ESDA25SC6 [STMICROELECTRONICS]

Quad Transil array for ESD protection; QUAD TRANSIL阵列,用于ESD保护
ESDA25SC6
型号: ESDA25SC6
厂家: ST    ST
描述:

Quad Transil array for ESD protection
QUAD TRANSIL阵列,用于ESD保护

瞬态抑制器 二极管 光电二极管 PC 局域网
文件: 总11页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESDAxxSCx  
Quad Transil™ array for ESD protection  
Features  
4 unidirectional Transil Functions  
Low leakage current: IR max. < 20 µA at VRM  
400 W peak pulse power (8/20 µs)  
Benefits  
High ESD protection level: up to 25 kV  
High integration  
SOT23-5L (SC-59)  
ESDAxxSC5  
SOT23-6L (SC-59)  
ESDAxxSC6  
Suitable for high density boards  
Figure 1.  
ESDAxxSC5 functional diagram  
Complies with the following standards:  
IEC 61000-4-2 level 4:  
– 15 kV (air discharge)  
– 8 kV (contact discharge)  
1
2
5
MIL STD 883E- Method 3015-7: class3B  
– human body model  
3
4
Applications  
Figure 2.  
ESDAxxSC6 functional diagram  
Where transient overvoltage protection in ESD  
sensitive equipment is required, such as :  
1
2
6
Computers  
Printers  
5
4
Communication systems  
Cellular phone handsets and accessories  
Other telephone set  
Set top boxes  
3
Description  
The ESDAxxSC5 and ESDAxxSC6 are monolithic  
voltage suppressors designed to protect  
components which are connected to data and  
transmission lines against ESD.  
They clamp the voltage just above the logic level  
supply for positive transients, and to a diode drop  
below ground for negative transient.  
TM: Transil is a trademark of STMicroelectronics.  
November 2007  
Rev 9  
1/11  
www.st.com  
11  
Characteristics  
ESDAxxSCx  
1
Characteristics  
Table 1.  
Symbol  
Absolute ratings (T  
= 25 °C)  
amb  
Parameter  
Value  
Unit  
MIL STD 883E - Method 3015-7  
IEC61000-4-2 air discharge  
VPP  
ESD discharge  
25  
kV  
IEC61000-4-2 contact discharge  
ESDA5V3SCx  
ESDA6V1SCx  
500  
400  
W
ESDA14V2SCx  
ESDA17SC6  
ESDA19SC6  
ESDA25SC6  
PPP  
Peak pulse power (8/20µs)  
300  
150  
W
Tj  
Junction temperature  
°C  
Tstg  
TL  
Storage temperature range  
-55 to +150  
260  
°C  
°C  
°C  
Maximum lead temperature for soldering during 10 s at 5mm for case  
Operating temperature range  
Top  
-40 to +125  
Table 2.  
Symbol  
Electrical characteristics - definitions (T  
Parameter  
= 25 °C)  
amb  
I
I
F
VRM  
VBR  
Stand-off voltage  
Breakdown voltage  
V
VCL  
Clamping voltage  
BR  
V
V
F
RM  
IRM  
IPP  
αT  
C
Leakage current @ VRM  
Peak pulse current  
V
CL  
V
I
I
RM  
Voltage temperature coefficient  
Capacitance  
Rd  
Rd  
VF  
Dynamic resistance  
Forward voltage dropt  
PP  
2/11  
ESDAxxSCx  
Table 3.  
Characteristics  
Electrical characteristics - values (T  
= 25 °C)  
amb  
VBR @ IR  
IRM @ VRM  
max.  
µA  
Rd  
αT  
C
VF@ IF  
max.  
typ.  
Order codes  
min.  
max.  
typ.(1) max.(2)  
0 V bias  
V
V
mA  
V
mΩ  
10-4/C  
pF  
V
mA  
ESDA5V3SC5  
ESDA5V3SC6  
5.3  
5.9  
1
2
20  
5
3
230  
5
280  
1.25  
200  
ESDA6V1SC5  
ESDA6V1SC6  
6.1  
7.2  
1
1
5.25  
12  
350  
650  
6
190  
100  
1.25  
1.25  
200  
200  
ESDA14V2SC5  
ESDA14V2SC6  
14.2  
15.8  
10  
ESDA17SC6  
ESDA19SC6  
17  
19  
19  
21  
1
1
0.075  
0.1  
14  
15  
700  
800  
10  
8.5  
85  
80  
1.2  
1.2  
10  
10  
ESDA25SC6  
25  
30  
1
1
24  
1000  
10  
60  
1.2  
10  
1. Square pulse, Ipp = 15 A, tp=2.5 µs.  
2. Δ VBR = αT* (Tamb -25 °C) * VBR (25 °C)  
Figure 3.  
Peak power dissipation versus  
initial junction temperature  
Figure 4.  
Peak pulse power versus  
exponential pulse duration  
(Tj initial = 25 °C)  
P
(W)  
PP  
P
[T initial] / P [T initial=25°C]  
PP  
j
PP  
j
5000  
1000  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
ESDA5V3SC5/SC6  
&
ESDA6V1SC5/SC6  
ESDA14V2SC5/SC6  
ESDA17SC6  
ESDA19SC6  
ESDA25SC6  
t (µs)  
p
T initial (°C)  
j
100  
0.0  
0
1
10  
100  
25  
50  
75  
100  
125  
150  
Figure 5.  
Clamping voltage versus peak  
pulse current (Tj initial = 25 °C).  
Figure 6.  
Capacitance versus reverse applied  
voltage (typical values)  
Rectangular waveform tp = 2.5 µs  
I (A)  
PP  
C(pF)  
50.0  
10.0  
500  
100  
ESDA25SC6  
ESDA19SC6  
F=1MHz  
VOSC=30mVRMS  
ESDA17SC6  
ESDA5V3SC5/SC6  
ESDA6V1SC5/SC6  
ESDA14V2SC5/SC6  
ESDA6V1SC5/SC6  
ESDA5V3SC5/SC6  
1.0  
0.1  
ESDA14V2SC5/SC6  
ESDA17SC6  
ESDA19SC6  
tp=2.5µs  
V
(V)  
CL  
ESDA25SC6  
V (V)  
R
10  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
1
2
5
10  
20  
50  
3/11  
Application information  
ESDAxxSCx  
Figure 7.  
Relative variation of leakage  
current versus junction  
Figure 8.  
Peak forward voltage drop versus  
peak forward current  
temperature (typical values)  
(typical values)  
I [T ] / I [T =25°C]  
I
(A)  
R
j
R
j
FM  
5.00  
1.00  
500  
100  
ESDA5V3SC5/SC6  
ESDA17SC6  
&
ESDA19SC6  
ESDA14V2SC5/SC6  
&
ESDA6V1SC5/SC6  
ESDA19SC6  
ESDA17SC6  
ESDA14V2SC5/SC6  
&
ESDA6V1SC5/SC6  
ESDA25SC6  
ESDA25SC6  
0.10  
0.01  
10  
Tj = 25°C  
ESDA5V3SC5/SC6  
T (°C)  
j
V
(V)  
FM  
1
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
25  
50  
75  
100  
125  
2
Application information  
2.1  
Calculation of the clamping voltage use of the dynamic  
resistance  
The ESDA family has been designed to clamp fast spikes like ESD. Generally the PCB  
designers need to calculate easily the clamping voltage VCL. This is why we give the  
dynamic resistance in addition to the classical parameters. The voltage across the  
protection cell can be calculated with the following formula:  
VCL = VBR + Rd IPP  
Where IPP is the peak current through the ESDA cell.  
As the value of the dynamic resistance remains stable for a surge duration lower than 20 µs,  
the 2.5 µs rectangular surge is well adapted. In addition both rise and fall times are  
optimized to avoid any parasitic phenomenon during the measurement of Rd.  
2.2  
Dynamic resistance measurement  
The short duration of the ESD has led us to prefer a more adapted test wave, as below  
defined, to the classical 8/20µs and 10/1000 µs surges.  
Figure 9.  
2.5 µs duration measurement wave  
I
Ipp  
t
2µs  
tp = 2.5µs  
4/11  
ESDAxxSCx  
Application information  
2.3  
ESD protection with ESDAxxSCx  
Electrostatic discharge (ESD) is a major cause of failure in electronic systems.  
Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are  
capable of clamping the incoming transient overvoltage to a low enough level such that  
damage to the protected semiconductor is prevented.  
Surface mount TVS arrays offer the best choice for minimal lead inductance.  
They serve as parallel protection elements, connected between the signal line and ground.  
As the transient rises above the operating voltage of the device, the TVS array becomes a  
low impedance path diverting the transient current to ground.  
Figure 10. ESDAxxSCx array protection against ESD  
I/ O LINES  
ESD  
sensitive  
device  
GND  
ESDAxxxSC6 (1connection to GND for ESDAxxSC5)  
The ESDAxxSCx array is the ideal board level protection of ESD sensitive semiconductor  
components.  
The tiny SOT23-5L and SOT23-6L packages allow design flexibility in the high density  
boards where the space saving is at a premium. This enables to shorten the routing and  
contributes to hardening against ESD.  
2.4  
Advice for optimizing circuit board layout  
Circuit board layout is a critical design step in the suppression of ESD induced transients.  
The following guidelines are recommended:  
The ESDAxxSC5/6 should be placed as close as possible to the input terminals or  
connectors.  
The path length between the ESD suppressor and the protected line should be  
minimized  
All conductive loops, including power and ground loops should be minimized  
The ESD transient return path to ground should be kept as short as possible  
Ground planes should be used whenever possible  
5/11  
Technical information  
ESDAxxSCx  
3
Technical information  
3.1  
ESD protection  
The ESDA19SC6 is particularly optimized to perform ESD protection. ESD protection is  
achieved by clamping the unwanted overvoltage. The clamping voltage is given by the  
following formula :  
.
V
CL = VBR + Rd IPP  
As shown in Figure 11., the ESD strikes are clamped by the transient voltage suppressor.  
Figure 11. ESD clamping behavior (example)  
Rg  
Rd  
Rload  
Voutput  
Vg  
VBR  
Device  
to be  
protected  
ESDA19SC6  
ESD Surge  
To have a good approximation of the remaining voltages at both VI/O side, we provide the  
typical dynamical resistance value Rd. By taking into account the following hypothesis :  
Rg > Rd and Rload > Rd  
we have:  
Vg  
------  
V
output= VBR + Rd ×  
Rg  
The results of the calculation done for Vg = 8 kV, Rg = 330 Ω (IEC61000-4-2 standard),  
BR = 19 V (typ.) and Rd = 0.80 Ω (typ.) give:  
V
V
ouput = 38.4 V  
This confirms the very low remaining voltage across the device to be protected. It is also  
important to note that in this approximation the parasitic inductance effect was not taken into  
account. This could be a few tenths of volts during a few nanoseconds at the output side.  
6/11  
ESDAxxSCx  
Ordering information  
4
Ordering information  
Figure 12. Ordering information scheme  
ESDA xx SCx  
ESD Array  
Breakdown Voltage (min)  
5V3 = 5.3 Volt  
6V1 = 6.1 Volt  
14V2 = 14.2 Volt  
17 = 17 Volt  
19 = 19 Volt  
25 = 25 Volt  
Package  
SC5 = SOT23-5L  
SC6 = SOT23-6L  
7/11  
Package information  
ESDAxxSCx  
5
Package information  
Epoxy meets UL94, V0 standard  
In order to meet environmental requirements, ST (also) offers these devices in ECOPACK®  
packages. ECOPACK® packages are Lead-free. The category of second level Interconnect  
is marked on the inner box label, in compliance with JEDEC Standard JESD97. The  
maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Table 4.  
SOT23-5L dimensions  
Dimensions  
Millimeters Inches  
Min. Typ. Max. Min. Typ. Max.  
Ref.  
A
E
A
0.90  
0
1.45 0.035  
0.10  
0.057  
0.004  
0.051  
0.020  
0.008  
0.118  
0.069  
A1  
0
e
e
A2 0.90  
1.30 0.035  
0.50 0.014  
0.20 0.004  
3.05 0.11  
1.75 0.059  
B
D
b
c
0.35  
0.09  
2.80  
1.50  
A2  
D
E
e
0.95  
0.037  
A1  
c
θ
L
H
L
2.60  
0.10  
0°  
3.00 0.102  
0.60 0.004  
0.118  
0.024  
10°  
H
M
10°  
0°  
Figure 13. SOT23-5L footprint (dimensions in mm)  
0.60  
1.20  
0.95  
1.10  
3.50  
2.30  
8/11  
ESDAxxSCx  
Package information  
Dimensions  
Table 5.  
SOT23-6L dimensions  
Ref.  
Millimeters  
Inches  
A
Min. Typ. Max. Min. Typ. Max.  
E
A
0.90  
0
1.45 0.035  
0.10  
0.057  
0.004  
0.051  
0.020  
0.008  
0.118  
0.069  
A1  
0
e
e
A2 0.90  
1.30 0.035  
0.50 0.014  
0.20 0.004  
3.05 0.11  
1.75 0.059  
b
D
b
c
0.35  
0.09  
2.80  
1.50  
A2  
D
E
e
H
L
θ
0.95  
0.037  
A1  
c
θ
L
2.60  
0.10  
0°  
3.00 0.102  
0.60 0.004  
0.118  
0.024  
10°  
H
10°  
0°  
Figure 14. SOT23-6L footprint (dimensions in mm)  
0.60  
1.20  
1.10  
0.95  
3.50  
2.30  
9/11  
Ordering information  
ESDAxxSCx  
6
Ordering information  
Table 6.  
Ordering information  
Order codes  
Marking  
Package  
Weight  
Base qty  
Delivery mode  
ESDA5V3SC5  
ESDA6V1SC5  
ESDA14V2SC5  
ESDA5V3SC6  
ESDA6V1SC6  
ESDA14V2SC6  
ESDA17SC6  
ESDA19SC6  
ESDA25SC6  
EC53  
EC61  
EC15  
ES53  
ES61  
ES15  
ES17  
ES19  
ES25  
SOT23-5L  
16.7 mg  
3000  
Tape and reel  
SOT23-6L  
7
Revision history  
Table 7.  
Date  
Document revision history  
Revision  
Description of changes  
Nov-2003  
7F  
Previous issue.  
SOT23-6L package dimensions change for reference “D” from  
3.0 millimeters (0.118 inches) to 3.05 millimeters (0.120  
inches).  
4-Nov-2004  
8
9
Reformatted to current standard. Units for IRM MAX inTable 3  
corrected to µA. Ordering information scheme expanded to  
cover all devices. Package information for SOT23-5L updated.  
22-Nov-2007  
10/11  
ESDAxxSCx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
11/11  

相关型号:

ESDA25SC6Y

Automotive Quad-line TVS for ESD protection
STMICROELECTR

ESDA25W

QUAL TRANSILO ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDA25W5

QUAL TRANSILO ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDA3302P3

Trans Voltage Suppressor Diode
WEITRON

ESDA4-LFC-LF-T73-1

Trans Voltage Suppressor Diode, 5V V(RWM), Unidirectional, 4 Element, Silicon, LEAD FREE, FLIP CHIP-5
PROTEC

ESDA5V3

Dual transil arr ay for ESD protection
WEITRON

ESDA5V3L

DUAL TRANSIL ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDA5V3LY

Automotive dual Transil&#8482; array for ESD protection
STMICROELECTR

ESDA5V3SC5

QUAD TRANSIL ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDA5V3SC5_07

Quad Transil array for ESD protection
STMICROELECTR

ESDA5V3SC6

QUAD TRANSIL ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDA5V3SC6Y

暂无描述
STMICROELECTR