E-TDA7437N [STMICROELECTRONICS]

Digitally controlled audio processor; 数字控制音频处理器
E-TDA7437N
型号: E-TDA7437N
厂家: ST    ST
描述:

Digitally controlled audio processor
数字控制音频处理器

音频控制集成电路 消费电路 商用集成电路
文件: 总34页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA7437N  
Digitally controlled audio processor  
Features  
Input multiplexer  
– Four stereo, one mono input, and one  
differential input  
– Selectable input gain for optimal adaptation  
to different sources  
Fully programmable loudness function  
Volume control in 1dB steps including gain up  
to 16dB  
Zero crossing mute, soft mute and direct mute  
Bass and treble control  
LQFP44  
Four speaker attenuators- four independent  
speakers control in 1dB steps for balance and  
fader facilities  
Pause detector programmable threshold  
low noise are obtained. Several new features like  
softmute, and zero-crossing mute are  
2
All functions programmable via serial I C bus  
implemented. The soft Mute function can be  
activated in two ways either via the serial bus  
(Mute byte, bit D0), or directly on pin 28 through  
an I/O line of the microcontroller  
Description  
The audioprocessor TDA7437N is an upgrade of  
the TDA731X audioprocessor family.  
Very low DC stepping is obtained by use of a  
BICMOS technology.  
Due to a highly linear signal processing, using  
CMOS-switching techniques instead of standard  
bipolar multipliers, very low distortion and very  
Order codes  
Part numbers  
Package  
Packing  
E-TDA7437N  
LQFP44 (10x 10x 1.4mm)  
LQFP44 (10x 10x 1.4mm)  
Tray  
E-TDA7437NTR  
Tape and reel  
December 2006  
Rev 2  
1/34  
www.st.com  
1
TDA7437N  
Contents  
1
2
3
PIN descriptions and electrical specifications . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
3.5  
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Transmission without acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
5
Software specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
4.4  
4.5  
Interface protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Auto increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Subaddress (receive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Transmitted data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data byte specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Mute and pause features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Soft mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Direct mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Speakers mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Zero crossing mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pause function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
No symmetrical bass cut response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Transmitted data (send mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
TDA7437N I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
I2C bus read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.10 Loudness stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.11 Treble stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.12 IN-OUT pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.13 Bass & mid filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/34  
TDA7437N  
5.14 Input selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Curves of electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6
7
8
3/34  
TDA7437N  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Quick reference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Subaddress (receive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Send mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data byte specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Loudness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Bass treble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input stage gain middle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4/34  
TDA7437N  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
CLD and CDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
Timing diagram of I C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
Acknowledge on the I C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power on time constant vs CREF capacitor CREF = 4.7mF . . . . . . . . . . . . . . . . . . . . . . . 28  
Power on time constant vs CREF capacitor CREF = 10mF . . . . . . . . . . . . . . . . . . . . . . . . 28  
Power on time constant vs CREF capacitor CREF = 22mF . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 10. SVRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11. Soft mute ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 12. Soft mute OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 13. Zero crossing mute ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 14. Zero crossing mute OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15. Pause detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 16. Pause detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 17. Symmetrical bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 18. unsymmetrical bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 19. Loudness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 20. Test board diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 21. LQFP44 (10x10) Mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . 32  
5/34  
PIN descriptions and electrical specifications  
TDA7437N  
1
PIN descriptions and electrical specifications  
Figure 1.  
Pin description  
44 43 42 41 40 39 38 37 36 35 34  
1
TREB_R  
IN_R  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
OUT_RF  
OUT_LR  
MID_LI  
2
3
4
5
6
7
8
9
MUXOUT_R  
LOUD_R  
MID_LO  
OUT_RR  
SMEXT  
DIFFGND_R  
DIFF_R  
STEREO4_R  
STEREO1_R  
STEREO2_R  
STEREO3_R  
MONO  
BASS_RO  
BASS_RI  
BASS_LO  
BASS_LI  
MID_RO  
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
D96AU435B  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
AVDD, DVDD Operating supply voltage  
10.5  
V
Tamb  
Tstg  
Operating ambient temperature  
Storage temperature range  
-40 to 85  
-55 to 150  
°C  
°C  
Table 2.  
Symbol  
Thermal data  
Parameter  
Value  
Unit  
Rth j-amb Thermal resistance junction to pins Max.  
150  
°C/W  
Table 3.  
Quick reference data  
Parameter  
Symbol  
Min. Typ. Max.  
Unit  
Supply voltage (AVDD and DVDD must be at the same  
potential)  
AVDD, DVDD  
6
9
10.2  
V
VCL  
THD  
S/N  
SC  
Max. input signal handling  
2.1  
2.6  
0.01  
111  
95  
Vrms  
%
Total harmonic distortion V = 1Vrms f = 1KHz  
Signal to noise ratio  
0.8  
dB  
Channel separation f = 1KHz  
dB  
6/34  
TDA7437N  
PIN descriptions and electrical specifications  
Table 3.  
Symbol  
Quick reference data (continued)  
Parameter  
Min. Typ. Max.  
Unit  
Input gain 1dB step  
0
15  
16  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Volume control 1dB step  
Treble control 2dB step  
Bass control 2dB step  
-63  
-14  
-14  
-14  
-79  
0
+14  
+14  
+14  
0
Middle control 2dB step  
Fader and balance control 1dB step  
Loudness control 1dB step  
Mute attenuation  
20  
100  
7/34  
PIN descriptions and electrical specifications  
TDA7437N  
Figure 2.  
Block diagram  
5DAU294B  
P A U S E  
S M E X T  
B A S S _ R O )  
T R E B L _ L  
T R E B _ R  
I N _ L  
I N _ R  
M U X O U T _ R  
M U L T I P L E X E R  
8/34  
TDA7437N  
Electrical characteristics  
2
Electrical characteristics  
(AVDD, DVDD = 9V; RL = 10K  
Ω; Rg = 50Ω; Tamb = 25°C; all gains = 0dB; f = 1KHz. Refer to the  
test circuit, unless otherwise specified.)  
Table 4.  
Symbol  
Electrical characteristics  
Parameter  
Test condition  
Min. Typ. Max. Unit  
Input selector (mono and stereo inputs)  
RI  
VCL  
SI  
Input resistance  
Clipping level  
pin 7 to 11 and 15 to 18  
70  
2.1  
80  
100  
2.6  
95  
130  
KΩ  
d 0.3%  
V
RMS  
Input separation  
Output load resistance  
dB  
RL  
2
KΩ  
dB  
dB  
dB  
dB  
mV  
mV  
GI MIN Minimum input gain  
GI MAX Maximum input gain  
Gstep Step resolution  
-0.75  
14  
0
15  
1.0  
0
+0.75  
16  
0.5  
-1.0  
1.5  
1.0  
10  
Ea  
Set error  
Adjacent gain steps  
GIMIN to GIMAX  
0.5  
3
VDC  
DC steps  
Differential input (Pin 5, 6, 13, 14)  
Input selector BIT D4 = 0  
(0dB)  
10  
14  
45  
15  
20  
20  
26  
KΩ  
KΩ  
RI  
Input resistance  
Input selector BIT D4 = 1(-  
6dB)  
Common mode rejection  
ratio  
CMRR  
d
VCM = 1VRMS ; f = 1KHz  
VI = 1VRMS  
70  
0.01  
5
dB  
%
Distortion  
0.08  
20Hz to 20KHz; Flat; D6 =  
0
eIN  
Input noise  
μV  
D4 = 0  
D4 = 1  
-1  
-7  
0
1
dB  
dB  
GDIFF Differential gain  
-6  
-5  
Volume control  
RI  
Input resistance  
Pin 2 and 20  
31  
15  
44  
16  
57  
17  
KΩ  
dB  
dB  
dB  
dB  
dB  
dB  
GMAX Maximum gain  
AMAX Maximum attenuation  
ASTEPC Step resolution coarse atten.  
61  
63.75 66.5  
0.5  
1.0  
0
1.5  
1.0  
2.75  
2
G = 16 to -20dB  
G = -20 to -63dB  
-1.0  
-2.75  
EA  
Et  
Attenuation set error  
Tracking error  
9/34  
Electrical characteristics  
TDA7437N  
Table 4.  
Symbol  
Electrical characteristics (continued)  
Parameter Test condition  
Min. Typ. Max. Unit  
Adjacent gain steps  
Adjacent attenuation steps  
From 0dB to AMAX  
-5  
-3  
+5  
+3  
5
mV  
mV  
mV  
VDC  
DC steps  
0.5  
Loudness control (Pin 4, 12)  
RI Internal resistor  
AMAX Maximum attenuation  
Astep Step resolution  
Zero crossing mute  
Loud = On  
35  
19  
50  
20  
1
65  
21  
KΩ  
dB  
dB  
0.5  
1.5  
WIN = 11  
WIN = 10  
WIN = 01  
WIN = 00  
35  
70  
mV  
mV  
mV  
mV  
dB  
VTH  
Zero crossing threshold (1)  
140  
280  
100  
0.1  
AMUTE Mute attenuation  
80  
VDC  
DC step  
0dB to Mute  
3
mV  
Soft mute  
AMUTE Mute attenuation  
50  
65  
dB  
ms  
CCSM = 22nF; 0 to -20dB; I  
= IMAX  
0.8  
1.5  
2.0  
TDON ON delay time  
CCSM = 22nF; 0 to -20dB; I  
= IMIN  
25  
20  
45  
60  
60  
ms  
VCSM = 0V; I = IMAX  
40  
2
mA  
μA  
KΩ  
V
TDOFF OFF current  
VCSM = 0V; I = IMIN  
(2)  
RINT  
Pullup resistor (pin 28)  
100  
VSMH (pin 28) Level high  
VSML (pin 28) Level low  
3.5  
Soft mute active  
1
V
Bass control  
Crange Control range  
±11.5 ±14  
±16  
3
dB  
dB  
KΩ  
Astep  
Rg  
Step resolution  
1
2
Internal feedback resistance  
31  
44  
57  
Middle control  
Crange Control range  
±11.5 ±14  
±16  
3
dB  
dB  
KΩ  
Astep  
Rg  
Step resolution  
1
2
Internal feedback resistance  
17.5  
25  
32.5  
10/34  
TDA7437N  
Electrical characteristics  
Min. Typ. Max. Unit  
Table 4.  
Symbol  
Electrical characteristics (continued)  
Parameter Test condition  
Treble control  
CRANGE Control range  
Astep Step resolution  
±13  
±14  
±15  
dB  
dB  
1
2
3
Speaker attenuators  
CRANGE Control range  
79  
1
dB  
dB  
dB  
dB  
mV  
Astep  
Step resolution  
AV = 0 to -40dB  
0.5  
80  
1.5  
AMUTE Output mute attenuation  
Data word = 1111XXXX  
AV = 0 to -40dB  
100  
EA  
Attenuation set error  
DC steps  
1.5  
3
VDC  
Adjacent attenuation steps  
0.1  
2.6  
Audio output  
Vclip  
RL  
Clipping level  
d = 0.3%  
2.1  
2
Vrms  
KΩ  
W
Output load resistance  
Output impedance  
DC voltage level  
RO  
50  
3.5  
90  
140  
4.1  
VDC  
3.8  
V
Pause detector  
WIN = 11  
WIN = 10  
WIN = 01  
WIN = 00  
35  
70  
mV  
mV  
mV  
mV  
μA  
V
VTH  
Pause threshold  
140  
280  
25  
IDELAY Pull-up current  
VTHP Pause threshold  
15  
35  
3.0  
General  
VCC  
ICC  
Supply voltage  
Supply current  
6
7
9
10.2  
13  
V
10  
90  
mA  
dB  
PSRR Power supply rejection ratio f = 1KHz  
70  
Output muted (B = 20 to  
20kHz flat)  
Output noise  
4
6
μV  
μV  
eNO  
All gains 0dB (B = 200 to  
20kHz flat)  
15  
Et  
Total tracking error  
AV = 0 to -20dB  
0
0
1
2
dB  
dB  
AV = -20 to -60dB  
All Gains = 0dB; VO =  
2.1Vrms  
S/N  
SC  
Signal to noise ratio  
111  
95  
dB  
dB  
Channel separation L - R  
80  
11/34  
Electrical characteristics  
TDA7437N  
Table 4.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test condition  
Min. Typ. Max. Unit  
0.01  
0.08  
%
d
Distortion  
VIN =1V all gain = 0dB  
Bus inputs  
VIL  
VlN  
IlN  
Input low voltage  
1
V
V
Input high voltage  
Input current  
3
VIN = 0.4V  
IO = 1.6mA  
-5  
5
μA  
Output voltage SDA  
acknowledge  
VO  
0.1  
0.4  
V
1. WIN represents the MUTE programming bit pair D6, D5 for the zero crossing window threshold  
2. Internal pullup resistor to Vs/2; "LOW" = softmute active  
Note:  
The ANGND and DIGGND layout wires must be kept separated. A 50Ω resistor is  
recommended to be put as far as possible from the device.  
The CLD - and CDR - can be short-circuited in applications providing 3 wires CD signal  
Figure 3.  
CLD and CDR  
L+  
L+  
L- R-  
L-  
R-  
=
CD  
TDA7437N  
R+  
R+  
D02AU1384  
CLD - = DIFFINLGND  
CDR - = DIFFINRGND  
12/34  
TDA7437N  
I2C bus interface  
2
3
I C bus interface  
Data transmission from the microprocessor to the TDA7437N, and vice versa, takes place  
2
through the 2 wires of the I C BUS interface, consisting of the two lines SDA and SCL (pull-  
up resistors to positive supply voltage must be externally connected).  
3.1  
3.2  
Data validity  
As shown in Figure 4, the data on the SDA line must be stable during the high period of the  
clock. The HIGH and LOW state of the data line can only change when the clock signal on  
the SCL line is LOW.  
Start and stop conditions  
As shown in Figure 5 a start condition is a HIGH to LOW transition of the SDA line while  
SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is  
HIGH. A STOP conditions must be sent before each START condition.  
3.3  
3.4  
Byte format  
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an  
acknowledge bit. The MSB is transferred first.  
Acknowledge  
The master (microprocessor) puts a resistive HIGH level on the SDA line during the  
acknowledge clock pulse (see Figure 6). The peripheral (audioprocessor) that  
acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so  
that the SDA line is stable LOW during this clock pulse. The audioprocessor which has been  
addressed has to generate an acknowledgment after the reception of each byte, otherwise  
the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the  
master transmitter can generate the STOP information in order to abort the transfer.  
3.5  
Transmission without acknowledgment  
To avoid detection of the acknowledge clock pulse of the audioprocessor, the microprocessor can  
use a simpler transmission: it simply waits one clock pulse, and sends the new data. This is less  
protected from any errors and will decrease the immunity to noise.  
13/34  
I2C bus interface  
Figure 4.  
TDA7437N  
Data validity  
SDA  
SCL  
DATA LINE  
STABLE, DATA  
VALID  
CHANGE  
DATA  
ALLOWED  
D99AU1031  
2
Figure 5.  
Timing diagram of I C Bus  
SCL  
I2CBUS  
SDA  
START  
2
D99AU1032  
STOP  
Figure 6.  
Acknowledge on the I C Bus  
SCL  
1
2
3
7
8
9
SDA  
MSB  
ACKNOWLEDGMENT  
FROM RECEIVER  
START  
D99AU1033  
14/34  
TDA7437N  
Software specification  
4
Software specification  
4.1  
Interface protocol  
The interface protocol comprises of:  
A start condition (s)  
A chip address byte, (the LSB bit determines read (=1)/write (=0) transmission)  
A subaddress byte.  
A sequence of data (N-bytes + acknowledge)  
A stop condition (P)  
CHIP ADDRESS  
SUBADDRESS  
DATA 1 to DATA n  
DATA  
MSB  
LSB  
MSB  
LSB  
A3 A2 A1 A0 ACK  
MSB  
LSB  
S
1
0
0
0
1
0
A
R/W ACK  
X
X
X
I
ACK  
P
ACK = Acknowledge; S = Start; P = Stop; I = Auto increment; X = Not used  
Max clock speed 500kbits/s  
ADDRpin open A = 0  
ADDRpin close to Vs A = 1  
4.2  
4.3  
Auto increment  
If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled.  
Subaddress (receive mode)  
Table 5.  
MSB  
Subaddress (receive mode)  
LSB  
FUNCTION  
X
X
X
I
A3  
0
A2  
0
A1  
0
A0  
0
Input selector  
0
0
0
1
Loudness  
0
0
1
0
Volume  
0
0
1
1
Bass, Treble  
0
1
0
0
Speaker attenuator LF  
Speaker attenuator LR  
Speaker attenuator RF  
Speaker Attenuator RR  
Input gain middle  
Mute  
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
15/34  
Software specification  
TDA7437N  
4.4  
Transmitted data  
Table 6.  
MSB  
Send mode  
LSB  
X
X
X
X
X
SM  
ZM  
P
P = Pause (Active low)  
ZM = Zero crossing muted (HIGH active)  
SM = Soft mute activated (HIGH active)  
X = Not used  
The transmitted data is automatically updated after each ACK.  
Transmission can be repeated without new chipaddress.  
4.5  
Data byte specification  
Table 7.  
MSB  
Data byte specification  
LSB  
D0  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
1
1
1
1
1
1
0
0
0
0
0
1
1
X
0
0
1
1
0
0
X
0
1
0
1
0
1
X
Differential  
Stereo 1  
Stereo 2  
Stereo 3  
Stereo 4  
Mono  
X
X
X
0
0
1
1
X
0
1
0
1
DC connect (1)  
Half-diff 0dB (2)  
Half-diff -6dB (2)  
Full-diff 0dB (3)  
Full-diff -6dB (3)  
1. Selected when using a 3 wire differential source (pins 5 and 13 shorted)  
2. Selected when using a 4 wire differential source  
3. OUTR-INR (OUTL-INR) short circuited internally (no need for external connection  
Table 8.  
MSB  
Loudness  
LSB  
D0  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Loudness step  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0dB  
1dB  
2dB  
3dB  
16/34  
TDA7437N  
Software specification  
Table 8.  
MSB  
Loudness (continued)  
LSB  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Loudness step  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
16dB  
17dB  
18dB  
19dB  
20dB  
Loudness off  
Fine volume  
0dB  
0
0
1
1
0
1
0
1
-0.25dB  
-0.5dB  
-0.75dB  
Table 9.  
MSB  
Mute  
LSB  
D0  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
0
0
0
1
1
1
1
Soft mute on  
0
1
soft mute with fast slope  
Soft mute with slow slope  
Zero mute  
0
1
1
Direct mute  
Reset  
17/34  
Software specification  
TDA7437N  
Table 9.  
MSB  
Mute (continued)  
LSB  
D0  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Zero cross window  
(280mV)  
0
0
0
Zero cross window  
(140mV)  
0
1
0
1
1
0
1
0
0
Zerocross window (70mV)  
Zerocross window (35mV)  
Non symmetrical bass  
Symmetrical bass  
0
1
Table 10. Volume  
MSB  
LSB  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0dB  
-1dB  
-2dB  
-3dB  
-4dB  
-5dB  
-6dB  
-7dB  
0
0
0
0
0
0
0
0
1
1
X
0
0
0
0
1
1
1
1
0
0
X
0
0
1
1
0
0
1
1
0
0
X
0
1
0
1
0
1
0
1
0
1
X
16dB  
8dB  
0dB  
-8dB  
-16dB  
-24dB  
-32dB  
-40dB  
-48dB  
-56dB  
Mute  
X
X
X
18/34  
TDA7437N  
Software specification  
Table 11. Speaker  
MSB  
LSB  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1.25dB step  
0dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-1dB  
-2dB  
-3dB  
-4dB  
-5dB  
-6dB  
-7dB  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
1
0dB  
-8dB  
-16dB  
-24dB  
-32dB  
-40dB  
-48dB  
-56dB  
-64dB  
-72dB  
Mute  
X
X
X
Table 12. Bass treble  
MSB  
LSB  
D0  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Treble step  
-14dB  
-12dB  
-10dB  
-8dB  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-6dB  
-4dB  
-2dB  
0dB  
19/34  
Software specification  
Table 12. Bass treble (continued)  
TDA7437N  
MSB  
D7  
LSB  
D0  
Function  
D6  
D5  
D4  
D3  
D2  
D1  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0dB  
2dB  
4dB  
6dB  
8dB  
10dB  
12dB  
14dB  
Bass steps  
-14dB  
-12dB  
-10dB  
-8dB  
-6dB  
-4dB  
-2dB  
0dB  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
0dB  
2dB  
1
1
4dB  
6dB  
8dB  
10dB  
126B  
14dB  
1
1
Table 13. Input stage gain middle  
MSB  
LSB  
D0  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
In-gain step  
0dB  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1dB  
2dB  
3dB  
20/34  
TDA7437N  
Software specification  
Table 13. Input stage gain middle (continued)  
MSB  
LSB  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
Middle step  
-14dB  
-12dB  
-10dB  
-8dB  
-6dB  
-4dB  
-2dB  
0dB  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
0dB  
2dB  
4dB  
6dB  
8dB  
10dB  
126B  
14dB  
21/34  
Mute and pause features  
TDA7437N  
5
Mute and pause features  
2
The TDA7437N provides three types of mute, controlled via I C bus (see Table 9 Mute byte  
register).  
5.1  
Soft mute  
Bit D0 = 1 Soft mute ON  
Bit D0 = 0 Soft mute OFF  
It allows an automatic soft muting and unmuting of the signal.  
The time constant is fixed by an external capacitor Csm inserted between pin Csm and  
ground.  
Once the external capacitor is fixed, two different slopes (time constant) are selectable by  
programming of bit D1.  
Bit D1 = 0 fast slope (I=Imax)  
Bit D1 = 1 slow slope (I=Imin)  
The soft mute generates a gradually decreasing signal, avoiding big click noise of an  
immediate high attenuation, without necessity to program a sequence of decreasing volume  
levels. A response example is reported in Figure 11 (mute), and Figure 12 (unmute). The  
final attenuation obtained with soft mute ON is 60dB typical. The used reference parameter  
is the delay time taken to reach 20dB attenuation (no matter what the signal level is).  
Using a capacitor Csm = 22nF this delay is:  
d = 1. 8mswhen selected Fast slope mode (bit D1=0)  
d = 25 ms when selected Slow slope mode (bit D1=1  
In the application, the soft mute ON programming should be followed by programming of  
direct mute on (see 5.2), in order to achieve a final 100dB attenuation. In addition to the I C  
2
bus programming, the Soft Mute ON can be generated in a fast way by forcing a LOW level  
at pin SMEXT (TTL Level compatible). This approach is recommended for fast RDS AF  
switching.  
2
The Soft Mute status can be detected via I C bus, reading the Transmitted Byte, bit SM  
(see Table 6).  
read bit SM = 1 soft mute status ON  
read bit SM = 0 soft mute status OFF  
5.2  
Direct mute  
bit D3 = 1 Direct mute ON  
bit D3 = 0 Direct mute OFF  
The direct mute bit forces an internal immediate signal connection to ground.  
It is located just before the Volume/Loudness stage, and gives a typical 100dB attenuation.  
22/34  
TDA7437N  
Mute and pause features  
5.3  
Speakers mute  
An additional direct mute function is included in the speakers attenuators stage.  
The four output LF, RF, LR, RR can be separately muted by setting the speaker attenuator  
byte to the value 01111111 binary.  
Typical attenuation level 100dB. This mute is useful for fader and balance functions. It  
should not be applied for system mute/unmute, because it can generate noise due to the  
offset of previous stages (bass / treble).  
5.4  
Zero crossing mute  
bit D2 = 1 D4 = 0 zero crossing mute ON  
bit D2 = 0 D4 = 0 zero crossing mute OFF  
The mute activation/deactivation is delayed until the signal waveform crosses the DC zero  
level (Vref level).  
The detection works separately for left and right channels (see Figure 13 and Figure 14).  
Four different window thresholds are software selectable by two dedicated bits.  
bit  
D6 bit D5 Window  
0
0
1
1
0
1
0
1
Vref DC +/-280mV  
Vref DC +/-140mV  
Vref DC +/-70mV  
Vref DC +/-35mV  
The zero crossing mute activation/deactivation starts when the AC signal level falls inside  
the selected window (internal comparator).  
The zero crossing mute (and pause) detector is always active. It can be disabled, if the  
feature is not used, by forcing the bit D4 = 1 Zero crossing and pause detector reset.  
In this way the internal comparator logic is stopped, eliminating its switching noise.  
The zero cross mute status is detected reading the transmitted byte bit ZM.  
bit ZM = 1 zero cross mute status ON  
bit ZM = 0 zero cross mute status OFF  
5.5  
Pause function  
On chip is implemented by a pause detector block.  
It uses the same 4 windows threshold selectable for the zero crossing mute, bit D6,D5 byte  
MUTE (see above). The detector can be put into OFF by forcing bit D4 = 1, otherwise it is  
active.  
Pause detector information is available at the PAUSE pin. A capacitor must be connected  
between the PAUSE pin and ground.  
23/34  
Mute and pause features  
TDA7437N  
When the incoming signal is detected to be outside the selected window, the external  
capacitor is discharged. When the signal is inside the window, the capacitor is integrating up  
(see Figure 15 and Figure 16).  
a) by reading directly the Pause pin level.The ON/OFF voltage threshold is 3.0V  
typical. Pause OFF = level low (< 3.0V) Pause ON = level high ( ; 3.0V)  
b) by reading via I2C bus the transmitted byte, bit PP = 0 pause active. P = 1 no  
pause detected. The external capacitor value fixes the time constant.  
The pull up current is 25uV typical, with input signal  
Vin = 1Vrm --; Vdc pin pause = 15mV  
Vin = 0Vrms --; Vdc pin pause = 5.62V  
For example choosing Cpause = 100nF the charge up constant is about 22ms. Instead with  
Cpause = 15nF the charge up constant is about 360μs.  
The pause detection is useful in applications like RDS, to perform noiseless tuning  
frequency jumps, avoiding the use of the mute.  
5.6  
No symmetrical bass cut response  
bit D7 = 0 No symmetrical  
bit D7 = 1 Symmetrical  
The bass stage has the option to generate an unsymmetrical response, for cut mode  
settings (bass level from -2db to - 14dB)  
For example using a T-type band pass external  
The feature is useful for human ear equalization in a noisy environment, like a car.  
See examples in Figure 17 (symmetrical response) and Figure 18 (unsymmetrical  
response).  
5.7  
Transmitted data (send mode)  
bitP = 0Pause active  
bitP = 1No pause detected  
bitZM = 1Zero cross mute ON  
bitZM = 0Zero cross mute OFF  
bitSM = 1Soft mute ON  
bitSM = 0Soft mute OFF  
bitST = 1Stereo signal detected (input MPX)  
bitST = 0Mono signal detected (input MPX)  
The TDA7437N allows the reading of four info bits.  
24/34  
TDA7437N  
Mute and pause features  
The type (stereo/mono) of received broadcasting signal is easily checked and displayed by  
using the ST bit.  
The P bit check is useful in tuning jumps without signal muting.  
The SM soft mute status becomes active immediately, when bit D0 is set to 1 (soft mute ON,  
MUTE byte) and not when the signal level has reached the 60 dB final attenuation.  
5.8  
TDA7437N I2C bus protocol  
2
The protocol is standard I C, using subaddress byte plus data bytes (as shown within  
Chapter 4).  
The optional autoincrement mode allows to refresh all the bytes registers with transmission  
of a single subaddress, reducing drastically the total transmission time.  
Without autoincrement, subaddress bit I = 0, to refresh all the bytes registers (10), it is  
necessary to transmit 10 times the chip address, the subaddress and the data byte.  
Working with a 100Kb/s clock speed the total time would be :  
[(9*3+2)*10]bits*10us=2.9ms  
Instead using autoincrement mode, subaddress bit I=1, the total time will be:  
(9*12+2)*10us=1.1ms.  
The autoincrement mode is useful also to refresh partially the data. For example to refresh  
the 4 speakers attenuators it is possible to program the subaddress Spkr LF (code  
XX010100), followed by the data byte of SPKR LF, LR, RF, RR in sequence.  
Note: that the autoincrement mode has a module 16 counter, whereas the total used  
register bytes are 10.  
It is not correct to refresh all the 10 bytes starting from a subaddress different than  
XX010000.  
For example; using subaddress XX010010 (volume), the registers from Volume to Mute (see  
Table 5) are correctly updated, but the next two transmitted bytes, refer instead to the  
wanted Input selector, and Loudness are discharged. (the solution in this case is to send  
two separate patterns in autoincrement mode, the first composed by address, subaddress  
XX010010, 8 data bytes, and the second composed by address, subaddress XX010000, 2  
data bytes).  
With autoincrement disabled, the protocol allows the transmission in sequence of N data  
bytes of a specific register, without the necessity to resend the address and subaddress  
bytes, each time.  
This feature can be implemented, for example, if a gradual volume change has to be  
performed (the MCU does not send the STOP condition, but keeps the TDA7437N  
communication active).  
Warning: The TDA7437N always needs to receive a STOP condition,  
before beginning a new START condition. The device doesn't  
recognize a START condition if a previously active  
communication was not ended by a STOP condition.  
25/34  
Mute and pause features  
TDA7437N  
5.9  
I2C bus read mode  
2
The TDA7437N sends the master a 1 byte "transmitted info" via I C bus in read mode.  
The read mode is master activated by sending the chip address with LSB set to 1, followed  
by an acknowledge bit.  
The TDA7437N recognizes the request. At the following master generated clock bits, the  
TDA7437N issues the transmitted inFO byte on the SDA data bus line (MSB transmitted  
first).  
At the ninth clock bit the MCU master can:  
acknowledge the reception, starting in this way the transmission of another byte from  
the TDA7437N.  
no acknowledge, stopping the read mode communication.  
5.10  
Loudness stage  
The previous SGS-THOMSON audioprocessors implemented a fixed loudness response,  
only ON/OFF sw programmable.  
No possibility to change the loud boost rate at a certain volume level. The TDA7437N  
implements a fully programmable loudness control in 20 steps of 1dB.  
It allows a customized loudness response for each application. The external network  
connected to the loudness pins LOUD_L and LOUD_R fixes the type of loudness response.  
1. Simple capacitor. The loudness effect is only a boost of low frequencies.  
(see Figure 19)  
2. Second order loudness (boost of low and high frequencies).  
3. Second order decreased type loudness (lower boost of low and high frequencies).  
4. Second order modified type loudness (higher boost of low and high frequencies).  
5.11  
5.12  
Treble stage  
The treble stage is a simple high pass filter, it’s time constant is fixed by internal resistor  
(typically 50Kohm), and an external capacitor, connected between pins TREB_R/TREB_L  
and ground.  
IN-OUT pins  
The multiplexer output is available at OUT_R and OUT_L pins for the optional connection of  
an external graphic equalizer (TDA7316/TDA7317), surround chip (TDA7346) etc. The  
signal is fed in again at pins IN_L and IN-R. In the case of an application without any  
external devices, the pins OUT_L/OUT_R and IN_L/IN_R can be left unconnected, if bit D3  
byte input selector is forced = 0 (DC connect). Instead if bit D3 is kept = 1 an external  
decoupling capacitor must be provided between OUTR/INR and OUTL/INR to avoid signal  
DC jumps, generating "clicking" output noise. The input impedance of the next volume stage  
is 44Kohm typical (minimum 31Kohm). A capacitor no lower than 1mF should be used.  
26/34  
TDA7437N  
Mute and pause features  
5.13  
Bass & mid filters  
Several bass filter types can be implemented. Normally it is the basic T-type bandpass filter  
that is used. Starting from the filter component values (R1 internal and R2, C1, C2 external),  
the centre frequency Fc, the gain Av at max bass boost and the filter Q factor are computed  
as follows:  
1
F
= ------------------------------------------------------------------  
c
2 ⋅ Π ⋅ R1 R2 C1 C2  
R2 C2 + R2 C1 + R1 C1  
A
= -------------------------------------------------------------------------  
v
R2 C1 + R2 C2  
Vice versa fixed Fc, Av, and R1 (internal typ. 30%), the external component values are  
A 1  
v
C1 = ---------------------------------  
2 ⋅ Π ⋅ R1 Q  
Q Q C1  
C2 = -----------------------------------  
A 1 Q Q  
v
(R1 R2 C1 C2)  
Q = ------------------------------------------------------  
R2 C1 + R2 C2  
A 1 Q Q  
v
R2 = ----------------------------------------------------------------------  
2 ⋅ Π ⋅ C1 F ⋅ (A 1) ⋅ Q  
c
v
5.14  
Input selector  
The multiplexer selector can choose one of the following inputs:  
a differential CD stereo input.  
a mono input.  
four stereo input  
The signal fed to the input pins must be decoupled via series capacitors. The minimum  
allowed value depends on the correspondent input impedance. For the CD diff input (Zi =  
10Kohm worst case) a Cin = 4.7uF is recommended. For the other inputs (70Kohm worst  
case, a Cin=1uF is recommended.  
27/34  
Curves of electrical characteristics  
TDA7437N  
6
Curves of electrical characteristics  
Figure 7.  
Power on time constant vs CREF  
capacitor CREF = 4.7μF  
Figure 8.  
Power on time constant vs CREF  
capacitor CREF = 10μF  
D95AU381  
D95AU380  
V
V
(1V/div)  
(1V/div)  
2
1
2
1
OUT LF  
CREF  
OUT LF  
CREF  
BWL  
0.5s/DIV TIME  
BWL  
0.5s/DIV TIME  
Figure 9.  
Power on time constant vs CREF  
Figure 10. SVRR vs. frequency  
capacitor CREF = 22μF  
D95AU382  
D95AU383  
V
S
VRR  
(1V)  
(dB)  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
4.7μF  
47μF  
2
1
OUT LF  
CREF  
VS=8V  
Ripple=0.2VRMS  
AV=-15dB  
10  
100  
1K  
10K  
Freq(Hz)  
BWL  
1s/DIV TIME  
Figure 11. Soft mute ON  
(a)  
(b)  
V
SOFT MUTE=ON SLOPE=FAST Vout=500mVrms  
V
D95AU384  
Main Menu  
Pin Csm  
Chan 2  
1ms 0.2V  
Vout  
Chan 3  
1ms 2V  
CH1 9V DC  
CH1 0.5V1x0  
~
~
=
TIME  
CH2 20mV1x0  
CH3 0.2V1x0  
SOFT MUTE  
CH4 20mV x  
10 = T/div 1ms  
28/34  
TDA7437N  
Curves of electrical characteristics  
Figure 12. Soft mute OFF  
(a)  
(b)  
V
V
Main Menu  
Vout  
Chan 2  
1ms 0.2V  
SOFT MUTE=OFF SLOPE=FAST Vout=500mVrms  
D95AU387  
Chan 1  
1ms 2V  
Pin Csm  
CH1 9V DC  
TIME  
SOFT MUTE  
Figure 13. Zero crossing mute ON  
Figure 14. Zero crossing mute OFF  
ZERO CROSSING MUTE = ON  
ZERO CROSSING MUTE = OFF  
D95AU389  
D95AU390  
V
V
x Chan 1  
0.5ms 0.2V  
x Chan 2  
0.2ms 1V  
LEFT  
Panel  
LEFT  
RIGHT  
Main Menu  
STATUS  
Memory  
x Chan 2  
0.5ms 0.2V  
x Chan 1  
0.2ms 0.5V  
Save  
PANEL  
Multi Zoom  
off  
Recall  
Auxiliary  
Setups  
Memory  
Card  
X-Y mode  
Persistance  
mode  
CH2 528mV DC  
TIME  
2ms  
CH1 2.7V DC  
TIME  
RIGHT  
Return  
Figure 15. Pause detector  
Figure 16. Pause detector  
D02AU1386  
PAUSE DETECTOR ZCW=140mV Cpause=100nF  
Vout  
D02AU1385  
V
Main Menu  
Vout  
Main Menu  
Chan 1  
20ms 0.2V  
Chan 2  
20ms 2V  
Chan 3  
20ms 0.2V  
Chan 2  
20ms 2V  
CH2 4.08V DC  
CH1 20mV1x0  
~
CH2 0.2V1x0  
=
CH2 4.12V DC  
TIME  
BWL  
CH3 20mV1x0  
~
CH4 5mV x  
10 ~ T/div 20ms  
29/34  
Curves of electrical characteristics  
Figure 17. Symmetrical bass  
TDA7437N  
Figure 18. unsymmetrical bass  
D95AU393  
ATT  
(dB)  
D95AU394  
(dB)  
10  
5
10  
5
0
0
-5  
-10  
-15  
-20  
-25  
-5  
-10  
-15  
10  
100  
1K  
10K  
Freq(Hz)  
10  
100  
1K  
10K  
Freq(Hz)  
Figure 19. Loudness  
ATT  
(dB)  
D98AU887  
18  
16  
14  
12  
10  
8
6
4
2
0
10  
100  
1K  
10K  
Freq(Hz)  
30/34  
TDA7437N  
Curves of electrical characteristics  
Figure 20. Test board diagram  
GND VCC  
CON1  
C17  
22μF  
C18  
100nF  
R4  
2.7K  
R3  
5.6K  
JP2 JP1  
C11  
C10  
C8  
C7  
C19  
5.6nF  
18nF  
22nF  
100nF  
100nF  
C16 22μF  
TRL  
MIDRI  
MIDRO  
BASSRO  
BASSRI  
CREF  
25  
C6 100nF  
C5 100nF  
C4 22nF  
C3 18nF  
C20 5.6nF  
BASSLO  
BASSLI  
MIDLO  
44  
43  
42  
41  
40  
31  
30  
27  
26  
39  
TRR  
1
IN_R  
2
3
4
24  
23  
C21  
2.2μF  
R2  
5.6K  
O_R  
C22 4.7nF  
MIDLI  
I_L  
CON4  
22  
20  
LOUDR  
R1  
2.7K  
C23 4.7μF  
C24 4.7μF  
C25 470nF  
C26 470nF  
C27 470nF  
C28 470nF  
C29 470nF  
C2  
2.2μF  
DIFG_R  
DIFF_R  
ST4_R  
ST1_R  
ST2_R  
ST3_R  
MONO  
5
DIFG_R  
DIFF_R  
ST4_R  
ST1_R  
ST2_R  
ST3_R  
MONO  
21  
38  
28  
37  
36  
O_L  
CON2  
6
SCL  
SCL  
JP3  
7
SMEX  
SDA  
SMEX  
SDA  
8
DGND  
DGND  
9
R5  
50  
10  
11  
C14  
C13  
C12  
C9  
CON3  
34  
33  
LF  
OUTLF  
RF  
RF  
LR  
RR  
C30 4.7nF  
12  
LOUDR  
32  
13  
14  
15  
16  
17  
18  
19  
35  
29  
CON5  
LR  
DIFG_R  
DIFF_R  
ST4_R  
ST1_R  
ST2_R  
ST3_R  
CSM  
PAUSE  
OUTRR  
DIFG_L  
DIFF_L  
ST4_L  
ST1_L  
ST2_L  
ST3_L  
GND  
C31 4.7μF  
C32 4.7μF  
C33 470nF  
C34 470nF  
C35 470nF  
C36 470nF  
C1  
2.2nF  
C15  
10μF  
D98AU882  
31/34  
Package information  
TDA7437N  
7
Package information  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 21. LQFP44 (10x10) Mechanical data and package dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN.  
TYP. MAX. MIN.  
1.60  
TYP. MAX.  
0.0630  
A
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
0.15 0.0020  
0.0059  
1.40  
0.37  
1.45 0.0531 0.0551 0.0571  
0.45 0.0118 0.0146 0.0177  
c
0.20 0.0035  
0.0079  
D
11.80 12.00 12.20 0.4646 0.4724 0.4803  
9.80 10.00 10.20 0.3858 0.3937 0.4016  
D1  
D2  
D3  
E
2.00  
0.0787  
8.00  
0.3150  
11.80 12.00 12.20 0.4646 0.4724 0.4803  
9.80 10.00 10.20 0.3858 0.3937 0.4016  
E1  
E2  
E3  
e
2.00  
0.0787  
8.00  
0.80  
0.60  
1.00  
0.3150  
0.0315  
L
0.45  
0.75 0.0177  
0.0295  
0.0039  
L1  
K
0.0394  
3.5˚(min.),7˚(max.)  
0.10  
ccc  
LQFP44 (10 x 10 x 1.40mm)  
Exposed Pad Down  
Note: 1. The size of exposed pad is variable depending of lead-  
frame design pad size. End user should verify “D2” and  
“E2” dimensions for each device application.  
7278839 C  
32/34  
TDA7437N  
Revision history  
8
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
24-Jan-06  
01-Dec-06  
1
2
Initial release.  
Package changed, layout change, text modifications.  
33/34  
TDA7437N  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
34/34  

相关型号:

E-TDA7437NTR

Digitally controlled audio processor
STMICROELECTR

E-TDA7454

Quad BTL output, high efficiency (class SB) power amplifier with clip detection, stand-by and mute inputs
STMICROELECTR

E-TDA7461ND

SPECIALTY CONSUMER CIRCUIT, PDSO28, SOP-28
STMICROELECTR

E-TDA7461NDTR

SPECIALTY CONSUMER CIRCUIT, PDSO28, SOP-28
STMICROELECTR

E-TDA7462D

SPECIALTY CONSUMER CIRCUIT, PDSO28, SOP-28
STMICROELECTR

E-TDA7462DTR

SPECIALTY CONSUMER CIRCUIT, PDSO28, SOP-28
STMICROELECTR

E-TDA7476

SPECIALTY CONSUMER CIRCUIT, PDSO24, SOP-24
STMICROELECTR

E-TDA7476013TR

SPECIALTY CONSUMER CIRCUIT, PDSO24, SOP-24
STMICROELECTR

E-TDA7478AD

SINGLE CHIP RDS DEMODULATOR
STMICROELECTR

E-TDA7478ADTR

暂无描述
STMICROELECTR

E-TDA7478D

SPECIALTY CONSUMER CIRCUIT, PDSO16, SOP-16
STMICROELECTR

E-TDA7478DTR

SPECIALTY CONSUMER CIRCUIT, PDSO16, 4.40 MM, MO-153AB, TSSOP-16
STMICROELECTR