytes  
in a sector. The sector size for the primary flash memory  
(Addresses 0000h-3FFFh/7FFFh) is 128 Bytes. The  
sector size for the secondary flash memory (Addresses  
F000h-FFFFh) is 64 bytes. This command will not be  
executed if the Security lock is enabled on the selected  
memory block. The selection of the memory sector to be  
erasedisdeterminedbyP1[7:6](A7&A6),P2[5:0](A13-  
A8) and P3[5:4] (A15 & A14). The SECTOR-ERASE  
command is selected by the binary code of 10b on  
P3[7:6] and 11b on P2[7:6]. See Figure 13 for timing  
waveforms.  
Thefollowingthreecommandsareusedforerasingallor  
partofthememoryarray.Allthedatainthememoryarray  
will be erased to FFh. Memory locations that are to be  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
20  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
The BYTE-PROGRAM and BURST-PROGRAM com-  
mands are used for programming new data into the  
memory array. Selection of which Program command to  
use will be dependent upon the desired programming  
fieldsize. Programmingwillnottakeplaceifanysecurity  
locks are enabled on the selected memory block.  
be turned on as the SST89C54/58 enters External Host  
Mode;i.e.whenPSEN#goeslowwhileRSTishigh.The  
oscillator provides both clocking for the Flash Control  
Unit as well as timing references for Program and Erase  
operations. DuringExternalHostMode, theCPUcoreis  
held in reset. Upon exit from External Host Mode, the  
internal oscillator is turned off.  
1
2
The BYTE-PROGRAM command programs data into a  
single byte. Ports P0[7:0] are used for data in. The  
memory location is selected by P1[7:0], P2[5:0], and  
P3[5:4] (A15-A0). The BYTE-PROGRAM command is  
selectedbythebinarycodeof11bonP3[7:6]and10bon  
P2[7:6]. See Figure 14 for timing waveforms.  
The same oscillator also provides the time base for the  
watchdog timer and timing references for IAP Mode  
Program and Erase operations. See more detailed de-  
scription in later sections.  
3
4
Arming Command  
TheBURST-PROGRAMcommandprogramsdatatoan  
entire row, sequentially byte-by-byte. Ports P0[7:0] are  
used for data in. The memory location is selected  
by P1[7:0], P2[5:0], and P3[5:4] (A15-A0). The BURST-  
PROGRAM command is selected by the binary code of  
01b on P3[7:6] and 10b on P2[7:6]. See Figure 15 for  
timing waveforms.  
An arming command sequence must take place before  
any External Host Mode sequence command is recog-  
nized by the SST89C54/58. This prevents accidental  
triggering of External Host Mode Commands due to  
noise or programmer error. The arming command is as  
follows:  
5
6
1. PSEN# goes low while RST is high. This will get  
the machine in External Host Mode, re-configur-  
ing the pins.  
The BYTE-VERIFY command allows the user to verify  
that the SST89C54/58 correctly performed an Erase or  
Program command. Ports P0[7:0] are used for data out.  
ThememorylocationisselectedbyP1[7:0],P2[5:0],and  
P3[5:4] (A15-A0). The BYTE-VERIFY command is se-  
lected by the binary code of 11b on P3[7:6] and 00b on  
P2[7:6]. This command will be disabled if any security  
locks are enabled on the selected memory block. See  
Figure 16 for timing waveforms.  
7
2. A Read-ID command is issued and held for 1 ms.  
After the above sequence, all other External Host Mode  
commands are enabled. Before the Read-ID command  
is received, all other External Host commands received  
are ignored.  
8
9
Programming a SST89C54/58  
To program data into the memory array, apply power  
supply voltage (VDD) to VDD and RST pins, and perform  
the following steps:  
The PROG-SB1, PROG-SB2, PROG-SB3 commands  
program the security bits, the functions of these bits are  
described in a Security Lock section and also in Table 8.  
Once programmed, these bits can only be cleared  
through a CHIP-ERASE command.  
10  
11  
12  
13  
14  
15  
16  
1. Maintain RST high and toggle PSEN# from logic  
high to low, in sequence per the appropriate timing  
diagram.  
The PROG-RB1, and PROG-RB0 commands program  
the Re-Map[1:0] bits. The Re-Map[1:0] bits determine  
the Memory Re-mapping default option on reset. Upon  
completion of the Reset sequence, the MAP_EN[1:0]  
bits are initialized to the default value set by the Re-  
Map[1:0]bitsaccordingtoTable2.Subsequentprogram  
manipulation of MAP_EN[1:0] bits will alter the Memory  
Re-mapping option but will not change the Re-Map[1:0]  
bits. Therefore, any changes to MAP_EN[1:0], without  
correspondingupdatestoRe-Map[1:0],willnotsurvivea  
Reset cycle.  
2. Raise EA# High (either VIH or VH).  
3. Issue READ-ID command to enable the External  
Host Mode.  
4. Verify that the memory blocks or sectors for pro-  
grammingisintheerasedstate, FFh. Iftheyarenot  
erased, then erase them using the appropriate  
Erase command.  
5. Select the memory location using the address lines  
(P1[7:0], P2[5:0], P3[5:4]).  
6. Present the data in on P0[7:0].  
7. Pulse ALE/PROG#, observing minimum pulse  
width.  
If an External Host Mode command, except for CHIP-  
ERASE, is issued to a locked memory block, the device  
will ignore this command.  
8. Wait for low to high transition on READY/BUSY#  
(P3[3]).  
External Host Mode Clock Source  
In External Host Mode, an internal oscillator will provide  
clockingfortheSST89C54/58.Theon-chiposcillatorwill  
9. Repeat steps 5 8 until programming is finished.  
10. Verify the flash memory contents.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
21  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Data# Polling (P0[7] & P0[3]  
Flash Operation Status Detection (Ext. Host  
Handshake)  
During a Program operation, any attempts to read (Byte-  
Verify), while the device is busy, will receive the comple-  
ment of the data of the last byte loaded (logic low, i.e. 0”  
for an erase) on P0[3] and P0[7] with the rest of the bits  
0. During a Program operation, the Byte-Verify com-  
mand is reading the data of the last byte loaded, not the  
data at the address specified.  
The SST89C54/58 provide two firmware means for an  
external host to detect the completion of a flash memory  
operation to optimize the Program or Erase time. The  
end of a flash memory operation cycle (Erase or Pro-  
gram) can be detected by: 1) monitoring the Ready/  
Busy# bit at P3[3]; 2) monitoring the Data# Polling bit at  
P0[7] and P0[3].  
The true data will be read from P0[7], when the device  
completes each byte programmed among the burst to  
indicate the Ready status to receive the next byte. When  
the external host detects the Ready status after a byte  
among the burst is programmed, it should then put the  
data/address (in the same page) of the next byte on the  
bus and drive ALE/PROG# low immediately, before the  
time-out limit expires (See programming time spec. in  
Table7fordetails.).ThetruedatawillbereadfromP0[3],  
whentheBurst-Programcommandisterminatedandthe  
device is ready for the next operation.  
Ready/Busy# (P3[3])  
The progress of the flash memory programming can be  
monitored by the Ready/Busy# output signal. P3[3] is  
drivenlow,sometimeafterALE/PROG#goeslowduring  
a flash memory operation to indicate the Busy# status of  
the Flash Control Unit (FCU). P3[3] is driven high when  
the Flash programming operation is completed to indi-  
cate the Ready status.  
During a Burst-Program operation, P3[3] is driven high  
(Ready) in between each byte-programmed among the  
bursttoindicatethereadystatustoreceivethenextbyte.  
When the external host detects the Ready status after a  
byteamongtheburstisprogrammed,itshallthenputthe  
data/address (within the same page) of the next byte on  
the bus and drive ALE/PROG# low (pulse), before the  
time-out limit expires. See Table 7 for details. Burst-  
Program command presented after time-out will wait  
until next cycle. Therefore, it will have longer program-  
ming time.  
The termination of the Burst-Program can be accom-  
plished by: 1) Change to a new X-Addresses (Note: the  
X-Address range are different for the 4Kx8 flash Block 1  
andforthe16/32Kx8flashBlock0.);2)Changetoanew  
commandthatrequiresahightolowtransitionoftheALE/  
PROG# (i.e. any Erase or Program command); 3) Wait  
for time out limit expires (20 µs); when programming the  
next byte.  
Flash Memory Programming with External Host Mode (Figures 10-16)  
T
SU  
RST  
PSEN#  
T
ES  
ALE/PROG#  
EA#  
T
T
RD  
RD  
P2[7:6] ,P3[7:6]  
P3[5:4] ,P2[5:0] ,P1  
P0  
0000b  
0030h  
BFh  
0000b  
0031h  
E4h/E2h  
344 ILL F02.5  
FIGURE 10: READ-ID  
Read chip signature and identification registers at the addressed location.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
22  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
T
1
SU  
RST  
T
ES  
2
PSEN#  
T
ADS  
3
ALE/PROG#  
T
DH  
T
PROG  
4
EA#  
T
CE  
P3[3]  
5
P3[7:6], P2[7:6]  
0001b  
6
344 ILL F03.4  
7
FIGURE 11: CHIP-ERASE  
Erase both flash memory blocks. Security lock is ignored and the security bits are erased too.  
8
9
T
SU  
RST  
10  
11  
12  
13  
14  
15  
16  
T
ES  
PSEN#  
T
ADS  
ALE/PROG#  
T
T
DH  
PROG  
EA#  
T
BE  
P3[3]  
P3[7:6], P2[7:6]  
P3[5:4], P2[5:0]  
1101b  
AH  
344 ILL F04.5  
FIGURE 12: BLOCK-ERASE  
Erase one of the flash memory blocks, if the security lock is not activated on that flash memory block. The highest  
address bits A[15:12] determines which block is erased. For example, if A15 is 0, primary flash memory block  
is erased. If A[15:12] = Fh, the secondary block is erased.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
23  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
T
SU  
RST  
T
ES  
PSEN#  
T
ADS  
ALE/PROG#  
T
T
DH  
PROG  
EA#  
P3[3]  
T
SE  
P3[7:6], P2[7:6]  
P3[5:4], P2[5:0]  
1011b  
AH  
P1  
AL  
344 ILL F05.4  
FIGURE 13: SECTOR-ERASE  
Erase the addressed sector if the security lock is not activated on that flash memory block.  
T
SU  
RST  
T
ES  
PSEN#  
T
ADS  
ALE/PROG#  
T
T
DH  
PROG  
EA#  
P3[3]  
T
PB  
P3[5:4], P2[5:0]  
P1  
AH  
AL  
P0  
DI  
P3[7:6], P2[7:6]  
1110b*  
344 ILL F06.6  
* See Table 4 for control signal assignments for PROG-SBx and PROG-RBx.  
FIGURE 14: BYTE-PROGRAM; PROG-SB3, PROG-SB2, PROG-SB1, PROG-RB1 AND PROG-RB0  
Programtheaddressedcodebyteifthebytelocationhasbeensuccessfullyerasedandnotyetprogrammed. Byte-  
Program operation is only allowed when the security lock is not activated on that flash memory block.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
24  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
T
SU  
RST  
1
T
ES  
PSEN#  
2
T
ADS  
ALE/PROG#  
T
T
DH  
T
T
DH  
DH  
PROG  
3
EA#  
P3[3]  
4
T
T
BUPRCV  
T
T
BUP  
BUP1  
BUP  
row address  
byte address  
row address  
byte address  
row address  
5
byte address  
DI  
byte address  
DI  
P0  
DI  
6
P3[7:6], P2[7:6]  
0110b  
344 ILL F07.4  
16K/32K Block  
4K Block  
row address = A15: A6; byte address = A5:A0  
row address = A15: A5; byte address = A4:A0  
7
FIGURE 15: BURST-PROGRAM  
Program the entire addressed row by burst programming each byte sequentially within the row if the byte location  
has been successfully erased and not yet programmed. This operation is only allowed when the security lock is  
not activated on that flash memory block.  
8
9
T
SU  
RST  
10  
11  
12  
13  
14  
15  
16  
T
ES  
PSEN#  
ALE/PROG#  
EA#  
T
OA  
1100b  
P3[7:6], P2[7:6]  
P0  
T
AHA  
DO  
T
ALA  
AL  
P1  
AH  
P3[5:4], P2[5:0]  
344 ILL F08.3  
FIGURE 16: BYTE-VERIFY  
Read the code byte from the addressed flash memory location if the security lock is not activated on that flash  
memory block.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
25  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
IN-APPLICATION PROGRAMMING MODE  
The two Program commands are for programming new  
data into the memory array. The portion of the memory  
array to be programmed should be in the erased state,  
FFh. If the memory is not erased, then erase it with an  
appropriate Erase command. Warning: Do not write  
(program or erase) to a block that the code is cur-  
rently fetching from. This will cause unpredictable  
program behavior and may corrupt program data.  
The SST89C54/58 offers 20/36 KByte of In-Application  
Programmableflashmemory.DuringIn-ApplicationPro-  
gramming, the CPU of the microcontroller enters IAP  
Mode. The two blocks of flash memory allows the CPU  
to concurrently execute user code from one block, while  
the other is being reprogrammed. The CPU may also  
fetch code from an external memory while all internal  
flash is being reprogrammed. The chip can start the In-  
ApplicationProgrammingoperationeitherwiththeexter-  
nal program code execution being enabled (EA# = L) or  
disabled(EA#=H).Themailboxregisters(SFST,SFCM,  
SFAL, SFAH, SFDT and SFCF) located in the Special  
Function Register (SFR), control and monitor the  
devices erase and program process.  
The CHIP-ERASE command erases all bytes in both  
memoryblocks(16/32Kand4K).Thiscommandignores  
the Security Lock status and will erase the security lock  
bits and Re-Map bits. The CHIP-ERASE command  
sequence is as follows:  
IAP Enable  
ORL SFCF, #40h  
Table 6 outlines the commands and their associated  
settings of the mailbox registers.  
In-Application Programming Mode Clock Source  
During IAP Mode, both the CPU core and the flash  
controllerunitaredrivenofftheexternalclock. However,  
an internal oscillator will provide timing references for  
ProgramandEraseoperations.ThedurationofProgram  
and Erase operations will be identical between External  
Host Mode and In-Application Mode. The internal oscil-  
latorisonlyturnedonwhenrequired, andisturnedoffas  
soon as the Flash operations complete.  
Set-Up  
MOV SFDT, #55h  
Polling scheme  
MOV SFCM, #01h  
Interrupt scheme  
MOV SFCM, #81h  
SFST[2] indicates  
INT1# occurrence  
operation completion  
indicates completion  
IAP Enable Bit  
The IAP Enable Bit, SFCF[6], initializes In-Application  
Programming mode, enabling IAP command decoding.  
Until this bit is set all flash programming IAP commands  
will be ignored.  
344 ILL F39.2  
TheBLOCK-ERASEcommanderasesallbytesinoneof  
the two memory blocks (16/32K or 4K). The selection of  
the memory block to be erased is determined by the  
A15bit(SFAH[7])oftheSuperFlashAddressRegister.  
If SFAH[7] = 0b, the primary flash memory Block 0 is  
selected (16/32K). If SFAH[7:4] = Fh, the secondary  
flash memory Block 1 is selected (4K). The BLOCK-  
ERASE command sequence is as follows:  
In-Application Programming Mode Commands  
All of the following commands can only be initiated in the  
IAP Mode. In all situations, writing the control byte to the  
(SFCM) register will initiate all of the operations. All  
commands (except CHIP-ERASE) will not be enabled if  
the security features are enabled on the selected  
memory block. The critical timing for all Erase and  
Program commands, is self-generated by the on-chip  
flash controller unit.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
26  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
The 16/32 KByte memory contains 128/256 uniform  
sectorsof128Byteseach.The4KBytememorycontains  
64uniformsectorsof64Byteseach. Theselectionofthe  
sector to be erased is determined by the contents of  
SFAH, SFAL. Please refer to Figure 4 for an illustration  
of memory sector organization.  
IAP Enable  
1
Erase 32 KBlock  
MOV SFAH, #00h  
Erase 4 KBlock  
MOV SFAH, #F0h  
2
OR  
The BYTE-PROGRAM command programs data into a  
singlebyte. TheBYTE-PROGRAMcommandsequence  
is as follows:  
3
Set-Up  
MOV SFDT, #55h  
4
IAP Enable  
Polling scheme  
Interrupt scheme  
5
MOV SFCM, #0Dh  
MOV SFCM, #8Dh  
Program byte address  
MOV SFAH, #byte_addressh  
MOV SFAL, #byte_addressl  
6
SFST[2] indicates  
operation completion  
INT1# occurrence  
indicates completion  
344 ILL F40.5  
Move data to SFDT  
MOV SFDT, #data  
7
The SECTOR-ERASE command erases all of the bytes  
in a sector. The sector size for the primary flash memory  
Block 0 (Addresses 0000h-3FFFh/7FFFh) is 128 Bytes.  
The sector size for the secondary flash memory Block 1  
(Address F000h-FFFFh) is 64 Bytes. The SECTOR-  
ERASE command sequence is as follows:  
8
Polling scheme  
MOV SFCM, #0Eh  
Interrupt scheme  
MOV SFCM, #8Eh  
9
SFST[2] indicates  
operation completion  
INT1# occurrence  
indicates completion  
10  
11  
12  
13  
14  
15  
16  
344 ILL F42.3  
IAP Enable  
Program sector address  
MOV SFAH, #sector_addressh  
MOV SFAL, #sector_addressl  
The BURST-PROGRAM command programs data into  
half of a sector (row) which has the same row address,  
sequentially byte-by-byte. Refer to the Memory Organi-  
zation section and Figures 4 and 15 for details. The  
MOVCcommandandallIAPcommandsexceptBURST-  
PROGRAM are invalid during the BURST-PROGRAM  
cycle. The BURST-PROGRAM command sequence is  
as follows:  
Polling scheme  
MOV SFCM, #0Bh  
Interrupt scheme  
MOV SFCM, #8Bh  
SFST[2] indicates  
INT1# occurrence  
operation completion  
indicates completion  
344 ILL F41.3  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
27  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
PROG-SB3, PROG-SB2, PROG-SB1 commands are  
used to program the Security bits (see Table 8). These  
commands work similarly to a BYTE-PROGRAM com-  
mand, except no address and data is specified. Upon  
completion of any of those commands, the security  
options will be updated immediately.  
IAP Enable  
Program byte address  
MOV SFAH, #byte_addressh  
MOV SFAL, #byte_addressl  
Security bits previously in un-programmed state can be  
programmed by these commands. The PROG-SB3,  
PROG-SB2, PROG-SB1 sequences are as follows:  
Move data to SFDT  
MOV SFDT, #data  
IAP Enable  
Polling scheme  
MOV SFCM, #06h  
Interrupt scheme  
MOV SFCM, #86h  
Set-Up  
MOV SFDT, #55h  
Next same  
row address  
SFST[3] indicates  
byte completion  
INT1# occurrence  
indicates completion  
Program sb1  
MOV SFCM, #0Fh  
or  
Program sb2  
MOV SFCM, #03h  
or  
Program sb3  
MOV SFCM, #05h  
or  
OR  
OR  
MOV SFCM, #8Fh  
MOV SFCM, #83h  
MOV SFCM, #85h  
Program  
another  
byte  
Y
Polling SFST[2]  
indicates completion  
Interrupt INT1#  
occurrence completion  
N
SFST[2] indicates  
344 ILL F45.3  
Burst-Program completion  
344 ILL F43.5  
PROG-RB1, PROG-RB0 commands are used to pro-  
gram the Re-Map[1:0] bits (see Table 2). These com-  
mands work similarly to a BYTE-PROGRAM command  
except no address and data is needed. These com-  
mands only change the Re-Map[1:0] bits and have no  
effect on MAP_EN[1:0] until after a reset cycle. There-  
fore, the effect of these commands is not immediate.  
The BYTE-VERIFY command allows the user to verify  
thattheSST89C54/58hascorrectlyperformedanErase  
or Program command. The BYTE-VERIFY command  
sequence is as follows:  
IAP Enable  
Program byte address  
MOV SFAH, #byte_addressh  
MOV SFAL, #byte_addressl  
MOV SFCM, #0Ch  
SFDT register  
contains data  
344 ILL F44.2  
BYTE-VERIFY command returns the data byte in SFDT  
if the command is successful. The user is required to  
check that the previous Flash operation has fully com-  
pleted before issuing a BYTE-VERIFY.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
28  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Re-Map bits previously in un-programmed state can be  
programmed by these commands. The PROG-RB1,  
PROG-RB0 sequences are as follows:  
Polling  
A command that uses the polling method to detect flash  
operation completion should poll on the Flash_Busy bit  
(SFST[2]). When Flash_Busy de-asserts (logic 0), the  
device is ready for the next operation.  
1
2
The BUSY bit (SFST[3]) is provided for Burst-Program.  
In between bytes within a burst sequence, the Busy bit  
will become logic 0 to indicate that the next Burst-  
Programbyteshouldbepresented.Completionofthefull  
burstcycleisindicatedalsobyFlash_Busybit(SFST[2]).  
IAP Enable  
Set-Up  
MOV SFDT, #55h  
3
MOVCinstructionmayalsobeusedforverificationofthe  
Programming and Erase operation of the flash memory.  
MOVC command will fail if it is directed at a flash block  
that is still busy.  
4
Program Re-Map [0]  
MOV SFCM, #08h  
or  
Program Re-Map [1]  
MOV SFCM, #09h  
or  
5
MOV SFCM, #88h  
MOV SFCM, #89h  
6
Polling SFST[2]  
indicates completion  
Interrupt INT1#  
occurrence completion  
OR  
7
344 ILL F46.4  
8
9
10  
11  
12  
13  
14  
15  
16  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
29  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Interrupt Termination  
For an interrupt to occur, appropriate interrupt enable  
bits must be set. EX1 and EA bits of IE register must be  
set.TheTCON[2](IT1)bitofTCONregistermustalsobe  
set for edge trigger detection.  
Ifinterruptterminationisselected,(SFCM[7]isset),then  
an interrupt (INT1) will be generated to indicate flash  
operation completion. Under this condition, the INT1  
becomesaninternalinterruptsource.TheINT1#pincan  
nowbeusedasageneralpurposeportpin, anditcannot  
be a source of External Interrupt 1.  
TABLE 6: IN-APPLICATION PROGRAMMING MODE COMMANDS  
Operation  
SFAH [7:0]  
SFAL [7:0]  
SFDT [7:0]  
SFCM [6:0]1  
01h  
CHIP-ERASE  
X
X
55h  
55h  
X
BLOCK-ERASE  
SECTOR-ERASE  
BYTE-PROGRAM  
BURST-PROGRAM  
BYTE-VERIFY (Read)  
AH2  
AH  
AH  
AH  
AH  
X
0Dh  
AL  
AL  
AL  
AL  
0Bh  
DI  
0Eh  
DI  
06h  
DO  
0Ch  
344 PGM T6.3  
Notes: X = Dont Care; AL = Address low order byte; AH = Address high order byte;  
DI = Data Input; DO = Data Output  
All other values are in hex  
1
Interrupt/Polling enable for flash operation completion  
SFCM[7] = 1: Interrupt enable for flash operation completion  
0: polling enable for flash operation completion  
SFAH[7] = 0: Selects Block 0: SFAH[7:4] = Fh selects Block 1  
2
TABLE 7: FLASH MEMORY PROGRAMMING/VERIFICATION PARAMETERS  
Parameter1,2  
Reset Setup Time  
Symbol  
TSU  
Min  
3
1
Max  
Units  
µs  
Read-ID Command Width  
PSEN# Setup Time  
TRD  
TES  
µs  
1.125  
0
µs  
Address, Command, Data Setup Time  
Chip-Erase Time  
TADS  
TCE  
ns  
11.7  
9.4  
ms  
ms  
ms  
µs  
Block-Erase Time  
TBE  
Sector-Erase Time  
TSE  
1.1  
1.2  
0
2.3  
Program Setup Time  
TPROG  
TDH  
Address, Command, Data Hold  
Byte-Program Time 3  
ns  
TPB  
110  
50  
µs  
Verify Command Delay Time  
Verify High Order Address Delay Time  
Verify Low Order Address Delay Time  
First Burst-Program Byte Time4  
Burst-Program Time 3,4  
Burst-Program Recovery4  
Burst-Program Time-Out Limit  
TOA  
ns  
TAHA  
TALA  
TBUP1  
TBUP  
TBUPRCV  
TBUPTO  
50  
ns  
50  
ns  
85  
µs  
31  
20  
45  
µs  
110  
µs  
µs  
344 PGM T7.4  
Note:  
1. Program and Erase times will scale inversely relative to programming clock frequency.  
2. All timing measurements are from the 50% of the input to 50% of the output.  
3. Each byte must be erased before program.  
4. External Host Mode only.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
30  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Accessing Internal Memory (EA# = 0)  
Accessing External Memory (EA# = 1)  
VSS VDD RST  
VSS VDD RST  
1
Address  
and  
Data  
Bus  
General  
Purpose  
I/O  
0
0
XTAL1  
XTAL2  
XTAL1  
XTAL2  
Port 0  
Port 0  
6
7
6
7
2
0
1
0
1
T2  
T2EX  
T2  
T2EX  
RXD  
RXD  
0
0
TXD  
2
3
4
5
TXD  
2
3
4
5
1
2
3
4
1
2
3
4
INT0#  
INT0#  
Port 1  
Port 3  
Port 1  
3
INT1#  
T0  
INT1#  
T0  
Port 3  
6
7
6
7
T1  
T1  
5
6
5
6
4
WR#  
WR#  
0
0
RD#  
RD#  
7
7
General  
Purpose  
I/O  
Address  
Bus  
Port 2  
Port 2  
6
7
6
7
5
EA# ALE / PSEN#  
PROG#  
EA# ALE / PSEN#  
PROG#  
344 ILL F09.1  
6
FIGURE 17: IN-APPLICATION PROGRAMMING MODE I/O ASSIGNMENT  
7
TIMERS/COUNTERS  
SERIAL I/O (UART)  
The SST89C54/58 have three 16-bit registers that can  
be used as either timers or event counters. The three  
Timers/Counters are the Timer 0 (T0), Timer 1 (T1), and  
Timer 2 (T2) registers. These three registers are located  
in the SFR as pairs of 8-bit registers. The low byte of the  
T0 register is stored in the Timer 0 LSB (TL0) special  
function register and the high byte of the T0 register is  
stored in the Timer 0 MSB (TH0) special function regis-  
ter. The low byte of the T1 register is stored in the Timer  
LSB (Tl1) special function register and the high byte of  
theT1registerisstoredintheTimer1MSB(TH1)special  
functionregister. ThelowbyteoftheT2registerisstored  
intheTimer2LSB(TL2)specialfunctionregisterandthe  
high byte of the T2 register is stored in the Timer 2 MSB  
(TH2) special function register.  
The SST89C54/58 Serial I/O ports is a full duplex port  
that allows data to be transmitted and received simulta-  
neously in hardware by the transmit and receive regis-  
ters, respectively, while the software is performing other  
tasks. The Serial I/O port performs the function of an  
UART (Universal Asynchronous Receiver/Transmitter)  
chip. Thetransmitandreceiveregistersarebothlocated  
intheSerialDataBuffer(SBUFspecialfunctionregister.  
Writing to the SBUF register loads the transmit register,  
andreadingfromtheSBUFregisterobtainsthecontents  
of the receive registers.  
8
9
10  
11  
12  
13  
14  
15  
16  
TheSerialI/Oporthasfourmodesofoperationwhichare  
selected by the Serial Port Mode Specifier (SM0 and  
SM1) bits of the Serial Port Control (SCON) special  
function register. In all four modes, transmission is initi-  
ated by any instruction that uses the SBUF register as a  
destination register. Reception is initiated in mode 0  
when the Receive Interrupt (RI) flag bit of the Serial Port  
Control (SCON) special function register is cleared and  
the Reception Enable/ Disable (REN) bit of the SCON  
register is set. Reception is initiated in the other modes  
by the incoming start bit if the REN bit of the SCON  
register is set.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
31  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
WATCHDOG TIMER  
TheWDTintheSST89C54/58sharethesametimebase  
with the flash controller unit. When the flash controller  
unit is operating, the time base will be re-started by the  
hardware periodically, therefore delaying the time-out  
periodofthewatchdogtimer.Theupper8-bitsofthetime  
baseregisterareusedasthereloadregisteroftheWDT.  
The SST89C54/58 offer an enhanced programmable  
Watchdog Timer (WDT) for fail safe protection against  
software deadlock and allows an automatic recovery.  
To protect the system against software deadlock, the  
user has to refresh the WDT within a user defined time  
period. If the software fails to do this periodical refresh,  
an internal hardware reset will be initiated. The software  
can be designed such that the WDT times out if the  
program does not work properly. It also times out if a  
software error is based on the hardware related prob-  
lems.  
The internal oscillator that drives the WDT operates  
withinafrequencyrangeasshowninTable11.Minimum  
clock cycle for the WDT is 7.7ms.  
Figure 18 provides a block diagram of the WDT. Two  
SFRs (WDTC and WDTD) control watchdog timer op-  
eration. During idle mode, WDT operation is temporarily  
suspended,andresumesuponaninterruptexitfromidle.  
7.7 ms  
min.  
WDT Reset  
CLK  
Internal Reset  
Counter  
WDT Upper Byte  
Ext. RST  
WDTC  
WDTD  
344 ILL F10.2  
FIGURE 18: BLOCK DIAGRAM OF PROGRAMMABLE WATCHDOG TIMER  
SoftLock  
SECURITY LOCK  
SoftLockallowsflashcontentstobealteredunderasecure  
environment. This lock option allows the user to update  
programcodeintheSoftLockedmemoryblockthroughIn-  
Application Programming Mode under a predetermined  
secure environment. For example, if the Block 1 (4K)  
memory block is locked, and the Block 0 (16K/32K)  
memory block is Soft Locked, code residing in Block 1 can  
program Block 0. The following IAP mode commands  
issued through the command mailbox register, SFCM,  
executed from a Hard Locked block can be operated on a  
Soft Locked block: BLOCK-ERASE, SECTOR-ERASE,  
BYTE-PROGRAM, BURST-PROGRAM and BYTE-  
VERIFY.  
The Security feature protects against software piracy and  
prevents the contents of the flash from being read by  
unauthorized parties. It also protects against code corrup-  
tion resulting from accidental erasing and programming to  
theinternalflashmemorylocations.Therearetwodifferent  
types of security locks in the SST89C54/58 security lock  
system: Hard Lock and SoftLock.  
Hard Lock  
When the Hard Lock is activated, the MOVC instructions  
executedfromUn-LockedorSoftLockedprogramaddress  
space, are disabled from reading code bytes in Hard  
Locked memory blocks (See Table 9). The Hard Lock can  
either lockbothflashmemoryblocksorjustlocktheupper  
flash memory block (Block 1). All External Host and IAP  
commands except for CHIP-ERASE are ignored for the  
Hard Locked memory blocks.  
In External Host Mode, SoftLock behaves the same as a  
Hard Lock.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
32  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
STATUS OF THE SECURITY LOCK  
available for read operation via Byte-Verify. In the third  
level, three different options are available: Block 1 Hard  
Lock/Block0SoftLock,SoftLockonbothblocks,andHard  
Lock on both blocks. Locking both blocks is the same as  
Level 2 except read operation isnt available. The fourth  
level of security is the most secure level operation. It  
doesnt allow read/write of internal memory or boot from  
external memory. Please note that for unused combina-  
tions of the security lock bit the chip will default to Level 4  
status.  
ThethreebitsthatindicatetheSST89C54/58securitylock  
statusarelocatedinSFST[7:5].AsshowninFigure19and  
Table 8, the three security lock bits control the lock status  
oftheprimaryandsecondaryblocksofmemory.Thereare  
four distinct levels of security lock status. In the first level,  
none of the security lock bits are programmed and both  
blocks are unlocked. In the second level, although, both  
blocks are now locked and cannot be written, they are  
1
2
3
4
Level 1  
Level 2  
UUU/NN  
PUU/LL  
5
6
UPU/SS  
=
UUP/LS  
Level 3  
PPU/LL  
PUP/LL  
7
8
PPP/LL  
Level 4  
Notes:  
344 ILL F38.1  
1. P = Programmed (Cell logic state = 0), U = Unprogrammed (Cell logic state = 1),  
N = Not Locked, L = Hard Locked, S = SoftLocked  
9
FIGURE 19: SECURITY LOCK LEVELS  
10  
11  
12  
13  
14  
15  
16  
TABLE 8: SECURITY LOCK OPTIONS  
Security Lock Bits  
Security Status of:  
Security Type  
Level SFST[7:5]  
11  
U
P
21  
31  
U
Block 1  
Block 0  
1
2
000  
100  
U
Unlock  
Unlock  
No Security Features are Enabled.  
U
U
Hard Lock Hard Lock MOVC instructions executed from external  
program memory are disabled from fetching  
code bytes from internal memory, EA# is  
sampled and latched on Reset, and further  
programming of the flash is disabled.  
3
110  
101  
010  
P
P
U
P
U
P
U
P
U
Hard Lock Hard Lock Level 2 plus Verify disabled, both blocks locked.  
SoftLock SoftLock Level 2 plus verify disable. code in Block 1  
can program Block 0 and vice versa.  
001  
111  
U
P
U
P
P
P
Hard Lock SoftLock Level 2 plus verify disabled, code in Block 1  
can program Block 0.  
4
Hard Lock Hard Lock Same as Level 3, but external boot is  
disabled.  
344 PGM T8.4  
Notes:  
1 1, 2, and 3, respectively, refer to the first, second, and third security lock bits.  
2 P = Programmed (Cell logic state = 0), U = Unprogrammed (Cell logic state = 1).  
3 SFST[7:5] = Security Lock Decoding Bits (SECD)  
4 All unused combinations default to level 4, PPP.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
33  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 9: MOVC ACCESS WITH SECURITY LOCK ACTIVATED  
SFST[7:5]  
011/100/101/110/111  
(Hard Lock on  
MOVC Address1  
Target Address2  
Any Location  
Block 0/1  
MOVC allowed3  
Block 0/1  
Y
N
Y
Y
N
Y
Y
N
Y
Y
N
Y
External Memory  
both blocks)  
External  
Block 0  
001  
Block 0  
Block 1  
(Block 0 = SoftLock  
Block 1 = Hard Lock)  
External  
Block 1  
Any Location  
Block 0/1  
External  
External  
010  
(SoftLock  
on both blocks)  
000  
Block 0/1  
External  
Any Location  
Block 0/1  
External  
Any Location  
Any Location  
Y
344 PGM T9.3  
Notes:  
1
2
3
Location of MOVC instruction  
Target Address is the location of the instruction being read  
Y = Indicates MOVC instruction is allowed; N = Indicates MOVC instruction is not allowed;  
RESET  
A system reset initializes the MCU and begins program  
executionatprogrammemorylocation0000h. Thereset  
input for the SST89C54/58 is the RST pin. In order to  
reset the SST89C54/58, a logic level high must be  
appliedtotheRSTpinforatleasttwomachinecycles(24  
clocks), after the oscillator becomes stable. ALE,  
PSEN#areweaklypulledhighduringreset.Duringreset,  
ALE and PSEN# output a high level in order to perform  
correct reset. This level must not be affected by external  
element. A system reset will not affect the 256 Bytes of  
on-chip RAM while the SST89C54/58 is running, how-  
ever, the contents of the on-chip RAM during power up  
are indeterminate. All Special Function Registers (SFR)  
return to their reset values, which are outlined in Tables  
3A to 3E.  
WhenpowerisappliedtotheSST89C54/58,theRSTpin  
must be held long enough for the oscillator to start up  
(usually several milliseconds for a low frequency crys-  
tal), in addition to two machine cycles for a valid Power-  
On Reset. An example of a method to extend the RST  
signalistoimplementaRCcircuitbyconnectingtheRST  
pin to VDD through a 10µF capacitor and to VSS through  
an 8.2K resistor as shown in Figure 20. Note that if an  
RC circuit is being used, provisions should be made to  
ensure the VDD rise time does not exceed 1 millisecond  
and the oscillator start-up time does not exceed 10  
milliseconds.  
For a low frequency oscillator with slow start-up time the  
reset signal must be extended in order to account for the  
slowstart-uptime.Thismethodmaintainsthenecessary  
relationship between VDD and RST to avoid program-  
ming at an indeterminate location, which may cause  
corruption in the code of the flash. For more information  
on system level design techniques, please review De-  
signConsiderationsfortheSSTFlashFlex51Family  
Microcontroller Application Note.  
Power-On Reset  
At initial power up, the port pins will be in a random state  
until the oscillator has started and the internal reset  
algorithm has written ones to all the pins. Powering up  
thedevicewithoutavalidresetcouldcausetheCPU  
to start executing instructions from an indetermi-  
nate location. Such undefined states may inadvert-  
ently corrupt the code in the flash.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
34  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
POWER-SAVING MODES  
Power Down  
The Power Down mode is also entered by a software  
command which sets the PD bit in the PCON register. In  
Power Down mode, the clock is stopped and external  
interrupts are active for level sensitive interrupt only.  
Power Down mode reduces the current dissipation to  
15µA, typical.  
The SST89C54/58 provides three power saving modes  
of operation for applications where power consumption  
iscritical.Thethreepowersavingmodesare:Idle,Power  
Down and Standby (Stop Clock).  
1
2
Idle  
The SST89C54/58 exits Power Down mode through  
either an enabled external level sensitive interrupt or a  
hardware reset. The interrupt clears the PD bit and the  
program resumes execution beginning at the instruction  
immediately following the one which invoked the Power  
Down mode. A hardware reset starts the device similar  
to power-on reset.  
Idle mode is entered by a software command which sets  
the IDL bit in the PCON register. In Idle mode the  
program counter (PC) is stopped. The system clock  
continues to run and all interrupts and peripheral func-  
tions (timers/counters, serial port, etc.) are active. In this  
mode the power dissipation is approximately 25% of the  
fully active device.  
3
4
5
The SST89C54/58 exits Idle mode through either a  
systeminterruptorahardwarereset.Theinterruptclears  
the IDL bit and the program resumes execution begin-  
ning at the instruction immediately following the one  
whichinvokedtheIdlemode.Ahardwareresetstartsthe  
device similar to power-on reset.  
Standby (Stop Clock)  
Standby mode is similar to Power Down mode, except  
that Power Down mode is initiated by a software com-  
mand and Standby mode is initiated by external hard-  
ware gating off the external clock to the SST89C54/58  
device. The current dissipation is reduced to 15µA,  
typical.Theon-chipSRAMandSFRdataaremaintained  
in Standby mode. The device resumes operation at the  
next instruction when the clock is reapplied to the part.  
6
7
8
Table 10 outlines the different power-saving modes,  
including entry and exit procedures and MCU  
functionality.  
9
10  
11  
12  
13  
14  
15  
16  
V
DD  
+
-
10µF  
8.2K  
V
DD  
RST  
SST89C54/58  
C
2
XTAL2  
XTAL1  
12MHz  
C
1
344 ILL F31.1  
FIGURE 20: POWER-ON RESET CIRCUIT  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
35  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 10: SST89C54/58 POWER SAVING MODES  
Mode  
Initiated by  
Current Drain  
State of MCU  
Exited by  
Enabled interrupt or  
hardware reset. Start of  
interrupt clears IDL bit  
and exits Idle mode,  
after the ISR RETI in-  
struction program re-  
sumes execution be-  
ginning at the instruc-  
tion following the one  
that invoked Idle mode.  
If needed in a specific  
application, a user  
could consider placing  
two or three NOP in-  
structions after the in-  
struction that invokes  
idle mode to eliminate  
any problems. A hard-  
ware reset restarts the  
device similar to a  
power-on reset.  
Idle Mode  
Software  
(Set IDL bit in  
PCON)  
25% of IDD level when  
device is fully active  
CLK is running.  
Interrupts, serial port  
and timers/counters are  
active. Program  
Counter is stopped.  
ALE and PSEN#  
signals at a HIGH level  
during Idle. All registers  
remain unchanged.  
Power Down Mode  
Software  
(Set PD bit in  
PCON)  
Typically 15 microamps. CLK is stopped. On-  
Minimum VDD for Power chip SRAM and SFR  
Enabled external level  
sensitive interrupt or  
hardware reset. Start of  
interrupt clears PD bit  
Down mode is 2.7V.  
data is maintained.  
ALE and PSEN#  
signals at a LOW level and exits Power Down  
during Power Down. mode, after the ISR  
External Interrupts are RETI instruction pro-  
only active for level  
sensitive interrupts, if  
enabled.  
gram resumes execu-  
tion beginning at the in-  
struction following the  
one that invoked Power  
Down mode. If needed  
in a specific applica-  
tion, a user could con-  
sider placing two or  
three NOP instructions  
after the instruction that  
invokes Power Down  
mode to eliminate any  
problems. A hardware  
reset restarts the de-  
vice similar to a power-  
on reset.  
Standby (Stop Clock) External hardware  
Mode  
Typically 15 microamps. CLK is frozen. On-chip  
SRAM and SFR data is  
Gate ON external  
clock. Program  
gates OFF the external Minimum VDD for  
clock input to the MCU. Standby mode is 2.7V. maintained. ALE and  
execution resumes at  
the instruction  
following the one  
during which the clock  
was gated off.  
This gating should be  
synchronized with an  
input clock transition  
(low-to-high or high-to-  
low).  
PSEN# are maintained  
at the levels prior to the  
clock being frozen.  
344 PGM T10.3  
344-2 8/00  
© 2000 Silicon Storage Technology, Inc.  
36  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
CLOCK INPUT OPTIONS  
Recommended Capacitor Values for Crystal  
Oscillator  
ShowninFigure21aretheinputandoutputofaninternal  
invertingamplifier(XTAL1,XTAL2),whichcanbeconfig-  
ured for use as an on-chip oscillator.  
Crystal manufacturer, supply voltage, and other factors  
may cause circuit performance to differ from one applica-  
tion to another. C1 and C2 should be adjusted appropri-  
ately for each design. The table below, shows the typical  
values for C1 and C2 at a given frequency. If, following the  
satisfactoryselectionofallexternalcomponents,thecircuit  
is still over driven, a series resistor, Rs, may be added.  
1
When driving the device from an external clock source,  
XTAL2 should be left disconnected and XTAL1 should  
be driven.  
2
3
At start-up, the external oscillator may encounter a  
higher capacitive load at XTAL1 due to interaction be-  
tween the amplifier and its feedback capacitance. How-  
ever, the capacitance will not exceed 15pF once the  
external signal meets the VIL and VIH specifications.  
RECOMMENDED VALUES FOR CRYSTAL OSCILLATOR  
Frequency  
< 8MHz  
C1 and C2  
90-110pF  
18-22pF  
Rs (Optional)  
4
100  
200  
200  
8-12MHz  
>12MHz  
5
18-22pF  
More specific information on On-Chip oscillator design  
canbefoundinFlashFlex51OscillatorCircuitDesign  
Considerations Application Note.  
6
7
8
R
S
XTAL2  
9
C
C
NC  
XTAL2  
XTAL1  
2
EXTERNAL  
OSCILLATOR  
SIGNAL  
1
10  
11  
12  
13  
14  
15  
16  
XTAL1  
Vss  
Vss  
344 ILL F12.1  
External Clock Drive  
Using the On-Chip Oscillator  
FIGURE 21: OSCILLATOR CHARACTERISTICS  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
37  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
ELECTRICAL SPECIFICATION  
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under Absolute Maximum Stress  
Ratingsmaycausepermanentdamagetothedevice. Thisisastressratingonlyandfunctionaloperationofthedevice  
at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied.  
Exposure to absolute maximum stress rating conditions may affect device reliability.)  
Ambient Temperature Under Bias ................................................................................................... -55°C to +125°C  
Storage Temperature ..................................................................................................................... -65°C to + 150°C  
Voltage on EA# Pin to VSS ...................................................................................................................................................... -0.5V to +14.0V  
Transient Voltage (<20ns) on Any Other Pin to VSS ..................................................................................................... -1.0V to +6.5V  
Maximum IOL per I/O Pins P1.5, P1.6, P1.7...................................................................................................... 20mA  
Maximum IOL per I/O for All Other Pins............................................................................................................. 15mA  
Package Power Dissipation Capability (TA = 25°C) ........................................................................................... 1.5W  
Through Hole Lead Soldering Temperature (10 Seconds) .............................................................................. 300°C  
Surface Mount Lead Soldering Temperature (3 Seconds) ............................................................................... 240°C  
Output Short Circuit Current(1) ................................................................................................................................................................... 50mA  
Note (1) Outputs shorted for no more than one second. No more than one output shorted at a time.  
(Based on package heat transfer limitations, not device power consumption.)  
NOTICE: This specification contains preliminary information on new products in production. The specifications are subject to change  
without notice.  
Operation Range  
TABLE 11: OPERATING RANGE  
Symbol  
Description  
Min.  
Max  
Unit  
TA  
Ambient Temperature Under Bias  
Standard  
0
-40  
2.7  
0
+70  
+85  
5.5  
33  
°C  
°C  
V
MHz  
MHz  
Industrial  
Supply Voltage  
Oscillator Frequency  
For In-Application Programming  
VDD  
fOSC  
0.25  
33  
344 PGM T11.0  
TABLE 12: RELIABILITY CHARACTERISTICS  
Symbol  
Parameter  
Minimum Specification  
Units  
Test Method  
NEND  
TDR  
VZAP_HBM  
Endurance  
Data Retention  
ESD Susceptibility  
Human Body Model  
ESD Susceptibility  
Machine Model  
10,000  
100  
2000  
Cycles  
Years  
Volts  
MIL-STD-883, Method 1033  
JEDEC Standard A103  
JEDEC Standard A114  
(1)  
(1)  
(1)  
VZAP_MM  
200  
Volts  
JEDEC Standard A115  
(1)  
ILTH  
Latch Up  
100+IDD  
mA  
JEDEC Standard 78  
Note: (1)This parameter is measured only for initial qualification and after a design or process change that  
344 PGM T12.1  
could affect this parameter.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
38  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 13A: DC ELECTRICAL CHARACTERISTICS  
TAMB = O°C TO + 70°C OR -40°C TO +85°C, 33MHZ DEVICES; 5V ±10%; VSS = 0V  
1
Symbol  
Parameter  
Test Conditions  
Limits  
Units  
Min  
Max  
4.5 < VDD < 5.5  
4.5 < VDD < 5.5  
4.5 < VDD < 5.5  
VDD = 4.5V  
VIL  
VIH  
VIH1  
VOL  
Input Low Voltage  
-0.5  
0.2VDD + 0.9  
0.2VDD - 0.1  
VDD + 0.5  
VDD + 0.5  
V
V
V
2
Input High Voltage (ports 0,1,2,3)  
Input High Voltage (XTAL1, RST)  
Output Low Voltage  
0.7VDD  
3
IOL = 16mA  
1.0  
(Ports 1.5, 1.6, 1.7)  
V
V
DD = 4.5V  
VOL  
Output Low Voltage  
IOL = 100µA 1  
IOL = 1.6mA 1  
IOL = 3.5mA 1  
VDD = 4.5V  
0.3  
0.45  
1.0  
(Ports 1, 2, 3) 5  
V
V
V
4
5
VOL1  
Output Low Voltage  
(Port 0, ALE, PSEN#) 4,5  
0.3  
0.45  
I
OL = 200µA 1  
IOL = 3.2mA 1  
VDD = 4.5V  
V
V
6
VOH  
Output High Voltage  
(Ports 1, 2, 3, ALE, PSEN#) 2  
VDD - 0.3  
V
V
V
IOH = -10µA  
VDD - 0.7  
IOH = -30µA  
IOH = -60µA  
7
VDD 1.5  
V
DD = 4.5V  
VOH1  
Output High Voltage  
(Port 0 in External Bus Mode) 2  
VDD - 0.3  
VDD - 0.7  
-1  
V
V
µA  
IOH = -200µA  
IOH = -3.2mA  
8
V
IN = 0.4V  
-75  
-650  
±10  
IIL  
ITL  
ILI  
Logical 0 Input Current  
(Ports 1, 2, 3)  
Logical 1-to-0 Transition Current  
(Ports 1, 2, 3) 3  
9
µA  
µA  
VIN = 2V  
0.45 < VIN  
VDD-0.3  
<
Input Leakage Current (Port 0)  
10  
11  
12  
13  
14  
15  
16  
k
pF  
40  
225  
15  
RRST  
CIO  
IDD  
RST Pulldown Resistor  
Pin Capacitance6  
Power Supply Current 7  
In-Application Mode  
@ 12 MHz  
@ 33 MHz  
Active Mode  
@ 12 MHz  
@ 33 MHz  
Idle Mode  
@ 1 MHz, 25°C  
mA  
mA  
70  
88  
mA  
mA  
25  
45  
mA  
mA  
µA  
12  
24  
100  
125  
@ 12 MHz  
@ 33 MHz  
Standby (Stop Clock) Mode  
Tamb =0°C to + 70°C  
Tamb =-40°C to +85°C  
µA  
Minimum VDD = 2.7V  
Tamb =0°C to + 70°C  
Power Down Mode  
µA  
µA  
40  
50  
Tamb =-40°C to +85°C  
344 PGM T13A.5  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
39  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
TABLE 13B: DC ELECTRICAL CHARACTERISTICS  
TAMB = O°C TO + 70°C OR -40°C TO +85°C, 12 MHZ DEVICES; 3V ±10%; VSS = 0V  
Symbol  
Parameter  
Test Conditions  
Limits  
Units  
Min  
Max  
2.7 < VDD < 3.3  
2.7 < VDD < 3.3  
2.7 < VDD < 3.3  
VDD = 2.7V  
VIL  
VIH  
VIH1  
VOL  
Input Low Voltage  
-0.5  
0.2VDD + 0.9  
0.7  
VDD + 0.5  
VDD + 0.5  
V
V
V
Input High Voltage (ports 0,1,2,3)  
Input High Voltage (XTAL1, RST)  
Output Low Voltage  
0.7VDD  
IOL = 16mA  
1.0  
(Ports 1.5, 1.6, 1.7)  
V
VDD = 2.7V  
IOL = 100µA 1  
IOL = 1.6mA 1  
IOL = 3.5mA 1  
VDD = 2.7V  
VOL  
Output Low Voltage  
(Ports 1, 2, 3) 5  
V
V
V
0.3  
0.45  
1.0  
VOL1  
Output Low Voltage  
(Port 0, ALE, PSEN#) 4,5  
I
OL = 200µA 1  
V
V
0.3  
0.45  
IOL = 3.2mA 1  
VDD = 2.7V  
VOH  
Output High Voltage  
(Ports 1, 2, 3, ALE, PSEN#) 2  
VDD - 0.3  
IOH = -10µA  
V
V
V
VDD - 0.7  
IOH = -30µA  
IOH = -60µA  
VDD 1.5  
V
DD = 2.7V  
VOH1  
Output High Voltage  
(Port 0 in External Bus Mode) 2  
VDD - 0.3  
VDD - 0.7  
-1  
IOH = -200µA  
IOH = -3.2mA  
V
V
µA  
V
IN = 0.4V  
-75  
-650  
±10  
IIL  
ITL  
ILI  
Logical 0 Input Current  
(Ports 1, 2, 3)  
Logical 1-to-0 Transition Current  
(Ports 1, 2, 3) 3  
VIN = 2V  
µA  
µA  
0.45 < VIN  
VDD-0.3  
<
Input Leakage Current (Port 0)  
40  
225  
15  
k
pF  
RRST  
CIO  
RST Pulldown Resistor  
Pin Capacitance6  
@ 1 MHz, 25°C  
IDD  
Power Supply Current 7  
In-Application Mode  
Active Mode  
Idle Mode  
Standby (Stop Clock) Mode  
70  
22  
6.5  
70  
88  
mA  
mA  
mA  
µA  
Tamb =0°C to + 70°C  
Tamb =-40°C to +85°C  
µA  
Minimum VDD = 2.7V  
Tamb =0°C to + 70°C  
Power Down Mode  
40  
50  
µA  
µA  
Tamb =-40°C to +85°C  
344 PGM T13B.3  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
40  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
NOTES:  
1. Capacitive loading on Ports 0 & 2 may cause spurious noise to be superimposed on the VOLs of ALE and Ports 1 & 3. The noise due to  
external bus capacitance discharging into the Port 0 & 2 pins when the pins make 1 -to- 0 transitions during bus operations. In the worst  
cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE  
with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.  
2. Capacitive loading on Ports 0 & 2 may cause the VOH on ALE and PSEN# to momentarily fall below the VDD - 0.7 specification when the  
address bits are stabilizing.  
1
3. Pins of Ports 1, 2 & 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when Vin is approximately 2V.  
2
4. Load capacitance for Port 0, ALE & PSEN#= 100pF, load capacitance for all other outputs= 80pF.  
5. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin:  
Maximum IOL per 8-bit port:  
Maximum IOL total for all outputs:  
15mA  
26mA  
71mA  
3
If IOL exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
test conditions.  
6. Pin capacitance is characterized but not tested. EA# is 25pF (max).  
4
7. See Figures 22, 23, 24 and 25 for test conditions. Minimum VDD for Power Down is 2.7V.  
5
V
V
DD  
I
DD  
I
DD  
DD  
V
V
V
V
DD  
P0  
DD  
DD  
P0  
DD  
6
V
DD  
RST  
EA#  
RST  
EA#  
7
8XC5X  
8XC5X  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
CLOCK  
SIGNAL  
8
V
V
SS  
SS  
344 ILL F26.0  
344 ILL F24.0  
9
All other pins disconnected  
All other pins disconnected  
FIGURE 22: IDD TEST CONDITION, ACTIVE MODE  
FIGURE 23: IDD TEST CONDITION, IDLE MODE  
10  
11  
12  
13  
14  
15  
16  
V
DD  
I
V
V
DD  
I
DD = 5V  
V
= 3 or 5V  
V
DD  
DD  
DD  
V
V
DD  
P0  
DD  
V
DD  
DD  
P0  
RST  
EA#  
RST  
EA#  
8XC5X  
8XC5X  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
(NC)  
V
SS  
V
SS  
344 ILL F33.3  
344 ILL F25.2  
All other pins disconnected  
All other pins disconnected  
FIGURE 25: IDD TEST CONDITION, STANDBY (STOP CLOCK)  
MODE  
FIGURE 24: IDD TEST CONDITION, POWER DOWN MODE  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
41  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
AC ELECTRICAL CHARACTERISTICS  
AC Characteristics: (Over Operating Conditions; Load Capacitance for Port 0, ALE, and PSEN# = 100pF; Load  
Capacitance for All Other Outputs = 80pF)  
TABLE 14: AC ELECTRICAL CHARACTERISTICS  
TAMB = 0°C TO +70°C OR -40°C TO +85°C, VDD = 3V±10% @ 12MHZ, 5V±10% @ 33MHZ, VSS = 0  
Symbol  
Parameter  
Oscillator  
Units  
12MHz  
33MHz  
Variable  
Min  
Max  
Min  
Max  
Min.  
Max.  
1/TCLCL  
TLHLL  
Oscillator Frequency  
ALE Pulse Width  
0
33  
MHz  
ns  
127  
43  
20  
5
2TCLCL - 40  
TAVLL  
Address Valid to ALE Low  
TCLCL - 40 (5V)  
TCLCL - 25 (3V)  
ns  
ns  
TLLAX  
TLLIV  
TLLPL  
Address Hold After ALE Low  
ALE Low to Valid Instr In  
ALE Low to PSEN# Low  
53  
TCLCL - 30 (5V)  
TCLCL - 25 (3V)  
ns  
ns  
5
234  
145  
4TCLCL - 100 (5V)  
4TCLCL - 65 (3V)  
ns  
ns  
56  
53  
TCLCL - 30 (5V)  
TCLCL - 25 (3V)  
ns  
ns  
5
TPLPH  
TPLIV  
PSEN# Pulse Width  
205  
46  
3TCLCL - 45  
ns  
PSEN# Low to Valid Instr In  
3TCLCL - 105 (5V)  
3TCLCL - 55 (3V)  
ns  
ns  
35  
5
TPXIX  
TPXIZ  
Input Instr Hold After PSEN#  
Input Instr Float After PSEN#  
0
ns  
59  
312  
10  
TCLCL - 25 (5V)  
TCLCL - 25 (3V)  
ns  
ns  
TAVIV  
Address to Valid Instr In  
5TCLCL - 105 (5V)  
5TCLCL - 80 (3V)  
ns  
ns  
71  
10  
TPLAZ  
TRLRH  
TWLWH  
TRLDV  
PSEN# Low to Address Float  
RD# Pulse Width  
10  
ns  
ns  
ns  
400  
400  
82  
82  
6TCLCL - 100  
6TCLCL - 100  
Write Pulse Width (WE#)  
RD# Low to Valid Data In  
252  
5TCLCL - 165 (5V)  
5TCLCL - 90 (3V)  
ns  
ns  
61  
TRHDX  
TRHDZ  
Data Hold After RD#  
Data Float After RD#  
0
0
0
ns  
107  
517  
585  
300  
2TCLCL - 60 (5V)  
2TCLCL - 25 (3V)  
ns  
ns  
35  
TLLDV  
TAVDV  
ALE Low to Valid Data In  
Address to Valid Data In  
8TCLCL - 150 (5V)  
8TCLCL - 90 (3V)  
ns  
ns  
150  
9TCLCL - 165 (5V)  
9TCLCL - 90 (3V)  
ns  
ns  
180  
140  
TLLWL  
TAVWL  
ALE Low to RD# or WR# Low  
Address to RD# or WR# Low  
200  
203  
40  
46  
0
3TCLCL - 50  
3TCLCL + 50  
ns  
4TCLCL 130 (5V)  
4TCLCL 75 (3V)  
ns  
ns  
TQVWX  
TWHQX  
TQVWH  
Data Valid to WR# Transition  
Data Hold After WR#  
33  
33  
TCLCL - 50 (5V)  
TCLCL - 30 (3V)  
ns  
ns  
TCLCL - 50 (5V)  
TCLCL - 27 (3V)  
ns  
ns  
3
Data Valid to WR# High  
433  
7TCLCL - 150 (5V)  
7TCLCL - 70 (3V)  
ns  
ns  
140  
TRLAZ  
RD# Low to Address Float  
0
0
0
ns  
TWHLH  
RD# to WR# High to ALE High  
43  
123  
TCLCL - 40 (5V)  
TCLCL - 25 (3V)  
TCLCL + 40 (5V)  
TCLCL + 25 (3V)  
ns  
ns  
5
55  
344 PGM T14.2  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
42  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
AC CHARACTERISTICS  
Explanation of Symbols  
P: PSEN#  
1
Eachtimingsymbolhas5characters. Thefirstcharacter  
is always a T(stands for time). The other characters,  
depending on their positions, stand for the name of a  
signal or the logical status of that signal. The following is  
a list of all the characters and what they stand for.  
Q: Output data  
R: RD# signal  
2
T: Time  
A: Address  
V: Valid  
3
C: Clock  
W: WR# signal  
D Input data  
X: No longer a valid logic level  
Z: High Impedance (Float)  
For example:  
4
H: Logic level HIGH  
I: Instruction (program memory contents).  
L: Logic level LOW or ALE  
TAVLL=Time from Address Valid to ALE Low  
TLLPL=Time from ALE Low to PSEN# Low  
5
6
V
V
+0.1V  
-0.1V  
IHT  
LOAD  
V
V
-0.1V  
OH  
OL  
V
HT  
Timing Reference  
Points  
V
LOAD  
V
7
V
+0.1V  
LT  
V
LOAD  
ILT  
344 ILL F28a.2  
344 ILL F28b.1  
AC Inputs during testing are driven at V  
(V  
IHT DD  
-0.5V) for Logic "1" and  
For timing purposes a port pin is no longer floating when a 100 mV  
change from load voltage occurs, and begins to float when a 100 mV  
8
V
(0.45V) for a Logic "0". Measurement reference points for inputs and  
ILT  
outputs are at V  
(0.2V  
+ 0.9) and V (0.2V  
- 0.1)  
change from the loaded V  
/V  
level occurs. I /I = ± 20mA.  
HT  
DD LT  
DD  
OH OL  
OL OH  
Note: V - V  
Test  
Test  
HIGH Test  
LOW Test  
HT HIGH  
V
V
V
- V  
-V  
LT  
LOW  
9
IHT INPUT  
- V  
ILT INPUT  
AC TESTING INPUT/OUTPUT  
FIGURE 26: AC TESTING INPUT/OUTPUT, FLOAT WAVEFORM  
FLOAT WAVEFORM  
10  
11  
12  
13  
14  
15  
16  
T
LHLL  
ALE  
T
PLPH  
T
T
LLIV  
AVLL  
T
LLPL  
T
PLIV  
PSEN#  
T
PLAZ  
T
PXIZ  
PXIX  
INSTR IN  
T
LLAX  
T
A7 - A0  
PORT 0  
PORT 2  
A7 - A0  
T
AVIV  
A15 - A8  
A15 - A8  
344 ILL F13.3  
FIGURE 27: EXTERNAL PROGRAM MEMORY READ CYCLE  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
43  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
T
LHLL  
ALE  
T
WHLH  
PSEN#  
T
LLDV  
T
RLRH  
T
T
LLWL  
RD#  
T
LLAX  
T
RHDZ  
RLDV  
T
AVLL  
T
RLAZ  
T
RHDX  
A7-A0 FROM PCL  
A7-A0 FROM RI or DPL  
DATA IN  
INSTR IN  
PORT 0  
PORT 2  
T
AVWL  
T
AVDV  
P2[7:0] or A15-A8 FROM DPH  
A15-A8 FROM PCH  
344 ILL F14.3  
FIGURE 28: EXTERNAL DATA MEMORY READ CYCLE  
T
LHLL  
ALE  
T
WHLH  
PSEN#  
T
T
WLWH  
LLWL  
WR#  
T
T
LLAX  
T
WHQX  
T
QVWX  
AVLL  
T
QVWH  
A7-A0 FROM RI or DPL  
PORT 0  
PORT 2  
DATA OUT  
A7-A0 FROM PCL  
INSTR IN  
T
AVWL  
P2[7:0] or A15-A8 FROM DPH  
A15-A8 FROM PCH  
344 ILL F15.3  
FIGURE 29: EXTERNAL DATA MEMORY WRITE CYCLE  
TABLE 15: EXTERNAL CLOCK DRIVE  
Symbol  
Parameter  
Oscillator  
Units  
12MHz  
Min Max  
33MHz  
Min Max  
Variable  
Min.  
Max.  
1/TCLCL  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
Oscillator Frequency  
High Time  
0
33  
MHz  
ns  
0.35TCLCL  
0.35TCLCL  
0.65TCLCL  
0.65TCLCL  
Low Time  
ns  
Rise Time  
20  
20  
5
5
ns  
Fall Time  
ns  
344 PGM T15.2  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
44  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
V
DD = -0.5  
1
0.7 V  
DD  
-0.1  
T
T
CHCX  
0.2 V  
0.45 V  
DD  
T
2
CLCX  
CLCH  
T
CLCL  
T
CHCL  
344 ILL F30.0  
3
FIGURE 30: EXTERNAL CLOCK DRIVE WAVEFORM  
4
5
TABLE 16: SERIAL PORT TIMING  
Symbol  
Parameter  
Oscillator  
Units  
12MHz  
33MHz  
Variable  
Min.  
6
Min  
Max  
Min  
Max  
Max.  
TXLXL  
TQVXH  
TXHQX  
TXHDX  
TXHDV  
Serial Port Clock Cycle  
Time  
0
700  
50  
0
0.36  
167  
12TCLCL  
ms  
ns  
7
Output Data Setup  
to Clock Rising Edge  
10TCLCL - 133  
8
Output Data Hold After  
Clock Rising Edge  
2TCLCL - 117  
2TCLCL - 50  
ns  
ns  
10  
0
Input Data Hold After  
Clock Rising Edge  
0
ns  
9
Clock Rising Edge  
to Input Data Valid  
700  
167  
10TCLCL - 133  
ns  
10  
11  
12  
13  
14  
15  
16  
344 PGM T16.1  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
T
XLXL  
CLOCK  
T
XHQX  
T
QVXH  
0
1
2
3
4
5
6
7
OUTPUT DATA  
T
XHDX  
T
SET TI  
WRITE TO SBUF  
INPUT DATA  
XHDV  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET R I  
CLEAR RI  
344 ILL F29.0  
FIGURE 31: SHIFT REGISTER MODE TIMING WAVEFORMS  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
45  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
PRODUCT ORDERING INFORMATION  
Product Identification Descriptor  
Speed Suffix 1 Suffix 2  
33 X X X X  
Device  
SST89C5x  
-
-
-
Package Modifier  
I = 40 pins  
J = 44 pins  
Package Type  
P = PDIP  
N = PLCC  
TQ = TQFP  
Operation Temperature  
C = Commercial = 0° to 70°C  
I = Industrial = -40° to 85°C  
Release ID  
Blank = Initial release  
A = First enhancement  
Operating Frequency  
33 = 0-33MHz  
Feature Set and Flash Memory Size  
54 = C52 feature set + 16(20)* KByte  
58 = C52 feature set + 32(36)* KByte  
* = 4K additional flash can be  
enabled via VIS bit in SFCF  
Voltage Range  
C = 2.7-5.5V  
Device Family  
89 = C51 Core  
Part Number Valid Combinations  
SST89C54 Valid combinations  
Part Number  
Package  
PDIP  
Pins  
40  
VDD  
Speed  
Temperature  
Commercial  
Commercial  
Commercial  
Industrial  
SST89C54-33-C-PI  
SST89C54-33-C-NJ  
SST89C54-33-C-TQJ  
SST89C54-33-I-PI  
SST89C54-33-I-NJ  
SST89C54-33-I-TQJ  
2.7-5.5  
2.7-5.5  
2.7-5.5  
2.7-5.5  
2.7-5.5  
2.7-5.5  
0-33MHz  
0-33MHz  
0-33MHz  
0-33MHz  
0-33MHz  
0-33MHz  
PLCC  
TQFP  
PDIP  
44  
44  
40  
PLCC  
TQFP  
44  
Industrial  
44  
Industrial  
SST89C58 Valid combinations  
Part Number  
Package  
PDIP  
Pins  
40  
VDD  
Speed  
Temperature  
Commercial  
Commercial  
Commercial  
Industrial  
SST89C58-33-C-PI  
SST89C58-33-C-NJ  
SST89C58-33-C-TQJ  
SST89C58-33-I-PI  
SST89C58-33-I-NJ  
SST89C58-33-I-TQJ  
2.7-5.5  
2.7-5.5  
2.7-5.5  
2.7-5.5  
2.7-5.5  
2.7-5.5  
0-33MHz  
0-33MHz  
0-33MHz  
0-33MHz  
0-33MHz  
0-33MHz  
PLCC  
TQFP  
PDIP  
44  
44  
40  
PLCC  
TQFP  
44  
Industrial  
44  
Industrial  
Example: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative  
to confirm availability and to determine availability of new combinations.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
46  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Part Number Cross-Reference Guide  
Intel  
i87C54  
i87C58  
i87L54  
i87L58  
i87C51FB  
i87C51FC  
SST  
package  
P N TQ  
P N TQ  
N TQ  
N TQ  
P N TQ  
P N TQ  
1
16K EPROM & 256B RAM  
SST89C54  
SST89C58  
SST89C54  
SST89C58  
SST89C54*  
SST89C58*  
4K Flash, 16K Flash & 256B RAM  
32K EPROM & 256B RAM  
16K ROM (OTP) & 256B RAM  
32K ROM (OTP) & 256B RAM  
16K EPROM & 256B RAM  
32K EPROM & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
2
Atmel  
SST  
package  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
3
AT89C52  
AT89LV52  
AT89S53  
AT89LS53  
AT89C55  
AT89LV55  
8K Flash & 256B RAM  
8K Flash & 256B RAM  
12K Flash & 256B RAM  
12K Flash & 256B RAM  
20K Flash & 256B RAM  
20K Flash & 256B RAM  
SST89C54  
SST89C54  
SST89C54*  
SST89C54*  
SST89C58*  
SST89C58*  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4
Temic  
SST  
package  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
5
80C51  
80C52  
83C154  
83C154D  
87C51  
87C52  
4K ROM & 256B RAM  
8K ROM & 256B RAM  
16K ROM & 256B RAM  
32K ROM & 256B RAM  
4K EPROM & 256B RAM  
8K EPROM & 256B RAM  
SST89C54*  
SST89C54  
SST89C54  
SST89C58  
SST89C54*  
SST89C54  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
6
7
Philips  
SST  
package  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
P N  
P80C54  
P80C58  
P87C54  
P87C58  
P87C524  
P87C528  
P83C524  
P83C528  
P89CE558  
16K ROM & 256B RAM  
32K ROM & 256B RAM  
16K EPROM & 256B RAM  
32K EPROM & 256B RAM  
16K EPROM & 512B RAM  
32K EPROM & 512B RAM  
16K ROM & 512B RAM  
32K MROM & 512B RAM  
32K Flash & 1K RAM  
SST89C54  
SST89C58  
SST89C54  
SST89C58  
SST89C54*  
SST89C58*  
SST89C54*  
SST89C58*  
SST89C58*  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
8
9
P N TQ  
Winbond  
W78C54  
W78C58  
W78E54  
W78E58  
SST  
package  
P N TQ  
P N TQ  
P N TQ  
P N TQ  
10  
11  
12  
13  
14  
15  
16  
16K MROM & 256B RAM  
32K MROM & 256B RAM  
16K EEPROM & 256B RAM  
32K EEPROM & 256B RAM  
SST89C54  
SST89C58  
SST89C54  
SST89C58  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 32K Flash & 256B RAM  
ISSI  
SST  
package  
P N TQ  
P N  
IS80C52  
IS89C51  
IS89C52  
8K ROM & 256B RAM  
4K Flash & 128B RAM  
8K Flash & 256B RAM  
SST89C54  
SST89C54  
SST89C54  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
P N  
Dallas  
SST  
SST89C54*  
SST89C54*  
package  
P N TQ  
P N TQ  
DS83C520  
DS87C520  
256B RAM  
16K MROM & 256B RAM  
16K EPROM ( OTP ) &  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
Siemens  
SST  
package  
C501-1R 8K ROM & 256B RAM  
C501-1E 8K ROM (OTP) & 256B RAM  
C513A-H 12K EPROM & 512B RAM  
C503-1R 8K ROM & 256B RAM  
SST89C54  
SST89C54  
SST89C54*  
SST89C54*  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
4K Flash, 16K Flash & 256B RAM  
P N  
P N  
N
N
C504-2R 16K ROM & 512B RAM  
SST89C54*  
4K Flash, 16K Flash & 256B RAM  
TQ  
P: PDIP  
N: PLCC  
TQ: TQFP  
NOTE: The SST89C58 can be substituted for any SST89C54 listing above.  
NOTE: The SST89C59 can be substituted for any SST89C54 or SST89C58 listing above.  
* Indicates SST similar function and not direct replacement/socket compatible.  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
47  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
PACKAGING DIAGRAMS  
40  
C
L
.600  
.625  
1
Pin #1 Identifier  
.530  
.557  
2.020  
2.070  
.065  
.075  
12˚  
4 places  
.220 Max.  
Base Plane  
Seating Plane  
.015 Min.  
0˚  
15˚  
.008  
.012  
.100 †  
.200  
.063  
.090  
.045  
.055  
.015  
.022  
.100 BSC  
.600 BSC  
Note:  
1. Complies with JEDEC publication 95 MS-011 AC dimensions (except as noted), although some dimensions may be more stringent.  
† = JEDEC min is .115; SST min is less stringent  
40.pdipPI-ILL.6  
2. All linear dimensions are in inches (min/max).  
3. Dimensions do not include mold flash. Maximum allowable mold flash is .010 inches.  
40-PIN PLASTIC DUAL-IN-LINE PACKAGE (PDIP)  
SST PACKAGE CODE: PI  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
.685  
.695  
.646  
.656  
Optional  
Pin #1 Identifier  
.147  
.158  
.020 R.  
MAX.  
.042  
.048  
.025  
.045  
.042  
.056  
R.  
x45˚  
1
44  
.042  
.048  
.013  
.021  
.685  
.695  
.646  
.656  
.500 .590  
REF. .630  
.026  
.032  
.050  
BSC.  
.020 Min.  
.100  
.112  
.050  
BSC.  
.026  
.032  
.165  
.180  
44.PLCC.NJ-ILL.6  
Note:  
1. Complies with JEDEC publication 95 MS-018 AC dimensions (except as noted), although some dimensions may be more stringent.  
= JEDEC min is .650; SST min is less stringent  
2. All linear dimensions are in inches (min/max).  
3. Dimensions do not include mold flash. Maximum allowable mold flash is .008 inches.  
4. Coplanarity: ± 4 mils.  
44-LEAD PLASTIC LEAD CHIP CARRIER (PLCC)  
SST PACKAGE CODE: NJ  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
48  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
1
2
3
33  
34  
23  
22  
.020  
4
.80 BSC  
10.0 12.0  
BSC BSC  
1.20  
1.05  
.95  
.09  
.20  
max.  
5
0˚- 7˚  
.75  
.45  
.30  
.45  
.15  
.05  
44  
1
12  
1.00 ref  
6
11  
Pin 1 Identifier(s)  
(either or both)  
0.20  
.80  
.30  
.45  
BSC  
7
10.0  
44.tqfp-TQJ-ILL.3  
BSC  
12.0  
BSC  
8
Note:  
1. Complies with JEDEC publication 95 MS-026 ACB dimensions, although some dimensions may be more stringent.  
2. All linear dimensions are in mm (min/max).  
9
3. Coplanarity: 0.1 (±0.05) mm.  
44-LEAD THIN QUAD FLAT PACK (TQFP)  
SST PACKAGE CODE: TQJ  
10  
11  
12  
13  
14  
15  
16  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
49  
FlashFlex51 MCU  
SST89C54 / SST89C58  
Preliminary Specifications  
Silicon Storage Technology, Inc. 1171 Sonora Court Sunnyvale, CA 94086 Telephone 408-735-9110 Fax 408-735-9036  
www.SuperFlash.com or www.ssti.com Literature FaxBack 888-221-1178, International 732-544-2873  
© 2000 Silicon Storage Technology, Inc.  
344-2 8/00  
50  

相关型号:

SST89C58-33-AI-NI

FlashFlex51 MCU
SST

SST89C58-33-AI-NJ

FlashFlex51 MCU
SST

SST89C58-33-AI-PI

FlashFlex51 MCU
SST

SST89C58-33-AI-PJ

FlashFlex51 MCU
SST

SST89C58-33-AI-TQI

FlashFlex51 MCU
SST

SST89C58-33-AI-TQJ

FlashFlex51 MCU
SST

SST89C58-33-C-NI

FlashFlex51 MCU
SST

SST89C58-33-C-NJ

FlashFlex51 MCU
SST

SST89C58-33-C-PI

FlashFlex51 MCU
SST

SST89C58-33-C-PJ

FlashFlex51 MCU
SST

SST89C58-33-C-TQI

FlashFlex51 MCU
SST

SST89C58-33-C-TQJ

FlashFlex51 MCU
SST