DTV82D [STMICROELECTRONICS]

CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODE; CRT的水平偏转高压阻尼二极管
DTV82D
型号: DTV82D
厂家: ST    ST
描述:

CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODE
CRT的水平偏转高压阻尼二极管

二极管 高压
文件: 总10页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DTVseries  
®
(CRT HORIZONTAL DEFLECTION)  
HIGH VOLTAGE DAMPER DIODE  
MAIN PRODUCTS CHARACTERISTICS  
IF(AV)  
VRRM  
VF  
5 A to 10 A  
1500 V  
1.3 V to 1.5 V  
A
A
K
K
FEATURES AND BENEFITS  
HIGH BREAKDOWN VOLTAGE CAPABILITY  
VERY FAST RECOVERY DIODE  
ISOWATT220AC  
DTVxxxF  
TO-220AC  
DTVxxxD  
SPECIFIED TURN ON SWITCHING  
CHARACTERISTICS  
LOW STATIC AND PEAK FORWARD VOLTAGE  
DROP FOR LOW DISSIPATION  
DESCRIPTION  
SUITED TO 32-110kHz MONITORS AND  
16kHz TV DEFLECTION  
High voltage diode with high current capability  
dedicated to horizontal deflection. DTV16 is  
optimized to TV meanwhile DTV32 to DTV110 are  
covering the full range of monitors from the low  
end to the professional hi-definition SXGA CAD  
display units.  
INSULATED VERSION (ISOWATT220AC):  
Insulating voltage = 2000V DC  
Capacitance = 12pF  
PLANAR TECHNOLOGY ALLOWING HIGH  
These devices are packaged either in TO220-AC  
or in ISOWATT220AC.  
QUALITY  
CHARACTERISTICS  
AND  
BEST  
ELECTRICAL  
ABSOLUTE RATINGS  
Symbol  
Parameter  
Value  
1500  
15  
Unit  
V
VRRM  
IF(RMS)  
IFSM  
Repetitive peak reverse voltage  
RMS forward current  
A
Surge non repetitive forward current  
tp = 10ms half sine wave  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
50  
A
75  
80  
80  
80  
80  
Tstg  
Tj  
Storage temperature range  
-65 to 150  
150  
°C  
°C  
Maximum operating junction temperature  
1/10  
August 1999 - Ed: 2B  
DTVseries  
THERMAL RESISTANCES  
Value  
Symbol  
Parameter  
Unit  
TO-220AC  
ISOWATT220AC  
Rth(j-c)  
Junction to case thermal  
resistance  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
3
5.5  
4.75  
4
°C/W  
2.5  
2
1.8  
1.6  
1.3  
4
3.7  
3.5  
STATIC ELECTRICAL CHARACTERISTICS  
Value  
Symbol  
Test Conditions  
Tj = 25°C  
Tj = 125°C  
Unit  
Typ  
Max  
Typ  
1.0  
Max  
1.5  
VF  
IF = 5 A  
IF = 6 A  
IF = 6 A  
IF = 6 A  
IF = 6 A  
IF = 10 A  
VR = VRRM  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
1.6  
1.5  
1.8  
1.7  
1.8  
2.3  
60  
V
*
1.1  
1.1  
1.35  
1.5  
1.1  
1.4  
1.0  
1.3  
1.15  
100  
100  
100  
100  
100  
100  
1.5  
IR  
500  
µA  
**  
100  
100  
100  
100  
100  
1000  
1000  
1000  
1000  
1000  
pulse test : * tp = 380 µs, δ < 2%  
** tp = 5 ms, δ < 2%  
2/10  
DTVseries  
RECOVERY CHARACTERISTICS  
Symbol  
Test Conditions  
Tj = 25°C  
Typ  
1500  
850  
750  
750  
675  
625  
200  
130  
110  
110  
105  
95  
Max  
Unit  
trr  
IF = 100m A  
IR = 100mA  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
ns  
I
RR = 10mA  
trr  
IF = 1 A  
Tj = 25°C  
300  
175  
135  
135  
125  
115  
ns  
dIF/dt =-50A/µs  
VR =30V  
TURN-ON SWITCHING CHARACTERISTICS  
Symbol  
Test Conditions  
Typ  
350  
570  
350  
350  
270  
250  
25  
Max  
Unit  
tfr  
IF = 6 A  
dIF/dt = 80 A/µs  
Tj = 100°C  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
ns  
VFR =3V  
VFP  
IF = 6A  
dIF/dt = 80 A/µs  
Tj = 100°C  
34  
28  
26  
22  
18  
14  
V
21  
19  
18  
14  
11  
To evaluate the maximum conduction losses use the following equation :  
2
DTV16  
DTV32  
DTV56  
DTV64  
DTV82  
DTV110  
P= 1.14 x I  
+ 0.072 x I  
F(AV)  
F (RMS)  
2
P= 1.069 x I  
+ 0.047 x I  
F(AV)  
F (RMS)  
2
P= 1.15 x I  
P= 1.06 x I  
P= 1.01 x I  
P= 1.12 x I  
+ 0.059 x I  
+ 0.053 x I  
+ 0.048 x I  
+ 0.038 x I  
F(AV)  
F(AV)  
F(AV)  
F(AV)  
F (RMS)  
2
F (RMS)  
2
F (RMS)  
2
F (RMS)  
3/10  
DTVseries  
Fig. 1-1: Power dissipation versus peak forward  
current (triangular waveform, δ=0.45).  
Fig. 1-2: Power dissipation versus peak forward  
current (triangular waveform, δ=0.45).  
PF(av)(W)  
PF(av)(W)  
2.0  
3.5  
3.0  
2.5  
1.5  
DTV110  
DTV32  
2.0  
1.5  
1.0  
0.5  
0.0  
DTV56  
DTV16  
1.0  
0.5  
0.0  
Ip(A)  
Ip(A)  
0
2
4
6
8
10  
0
1
2
3
4
5
6
Fig. 1-3: Power dissipation versus peak forward  
current (triangular waveform, δ=0.45).  
PF(av)(W)  
2.0  
1.5  
DTV82  
1.0  
DTV64  
0.5  
Ip(A)  
0.0  
0
1
2
3
4
5
6
Fig. 2-1: Average current versus case temperature  
(δ=0.5) (TO-220AC).  
Fig. 2-2: Average current versus case temperature  
(δ=0.5) (ISOWATT220AC).  
IF(av)(A)  
IF(av)(A)  
12  
12  
10  
10  
DTV110  
DTV110  
DTV32  
DTV64  
DTV82  
DTV82  
DTV56  
8
8
DTV56  
DTV64  
DTV32  
6
6
DTV16  
DTV16  
4
4
T
T
2
2
Tcase(°C)  
tp  
=tp/T  
tp  
δ
=tp/T  
δ
Tcase(°C)  
0
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
4/10  
DTVseries  
Fig. 3-1: Forward voltage drop versus forward  
current (DTV16D/F).  
Fig. 3-2: Forward voltage drop versus forward  
current (DTV32D/F).  
IFM(A)  
IFM(A)  
20.0  
20.0  
10.0  
10.0  
Typical  
Tj=125°C  
Typical  
Tj=125°C  
Maximum  
Tj=125°C  
Maximum  
Tj=125°C  
Maximum  
Tj=25°C  
Maximum  
Tj=25°C  
1.0  
1.0  
VFM(V)  
VFM(V)  
0.1  
0.1  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Fig. 3-3: Forward voltage drop versus forward  
current (DTV56D/F).  
Fig. 3-4: Forward voltage drop versus forward  
current (DTV64D/F).  
IFM(A)  
IFM(A)  
20.0  
20.0  
Typical  
Tj=125°C  
10.0  
10.0  
Typical  
Tj=125°C  
Maximum  
Tj=125°C  
Maximum  
Tj=125°C  
Maximum  
Tj=25°C  
Maximum  
Tj=25°C  
1.0  
1.0  
VFM(A)  
VFM(V)  
0.1  
0.1  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
Fig. 3-5: Forward voltage drop versus forward  
current (DTV82D/F).  
Fig. 3-6: Forward voltage drop versus forward  
current (DTV110D/F).  
IFM(A)  
IFM(A)  
20.0  
20.0  
Typical  
Tj=125°C  
Typical  
Tj=125°C  
10.0  
10.0  
Maximum  
Tj=125°C  
Maximum  
Tj=125°C  
Maximum  
Tj=25°C  
Maximum  
Tj=25°C  
1.0  
1.0  
VFM(V)  
VFM(V)  
0.1  
0.1  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50  
0
0.5  
1
1.5  
2
2.5  
3
5/10  
DTVseries  
Fig. 4-1: Non repetitive surge peak forward current  
versus overload duration (TO-220AC)  
(DTV16D / DTV32D / DTV56D).  
Fig. 4-2: Non repetitive surge peak forward current  
versus overload duration (ISOWATT220AC)  
(DTV16F / DTV32F / DTV56F).  
IM(A)  
IM(A)  
60  
45  
55  
50  
45  
Tc=100°C  
Tc=100°C  
40  
DTV32F & DTV56F  
DTV32D & DTV56D  
35  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
DTV16F  
DTV16D  
20  
15  
IM  
IM  
10  
5
t
t
δ
=0.5  
δ
=0.5  
t(s)  
t(s)  
0
0
1E-3  
1E-2  
1E-1  
1E+0  
1E-3  
1E-2  
1E-1  
1E+0  
Fig. 4-3: Non repetitive surge peak forward current  
versus overload duration (TO-220AC)  
(DTV64D / DTV82D / DTV110D).  
Fig. 4-4: Non repetitive surge peak forward current  
versus overload duration (ISOWATT220AC)  
(DTV64F / DTV82F / DTV110F).  
IM(A)  
IM(A)  
100  
60  
55  
50  
45  
40  
35  
Tc=100°C  
90  
Tc=100°C  
DTV110F  
DTV110D  
80  
DTV82F  
DTV82D  
70  
60  
50  
30  
DTV64D  
DTV64F  
25  
20  
15  
10  
5
40  
30  
IM  
IM  
20  
10  
0
t
t
δ
=0.5  
δ
=0.5  
t(s)  
t(s)  
0
1E-3  
1E-2  
1E-1  
1E+0  
1E-3  
1E-2  
1E-1  
1E+0  
Fig. 5.1: Reverse recovery charges versus dIF/dt  
(DTV16D/F).  
Fig. 5.2: Reverse recovery charges versus dIF/dt.  
Qrr(µC)  
Qrr(nc)  
1200  
2.4  
2.2  
2.0  
IF=Ip  
90% confidence  
Tj=125°C  
DTV32  
IF=Ip  
1000  
90% confidence  
Tj=125°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
800  
DTV64  
DTV82  
600  
400  
200  
dIF/dt(A/µs)  
dIF/dt(A/µs)  
0.2  
0
0.0  
0.1  
0.2  
0.5  
1
2
5
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
6/10  
DTVseries  
Fig. 5.3: Reverse recovery charges versus dIF/dt.  
Fig. 6.1: Reverse recovery current versus dIF/dt.  
Qrr(nc)  
IRM(A)  
1200  
3.0  
IF=Ip  
90% confidence  
Tj=125°C  
2.7  
IF=Ip  
1000  
90% confidence  
2.4  
DTV56  
Tj=125°C  
2.1  
800  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
DTV16  
DTV110  
600  
DTV32  
400  
200  
dIF/dt(A/µs)  
dIF/dt(A/µs)  
0
0.1  
0.2  
0.5  
1
2
5
0.1  
0.2  
0.5  
1
2
5
Fig. 6.2: Reverse recovery current versus dIF/dt.  
Fig. 6.3: Reverse recovery current versus dIF/dt.  
IRM(A)  
IRM(A)  
2.2  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IF=Ip  
90% confidence  
Tj=125°C  
IF=Ip  
90% confidence  
Tj=125°C  
DTV56  
DTV64  
DTV110  
DTV82  
0.2  
0.0  
dIF/dt(A/µs)  
dIF/dt(A/µs)  
0.1  
0.2  
0.5  
1
2
5
0.1  
0.2  
0.5  
1
2
5
Fig. 7-1: Transient peak forward voltage versus  
dIF/dt.  
Fig. 7.2: Transient peak forward voltage versus  
dIF/dt.  
VFP(V)  
VFP(V)  
45  
30  
IF=Ip  
90% confidence  
Tj=125°C  
IF=Ip  
90% confidence  
Tj=125°C  
40  
DTV16  
25  
DTV64  
35  
DTV32  
30  
20  
DTV82  
25  
DTV56  
15  
20  
15  
10  
DTV110  
10  
5
5
dIF/dt(A/µs)  
dIF/dt(A/µs)  
0
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
7/10  
DTVseries  
Fig. 8.1: Forward recovery time versus dIF/dt.  
Fig. 8-2: Forward recovery time versus dIF/dt.  
tfr(ns)  
tfr(ns)  
700  
800  
IF=Ip  
IF=Ip  
90% confidence  
Tj=125°C  
90% confidence  
Tj=125°C  
650  
750  
600  
700  
550  
650  
600  
550  
500  
450  
400  
DTV32  
500  
DTV56  
450  
400  
350  
300  
DTV82  
DTV64  
DTV16  
DTV110  
dIF/dt(A/µs)  
dIF/dt(A/µs)  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Fig. 9: Dynamic parameters versus junction  
temperature.  
Fig. 10: Junction capacitance versus reverse  
voltage applied (typical values).  
C(pF)  
VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125°C]  
200  
1.2  
DTV110  
Tj=25°C  
F=1MHz  
100  
10  
DTV82  
DTV64  
1.0  
0.8  
VFP  
DTV16  
0.6  
IRM  
0.4  
DTV32  
DTV56  
Qrr  
0.2  
Tj(°C)  
VR(V)  
10  
0.0  
1
1
0
20  
40  
60  
80  
100  
120  
140  
100 200  
Fig. 11-1: Relative variation of thermal impedance  
junction to case versus pulse duration  
(ISOWATT220AC).  
Fig. 12-2: Relative variation of thermal impedance  
junction to case versus pulse duration  
(TO-220AC).  
K=[Zth(j-c)/Rth(j-c)]  
K=[Zth(j-c)/Rth(j-c)]  
1.0  
1.0  
δ = 0.5  
δ = 0.5  
0.5  
0.5  
δ = 0.2  
δ = 0.2  
δ = 0.1  
δ = 0.1  
T
T
0.2  
0.2  
0.1  
Single pulse  
Single pulse  
tp  
tp(s)  
=tp/T  
δ
tp(s)  
tp  
=tp/T  
δ
0.1  
1E-3  
1E-2  
1E-1  
1E+0  
1E-2  
1E-1  
1E+0  
1E+1  
8/10  
DTVseries  
PACKAGE DATA  
TO-220AC (plastic) (JEDEC outline)  
DIMENSIONS  
Millimeters Inches  
REF.  
Min.  
Max.  
4.60  
1.32  
2.72  
0.70  
0.88  
1.70  
5.15  
10.40  
Min.  
Max.  
0.181  
0.051  
0.107  
0.027  
0.034  
0.066  
0.202  
0.409  
H2  
A
A
C
4.40  
1.23  
2.40  
0.49  
0.61  
1.14  
4.95  
10.00  
0.173  
0.048  
0.094  
0.019  
0.024  
0.044  
0.194  
0.393  
C
L5  
L7  
D
Ø I  
E
L6  
F
L2  
F1  
G
D
L9  
H2  
L2  
L4  
L5  
L6  
L7  
L9  
M
F1  
L4  
16.40 typ.  
0.645 typ.  
13.00  
2.65  
14.00  
2.95  
0.511  
0.104  
0.600  
0.244  
0.137  
0.551  
0.116  
0.620  
0.259  
0.154  
M
F
E
G
15.25  
6.20  
15.75  
6.60  
3.50  
3.93  
2.6 typ.  
0.102 typ.  
Diam. I  
3.75  
3.85  
0.147  
0.151  
Cooling method : c.  
Torque value : 0.55 m.N typ (0.70 m.N max).  
9/10  
DTVseries  
PACKAGE DATA  
ISOWATT220AC (plastic)  
A
DIMENSIONS  
Millimeters  
Min. Typ. Max. Min. Typ. Max.  
H
B
REF.  
Inches  
A
B
4.40  
2.50  
2.40  
0.40  
0.75  
1.15  
4.95  
10.00  
4.60 0.173  
2.70 0.098  
2.75 0.094  
0.70 0.016  
1.00 0.030  
1.70 0.045  
5.20 0.195  
10.40 0.394  
0.181  
0.106  
0.108  
0.028  
0.039  
0.067  
0.205  
0.409  
L6  
D
L7  
L2  
E
L3  
F
F1  
G
H
F1  
L2  
16.00  
0.630  
L3 28.60  
L6 15.90  
30.60 1.125  
16.40 0.626  
9.30 0.354  
3.20 0.118  
1.205  
0.646  
0.366  
0.126  
F
D
E
L7  
9.00  
G
Diam 3.00  
Cooling method : C.  
Electrical isolation : 2000V DC  
Capacitance : 12 pF  
Torque value : 0.55 m.N typ (0.70 m.N max).  
Ordering code  
Marking  
Package  
Weight  
Base qty  
Delivery mode  
DTV16D  
DTV32D  
DTV56D  
DTV64D  
DTV82D  
DTV110D  
DTV16D  
DTV32D  
DTV56D  
DTV64D  
DTV82D  
DTV110D  
TO-220AC  
1.86g  
50  
Tube  
DTV16F  
DTV32F  
DTV56F  
DTV64F  
DTV82F  
DTV110F  
DTV16F  
DTV32F  
DTV56F  
DTV64F  
DTV82F  
DTV110F  
ISOWATT220AC  
2g  
50  
Tube  
Epoxy meets UL94, V0  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of  
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by  
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied.  
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-  
proval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
10/10  

相关型号:

DTV82F

CRT HORIZONTAL DEFLECTION HIGH VOLTAGE DAMPER DIODE
STMICROELECTR

DTVP30

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTVP30/128GB

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTVP30/16GB

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTVP30/32GB

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTVP30/4GB

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTVP30/64GB

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTVP30/8GB

DATATRAVELER VAULT PRIVACY 3.0
KINGSTON

DTW010U201FFA0

Power Supply
LINKCOM

DTW010U351FFA0

Power Supply
LINKCOM

DTW013U351FFA0

Power Supply
LINKCOM

DTW015U351FFA0

Power Supply
LINKCOM