ACST8-8CT [STMICROELECTRONICS]

OVER VOLTAGE PROTECTED AC POWER SWITCH; 过电压保护状态的AC电源开关
ACST8-8CT
型号: ACST8-8CT
厂家: ST    ST
描述:

OVER VOLTAGE PROTECTED AC POWER SWITCH
过电压保护状态的AC电源开关

栅极 触发装置 开关 三端双向交流开关 电源开关 局域网
文件: 总10页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACST8  
®
OVER VOLTAGE PROTECTED  
AC POWER SWITCH  
ASD™  
(AC Switch Family)  
MAIN APPLICATIONS  
AC static switching in appliance & industrial  
control systems  
Washing machine with bi-rotational induction  
motor drive  
Induction motor drive for:  
- refrigerator / freezer compressor  
- air conditioning compressor  
OUT  
G
G
OUT  
COM  
OUT  
COM  
TO-220FPAB  
TO-220AB  
FEATURES  
ACST8-8CFP  
ACST8-8CT  
VDRM /VRRM = +/- 800V  
Avalanche controlled device  
OUT  
IT(RMS) = 8A with TCASE = 90 °C  
High noise immunity: static dV/dt > 750 V/µs  
Gate triggering current : IGT < 30 mA  
G
Snubberless turn off commutation:  
(dI/dt)c > 4.5A/ms  
COM  
D2PAK  
ACST8-8CG  
BENEFITS  
Enables equipment to meet EN61000-4-5  
standard  
High off-state reliability with planar technology  
Need no external overvoltage protection  
Reduces the power component count  
Table 1: Order Codes  
Part Number  
ACST8-8CFP  
ACST8-8CT  
ACST8-8CG  
Marking  
ACST88C  
DESCRIPTION  
The ACST8-8C belongs to the AC power switch  
family built around the ASDTM technology. This  
high performance device is adapted to home appli-  
ances or industrial systems and drives an induc-  
tion motor up to 8A.  
Figure 1: Functional Diagram  
OUT  
This ACST switch embeds a triac structure with a  
high voltage clamping device to absorb the induc-  
tive turn off energy and withstand line transients  
such as those described in the IEC61000-4-5  
standards.  
G
COM  
TM: ASD is a trademark of STMicroelectronics.  
November 2004  
REV. 6  
1/10  
ACST8  
Table 2: Absolute Ratings (limiting values)  
Symbol  
Parameter  
Value  
Unit  
TO-220FPAB  
Tcase = 90°C  
Tcase = 100°C  
8
RMS on-state current full cycle sine  
wave 50 to 60 Hz  
IT(RMS)  
A
TO-220AB /  
D2PAK  
8
tp = 20ms  
tp = 16.7ms  
tp = 10ms  
80  
85  
35  
A
A
A2s  
Non repetitive surge peak on-state current  
Tj initial = 25°C, full cycle sine wave  
ITSM  
I2t  
Thermal constraint for fuse selection  
Non repetitive on-state current critical rate of rise  
IG = 10mA (tr < 100ns)  
dI/dt  
Rate period > 1mn  
note 1  
100  
2
A/µs  
kV  
VPP  
Tstg  
Tj  
Non repetitive line peak pulse voltage  
Storage temperature range  
- 40 to + 150 °C  
- 40 to + 125 °C  
Operating junction temperature range  
Maximum lead soldering temperature during 10s  
Tl  
260  
°C  
Note 1: according to test described by IEC61000-4-5 standard & figure A.  
Table 3: Gate Characteristics (maximum values)  
Symbol  
PG (AV)  
PGM  
Parameter  
Average gate power dissipation  
Value  
Unit  
W
0.1  
10  
1
Peak gate power dissipation (tp = 20µs)  
Peak gate current (tp = 20µs)  
W
IGM  
A
Table 4: Thermal Resistance  
Symbol  
Parameter  
Value  
Unit  
TO-220FPAB  
TO-220AB  
Rth(j-a)  
Junction to ambient  
60  
°C/W  
Rth(j-a)  
Rth(j-c)  
Junction to ambien (soldered on 1 cm2 copper pad) D2PAK  
45  
3.5  
°C/W  
°C/W  
Junction to case for full cycle sine wave conduction TO-220FPAB  
TO-220AB  
Junction to case for full cycle sine wave conduction  
D2PAK  
Rth(j-c)  
2.5  
°C/W  
Table 5: Parameter Description  
Parameter Symbol  
Parameter description  
IGT  
VGT  
Gate triggering current  
Gate triggering voltage  
Non triggering voltage  
Holding current  
VGD  
IH  
IL  
Latching current  
VTM  
On state voltage  
VT0  
On state characteristic threshold voltage  
On state characteristic dynamic resistance  
Forward or reverse leakage current  
Static pin OUT voltage rise  
Turn off current rate of decay  
Avalanche voltage at turn off  
Rd  
I
DRM / IRRM  
dV/dt  
(dI/dt)c  
VCL  
2/10  
ACST8  
Table 6: Electrical Characteristics per Switch  
For either positive or negative polary of pin OUT voltage respect to pin COM voltage  
Symbol  
VDRM  
Test conditions  
Values  
Unit  
/
Repetitive peak off-state voltage  
MAX.  
800  
V
VRRM  
IGT  
VGT  
VGD  
IH  
VOUT = 12V (DC) RL = 33  
VOUT = 12V (DC) RL = 33Ω  
Tj = 25°C  
Tj = 25°C  
MAX.  
MAX.  
MIN.  
30  
1.5  
0.2  
40  
mA  
V
VOUT = VDRM  
IOUT = 100mA  
IG = 20mA  
RL = 3.3kΩ  
Tj = 125°C  
Tj = 25°C  
Tj = 25°C  
Tj = 25°C  
Tj = 125°C  
Tj = 125°C  
Tj = 25°C  
Tj = 125°C  
Tj = 125°C  
Tj = 125°C  
Tj = 25°C  
V
Gate open  
MAX.  
MAX.  
MAX.  
MAX.  
MAX.  
MAX.  
MAX.  
MIN.  
mA  
mA  
V
IL  
70  
VTM  
VT0  
Rd  
IOUT = 11A  
tp = 380µs  
1.5  
0.95  
50  
V
mΩ  
µA  
mA  
V/µs  
A/ms  
V
10  
IDRM  
/
VOUT = VDRM  
VOUT = VRRM  
IRRM  
1
dV/dt  
V
OUT = 550V  
gate open  
tp = 1ms  
750  
4.5  
1200  
(dI/dt)c Without snubber  
VCL ICL = 1mA  
MIN.  
TYP.  
1. AC LINE SWITCH BASIC APPLICATION  
The ACST8-8C device is especially designed to drive medium power induction motors in washing ma-  
chines, refrigerators, dish washers, and tumble dryers.  
Pin COM  
Pin G  
Pin OUT  
: Common drive reference, to be connected to the power line neutral  
: Switch Gate input to be connected to the controller  
: Switch Output to be connected to the load  
When driven from a low voltage controller, the ACST switch is triggered with a negative gate current flow-  
ing out of the gate pin G. It can be driven by the controller through a resistor as shown on the typical appli-  
cation diagram. In appliance systems, the ACST8-8C switch intends to drive medium power load in ON /  
OFF full cycle or phase angle control mode.  
Thanks to its thermal and turn-off commutation characteristics, the ACST8-8C switch is able to drive an  
inductive load up to 8A without a turn-off aid snubber circuit.  
In washing machine or drier appliances, the tumble rotates in both directions. When using bidirectional  
phase shift induction motor, two switches are connected on each side of the phase shift capacitor: in  
steady-state operation, one switch only conducts energising the coils and defining the tumble direction.  
3/10  
ACST8  
Figure 2: Typical Application Diagram  
OUT  
G
COM  
CONTROL  
UNIT  
2. ROBUSTNESS AGAINST FAST CAPACITOR DISCHARGE  
When parasitic transients or controller mis-operation occur, the blocked switch may turn on by spurious  
switch firing. Since the phase shift capacitor is charged, its energy is instantaneously dissipated through  
the two ACSTs which can be destroyed. To prevent such a failure, a resistive inductive circuit R-L is added  
in series with the phase shift capacitor.  
The dI/dt depends on the maximal voltage Vmax of the phase shift capacitor (700V on 240V mains appli-  
cations), and on the inductance L:  
vmax  
dl  
dt  
---- = ----------  
L
The total switch turn on di/dt is the sum of the di/dt created by any RC noise suppressor discharge and  
the dI/dt created by the motor capacitor discharge.  
Since the maximal dI/dt capability at turn-on of the ACST8 is 100A/µs, the motor capacitor di/dt is assumed  
to be less than 50A/µs; therefore, the inductance should be 14µH.  
The resistor R limits the surge current through the ACST8 during the capacitor discharge according to the  
specified curve ITSM = f (tp) as shown in figure 11 (to be issued), and 1.2is low enough to limit the resistor  
dissipation (usually less than 1 W).  
Finally both the 14µH inductance and the 1.2resistance provide a safety margin of two on the surge cur-  
rent ITSM described in figure 11.  
M
V
AC  
Fast capacitor discharge when  
one ACST switch turns on (T2)  
and the motor runs (T1 ON).  
C
L
R
700V  
T1  
ON  
T2  
4/10  
ACST8  
3. AC LINE TRANSIENT VOLTAGE RUGGEDNESS  
The ACST8-8C switch is able to safely withstand the AC line transient voltages either by clamping the low  
energy spikes or by breaking over under high energy shocks.  
The test circuit in figure 3 is representative of the ACST application and is used to test the ACST switch  
according to the IEC61000-4-5 standard conditions. Thanks to the load impedance, the ACST switch with-  
stands voltage spikes up to 2 kV above the peak line voltage by breaking over safely. Such non repetitive  
testing can be done 10 times on each AC line voltage polarity.  
Figure 3: Overvoltage ruggedness test circuit for resistive and inductive loads according to  
IEC61000-4-5 standard R = 47, L = 10µH & VPP = 2kV  
L
R
OUT  
SURGE VOLTAGE  
AC LINE & GENERATOR  
VAC + VPP  
G
COM  
Figure 4: Maximum power dissipation versus  
RMS on-state current  
Figure 5: RMS on-state current versus case  
temperature  
P(W)  
I
(A)  
T(RMS)  
11  
9
8
7
6
5
4
3
2
1
0
TO-220AB/D2PAK  
α=180°  
10  
9
8
7
6
5
4
TO-220FPAB  
3
180°  
α
2
α
α=180°  
1
T (°C)  
C
I (A)  
T(RMS)  
0
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
7
8
Figure 6: RMS on-state current versus ambient  
temperature  
Figure 7: Relative variation of thermal  
impedance versus pulse duration (TO-220FPAB)  
K=[Z /R  
]
th th  
I
(A)  
T(RMS)  
1.E+00  
1.E-01  
1.E-02  
1.E-03  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
α=180°  
Printed circuit board FR4  
Natural convection  
Zth(j-c)  
D2PAK  
Zth(j-a)  
TO-220FPAB/TO-220AB  
TO-220FPAB  
T
amb  
(°C)  
t (°C)  
p
0
25  
50  
75  
100  
125  
1.E-03  
1.E-02  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
5/10  
ACST8  
Figure 8: Relative variation of thermal  
impedance versus pulse duration (TO-220AB /  
D2PAK)  
Figure 9: On-state characteristics (maximum  
values)  
I (A)  
out  
K=[Z /R  
]
th th  
1.E+00  
1.E-01  
1.E-02  
100  
10  
1
Zth(j-c)  
Tj=25°C  
Tj=125°C  
Zth(j-a)  
TO-220AB/D2PAK  
Tj max. :  
Vto = 0.95 V  
Rd = 50 m  
t (°C)  
p
t (°C)  
p
1.E-03  
1.E-02  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
0
1
2
3
4
5
6
Figure 10: Surge peak on-state current versus  
number of cycles  
Figure 11: Non repetitive surge peak on-state  
current for a sinusoidal pulse with width tp <  
10ms, and corresponding value of I2t  
I (A)  
TSM  
I
(A), I2t (A2s)  
TSM  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
Tj initial=25°C  
t=20ms  
Non repetitive  
Tj initial=25°C  
dI/dt limitation:  
100A/µs  
ITSM  
Repetitive  
Tc=90°C  
I2t  
Number of cycles  
t (ms)  
p
1
10  
100  
1000  
0.01  
0.10  
1.00  
10.00  
Figure 12: Relative variation of gate trigger  
current, holding current and latching current  
versus junction temperature (typical values)  
Figure 13: Relative variation of critical rate of  
decrease of main current versus reapplied dV/  
dt (typical values)  
I
, I ,I [T /I , I , I [T =25°C]  
(dI/dt)c[(dV/dt)c] / Specified (dI/dt)c  
GT  
H
L
j
GT  
H
L
j
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5
4
3
2
1
IGT & IH  
IL  
T (°C)  
j
dV/dt(V/µs)  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
0.1  
1.0  
10.0  
100.0  
6/10  
ACST8  
Figure 14: Relative variation of critical rate of  
decrease of main current versus junction  
temperature  
Figure 15: Relative variation of static dV/dt  
versus junction temperature  
(dI/dt)c[T ] / (dI/dt)c[T =125°C]  
j
j
dV/dt[T ] / dV/dt[T =125°C]  
j j  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
5
4
3
2
1
0
Vout=550V  
T (°C)  
j
T (°C)  
j
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Figure 16: Surge peak on-state current versus  
number of cycles  
R (°C/W)  
th(j-a)  
80  
70  
60  
50  
40  
30  
20  
10  
0
S(Cu)(cm²)  
0
5
10  
15  
20  
25  
30  
35  
40  
Figure 17: Ordering Information Scheme  
AC Switch  
ACS T 8 - 8 C FP  
Topology  
T = Triac  
RMS on-state current  
8 = 8A  
Repetitive peak off-state voltage  
8 = 800V  
Triggering gate current  
C = 30mA  
Package  
FP = TO-220FPAB  
CT = TO-220AB  
CG = D2PAK  
7/10  
ACST8  
Figure 18: TO-220AB Package Mechanical Data  
DIMENSIONS  
Millimeters Inches  
Min. Min.  
REF.  
Max.  
4.60  
1.32  
2.72  
0.70  
0.88  
1.70  
1.70  
5.15  
2.70  
10.40  
Max.  
0.181  
0.051  
0.107  
0.027  
0.034  
0.066  
0.066  
0.202  
0.106  
0.409  
A
H2  
A
B
D
E
F
F1  
F2  
G
G1  
H2  
L2  
L4  
L5  
L6  
L7  
L9  
M
4.40  
1.23  
2.40  
0.49  
0.61  
1.14  
1.14  
4.95  
2.40  
10  
0.173  
0.048  
0.094  
0.019  
0.024  
0.044  
0.044  
0.194  
0.094  
0.393  
Dia  
C
L5  
L9  
L7  
L6  
L4  
L2  
F2  
F1  
D
F
16.4 typ.  
0.645 typ.  
M
G1  
E
13  
14  
0.511  
0.104  
0.600  
0.244  
0.137  
0.551  
0.116  
0.620  
0.259  
0.154  
G
2.65  
15.25  
6.20  
3.50  
2.95  
15.75  
6.60  
3.93  
2.6 typ.  
0.102 typ.  
Diam.  
3.75  
3.85  
0.147  
0.151  
Figure 19: TO-220FPAB Package Mechanical Data  
DIMENSIONS  
Millimeters Inches  
REF.  
Min.  
4.4  
2.5  
Max.  
4.6  
2.7  
2.75  
0.70  
1
1.70  
1.70  
5.20  
2.7  
Min.  
Max.  
0.181  
0.106  
0.108  
0.027  
0.039  
0.067  
0.067  
0.205  
0.106  
0.409  
A
A
B
D
E
F
F1  
F2  
G
G1  
H
0.173  
0.098  
0.098  
0.018  
0.030  
0.045  
0.045  
0.195  
0.094  
0.393  
B
H
2.5  
0.45  
0.75  
1.15  
1.15  
4.95  
2.4  
Dia  
L6  
L5  
L2  
L7  
L3  
10  
10.4  
D
L2  
L3  
L4  
L5  
L6  
L7  
Dia.  
16 Typ.  
0.63 Typ.  
F1  
F2  
L4  
28.6  
9.8  
2.9  
30.6  
10.6  
3.6  
1.126  
0.386  
0.114  
0.626  
0.354  
0.118  
1.205  
0.417  
0.142  
0.646  
0.366  
0.126  
F
E
G1  
15.9  
9.00  
3.00  
16.4  
9.30  
3.20  
G
8/10  
ACST8  
Figure 20: D2PAK Package Mechanical Data  
DIMENSIONS  
Millimeters Inches  
Min.  
REF.  
A
Max.  
4.60  
2.69  
0.23  
0.93  
1.70  
0.60  
1.36  
9.35  
10.40  
5.28  
15.85  
1.40  
1.75  
3.20  
Min.  
Max.  
0.181  
0.106  
0.009  
0.037  
0.067  
0.024  
0.054  
0.368  
0.409  
0.208  
0.624  
0.055  
0.069  
0.126  
E
A
A1  
A2  
B
B2  
C
C2  
D
E
G
L
L2  
L3  
M
4.40  
2.49  
0.03  
0.70  
1.14  
0.45  
1.23  
8.95  
10.00  
4.88  
15.00  
1.27  
1.40  
2.40  
0.173  
0.098  
0.001  
0.027  
0.045  
0.017  
0.048  
0.352  
0.393  
0.192  
0.590  
0.050  
0.055  
0.094  
C2  
L2  
D
L
L3  
A1  
B2  
R
C
B
G
A2  
M
*
V2  
* FLAT ZONE NO LESSTHAN 2mm  
R
0.40 typ.  
0.016 typ.  
Figure 21: Foot Print Dimensions  
(in millimeters)  
16.90  
10.30  
5.08  
1.30  
3.70  
8.90  
Table 7: Ordering Information  
Part Number  
ACST8-8CFP  
ACST8-8CT  
Marking  
Package  
Weight  
Base qty  
50  
Delivery mode  
Tube  
TO-220FPAB  
TO-220AB  
2.4 g  
2.3 g  
50  
Tube  
ACST88C  
ACST8-8CG  
50  
Tube  
D2PAK  
1.5 g  
ACST8-8CG-TR  
500  
Tape & reel  
Epoxy meets UL94, V0  
Table 8: Revision History  
Date  
Revision  
Description of Changes  
Jan-2002  
4B  
5
Last update.  
TO-220AB and D2PAK packages added.  
Table 6 page 3 : IGT parameter added  
08-Nov-2004  
24-Nov-2004  
6
9/10  
ACST8  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
10/10  

相关型号:

ACST830-8FP

Overvoltage protected AC switch
STMICROELECTR

ACST830-8FPTR

Overvoltage protected AC switch
STMICROELECTR

ACST830-8G

Overvoltage protected AC switch
STMICROELECTR

ACST830-8GTR

Overvoltage protected AC switch
STMICROELECTR

ACST830-8T

Overvoltage protected AC switch
STMICROELECTR

ACST830-8TTR

Overvoltage protected AC switch
STMICROELECTR

ACST88C

OVER VOLTAGE PROTECTED AC POWER SWITCH
STMICROELECTR

ACST8_09

Overvoltage protected AC switch
STMICROELECTR

ACT

CRYSTAL CLOCK OSCILLATORS
ABRACON

ACT-0.400MHZ-L-S-TY

TTL Output Clock Oscillator, 0.4MHz Min, 160MHz Max, 0.4MHz Nom, DIP-14/4
ABRACON
ABRACON
ABRACON