L4981 [STMICROELECTRONICS]

POWER FACTOR CORRECTOR; 功率因数校正
L4981
型号: L4981
厂家: ST    ST
描述:

POWER FACTOR CORRECTOR
功率因数校正

功率因数校正
文件: 总17页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L4981A  
L4981B  
POWER FACTOR CORRECTOR  
CONTROL BOOST PWM UP TO 0.99P.F.  
LIMITLINE CURRENT DISTORTION TO < 5%  
UNIVERSAL INPUT MAINS  
MULTIPOWER BCD TECHNOLOGY  
FEED FORWARD LINE AND LOAD REGULA-  
TION  
AVERAGE CURRENT MODE PWM FOR  
MINIMUM NOISE SENSITIVITY  
HIGH CURRENT BIPOLAR AND DMOS TO-  
TEM POLE OUTPUT  
LOW START-UP CURRENT (0.3mA TYP.)  
UNDER VOLTAGE LOCKOUT WITH HYS-  
TERESIS AND PROGRAMMABLE TURN ON  
THRESHOLD  
OVERVOLTAGE, OVERCURRENT PROTEC-  
TION  
DIP20  
SO20  
ORDERING NUMBERS: L4981X (DIP20)  
L4981XD (SO20)  
PRECISE 2% ON CHIP REFERENCE EX-  
TERNALLY AVAILABLE  
SOFT START  
trol functions for designing a high efficiency-mode  
power supply with sinusoidal line current con-  
sumption.  
The L4981 can be easily used in systems with  
mains voltages between 85V to 265V without any  
line switch. This new PFC offers the possibility to  
work at fixed frequency (L4981A) or modulated  
frequency (L4981B) optimizing the size of the in-  
DESCRIPTION  
The L4981 I.C. provides the necessary features  
to achieve a very high power factor up to 0.99.  
Realized in BCD 60II technology this power factor  
corrector (PFC) pre-regulator contains all the con-  
BLOCK DIAGRAM  
1/17  
September 1998  
L4981A - L4981B  
put filter; both the operating frequency modes  
working with an average current mode PWM con-  
troller, maintaining sinusoidal line current without  
slope compensation.  
Besides power MOSFET gate driver, precise volt-  
age reference (externally available), error ampli-  
fier, undervoltage lockout, current sense and the  
soft start are included. To limit the number of the  
external components, the device integrates pro-  
tections as overvoltage and overcurrent. The  
overcurrent level can be programmed using a  
simple resistor for L4981A. For a better precision  
and for L4981B an external divider must be used.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
VCC  
Pin  
19  
Parameter  
Value  
selflimit  
2
Unit  
V
Supply Voltage (ICC 50mA) (*)  
IGDRV  
20  
Gate driv. output peak current (t = 1 s)  
SINK  
µ
Α
.
SOURCE  
1.5  
A
VGDRV  
Gate driv. output voltage t = 0.1µs  
Voltages at pins 3, 14, 7, 6, 12, 15  
Error Amplifier Voltage  
-1  
V
-0.3 to 9  
-0.3 to 8.5  
5
V
VVA-OUT  
IAC  
13  
4
V
AC Input Current  
mA  
V
Voltages at pin 8, 9  
-0.5 to 7  
-0.3 to 8.5  
-0.3 to 3  
-0.3 to 7  
15  
VCA-OUT  
VROSC  
5
Current Amplifier Volt. (Isource = -20mA; Isink = 20mA)  
Voltage at pin 17  
V
17  
V
11, 18 Voltage at pin 11, 18  
V
ICOSC  
IFREQ-MOD  
VSYNC  
18  
16  
16  
2
Input Sink Current  
mA  
mA  
V
Frequency Modulation Sink Current (L4981B)  
Sync. Voltage (L4981A)  
5
-0.3 to 7  
VIPK  
Voltage at pin 2  
Voltage at Pin 2 t = 1µs  
-0.3 to 5.5  
-2  
V
V
Ptot  
Power Dissipation at Tamb = 70°C  
(DIP20)  
(SO20)  
1
W
W
Power Dissipation at Tamb = 70 C  
0.6  
°
Top  
Operating Ambient Temperature  
StorageTemperature  
-40 to 125  
-55 to 150  
°C  
°C  
Tstg  
(*) Maximum package power dissipation limits must be observed.  
PIN CONNECTIONS (Top views)  
L4981A  
L4981B  
2/17  
L4981A - L4981B  
THERMAL DATA  
Symbol  
Parameter  
Thermal Resistance Junction-ambient  
DIP 20  
SO 20  
Unit  
C/W  
Rth j-amb  
80  
120  
°
PIN FUNCTIONS  
N.  
1
Name  
P-GND  
IPK  
Description  
Power ground.  
2
L4981A peak current limiting. A current limitation is obtained using a single resistor connected  
between Pin 2 and the sense resistor. To have a better precision another resistor between Pin  
2 and a reference voltage (Pin 11) must be added.  
L4981B  
peak current limiting. A precise current limitation is obtained using two external  
resistor only. These resistors must be connected between the sense resistor, Pin 2 and the  
reference voltage.  
3
4
OVP  
IAC  
Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage  
reference with a sample of the boost output voltage obtained via a resistive voltage divider in  
order to limit the maximum output peak voltage.  
Input for the AC current. An input current proportional to the rectified mains voltage generates,  
via a multiplier, the current reference for the current amplifier.  
5
6
CA-OUT  
LFF  
Current amplifier output. An external RC network determinates the loop gain.  
Load feedforward; this voltage input pin allows to modify the multiplier output current  
proportionally to the load, in order to give a faster response versus load transient. The best  
control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin  
to the voltage reference (pin = 11).  
7
VRMS  
Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes.  
Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional  
to the input line RMS voltage is obtained. The best control is reached using input voltage  
between 1.5V and 5.5V. If this function is not used connect this pin to the voltage reference  
(pin = 11).  
8
MULT-OUT Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is  
an high impedence input like ISENSE. The MULT-OUT pin must be taken not below -0.5V.  
9
ISENSE  
S-GND  
VREF  
Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5V.  
Signal ground.  
10  
11  
Output reference voltage (typ = 5.1V).Voltage refence at ± 2% of accuracy externally available,  
it’s internally current limited and can deliver an output current up to 10mA.  
12  
SS  
A capacitor connected to ground defines the soft start time. An internal current generator  
delivering 100µA (typ) charges the external capacitor defining the soft start time constant. An  
internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO  
conditions.  
13  
14  
VA-OUT  
VFEED  
Error amplifier output, an RC network fixes the voltage loop gain characteristics.  
Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to  
the boost output voltage.  
15  
16  
P-UVLO  
Programmable under voltage lock out threshold input. A voltage divider between supply  
voltage and GND can be connected in order to program the turn on threshold.  
SYNC  
(L4981A)  
This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a  
rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock  
pulse train is available to synchronize other devices.  
FREQ-MOD Frequency modulation current input. An external resistor must be connected between pin 16  
(L4981B)  
and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to  
ground a fixed frequency imposed by ROSC and COSC is obtained.  
17  
18  
19  
20  
ROSC  
COSC  
VCC  
An external resistor connected to ground fixes the constant charging current of COSC  
An external capacitor connected to GND fixes the switching frequency.  
Supply input voltage.  
.
GDRV  
Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak  
current in excess 1A useful to drive MOSFET or IGBT power stages.  
3/17  
L4981A - L4981B  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified VCC = 18V, COSC = 1nF,  
R
OSC = 24K, CSS = 1µF, VCA-OUT = 3.5V, VISENSE = 0V, VLFF = VREF, IAC = 100µA, VRMS = 1V,  
V
FEED = GND, VIPK = 1V, VOVP = 1V, TJ = 25°C  
Symbol  
Prameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
ERROR AMPLIFIER SECTION  
VIO  
IIB  
Input Offset Voltage  
Input Bias Current  
Open Loop Gain  
–25°C < TJ < 85°C  
±8  
mV  
nA  
dB  
V
VFEED = 0V  
-500  
70  
-50  
100  
6.5  
500  
V13H  
V13L  
Output High voltage  
VFEED = 4.7V  
5.5  
7.5  
1
I
VA-OUT = -0.5mA  
VFEED = 5.5V  
VA-OUT = 0.5mA  
Output Low Voltage  
0.4  
V
I
-I13  
I13  
Output Source Current  
Output Sink Current  
VFEED = 4.7V; VVA-OUT = 3.5V  
VFEED = 5.5V; VVA-OUT = 3.5V  
2
4
10  
20  
mA  
mA  
REFERENCE SECTION  
Vref  
Reference Output Voltage  
–25 C < T < 85 C  
4.97  
5.01  
5.1  
5.1  
3
5.23  
5.19  
15  
V
V
°
°
J
Tj = 25°C Iref = 0  
Vref  
Vref  
Iref sc  
Load Regulation  
Line Regulation  
1mA Iref 10mA  
–25°C < TJ < 85°C  
mV  
12V VCC 19V  
3
10  
50  
mV  
mA  
–25 C < T < 85 C  
°
°
J
Short Circuit Current  
Vref = 0V  
20  
30  
OSCILLATOR SECTION  
fosc  
Initial Accuracy  
Tj = 25°C  
85  
80  
100  
100  
115  
120  
KHz  
KHz  
Frequency Stability  
12V VCC 19V  
–25°C < TJ < 85°C  
Vsvp  
I18C  
I18D  
V18  
Ramp Valley to Peak  
Charge Current  
4.7  
5
5.3  
V
mA  
mA  
V
VCOSC = 3.5V  
VCOSC = 3.5V  
0.45  
0.55  
11.5  
1.15  
0.65  
Discharge Current  
Ramp Valley Voltage  
0.9  
1.4  
SYNC SECTION (Only for L4981A)  
tW  
Output Pulse Width  
50% Amplitude  
VSYNC = 0.4V  
0.3  
0.4  
0.8  
0.8  
µs  
I16  
Sink Current with Low Output  
Voltage  
mA  
V
COSC = 0V  
-I16  
Source Current with High Output  
Voltage  
VSYNC = 4.5V  
1
6
mA  
V
COSC = 6.7V  
V16L  
V16H  
td  
Low Input Voltage  
0.9  
V
V
High Input Voltage  
3.5  
Pulse for Synchronization  
800  
ns  
FREQUENCY MODULATION FUNCTION  
L4981B  
)
(Only for  
f18max  
f18min  
Maximum Oscillation Frequency  
Minimum Oscillator Frequency  
VFREQ-MOD = 0V (Pin 16) Ifreq = 0  
85  
100  
74  
115  
KHz  
KHz  
IFREQ-MOD = 360µA (Pin 16)  
V
VRMS = 4V (Pin 7)  
IFREQ-MOD = 180µA (Pin 16)  
VRMS = 2V (Pin 7)  
76  
KHz  
V
SOFT START SECTION  
ISS  
Soft Start Source Current  
Output Saturation Voltage  
VSS = 3V  
60  
100  
0.1  
140  
µA  
V12sat  
V3 = 6V, ISS = 2mA  
0.25  
V
4/17  
L4981A - L4981B  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SUPPLY VOLTAGE  
VCC  
Operating Supply Voltage  
19.5  
V
OVER VOLTAGE PROTECTION COMPARATOR  
Vthr  
Rising Threshold Voltage  
Vref  
5.1  
Vref  
V
-20mV  
+20mV  
V3Hys  
I3  
Hysteresis  
180  
250  
0.05  
1
320  
1
mV  
Input Bias Current  
Propagation delay to output  
A
µ
td  
VOVP = Vthr +100mV  
2
s
µ
OVER CURRENT PROTECTION COMPARATOR  
Vth  
td  
Threshold Voltage  
±30  
0.9  
105  
5
mV  
µs  
Propagation delay to Output  
Current Source Generator  
Leakage Current  
VOCP = Vthr -0.2V  
0.4  
85  
only for L4981A  
only for L4981B  
Iipk  
IL  
VIPK = -0.1V  
VIPK = -0.1V  
65  
µA  
µA  
CURRENT AMPLIFIER SECTION  
Voffset  
I9bias  
Input Offset Voltage  
Input Bias Current  
Open Loop Gain  
VMULT OUT = VSENSE = 3.5V  
VSENSE = 0V  
±2  
mV  
nA  
dB  
dB  
-500  
70  
50  
100  
90  
500  
1.1V VCA OUT 6V  
SVR  
V5H  
V5L  
Supply Voltage Rejection  
12V VCC 19V  
MULT OUT = 3.5V VSENSE = 3.5V  
68  
V
Output High Voltage  
Output Low Voltage  
VMULT OUT = 200mV  
CA OUT = -0.5mA, VIAC = 0V  
6.2  
V
V
I
VMULT OUT = -200mV  
CA OUT = 0.5mA, VIAC = 0V  
VMULT OUT = 200mV,  
IAC = 0V, VCA-OUT = 3.5V  
0.9  
0.8  
I
-I5  
I5  
Output Source Current  
Output Sink Current  
2
2
10  
10  
mA  
mA  
V
OUTPUT SECTION  
V20L  
V20H  
Output Voltage Low  
ISINK = 250mA  
0.5  
V
V
Output Voltage High  
ISOURCE = 250mA  
11.5  
13  
12.5  
V
CC = 15V  
tr  
tf  
Output Voltage Rise Time  
Output Voltage Fall Time  
Voltage Clamp  
COUT = 1nF  
COUT = 1nF  
ISOURCE = 0mA  
50  
30  
16  
150  
100  
19  
ns  
ns  
V
VGDRV  
TOTAL STANDBY CURRENT SECTION  
I19start  
I19on  
Supply Current before start up  
Supply Current after turn on  
VCC = 14V  
0.3  
8
0.5  
12  
mA  
mA  
VIAC = 0V, VCOSC = 0,  
Pin17 = Open  
I19  
Operating Supply Current  
Zener Voltage  
Pin20 = 1nF  
(*)  
12  
25  
16  
30  
mA  
V
VCC  
20  
UNDER VOLTAGE LOCKOUT SECTION  
Vth ON  
Turn on Threshold  
Turn off Threshold  
14.5  
9
15.5  
10  
16.5  
11  
V
V
V
Vth OFF  
Programmable Turn-on Threshold Pin 15 to VCC = 220K  
Pin15 to GND = 33K  
10.6  
12  
13.4  
LOAD FEED FORWARD  
ILFF  
Bias Current  
V6 = 1.6V  
V6 = 5.3V  
70  
140  
300  
5.3  
A
µ
200  
µA  
VI  
Input Voltage Range  
1.6  
V
(*) Maximum package power dissipation limits must be observed.  
5/17  
L4981A - L4981B  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Prameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
MULTIPLIER SECTION  
Multipler Output Current  
VVA-OUT = 4V, VRMS = 2V,  
VMULTOUT = 0, VLFF = 5.1V  
20  
35  
52  
A
µ
IAC = 50µA, COSC = 0V  
VVA-OUT = 4V, VRMS = 2V,  
VMULTOUT = 0, VLFF = 5.1V  
IAC = 200µA, COSC = 0V  
100  
10  
2
135  
20  
170  
30  
11  
34  
54  
54  
2
µA  
µA  
VVA-OUT = 2V, VRMS = 2V,  
VMULTOUT = 0, VLFF = 5.1V  
IAC = 100 A, COSC = 0V  
µ
VVA-OUT = 2V, VRMS = 4V,  
VMULTOUT = 0, VLFF = 5.1V  
5.5  
22  
A
µ
IAC = 100µA, COSC = 0V  
VVA-OUT = 4V, VRMS = 4V,  
VMULTOUT = 0, VLFF = 5.1V  
IAC = 100µA, COSC = 0V  
10  
20  
20  
-2  
µA  
µA  
VVA-OUT = 4V, VRMS = 2V,  
VMULTOUT = 0, VLFF = 2.5V  
37  
COSC = 0V, I = 200 A  
µ
AC  
VVA-OUT = 4V, VRMS = 4V  
VMULTOUT = 0, VLFF = 5.1V  
39  
A
µ
IAC = 200µA, COSC = 0V  
VVA-OUT = 2V, VRMS = 4V,  
VMULTOUT = 0, VLFF = 5.1V  
IAC = 0, COSC = 0V  
0
µA  
K
Multiplier Gain  
0.37  
(
) (  
)
VVAOUT 1.28 0.8 VLFF 1.28  
I
MULTOUT = K IAC  
2
(VVRMS  
)
(V  
VA  
1.28)  
OUT  
if VLFF = VREF;  
I
= I  
K1  
MULTOUT  
AC  
2
(V  
)
VRMS  
where: K1 = 1V  
Figure 2: MULTI-OUT vs. IAC (VRMS = 2.2V;  
Figure 1:  
MULTI-OUTvs. IAC (VRMS = 1.7V;  
VLFFD = 5.1V)  
VLFFD = 5.1V)  
6/17  
L4981A - L4981B  
Figure 3:  
MULTI-OUTvs. IAC (VRMS = 4.4V;  
VLFFD = 5.1V)  
Figure 4: MULTI-OUT vs. IAC (VRMS = 5.3V;  
VLFFD = 5.1V)  
Figure 5: MULTI-OUTvs. IAC (VRMS = 1.7V;  
Figure 6:  
MULTI-OUT vs. IAC (VRMS = 2.2V;  
VLFFD = 2.5V)  
VLFFD = 2.5V)  
Figure 7: MULTI-OUTvs. IAC (VRMS = 4.4V;  
Figure 8:  
MULTI-OUT vs. IAC (VRMS = 5.3V;  
VLFFD = 2.5V)  
VLFFD = 2.5V)  
7/17  
L4981A - L4981B  
Figure 9A:  
L4981A Power Factor Corrector (200W)  
T
+
Vo=400V  
D1  
R6  
C7  
C12  
D4  
R14  
R15  
R1  
R9  
R7  
C8  
R8  
D3  
C5  
C9  
FUSE  
Vi  
BRIDGE  
R12  
7
4
1
19  
13  
14  
85V -265V  
AC  
AC  
3
C2  
C11  
D2  
15  
16  
C1  
L4981A  
R13  
20  
MOS  
6
2
8
5
9
18  
10  
17  
12  
11  
D5  
R17  
R2  
R10  
R21  
C3  
R5  
R11  
R3  
R4  
C4  
R16  
C6  
C10  
R
S
-
D93IN029B  
PART LIST  
RS  
R1  
0.07(3 x .22)  
820kΩ  
10kΩ  
1/2W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/2W  
1/4W  
4W  
5%  
1%  
1%  
5%  
5%  
5%  
5%  
5%  
5%  
1%  
1%  
1%  
5%  
5%  
1%  
5%  
5%  
1%  
1%  
C1  
470nF  
100µF  
2.2nF  
1nF  
400V  
C2  
C3  
450V  
R2  
R3  
1.8kΩ  
C4  
R4  
1.8kΩ  
C5  
100µF  
1µF  
25V  
16V  
63V  
63V  
R5  
18kΩ  
C6  
R6  
1.2MΩ  
C7  
220nF  
220nF  
330nF  
R7  
360k  
C8  
R8  
33k  
C9  
R9  
1.8M  
21k  
C10  
C11  
C12  
D1  
1 F  
µ
16V  
400V  
100V  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R21  
270pF  
8.2nF  
402Ω  
120kΩ  
27Ω  
STTA506D  
1N4148  
18V  
D2, D3  
D4  
1MΩ  
1/2W  
120kΩ  
30kΩ  
D5  
BYT11-600  
MOS  
STH/STW15NA50  
FUSE = 4A/250V  
1.8k  
5.1k  
1/4W  
BRIDGE = 4 x P600M  
T= primary: 88 turns of 12 x 32 AWG (0.2mm)  
secondary:9 turns of # 27AWG (0.15mm)  
core:B1ET3411A THOMSON - CSF  
fSW = 80kHz PO = 200W  
OUT = 400V Irms max = 2.53A  
VOVP = 442V IPK max = 6.2A  
V
gap: 1,6mm for a total primary inductance of  
0.9mH  
8/17  
L4981A - L4981B  
Figure 9B:  
L4981B Power Factor Corrector (200W)  
T
+
Vo=400V  
D1  
R22  
R6  
R7  
C7  
C8  
C12  
R15  
D4  
C5  
R14  
R1  
R9  
D3  
C9  
FUSE  
Vi  
BRIDGE  
R8  
R12  
7
4
1
19  
13  
14  
85V -265V  
AC  
AC  
3
C2  
C11  
D2  
15  
16  
C1  
L4981B  
R13  
20  
MOS  
6
2
8
5
9
18  
10  
17  
12  
11  
D5  
R17  
R2  
R10  
R21  
C3  
R5  
R11  
R3  
R4  
C4  
R16  
C6  
C10  
R
S
-
D95IN220  
PART LIST  
RS  
R1  
0.07(3 x .22)  
820kΩ  
1/2W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/2W  
1/4W  
4W  
5%  
1%  
1%  
5%  
5%  
5%  
5%  
5%  
5%  
1%  
1%  
1%  
5%  
5%  
1%  
5%  
5%  
1%  
1%  
1%  
C1  
470nF  
100µF  
2.2nF  
1.1nF  
100µF  
1µF  
400V  
450V  
C2  
C3  
R2  
10kΩ  
R3  
1.8kΩ  
C4  
R4  
1.8kΩ  
C5  
25V  
16V  
63V  
63V  
R5  
18k  
C6  
R6  
1.2M  
C7  
220nF  
220nF  
330nF  
R7  
360kΩ  
33kΩ  
C8  
R8  
C9  
R9  
1.8MΩ  
C10  
C11  
C12  
D1  
1 F  
µ
16V  
400V  
100V  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R21  
R22  
21k  
402  
270pF  
8.2nF  
120kΩ  
27Ω  
STTA506D  
1N4148  
18V  
D2, D3  
D4  
1MΩ  
1/2W  
120kΩ  
D5  
BYT11-600  
24k  
MOS  
STH/STW15NA50  
FUSE = 4A/250V  
1.8k  
5.1kΩ  
1/4W  
1/4W  
1.1MΩ  
BRIDGE = 4 x P600M  
T= primary: 88 turns of 12 x 32 AWG (0.2mm)  
secondary:9 turns of # 27AWG (0.15mm)  
core:B1ET3411A THOMSON - CSF  
fSW = 80 to 92kHz PO = 200W  
OUT = 400V Irms max = 2.53A  
VOVP = 442V IPK max = 6.2A  
V
gap: 1,6mm for a total primary inductance of  
0.9mH  
9/17  
L4981A - L4981B  
Figure 10: Reference Voltage vs. Source Refer-  
Figure 11: ReferenceVoltage vs. Supply Voltage  
ence Current  
Figure 12: ReferenceVoltage vs. Junction Tem-  
Figure 13: Switching Frequency vs. Junction  
perature  
Temperature  
Figure 15: OperatingSupply Current vs. Supply  
Figure 14: Gate Driver Rise and Fall Time  
Voltage  
10/17  
L4981A - L4981B  
Figure 16:  
Programmable Under Voltage Lock-  
out Thresholds  
Figure 17:  
ModulationFrequency Normalized in  
an Half Cycle of the Mains Voltage  
fsw  
1
Vl  
1
0.8  
0.4  
0.8  
0.4  
R22 = R23 6.8  
0.2  
0
0.2  
0
0
45  
90  
135  
180  
R23 (Kohm)  
Electrical degrees  
Table 1: Programmable Under Voltage Lockout Thresholds.  
VCC ON  
11V  
VCC OFF  
10V  
R22  
R23  
82kΩ  
12kΩ  
12V  
10.1V  
10.5V  
10.8V  
10.9V  
11V  
220k  
33k  
13V  
430kΩ  
909k  
62kΩ  
133k  
14V  
14.5V  
15V  
1.36MΩ  
2.7M  
200kΩ  
390k  
Figure 18: Oscillator Diagram  
11/17  
L4981A - L4981B  
Figure 19:  
200W Evaluation Board Circuit.  
T= primary: 75 turns of litz wire 20 x 32 AWG (0.2mm)  
secondary: 8 turns of # 27AWG (0.15mm)  
core: B1ET3411A THOMSON - CSF  
gap: 1.4mm for a total primary inductance of 0.7mH  
f
sw = 100kHz; VO = 400V; PO = 200W  
NOTE:  
Start Up Circuit  
voltage available at pin 6 by R20 and Q3, ensures Q2 to be turned  
off.  
Usually the VCC capacitor (C11 in fig. 19)can becharged bya resistor  
drawing current from the rectified mains. In the evaluation board  
instead the start up circuit composed by (Q2+R19+R15+Dz) has  
been designed to perform a fast and effective supply in all the  
conditions. Once that the L4981A/B has started, the reference  
Programmable Under voltage Lockout  
The PCB allows to insert a couple of resistor (R22, R23) to modify  
the threshold input voltage. Please refer to fig. 16 and table1.  
12/17  
L4981A - L4981B  
Figure 20:  
P.C. Board and Component Layout of EvaluationBoard Circuit (1:1 scale).  
13/17  
L4981A - L4981B  
a NTC resistor can be used.  
The PFC demoboard performances has been  
evaluated testing the following parameters:  
The evaluation board has been designed using: a  
faster not dissipative start-up circuit, a diode (D2)  
to speed-up the MOS start-off time and (even if a  
single resistor can be used) an external divider to  
improve the precision of the overcurrent thresh-  
old.  
Further there is a possibility to change the input  
threshold voltage using an external divider (R23  
and R22) and if an inrush current problem arises  
PF (power factor), A-THD (percentage of current  
total harmonic distortion), H3..H9 (percentage of  
current’s nth harmonic amplitude), Vo (output  
η
voltage ripple), Vo (output voltage), (efficiency).  
The test configuration, equipments and results  
are:  
AC POWER  
SOURCE  
LARCET /3KW  
PM1200  
AC POWER  
ANALYSER  
PFC  
L4981  
DEMO  
EMI  
FILTER  
LOAD  
D94IN057  
Vi  
(Vrms  
88  
f
(Hz)  
60  
60  
60  
50  
50  
50  
Pi  
PF  
A-THD  
(%)  
H3  
H5  
H7  
H9  
VO  
VO  
(V)  
8
PO  
(W)  
200  
201  
202  
203  
204  
205  
η
)
(W)  
222  
220  
218  
217  
217  
216  
(%)  
(%)  
(%)  
(%)  
(V)  
390  
392  
394  
396  
398  
400  
(%)  
0.999  
0.999  
0.999  
0.999  
0.997  
0.995  
2.94  
1.79  
1.71  
1.88  
2.25  
3.30  
1.98  
1.40  
1.16  
1.52  
1.68  
1.84  
0.61  
0.40  
0.40  
0.65  
0.83  
1.30  
0.55  
0.31  
0.35  
0.40  
0.57  
0.39  
0.70  
0.28  
0.31  
0.34  
0.48  
0.73  
90.2  
91.6  
92.8  
93.8  
94.2  
95.2  
110  
132  
180  
220  
260  
8
8
8
8
8
EMI/RFI FILTER  
The harmonic content measurement has been  
done using an EMI/RFI filter interposed between  
the AC source and the demoboard under test,  
while the efficiency has been calculated without  
the filter contribution.  
T1  
T2  
LINE  
C1  
PFC  
C
EARTH  
D94IN052  
where:  
T1 = 1mH  
T2 = 27mH  
C1 = 0.33µF, 630V  
C2 = 2.2nF, 630V  
14/17  
L4981A - L4981B  
SO20 PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
2.35  
0.1  
TYP.  
MAX.  
2.65  
0.3  
MIN.  
0.093  
0.004  
0.013  
0.009  
0.496  
0.291  
MAX.  
0.104  
0.012  
0.020  
0.013  
0.512  
0.299  
A
A1  
B
C
D
E
e
0.33  
0.23  
12.6  
7.4  
0.51  
0.32  
13  
7.6  
1.27  
0.050  
H
h
10  
0.25  
0.4  
10.65  
0.75  
1.27  
0.394  
0.010  
0.016  
0.419  
0.030  
0.050  
L
K
0 (min.)8 (max.)  
L
h x 45°  
A
A1  
H
B
C
e
K
D
20  
1
11  
10  
E
SO20MEC  
15/17  
L4981A - L4981B  
DIP20 PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
0.254  
1.39  
TYP.  
MAX.  
MIN.  
0.010  
0.055  
MAX.  
a1  
B
b
1.65  
0.065  
0.45  
0.25  
0.018  
0.010  
b1  
D
E
e
25.4  
1.000  
8.5  
0.335  
0.100  
0.900  
2.54  
22.86  
e3  
F
7.1  
0.280  
0.155  
I
3.93  
L
3.3  
0.130  
Z
1.34  
0.053  
16/17  
L4981A - L4981B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
1998 STMicroelectronics – Printed in Italy – AllRights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
17/17  

相关型号:

L4981A

POWER FACTOR CORRECTOR
STMICROELECTR

L4981AD

POWER FACTOR CORRECTOR
STMICROELECTR

L4981AD013TR

POWER FACTOR CORRECTOR
STMICROELECTR

L4981A_01

POWER FACTOR CORRECTOR
STMICROELECTR

L4981B

POWER FACTOR CORRECTOR
STMICROELECTR

L4981BD

POWER FACTOR CORRECTOR
STMICROELECTR

L4981BD013TR

POWER FACTOR CORRECTOR
STMICROELECTR

L4981X

POWER FACTOR CORRECTOR
STMICROELECTR

L4981XD

POWER FACTOR CORRECTOR
STMICROELECTR

L4984D

Inductor saturation protection
STMICROELECTR

L4984DTR

Inductor saturation protection
STMICROELECTR