L6229D [STMICROELECTRONICS]

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR; DMOS驱动三相无刷直流电机
L6229D
型号: L6229D
厂家: ST    ST
描述:

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
DMOS驱动三相无刷直流电机

电机 驱动
文件: 总25页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6229  
DMOS DRIVER FOR  
THREE-PHASE BRUSHLESS DC MOTOR  
Figure 1. Package  
1 FEATURES  
OPERATING SUPPLY VOLTAGE FROM 8 TO  
52V  
2.8A OUTPUT PEAK CURRENT (1.4A DC)  
RDS(ON) 0.73TYP. VALUE @ Tj = 25 °C  
OPERATING FREQUENCY UP TO 100KHz  
NON DISSIPATIVE OVERCURRENT  
DETECTION AND PROTECTION  
DIAGNOSTIC OUTPUT  
PowerDIP24  
(20+2+2)  
CONSTANT tOFF PWM CURRENT  
CONTROLLER  
SLOW DECAY SYNCHR. RECTIFICATION  
60° & 120° HALL EFFECT DECODING LOGIC  
BRAKE FUNCTION  
PowerSO36  
TACHO OUTPUT FOR SPEED LOOP  
CROSS CONDUCTION PROTECTION  
THERMAL SHUTDOWN  
UNDERVOLTAGE LOCKOUT  
INTEGRATED FAST FREEWEELING DIODES  
SO24  
(20+2+2)  
2 DESCRIPTION  
The L6229 is a DMOS Fully Integrated Three-Phase  
Motor Driver with Overcurrent Protection.  
Table 1. Order Codes  
Realized in MultiPower-BCD technology, the device  
combines isolated DMOS Power Transistors with  
CMOS and bipolar circuits on the same chip.  
The device includes all the circuitry needed to drive a  
three-phase BLDC motor including: a three-phase  
DMOS Bridge, a constant off time PWM Current Con-  
troller and the decoding logic for single ended hall  
sensors that generates the required sequence for the  
power stage.  
Part Number  
L6229N  
Package  
PowerDIP24  
L6229PD  
L6229PDTR  
L6229D  
PowerSO36  
PowerSO36 in Tape & Reel  
SO24  
L6229DTR  
SO24 in Tape & Reel  
dissipative overcurrent protection on the high side  
Power MOSFETs and thermal shutdown.  
Available in PowerDIP24 (20+2+2), PowerSO36 and  
SO24 (20+2+2) packages, the L6229 features a non-  
Rev. 3  
1/25  
October 2004  
L6229  
Figure 2. Block Diagram  
VBOOT  
VSA  
VBOOT  
VCP  
VBOOT  
THERMAL  
PROTECTION  
CHARGE  
PUMP  
OCD1  
OUT  
1
DIAG  
10V  
OCD1  
OCD2  
OCD  
OCD3  
OCD  
VBOOT  
EN  
BRAKE  
FWD/REV  
OCD2  
OUT  
2
GATE  
LOGIC  
H
3
10V  
HALL-EFFECT  
SENSORS  
DECODING  
LOGIC  
H
2
1
SENSEA  
VSB  
VBOOT  
H
TACHO  
MONOSTABLE  
RCPULSE  
TACHO  
OCD3  
10V  
OUT  
3
10V  
5V  
SENSEB  
PWM  
VOLTAGE  
REGULATOR  
+
-
ONE SHOT  
MONOSTABLE  
MASKING  
TIME  
VREF  
SENSE  
COMPARATOR  
RCOFF  
D99IN1095B  
Table 2. Absolute Maximum Ratings  
Symbol  
VS  
Parameter  
Supply Voltage  
Test conditions  
VSA = VSB = VS  
Value  
60  
Unit  
V
V
VOD  
Differential Voltage between:  
VSA, OUT1, OUT2, SENSEA  
and VSB, OUT3, SENSEB  
VSA = VSB = VS = 60V;  
VSENSEA = VSENSEB = GND  
60  
VBOOT  
VIN, VEN  
VREF  
Bootstrap Peak Voltage  
VSA = VSB = VS  
VS + 10  
-0.3 to 7  
-0.3 to 7  
-0.3 to 7  
-0.3 to 7  
-1 to 4  
V
V
V
V
V
V
Logic Inputs Voltage Range  
Voltage Range at pin VREF  
Voltage Range at pin RCOFF  
VRCOFF  
VRCPULSE Voltage Range at pin RCPULSE  
VSENSE  
IS(peak)  
IS  
Voltage Range at pins SENSEA  
and SENSEB  
Pulsed Supply Current (for each VSA = VSB = VS; TPULSE < 1ms  
VSA and VSB pin)  
3.55  
1.4  
A
A
DC Supply Current (for each  
VSA and VSB pin)  
VSA = VSB = VS  
T
stg, TOP Storage and Operating  
-40 to 150  
°C  
Temperature Range  
2/25  
L6229  
Table 3. Recommended Operating Condition  
Symbol  
VS  
Parameter  
Supply Voltage  
Test Conditions  
VSA = VSB = VS  
MIN  
MAX  
52  
Unit  
V
12  
VOD  
Differential Voltage between:  
VSA, OUT1, OUT2, SENSEA and  
VSB, OUT3, SENSEB  
VSA = VSB = VS;  
VSENSEA = VSENSEB  
52  
V
VREF  
Voltage Range at pin VREF  
-0.1  
5
V
VSENSE  
Voltage Range at pins SENSEA  
and SENSEB  
(pulsed tW < trr)  
(DC)  
-6  
-1  
6
1
V
V
IOUT  
TJ  
DC Output Current  
VSA = VSB = VS  
1.4  
125  
100  
A
Operating Junction Temperature  
Switching Frequency  
-25  
°C  
fSW  
KHz  
Table 4. Thermal Data  
Symbol  
Description  
PDIP24  
SO24  
PowerSO36  
Unit  
°C/W  
°C/W  
°C/W  
Rth(j-pins)  
Rth(j-case) Maximum Thermal Resistance Junction-Case  
Maximum Thermal Resistance Junction-Pins  
19  
15  
2
-
MaximumThermal Resistance Junction-Ambient (1)  
Maximum Thermal Resistance Junction-Ambient (2)  
MaximumThermal Resistance Junction-Ambient (3)  
Maximum Thermal Resistance Junction-Ambient (4)  
Rth(j-amb)1  
Rth(j-amb)1  
Rth(j-amb)1  
Rth(j-amb)2  
44  
-
55  
-
36  
16  
63  
°C/W  
°C/W  
°C/W  
-
-
59  
78  
2
(1) Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the bottom side of 6 cm (with a thickness of 35 µm).  
2
(2) Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the top side of 6 cm (with a thickness of 35 µm).  
2
(3) Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the top side of 6 cm (with a thickness of 35 µm),  
16 via holes and a ground layer.  
(4) Mounted on a multi-layer FR4 PCB without any heat-sinking surface on the board.  
3/25  
L6229  
Figure 3. Pin Connections (Top view)  
GND  
N.C.  
N.C.  
VSA  
1
GND  
N.C.  
N.C.  
VSB  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
2
H
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
H
H
3
1
3
2
4
DIAG  
SENSEA  
RCOFF  
2
OUT  
2
5
OUT  
3
3
VCP  
OUT  
VSA  
N.C.  
VCP  
6
N.C.  
4
2
7
VBOOT  
BRAKE  
VREF  
EN  
OUT  
5
1
H
2
8
GND  
GND  
6
GND  
GND  
VSB  
H
3
9
7
H
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
TACHO  
RCPULSE  
SENSEB  
FWD/REV  
EN  
8
DIAG  
SENSEA  
RCOFF  
N.C.  
FWD/REV  
SENSEB  
RCPULSE  
N.C.  
9
OUT  
3
10  
11  
12  
VBOOT  
BRAKE  
VREF  
OUT  
1
TACHO  
N.C.  
N.C.  
N.C.  
GND  
D01IN1194A  
N.C.  
GND  
D01IN1195A  
PowerSO36 (5)  
PowerDIP24/SO24  
(5) The slug is internally connected to pins 1, 18, 19 and 36 (GND pins).  
Table 5. Pin Description  
PACKAGE  
SO24/  
PowerDIP24  
PowerSO36  
Name  
Type  
Function  
PIN #  
PIN #  
10  
1
2
H1  
Sensor Input Single Ended Hall Effect Sensor Input 1.  
11  
DIAG  
Open Drain Overcurrent Detection and Thermal Protection pin. An  
Output  
internal open drain transistor pulls to GND when an  
overcurrent on one of the High Side MOSFETs is  
detected or during Thermal Protection.  
3
4
5
12  
13  
15  
SENSEA  
RCOFF  
Power Supply Half Bridge 1 and Half Bridge 2 Source Pin. This pin  
must be connected together with pin SENSEB to  
Power Ground through a sensing power resistor.  
RC Pin  
RC Network Pin. A parallel RC network connected  
between this pin and ground sets the Current  
Controller OFF-Time.  
OUT1  
GND  
Power Output Output 1  
6, 7,  
1, 18,  
GND Ground terminals. On PowerDIP24 and SO24  
18, 19  
19, 36  
packages, these pins are also used for heat  
dissipation toward the PCB. On PowerSO36 package  
the slug is connected on these pins.  
8
9
22  
24  
TACHO  
Open Drain Frequency-to-Voltage open drain output. Every pulse  
Output  
from pin H1 is shaped as a fixed and adjustable length  
pulse.  
RCPULSE  
RC Pin  
RC Network Pin. A parallel RC network connected  
between this pin and ground sets the duration of the  
Monostable Pulse used for the Frequency-to-Voltage  
converter.  
4/25  
L6229  
Table 5. Pin Description (continued)  
PACKAGE  
SO24/  
PowerDIP24  
PowerSO36  
Name  
Type  
Function  
PIN #  
PIN #  
10  
25  
SENSEB  
Power Supply Half Bridge 3 Source Pin. This pin must be connected  
together with pin SENSEA to Power Ground through a  
sensing power resistor. At this pin also the Inverting  
Input of the Sense Comparator is connected.  
11  
12  
26  
27  
FWD/REV  
EN  
Logic Input  
Selects the direction of the rotation. HIGH logic level  
sets Forward Operation, whereas LOW logic level sets  
Reverse Operation.  
If not used, it has to be connected to GND or +5V..  
Logic Input  
Chip Enable. LOW logic level switches OFF all Power  
MOSFETs.  
If not used, it has to be connected to +5V.  
13  
14  
28  
29  
VREF  
Logic Input  
Logic Input  
Current Controller Reference Voltage.  
Do not leave this pin open or connect to GND.  
BRAKE  
Brake Input pin. LOW logic level switches ON all High  
Side Power MOSFETs, implementing the Brake  
Function.  
If not used, it has to be connected to +5V.  
15  
30  
VBOOT  
Supply Voltage Bootstrap Voltage needed for driving the upper Power  
MOSFETs.  
16  
17  
32  
33  
OUT3  
VSB  
Power Output Output 3.  
Power Supply Half Bridge 3 Power Supply Voltage. It must be  
connected to the supply voltage together with pin VSA.  
20  
4
VSA  
Power Supply Half Bridge 1 and Half Bridge 2 Power Supply Voltage.  
It must be connected to the supply voltage together  
with pin VSB.  
21  
22  
23  
24  
5
7
8
9
OUT2  
VCP  
H2  
Power Output Output 2.  
Output  
Charge Pump Oscillator Output.  
Sensor Input Single Ended Hall Effect Sensor Input 2.  
Sensor Input Single Ended Hall Effect Sensor Input 3.  
H3  
Table 6. Electrical Characteristics  
(VS = 48V , Tamb = 25 °C , unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min  
5.8  
5
Typ  
6.3  
5.5  
5
Max  
6.8  
6
Unit  
V
VSth(ON) Turn ON threshold  
VSth(OFF) Turn OFF threshold  
V
IS  
Quiescent Supply Current  
All Bridges OFF;  
Tj = -25 to 125°C (6)  
10  
mA  
TJ(OFF) Thermal Shutdown Temperature  
165  
°C  
Output DMOS Transistors  
RDS(ON) High-Side + Low-Side Switch ON  
Resistance  
Tj = 25 °C  
1.47  
2.35  
1.69  
2.70  
Tj =125 °C (7)  
IDSS  
Leakage Current  
EN = Low; OUT = VCC  
EN = Low; OUT = GND  
2
mA  
mA  
-0.3  
5/25  
L6229  
Table 6. Electrical Characteristics (continued)  
(VS = 48V , Tamb = 25 °C , unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Source Drain Diodes  
VSD  
trr  
Forward ON Voltage  
ISD = 1.4A, EN = LOW  
If = 1.4A  
1.15  
300  
200  
1.3  
V
Reverse Recovery Time  
Forward Recovery Time  
ns  
ns  
tfr  
Logic Input (H1, H2, H3, EN, FWD/REV, BRAKE)  
VIL  
VIH  
IIL  
Low level logic input voltage  
High level logic input voltage  
Low level logic input current  
High level logic input current  
-0.3  
2
0.8  
7
V
V
GND Logic Input Voltage  
7V Logic Input Voltage  
-10  
µA  
µA  
V
IIH  
10  
Vth(ON) Turn-ON Input Threshold  
Vth(OFF) Turn-OFF Input Threshold  
VthHYS Input Thresholds Hysteresys  
Switching Characteristics  
1.8  
1.3  
0.5  
2.0  
0.8  
V
0.25  
V
Enable to out turn-ON delay time (7)  
tD(on)EN  
ILOAD = 1.4 A, Resistive Load  
ILOAD = 1.4 A, Resistive Load  
500  
500  
650  
800  
ns  
ns  
µs  
(7  
)
tD(off)EN  
1000  
Enable to out turn-OFF delay time  
tD(on)IN Other Logic Inputs to Output Turn- ILOAD = 1.4 A, Resistive Load  
ON delay Time  
1.6  
tD(off)IN Other Logic Inputs to out Turn-OFF ILOAD = 1.4 A, Resistive Load  
delay Time  
800  
ns  
Output Rise Time (7)  
tRISE  
tFALL  
tDT  
fCP  
ILOAD = 1.4 A, Resistive Load  
ILOAD = 1.4 A, Resistive Load  
40  
40  
250  
250  
ns  
ns  
Output Fall Time (7)  
Dead Time  
0.5  
1
µs  
Tj = -25 to 125°C (6)  
Charge Pump Frequency  
0.6  
1
MHz  
PWM Comparator and Monostable  
Source current at pin RCOFF  
I
VRCOFF = 2.5 V  
Vref = 0.5 V  
3.5  
5.5  
5
mA  
mV  
RCOFF  
VOFFSET Offset Voltage on Sense  
Comparator  
Turn OFF Propagation delay (8)  
tprop  
Vref = 0.5 V  
500  
1
ns  
µs  
tblank  
Internal Blanking Time on Sense  
Comparator  
tON(min) Minimum on Time  
2.5  
13  
3
µs  
µs  
µs  
µA  
tOFF  
PWM RecirculationTime  
ROFF= 20k; COFF =1nF  
ROFF= 100k; COFF =1nF  
61  
IBIAS  
Input Bias Current at pin VREF  
10  
Tacho Monostable  
IRCPULSE Source Current at pin RCPULSE  
VRCPULSE = 2.5V  
3.5  
5.5  
mA  
6/25  
L6229  
Table 6. Electrical Characteristics (continued)  
(VS = 48V , Tamb = 25 °C , unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
RPUL = 20k; CPUL =1nF  
RPUL = 100k; CPUL =1nF  
Min  
Typ  
12  
Max  
Unit  
µs  
tPULSE Monostable of Time  
60  
µs  
RTACHO Open Drain ON Resistance  
40  
60  
Over Current Detection & Protection  
TJ = -25 to 125°C (6)  
ISOVER Supply Overcurrent Protection  
Threshold  
2
2.8  
3.55  
60  
A
ROPDR Open Drain ON Resistance  
IDIAG = 4mA  
40  
1
µA  
ns  
IOH  
OCD high level leakage current  
OCD Turn-ON Delay Time (9)  
OCD Turn-OFF Delay Time (9)  
VDIAG = 5V  
tOCD(ON)  
IDIAG = 4mA; CDIAG < 100pF  
200  
t
IDIAG = 4mA; CDIAG < 100pF  
100  
ns  
OCD(OFF)  
(6) Tested at 25°C in a restricted range and guaranteed by characterization.  
(7) See Fig. 4.  
(8) Measured applying a voltage of 1V to pin SENSE and a voltage drop from 2V to 0V to pin VREF.  
(9) See Fig. 5.  
Figure 4. Switching Characteristic Definition  
EN  
Vth(ON)  
Vth(OFF)  
t
IOUT  
90%  
10%  
t
D01IN1316  
tFALL  
tRISE  
tD(OFF)EN  
tD(ON)EN  
Figure 5. Overcurrent Detection Timing Definition  
I
OUT  
SOVER  
I
ON  
BRIDGE  
OFF  
V
DIAG  
90%  
10%  
D02IN1387  
t
t
OCD(OFF)  
OCD(ON)  
7/25  
L6229  
3 CIRCUIT DESCRIPTION  
3.1 POWER STAGES and CHARGE PUMP  
The L6229 integrates a Three-Phase Bridge, which consists of 6 Power MOSFETs connected as shown on the  
Block Diagram. Each Power MOS has an R  
diode. Switching patterns are generated by the PWM Current Controller and the Hall Effect Sensor Decoding  
= 0.73  
(typical value @25°C) with intrinsic fast freewheeling  
DS(ON)  
Logic (see relative paragraphs). Cross conduction protection is implemented by using a dead time (t = 1µs  
DT  
typical value) set by internal timing circuit between the turn off and turn on of two Power MOSFETs in one leg  
of a bridge.  
Pins VS and VS MUST be connected together to the supply voltage (V ).  
A
B
S
Using N-Channel Power MOS for the upper transistors in the bridge requires a gate drive voltage above the  
power supply voltage. The Bootstrapped Supply (V ) is obtained through an internal oscillator and few ex-  
BOOT  
ternal components to realize a charge pump circuit as shown in Figure 6. The oscillator output (pin VCP) is a  
square wave at 600KHz (typically) with 10V amplitude. Recommended values/part numbers for the charge  
pump circuit are shown in Table 7.  
Table 7. Charge Pump External Component Values.  
CBOOT  
220nF  
CP  
10nF  
RP  
100Ω  
D1  
1N4148  
1N4148  
D2  
Figure 6. Charge Pump Circuit  
VS  
D1  
D2  
CBOOT  
RP  
CP  
D01IN1328  
VCP  
VBOOT  
VSA VSB  
3.2 LOGIC INPUTS  
Pins FWD/REV, BRAKE, EN, H , H and H are TTL/CMOS and µC compatible logic inputs. The internal struc-  
1
2
3
ture is shown in Figure 4. Typical value for turn-ON and turn-OFF thresholds are respectively V  
= 1.8V and  
th(ON)  
V
= 1.3V.  
th(OFF)  
Pin EN (enable) may be used to implement Overcurrent and Thermal protection by connecting it to the open collector  
DIAG output If the protection and an external disable function are both desired, the appropriate connection must be  
implemented. When the external signal is from an open collector output, the circuit in Figure 8 can be used . For ex-  
ternal circuits that are push pull outputs the circuit in Figure 9 could be used. The resistor REN should be chosen in  
the range from 2.2K  
to 180K. Recommended values for REN and CEN are respectively 100Kand 5.6nF. More  
information for selecting the values can be found in the Overcurrent Protection section.  
8/25  
L6229  
Figure 7. Logic Input Internal Structure  
5V  
ESD  
PROTECTION  
D01IN1329  
Figure 8. Pin EN Open Collector Driving  
DIAG  
EN  
5V  
5V  
REN  
OPEN  
COLLECTOR  
OUTPUT  
CEN  
ESD  
PROTECTION  
D02IN1378  
Figure 9. Pin EN Push-Pull Driving  
DIAG  
EN  
5V  
REN  
PUSH-PULL  
OUTPUT  
CEN  
ESD  
PROTECTION  
D02IN1379  
3.3 PWM CURRENT CONTROL  
The L6229 includes a constant off time PWM Current Controller. The current control circuit senses the bridge  
current by sensing the voltage drop across an external sense resistor connected between the source of the  
three lower power MOS transistors and ground, as shown in Figure 10. As the current in the motor increases  
the voltage across the sense resistor increases proportionally. When the voltage drop across the sense resistor  
becomes greater than the voltage at the reference input pin VREF the sense comparator triggers the  
monostable switching the bridge off. The power MOS remain off for the time set by the monostable and the mo-  
tor current recirculates around the upper half of the bridge in Slow Decay Mode as described in the next section.  
When the monostable times out, the bridge will again turn on. Since the internal dead time, used to prevent  
cross conduction in the bridge, delays the turn on of the power MOS, the effective Off Time t  
the monostable time plus the dead time.  
is the sum of  
OFF  
Figure 11 shows the typical operating waveforms of the output current, the voltage drop across the sensing re-  
sistor, the pin RC voltage and the status of the bridge. More details regarding the Synchronous Rectification and  
the output stage configuration are included in the next section.  
Immediately after the Power MOS turn on, a high peak current flows through the sense resistor due to the re-  
9/25  
L6229  
verse recovery of the freewheeling diodes. The L6229 provides a 1µs Blanking Time t  
that inhibits the  
BLANK  
comparator output so that the current spike cannot prematurely retrigger the monostable.  
Figure 10. PWM Current Controller Simplified Schematic  
VS  
VSB  
VSA  
BLANKING TIME  
MONOSTABLE  
TO GATE  
LOGIC  
1µs  
FROM THE  
LOW-SIDE  
GATE DRIVERS  
5mA  
MONOSTABLE  
SET  
BLANKER  
S
R
OUT  
OUT  
OUT  
2
3
1
Q
(0)  
(1)  
DRIVERS  
+
DRIVERS  
+
-
DEAD TIME  
DEAD TIME  
DRIVERS  
+
5V  
+
DEAD TIME  
2.5V  
+
-
SENSE  
COMPARATOR  
RCOFF  
ROFF  
SENSE  
SENSE  
A
VREF  
B
COFF  
R
SENSE  
D02IN1380  
Figure 11. Output Current Regulation Waveforms  
I
OUT  
V
REF  
R
SENSE  
t
t
t
OFF  
OFF  
ON  
1µs t  
1µs t  
BLANK  
V
BLANK  
SENSE  
V
REF  
Slow Decay  
Slow Decay  
0
t
t
V
RC  
RCRISE  
RCRISE  
5V  
2.5V  
t
t
RCFALL  
RCFALL  
1µs t  
1µs t  
DT  
DT  
ON  
SYNCHRONOUS RECTIFICATION  
D02IN1351  
OFF  
B
C
D
A
B
C
D
10/25  
L6229  
Figure 12 shows the magnitude of the Off Time t  
calculated from the equations:  
versus C  
and R values. It can be approximately  
OFF  
OFF  
OFF  
t
t
= 0.6 · R  
· C  
RCFALL  
OFF OFF  
= t  
+ t = 0.6 · R  
· C  
+ t  
OFF  
OFF  
RCFALL  
DT  
OFF  
DT  
where R  
and C  
are the external component values and t is the internally generated Dead Time with:  
OFF DT  
OFF  
20KΩ ≤  
0.47nF  
= 1µs (typical value)  
R
100KΩ  
OFF  
C
100nF  
OFF  
t
DT  
Therefore:  
t
t
= 6.6µs  
= 6ms  
OFF(MIN)  
OFF(MAX)  
These values allow a sufficient range of t  
to implement the drive circuit for most motors.  
OFF  
The capacitor value chosen for C  
also affects the Rise Time t  
of the voltage at the pin RCOFF. The  
OFF  
RCRISE  
Rise Time t  
will only be an issue if the capacitor is not completely charged before the next time the  
RCRISE  
monostable is triggered. Therefore, the On Time t , which depends by motors and supply parameters, has to  
ON  
be bigger than t  
can not be smaller than the minimum on time t  
for allowing a good current regulation by the PWM stage. Furthermore, the On Time t  
RCRISE  
ON  
.
ON(MIN)  
t
ON > tON(MIN) = 2.5µs (typ. value)  
ON > tRCRISE tDT  
t
t
= 600 · C  
OFF  
RCRISE  
Figure 13 shows the lower limit for the On Time t for having a good PWM current regulation capacity. It has  
ON  
to be said that t is always bigger than t  
because the device imposes this condition, but it can be smaller  
ON  
ON(MIN)  
than t  
- t . In this last case the device continues to work but the Off Time t  
RCRISE DT  
is not more constant.  
OFF  
So, small C  
value gives more flexibility for the applications (allows smaller On Time and, therefore, higher  
OFF  
switching frequency), but, the smaller is the value for C  
, the more influential will be the noises on the circuit  
OFF  
performance.  
Figure 12. tOFF versus COFF and ROFF  
.
4
.
1 10  
= 100k  
Roff  
3
.
1 10  
= 47kΩ  
Roff  
= 20kΩ  
Roff  
100  
10  
1
0.1  
1
10  
100  
Coff [nF]  
11/25  
L6229  
Figure 13. Area where tON can vary maintaining the PWM regulation.  
100  
10  
µ
1.5 s (typ. value)  
1
0.1  
1
10  
100  
Coff [nF]  
3.4 SLOW DECAY MODE  
Figure 14 shows the operation of the bridge in the Slow Decay mode during the Off Time. At any time only two  
legs of the three-phase bridge are active, therefore only the two active legs of the bridge are shown in the figure  
and the third leg will be off. At the start of the Off Time, the lower power MOS is switched off and the current  
recirculates around the upper half of the bridge. Since the voltage across the coil is low, the current decays slow-  
ly. After the Dead Time the upper power MOS is operated in the synchronous rectification mode reducing the  
impendence of the freewheeling diode and the related conducting losses. When the monostable times out, up-  
per MOS that was operating the synchronous mode turns off and the lower power MOS is turned on again after  
some delay set by the Dead Time to prevent cross conduction.  
Figure 14. Slow Decay Mode Output Stage Configurations  
A) ON TIME  
B) 1µs DEAD TIME  
C) SYNCHRONOUS  
RECTIFICATION  
D) 1µs DEAD TIME  
D01IN1336  
12/25  
L6229  
3.5 DECODING LOGIC  
The Decoding Logic section is a combinatory logic that provides the appropriate driving of the three-phase  
bridge outputs according to the signals coming from the three Hall Sensors that detect rotor position in a 3-  
phase BLDC motor. This novel combinatory logic discriminates between the actual sensor positions for sensors  
spaced at 60, 120, 240 and 300 electrical degrees. This decoding method allows the implementation of a uni-  
versal IC without dedicating pins to select the sensor configuration.  
There are eight possible input combinations for three sensor inputs. Six combinations are valid for rotor posi-  
tions with 120 electrical degrees sensor phasing (see Figure 15, positions 1, 2, 3a, 4, 5 and 6a) and six combi-  
nations are valid for rotor positions with 60 electrical degrees phasing (see Figure 17, positions 1, 2, 3b, 4, 5  
and 6b). Four of them are in common (1, 2, 4 and 5) whereas there are two combinations used only in 120 elec-  
trical degrees sensor phasing (3a and 6a) and two combinations used only in 60 electrical degrees sensor phas-  
ing (3b and 6b).  
The decoder can drive motors with different sensor configuration simply by following the Table 8. For any input  
configuration (H , H and H ) there is one output configuration (OUT , OUT and OUT ). The output configura-  
1
2
3
1
2
3
tion 3a is the same than 3b and analogously output configuration 6a is the same than 6b.  
The sequence of the Hall codes for 300 electrical degrees phasing is the reverse of 60 and the sequence of the  
Hall codes for 240 phasing is the reverse of 120. So, by decoding the 60 and the 120 codes it is possible to drive  
the motor with all the four conventions by changing the direction set.  
Table 8. 60 and 120 Electrical Degree Decoding Logic in Forward Direction.  
Hall 120°  
Hall 60°  
H1  
1
1
2
2
3a  
-
-
3b  
4
4
5
5
6a  
-
-
6b  
H
H
L
H
L
L
H
L
H2  
L
H
H
H
H
L
L
L
H3  
L
L
L
H
H
H
H
L
OUT1  
OUT2  
OUT3  
Phasing  
Vs  
High Z  
Vs  
GND  
Vs  
GND  
Vs  
GND  
High Z  
Vs  
High Z  
GND  
Vs  
Vs  
Vs  
High Z  
GND  
1->3  
GND  
High Z  
1->2  
GND  
High Z  
1->2  
GND  
2->3  
High Z  
2->1  
High Z  
2->1  
3->1  
3->2  
Figure 15. 120° Hall Sensor Sequence.  
H1  
H1  
H1  
H1  
H1  
H1  
H3  
H2 H3  
H2 H3  
H2 H3  
H2 H3  
H2 H3  
H2  
1
2
3a  
4
5
6a  
= H  
= L  
13/25  
L6229  
Figure 16. 60° Hall Sensor Sequence.  
H1  
H1  
H1  
H1  
H1  
H1  
H2  
H2  
H2  
H2  
H2  
H2  
H3  
H3  
H3  
H3  
H3  
H3  
1
2
3b  
4
5
6b  
= H  
= L  
3.6 TACHO  
A tachometer function consists of a monostable, with constant off time (t  
), whose input is one Hall Effect  
PULSE  
signal (H ). It allows developing an easy speed control loop by using an external op amp, as shown in Figure  
1
18. For component values refer to Application Information section.  
The monostable output drives an open drain output pin (TACHO). At each rising edge of the Hall Effect Sensors  
H , the monostable is triggered and the MOSFET connected to pin TACHO is turned off for a constant time  
1
t
(see Figure 17). The off time t  
can be set using the external RC network (R  
, C  
) connected  
PULSE  
PULSE  
PUL  
PUL  
to the pin RCPULSE. Figure 19 gives the relation between t  
and C  
, R  
. We have approximately:  
PULSE  
PUL  
PUL  
t
= 0.6 · R  
· C  
PUL PUL  
PULSE  
where C  
should be chosen in the range 1nF … 100nF and R  
in the range 20K… 100K.  
PUL  
PUL  
By connecting the tachometer pin to an external pull-up resistor, the output signal average value V is propor-  
M
tional to the frequency of the Hall Effect signal and, therefore, to the motor speed. This realizes a simple Fre-  
quency-to-Voltage Converter. An op amp, configured as an integrator, filters the signal and compares it with a  
reference voltage V  
, which sets the speed of the motor.  
REF  
tPULSE  
-----------------  
T
VM  
=
VDD  
Figure 17. Tacho Operation Waveforms.  
H1  
H2  
H3  
VTACHO  
VM  
VDD  
tPULSE  
T
14/25  
L6229  
Figure 18. Tachometer Speed Control Loop.  
H1  
RCPULSE  
TACHO  
MONOSTABLE  
VDD  
RPUL  
CPUL  
RDD  
R3  
TACHO  
C1  
R4  
VREF  
CREF1  
R1  
VREF  
CREF2  
R2  
Figure 19. tPULSE versus CPUL and RPUL  
.
4
.
1 10  
= 100k  
RPUL  
= 47k  
RPUL  
3
.
1 10  
= 20k  
RPUL  
100  
10  
1
10  
Cpul [nF]  
100  
15/25  
L6229  
3.7 NON-DISSIPATIVE OVERCURRENT DETECTION and PROTECTION  
The L6229 integrates an Overcurrent Detection Circuit (OCD) for full protection. This circuit provides Output-to-  
Output and Output-to-Ground short circuit protection as well. With this internal over current detection, the exter-  
nal current sense resistor normally used and its associated power dissipation are eliminated. Figure 20 shows  
a simplified schematic for the overcurrent detection circuit.  
To implement the over current detection, a sensing element that delivers a small but precise fraction of the out-  
put current is implemented with each High Side power MOS. Since this current is a small fraction of the output  
current there is very little additional power dissipation. This current is compared with an internal reference cur-  
rent I  
. When the output current reaches the detection threshold (typically I  
= 2.8A) the OCD compar-  
REF  
SOVER  
ator signals a fault condition. When a fault condition is detected, an internal open drain MOS with a pull down  
capability of 4mA connected to pin DIAG is turned on.  
The pin DIAG can be used to signal the fault condition to a µC or to shut down the Three-Phase Bridge simply  
by connecting it to pin EN and adding an external R-C (see R , C ).  
EN  
EN  
Figure 20. Overcurrent Protection Simplified Schematic  
OUT1 VSA OUT2  
OUT3 VSB  
HIGH SIDE DMOS  
I1  
HIGH SIDE DMOS  
I2  
HIGH SIDE DMOS  
I3  
POWER SENSE  
1 cell  
TO GATE  
POWER SENSE  
POWER SENSE  
1 cell  
POWER DMOS  
n cells  
POWER DMOS  
n cells  
POWER DMOS  
n cells  
1 cell  
µC or LOGIC  
+
LOGIC  
VDD  
I1 / n  
I2/ n  
OCD  
COMPARATOR  
REN  
CEN  
EN  
I1+I2 / n  
IREF  
INTERNAL  
OPEN-DRAIN  
DIAG  
RDS(ON)  
40TYP.  
OVER TEMPERATURE  
I3/ n  
IREF  
D02IN1381  
Figure 21 shows the Overcurrent Detetection operation. The Disable Time t  
before recovering normal  
DISABLE  
operation can be easily programmed by means of the accurate thresholds of the logic inputs. It is affected  
whether by C and R values and its magnitude is reported in Figure 22. The Delay Time t before turn-  
EN  
EN  
DELAY  
ing off the bridge when an overcurrent has been detected depends only by C value. Its magnitude is reported  
EN  
in Figure 23  
C
is also used for providing immunity to pin EN against fast transient noises. Therefore the value of C  
EN  
EN  
should be chosen as big as possible according to the maximum tolerable Delay Time and the R value should  
EN  
be chosen according to the desired Disable Time.  
The resistor R should be chosen in the range from 2.2K  
to 180K  
. Recommended values for R and C  
EN EN  
EN  
are respectively 100K  
and 5.6nF that allow obtaining 200µs Disable Time.  
16/25  
L6229  
Figure 21. Overcurrent Protection Waveforms  
I
OUT  
I
SOVER  
V
=V  
EN DIAG  
V
DD  
V
th(ON)  
V
th(OFF)  
V
EN(LOW)  
ON  
OCD  
OFF  
ON  
BRIDGE  
OFF  
t
t
DELAY  
DISABLE  
t
t
t
t
t
OCD(ON)  
EN(FALL)  
OCD(OFF)  
EN(RISE)  
D(ON)EN  
D02IN1383  
t
D(OFF)EN  
Figure 22. tDISABLE versus CEN and REN  
.
R E N = 100 k  
R E N = 2 20 k  
3
.
R E N = 47 k  
R E N = 33 k  
1
10  
R E N = 10 k  
1 00  
10  
1
1
10  
1 00  
C E N [n F ]  
Figure 23. tDELAY versus CEN  
.
10  
1
0.1  
1
10  
100  
Cen [nF]  
17/25  
L6229  
4 APPLICATION INFORMATION  
A typical application using L6229 is shown in Figure 24. Typical component values for the application are shown  
in Table 9. A high quality ceramic capacitor (C ) in the range of 100nF to 200nF should be placed between the  
2
power pins VS and VS and ground near the L6229 to improve the high frequency filtering on the power supply  
A
B
and reduce high frequency transients generated by the switching. The capacitor (C ) connected from the EN  
EN  
input to ground sets the shut down time when an over current is detected (see Overcurrent Protection). The two  
current sensing inputs (SENSE and SENSE ) should be connected to the sensing resistor R with a trace  
A
B
SENSE  
length as short as possible in the layout. The sense resistor should be non-inductive resistor to minimize the di/  
dt transients across the resistor. To increase noise immunity, unused logic pins are best connected to 5V (High  
Logic Level) or GND (Low Logic Level) (see pin description). It is recommended to keep Power Ground and  
Signal Ground separated on PCB.  
Table 9. Component Values for Typical Application.  
C1  
C2  
100µF  
100nF  
220nF  
220nF  
1nF  
R1  
R2  
5K6Ω  
1K8Ω  
4K7Ω  
1MΩ  
C3  
R3  
CBOOT  
COFF  
CPUL  
CREF1  
CREF2  
CEN  
CP  
R4  
RDD  
1KΩ  
10nF  
REN  
100KΩ  
100Ω  
0.6Ω  
33nF  
RP  
100nF  
5.6nF  
10nF  
RSENSE  
ROFF  
RPUL  
RH1, RH2, RH3  
33KΩ  
47KΩ  
10KΩ  
D1  
1N4148  
1N4148  
D2  
Figure 24. Typical Application  
R1  
VSA  
VSB  
VREF  
13  
+
-
VREF  
CREF2  
+
VS  
8-52VDC  
20  
17  
C1  
C2  
CREF1  
R2  
C3  
POWER  
GROUND  
-
D1  
CP  
RP  
VCP  
22  
DIAG  
2
D2  
R4  
CBOOT  
REN  
CEN  
VBOOT  
SENSEA  
SENSEB  
EN  
12  
15  
3
ENABLE  
SIGNAL  
GROUND  
RSENSE  
R3  
11  
FWD/REV  
BRAKE  
10  
FWD/REV  
THREE-PHASE MOTOR  
OUT  
OUT  
OUT  
14  
1
2
3
5
BRAKE  
HALL  
M
21  
16  
SENSOR  
8
+5V  
RH1  
TACHO  
COFF  
RDD  
H
H
H
1
2
3
1
RH2  
RH3  
5V  
23  
24  
4
9
RCOFF  
ROFF  
CPUL  
18  
19  
6
RCPULSE  
7
RPUL  
GND  
D02IN1357  
18/25  
L6229  
4.1 OUTPUT CURRENT CAPABILITY AND IC POWER DISSIPATION  
In Figure 25 is shown the approximate relation between the output current and the IC power dissipation using  
PWM current control.  
For a given output current the power dissipated by the IC can be easily evaluated, in order to establish which  
package should be used and how large must be the on-board copper dissipating area to guarantee a safe op-  
erating junction temperature (125°C maximum).  
Figure 25. IC Power Dissipation versus Output Power.  
I1  
IOUT  
10  
I2  
IOUT  
8
6
4
2
0
PD [W]  
I3  
IOUT  
Test Conditions:  
Supply Voltage = 24 V  
No PWM  
fSW = 30 kHz (slow decay)  
0
0.25 0.5 0.75  
1
1.25 1.5  
I
OUT [A]  
4.2 THERMAL MANAGEMENT  
In most applications the power dissipation in the IC is the main factor that sets the maximum current that can  
be delivered by the device in a safe operating condition. Selecting the appropriate package and heatsinking con-  
figuration for the application is required to maintain the IC within the allowed operating temperature range for  
the application. Figures 26, 27 and 28 show the Junction-to-Ambient Thermal Resistance values for the  
PowerSO36, PowerDIP24 and SO24 packages.  
For instance, using a PowerSO package with copper slug soldered on a 1.5mm copper thickness FR4 board  
2
with 6cm dissipating footprint (copper thickness of 35  
µ
m), the R  
is about 35°C/W. Figure 29 shows  
th(j-amb)  
mounting methods for this package. Using a multi-layer board with vias to a ground plane, thermal impedance  
can be reduced down to 15°C/W.  
Figure 26. PowerSO36 Junction-Ambient thermal resistance versus on-board copper area.  
ºC / W  
43  
38  
33  
W ithout Ground Layer  
28  
W ith Ground Layer  
W ith Ground Layer+16 via  
H oles  
23  
On-Board Copper Area  
18  
13  
1
2
3
4
5
6
7
8
9
10 11 12 13  
sq. cm  
19/25  
L6229  
Figure 27. PowerDIP24 Junction-Ambient thermal resistance versus on-board copper area.  
ºC / W  
On-Board Copper Area  
49  
48  
Copper Are a is on Bottom  
S ide  
47  
46  
Copper Are a is on To p Side  
45  
44  
43  
42  
41  
40  
39  
1
2
3
4
5
6
7
8
9
10 11 12  
sq. cm  
Figure 28. SO24 Junction-Ambient thermal resistance versus on-board copper area.  
ºC / W  
On-Board Copper Area  
68  
66  
64  
62  
60  
C o pp er Are a is on Top Sid e  
58  
56  
54  
52  
50  
48  
1
2
3
4
5
6
7
8
9
10 11 12  
sq. cm  
Figure 29. Mounting the PowerSO Package.  
Slug soldered  
to PCB with  
dissipating area  
Slug soldered  
Slug soldered to PCB with  
dissipating area plus ground layer  
contacted through via holes  
to PCB with  
dissipating area  
plus ground layer  
20/25  
L6229  
Figure 30. PowerSO36 Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.138  
0.13  
OUTLINE AND  
MECHANICAL DATA  
A
A2  
A4  
A5  
a1  
b
3.25  
3.5  
3.3  
1
0.128  
0.031  
0
0.8  
0.039  
0.008  
0.003  
0.015  
0.012  
0.630  
0.38  
0.2  
0
0.075  
0.22  
0.23  
15.8  
9.4  
0.38 0.008  
0.32 0.009  
c
D
16  
0.622  
0.37  
D1  
D2  
E
9.8  
1
0.039  
0.57  
13.9  
10.9  
14.5 0.547  
11.1 0.429  
2.9  
E1  
E2  
E3  
E4  
e
0.437  
0.114  
0.244  
1.259  
0.026  
0.435  
0.003  
0.625  
0.043  
0.043  
5.8  
2.9  
6.2  
3.2  
0.228  
0.114  
0.65  
e3  
G
11.05  
0
0.075  
15.9  
1.1  
0
H
15.5  
0.61  
h
L
0.8  
1.1  
0.031  
N
10˚ (max)  
8˚ (max)  
s
PowerSO36  
Note: “D and E1” do not include mold flash or protusions.  
- Mold flash or protusions shall not exceed 0.15mm (0.006”)  
- Critical dimensions are "a3", "E" and "G".  
N
N
a2  
A
c
a1  
e
A
DETAIL B  
lead  
E
DETAIL A  
e3  
H
DETAIL A  
D
slug  
a3  
BOTTOM VIEW  
36  
19  
E3  
B
E1  
E2  
D1  
DETAIL B  
0.35  
Gage Plane  
- C -  
SEATING PLANE  
1
1
8
S
L
G
C
M
b
0.12  
A B  
PSO36MEC  
h x 45  
(COPLANARITY)  
0096119 B  
21/25  
L6229  
Figure 31. PDIP-24 Mechanical Data & Package Dimensions  
mm  
MIN. TYP. MAX. MIN. TYP. MAX.  
4.320 0.170  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
A
A1  
A2  
B
0.380  
0.015  
3.300  
0.130  
0.410 0.460 0.510 0.016 0.018 0.020  
1.400 1.520 1.650 0.055 0.060 0.065  
0.200 0.250 0.300 0.008 0.010 0.012  
31.62 31.75 31.88 1.245 1.250 1.255  
B1  
c
D
E
7.620  
8.260 0.300  
0.325  
e
2.54  
0.100  
E1  
6.350 6.600 6.860 0.250 0.260 0.270  
0.300  
7.620  
e1  
L
3.180  
3.430 0.125  
0.135  
PDIP 24 (0.300")  
M
0˚ min, 15˚ max.  
E1  
A2  
A
A1  
L
B
B1  
e
e1  
D
24  
1
13  
12  
c
M
SDIP24L  
0034965 D  
22/25  
L6229  
Figure 32. SO24 Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.104  
A
A1  
B
2.35  
0.10  
0.33  
0.23  
15.20  
2.65 0.093  
0.30 0.004  
0.51 0.013  
0.32 0.009  
15.60 0.598  
0.012  
0.200  
Weight: 0.60gr  
C
0.013  
(1)  
D
0.614  
E
e
7.40  
7.60 0.291  
0.299  
0.050  
1.27  
H
10.0  
0.25  
0.40  
10.65 0.394  
0.75 0.010  
1.27 0.016  
0˚ (min.), 8˚ (max.)  
0.10  
0.419  
h
0.030  
L
0.050  
k
ddd  
0.004  
SO24  
(1) “D” dimension does not include mold flash, protusions or gate  
burrs. Mold flash, protusions or gate burrs shall not exceed  
0.15mm per side.  
0070769 C  
23/25  
L6229  
Table 10. Revision History  
Date  
Revision  
Description of Changes  
September 2003  
January 2004  
October 2004  
1
2
3
First Issue  
Migration from ST-Press dms to EDOCS.  
Updated the style graphic form.  
24/25  
L6229  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
25/25  

相关型号:

L6229DP

BRUSHLESS DC MOTOR CONTROLLER
STMICROELECTR

L6229DTR

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
STMICROELECTR

L6229N

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
STMICROELECTR

L6229PD

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
STMICROELECTR

L6229PDTR

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
STMICROELECTR

L6229Q

DMOS driver for three-phase brushless DC motor
STMICROELECTR

L6229QTR

DMOS driver for three-phase brushless DC motor
STMICROELECTR

L622C

THYRISTOR MODULE|BRIDGE|HALF-CNTLD|CA|240V V(RRM)|46A I(T)
ETC

L622F

Power Modules
CRYDOM

L623

Power Modules
CRYDOM

L6230

DMOS driver for three-phase brushless DC motor
STMICROELECTR

L6230AH

DC Motor Controller/Driver
ETC