L6246 [STMICROELECTRONICS]

12V VOICE COIL MOTOR DRIVER; 12V音圈电机驱动器
L6246
型号: L6246
厂家: ST    ST
描述:

12V VOICE COIL MOTOR DRIVER
12V音圈电机驱动器

驱动器 电机
文件: 总12页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6246  
12V VOICE COIL MOTOR DRIVER  
12V (±10%) OPERATION  
3A MAXIMUM CURRENT CAPABILITY  
MULTIPOWER BCD TECHNOLOGY  
0.3 MAXIMUM ON RESISTANCE OF EACH  
POWER DMOS AT A JUNCTION TEM-  
PERATAURE OF 25°C  
CLASS AB POWER AMPLIFIERS  
LOGIC AND POWER SUPPLY MONITOR  
POWER ON RESET  
PARKING FUNCTION WITH SELECTABLE  
RETRACT VOLTAGE AND DYNAMIC BRAKE  
BEFORE PARKING  
PQFP44 (10x10)  
ENABLE FUNCTION  
GATE DRIVER FOR EXTERNAL BLOCKING  
N-MOSFET  
OVERTEMPERATUREPROTECTION  
OVERTEMPERATUREWARNING OUTPUT  
PQFP44 PACKAGE  
figuration. Drive voltage for the upper DMOS  
FETs is provided by a charge pump circuit to en-  
sure low Rdson.  
Automatic brake and parking of the head actuator  
is performed by logic or when a failure condition  
is detected by power supply monitors. An external  
resistor programs the parking voltage that en-  
ables the head retract. In addition, a 5V stable  
output is provided for the external usage, and a  
gate driver circuit enables an external power sup-  
ply isolation N-MOSFET.  
This device is built in BCD II technology allowing  
dense digital circuitry to be combined with high  
power bipolar power devices and is assembled in  
PQFP44.  
DESCRIPTION  
The voice coil driver L6246 is a linear power am-  
plifier designed to drive single phase bipolar DC  
motors for hard disk drive applications. The de-  
vice contains a selectable transconductanceloop,  
which allows high precision for head positioning.  
The power stage is composed of 2 power amplifi-  
ers, in AB class, with 4 DMOSs, with Rdson of  
0.5(Sink+Source) maximum, in a H-bridge con-  
1/12  
February 1998  
L6246  
PIN CONNECTION (Top view)  
44 43 42 41 40 39 38 37 36 35 34  
1
2
3
4
5
6
7
8
9
N.C.  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
N.C.  
FILTER_CAP  
BRAKE DELAY  
-THERMAL SD  
SENSE-IN+  
SENSE-IN-  
GND  
ENABLE  
-SPINDLE START  
VCM PARK  
-W_GATE  
RPARK  
VBEMF  
ERR-OUT  
ERR-  
+12SETPT  
+5SETPT  
+5V REF_GND  
N.C.  
SENSE-OUT  
N.C.  
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
D95IN241B  
BLOCK DIAGRAM  
-SPINDLE MOTOR  
START START W_GATE  
-W_GATE  
-AE  
VCM  
PARK  
CP_GND  
GATE DRIVE  
INPUT  
AMPLIFIER  
VIN-  
C1  
C2  
VIN+  
CHARGE  
PUMP  
GATE  
DRIVER  
VCP  
VIN_OUT  
-POR  
VCC  
+5  
30K  
THERMAL  
-THERMAL SD  
BRAKE DELAY  
4µA  
+12  
FILTER CAP  
25K  
+
-
10K  
BRAKE  
CIRCUIT  
10K  
+
-
REF1  
VDD  
POWER AMPLIFIERS  
VCC  
-
10K  
20K  
+
+5  
FILTER CAP  
+
-
OUT+  
T_CAP  
REF1  
VCC/2  
VPARK  
+
-
PARKING  
RPARK  
GND  
VCC  
ERR_OUT  
ERROR  
AMPL.  
VCC/2  
+
ERR-  
-
SENSE  
AMPLIFIER  
+
-
+
-
OUT-  
GND  
REF1  
+5V REF  
REF. VOLT.  
GENERATOR  
+5V REF_GND  
D95IN242B  
VCC/2  
SENSE  
_IN+  
SENSE  
_IN-  
SENSE_  
OUT  
VBEMF  
2/12  
L6246  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
Vpow. max.  
Vdigitalmax.  
Vin max.  
Vin min.  
Ipeak  
Maximum supply voltage  
Maximum supply voltage  
Maximum input voltage  
Minimum input voltage  
15  
7
V
V
digital ±0.3  
V
GND - 0.3  
V
Peak sink/source output current  
DC sink/source output current  
Maximum total power dissipation  
Operative temperature range  
3
1.7  
A
Idc  
A
Ptot  
1.7  
W
°C  
Top  
0 to 80  
THERMAL DATA  
Symbol  
Parameter  
Value  
20  
Unit  
°C/W  
°C/W  
°C/W  
Rth j-case  
Rth j-amb  
Rth j-amb  
Thermal resistance junction to case  
Thermal resistance junction toambient mountedon standard PCB (*)  
Thermal resistance junction to ambient mounted on PCB (**)  
66  
35  
(*) Standard board construction: single layer (1S 0P); size 100mm long by 100mm wide.  
(**) The board construction includes: a 6 layer board (2S 4P, with power planes 80%); size 136mm long by 99mm wide; package location  
near middle point of lenght and one third of width.  
PIN FUNCTIONS  
Pin  
1
Name  
N.C.  
Description  
Not Connected.  
2
Filter_cap  
Brake Delay  
-Thermal SD  
Sense_in+  
Sense_in-  
Gnd  
Filter capacitor for 10V internal regulator. The capacitor is optional.  
Voice Coil Motor brake delay capacitor.  
Pre Thermal Shut Down indication Output.  
Non inverting Input of Sense Amplifier.  
Inverting Input of Sense Amplifier.  
Ground.  
3
4
5
6
7
8
Err_out  
Err-  
Error Amplifier Output.  
9
Inverting Input of Error Amplifier.  
Output of Sense Amplifier.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Sense_out  
N.C.  
Not Connected.  
Vin_out  
Vin-  
Output of Input Amplifier.  
Inverting Input of Input Amplifier.  
Non inverting Input of Input Amplifier.  
Half Supply Voltage reference.  
Vin+  
+Vcc/2  
+Motor start  
-AE_W_Gate  
+Vdd  
Motor start Output to Spindle Controller.  
Write Gate Output to AE.  
+5V Supply.  
+Vcc  
+12V Supply.  
-POR  
Power On Reset. Low willsignal thefailure of thelogic supply or 12V supply  
+5V Reference Output from the Voltage Reference Regulator.  
Power On Reset Timing Capacitor. The capacitor sets the POR delay.  
Not Connected.  
+5V Ref  
T_cap  
N.C.  
+5V Ref Gnd  
+5Setpt  
Ground for Voltage Reference Generator.  
+5V Monitor Set Point and filtering  
3/12  
L6246  
PIN FUNCTIONS (continued)  
Pin  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Name  
+12Setpt  
Vbemf  
Rpark  
-W_Gate  
+VCM park  
-Spindle_start  
+Enable  
N.C.  
Description  
+12V Monitor Set Point and filtering  
Input BEMF from spindle motor for parking circuit.  
Resistor for setting the park voltage.  
Write Gate Input.  
External input for parking. High will activate the park procedure.  
Spindle Start input.  
Input. logic low will disable only the IC.  
Not Connected.  
Cpgnd  
Gnd  
Charge Pump Ground.  
Ground.  
Out+  
Power Amplifier Output.  
Vcc  
+12V Power Supply.  
C1  
Charge Pump Oscillator Output.  
Input for external Charge Pump Capacitor.  
Output for Charge Pump Storage Capacitor.  
+12V Power Supply.  
C2  
Vcp  
Vcc  
Out-  
Power Amplifier Output.  
Gnd  
Ground.  
Gate Drive  
Gate Drive for External Isolation N-MOSFETS.  
ELECTRICAL CHARACTERISTICS (Tj = 25°C, Vdd = 5V, Vcc = 12V; unless otherwise specified.)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Vcc  
Analog/Power supply voltage  
range  
10.8  
12  
13.2  
V
Vdd  
Idd  
Idd  
Icc  
Digital supply voltage range  
Digital supply quiescent current  
Digital supply quiescent current  
4.5  
5
5
5.5  
V
Output ENABLED  
Output DISABLED  
mA  
mA  
mA  
mA  
5
Power supply quiescent current Output ENABLED  
Power supply quiescent current Output DISABLED  
20  
10  
Icc  
THERMAL SHUT DOWN DATA  
Th_SD  
Th_SD_H  
Th_Warn  
Shut down Temperature  
Shut down hysteresys  
135  
115  
160  
25  
°C  
°C  
°C  
°C  
Pre Shut down alarm  
140  
15  
Pre Shut down alarm hysteresys  
EXTERNAL N-MOSFET GATE DRIVER  
Vll  
Vhl  
Low level voltage  
500  
mV  
V
High level voltage  
Vcc+4  
4
Isink  
Isource  
Current sinking capability  
Current source capability  
mA  
mA  
0.5  
POWER ON RESET AND GATE SPECIFICATION  
Vdd_und_th  
Vcc_und_th  
POR_to  
Digital undervoltage threshold  
Power undervoltage threshold  
POR timeout  
3.8  
8.5  
4.1  
9.25  
500  
4.45  
10.0  
625  
1
V
V
Cpor = 1µF  
375  
ms  
POR_delay  
Time delay for POR Active  
s
µ
Vdd_POR_T_R Power supply POR thereshold  
Resistance  
10  
K
4/12  
L6246  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
VCC_POR_T_R Logic supply POR thereshold  
Resistance  
10  
K
I_POR_O  
POR output current drive  
4
4.10  
2
mA  
LOGIC INTERFACE VOLTAGE LEVEL (All digital inputs are CMOS compatible)  
Voh  
Vol  
Vih  
Vil  
CMOS high level output voltage Iout = 1.0mA  
V
V
V
V
CMOS low level output voltage  
TTL high level input voltage  
TTL low level input voltage  
Iout = 1.0mA  
0.40  
0.80  
5V REFERENCE GENERATOR  
Vref  
Drift  
loref  
Voltage reference at Power On  
4.75  
-2  
5.00  
5.25  
+2  
V
%
Drift from Power On  
Current output  
10  
mA  
INPUT AMPLIFIER  
Vi  
Input voltage range  
Vref (-)  
0
Vref (+)  
5.00  
V
V
Vcm  
Input common mode voltage  
range  
Vds  
Vos  
Ib  
Input differential voltage swing  
Input offset voltage  
-5  
-5  
+5  
+5  
V
mV  
nA  
Input Bias current  
-500  
80  
0.6  
1
+500  
Gv  
Open Loop voltage Gain  
Output slew rate  
dB  
SR  
V/µs  
MHz  
dB  
GBW  
PSRR  
Vo  
Gain bandwidth product  
Power supply rejection ratio  
Output voltage swing  
80  
9
V
ERROR AMPLIFIER  
Vi  
Input voltage range  
VCC/2  
-0.5  
VCC/2  
+0.5  
V
Vos  
Ib  
Input offset voltage  
-5  
-500  
80  
+5  
mV  
nA  
dB  
Input Bias current  
+500  
Gv  
Open Loop voltage Gain  
Output slew rate  
SR  
0.6  
1
V/ s  
µ
GBW  
PSRR  
Vo  
Gain bandwidth product  
Power supply rejection ratio  
Output voltage swing  
MHz  
dB  
V
80  
VCC/2  
-2Vbe  
VCC/2  
+2Vbe  
SENSE AMPLIFIER  
Vi  
Vos  
Ii  
Input voltage range  
Gnd  
-6  
Vcc  
+6  
V
mV  
mA  
dB  
Input offset voltage  
Input sink and source current  
Power supply rejection ratio  
Vloltage gain  
-1.5  
50  
+1.5  
PSRR  
Gv  
9.9  
3
10  
10.1  
V/V  
KΩ  
MHz  
V
Rin  
GBW  
Vli  
Differential input resistance  
Gain bandwidth product  
1
Linear differential input voltage  
range  
Gv = 10(V/V)  
-0.35  
+0.55  
CMRR  
Common mode rejection ratio  
56  
dB  
5/12  
L6246  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
0.3  
500  
5
Unit  
POWER AMPLIFIER  
Rdson  
Gdv  
DMOS on resistance  
Differential voltage gain  
Output current leakage  
Output slew rate  
at 25°C  
32  
V/V  
µA  
Iol  
SR  
0.4  
V/µs  
µs  
Tsr  
Saturation recovery time  
Gain bandwidth product  
GBW  
RETRACT  
Vr  
100  
KHz  
Max. retract voltage  
Max. retract voltage  
Vcc shorted to GND  
Vcc Normal  
300  
1
mV  
V
Vr  
CHARGE PUMP  
Cs  
Vs  
Cp  
Storage capacitor  
1
µF  
V
Storage voltage  
Pump capacitor  
Vcc +4  
0.2  
µF  
RETRACT TRUTH TABLE  
Input  
Input  
Output  
Output  
-Retract  
+Enable  
Bridge Enable  
+Retract  
Brake and Retract  
Run  
0
1
1
X
1
0
0
1
0
1
0
0
Disable  
BLOCK DESCRIPTION  
POWER AMPLIFIERS  
The open loop gain and bandwith of this amplifier  
are similar to the senseamplifier.  
The negative input and the output of the error am-  
plifier are accessible externally in order to have  
the current loop compensationuser configurable.  
The two power amplifiers are connected in bridge  
configurationworking in AB class.  
The dynamic of the output is limited at +/- 2Vbe to  
have a faster responseof the output voltage.  
SENSE AMPLIFIER  
This stage senses the voltage drop across the  
Rsense.  
The input stage is supplied by the charge pump  
voltage to have an high dynamic, while the other  
sections of the amplifier are supplied by the volt-  
age of 10.5V internally regulated to have an high  
power supply rejection (this voltage, supplies also  
the error amplifier, the input amplifier and the op-  
erational amplifier which generatesthe Vcc/2 volt-  
age).  
INPUT AMPLIFIER  
The inputs and the output pins are externally ac-  
cessible to have the possibility to configure the  
transconductance gain of the current control loop  
selecting the voltagegain of this amplifier.  
The open loop gain and bandwith of this amplifier  
are similar to the senseamplifier.  
The open loop gain is around 80dB and the band-  
with is more than 1MHz.  
The voltage gain is fixed internallyat 10 V/V.  
REFERENCE VOLTAGEGENERATOR  
This block generates the two reference voltage  
Vcc/2 and +5VREF.  
The Vcc/2 voltage is used as reference by the  
current control loop.  
The +5VREF is a very stable voltage generator  
that can be used as reference voltage of an exter-  
nal DAC.  
ERROR AMPLIFIER  
This is the stage which compares the input volt-  
age and the sense voltage, generating the control  
voltage for the power section.  
6/12  
L6246  
POWER SUPPLY MONITOR  
Vr is the retract voltage for parking the heads  
This circuit monitors the logic supply (5V) and the  
power supply (12V) and activates the power on  
reset output (POR) and the VCM PARK circuit.  
After both logic and power supply reach their  
nominal value a timing capacitor (T_CAP) has to  
be charge before the POR output change from  
low to high level.  
Vbandgap is the internal bandgap reference  
voltage of 1.4V  
Rpark is value of the resistor connected at  
RPARK pin  
The parking circuit takes the power supply from  
the spindle driver through the VBEMF pin, so that  
in case of power fail the retract of the heads is  
possible using the rectified BEMF voltage coming  
from the spindle motor.  
C V  
I
POR delay=  
where:  
C is the capacitor value connected at pin  
T_CAP  
CHARGE PUMP  
V is delta voltage that capacitor have to be  
charged (2.3V)  
The charge pump circuit is used as a means of al-  
most doubling the power supply voltage (12V) in  
order to drive the upper DMOS of the power  
bridge.  
I is the costant current charging the capacitor  
µ
(4 A typ.)  
The energy stored in the in the capacitor con-  
nected at VCP pin is also used to drive the gate  
of the externalN-MOSFET.  
At the two input pins, +12 FILTER CAP and + 5  
FILTER CAP, can be connected two capacitors  
for filtering the noise on the power supply, avoid-  
ing in this case undesired commutations of the  
POR signal because of some fast negative spikes  
on the line.  
GATE DRIVER  
This circuit provide the voltage driving the gate of  
the external isolation N-MOSFET, and it is con-  
trolledby the POR signal.  
BRAKE AND PARKING CIRCUITS  
The voice coil driver is switched into the parking  
condition through the VCM PARK input or when  
the POR signal is low. In such condition immedi-  
ately the output stage turns on the two lower  
DMOS of the power bridge to activate the BRAKE  
of the voice coil motor.  
After a delay generated by the capacitor at the  
BRAKE DELAY pin, only one of the two lower  
DMOS stays on while the opposite half bridge is  
tristated.  
THERMAL  
The thermal protection circuit has two threshold,  
the first if the pre shut down alarm that activates  
the THERMAL SD signal and the second is the  
shut down temperature that tristates the output  
stage when the junction temperature increases  
over this level.  
APPLICATION INFORMATION  
Example of calculation of the error amplifier com-  
pansation for the stability of the current control  
loop. As can be seen from the draw of the current  
control loop circuit of the next page, the voltage  
across the load is:  
C V  
I
BRAKE delay=  
where:  
C is the capacitor value connected at pin  
BRAKE DELAY  
#1  
V is delta voltage that capacitor have to be  
CPW  
CERR  
CINP  
(A  
CENSE  
VIN - A  
VL = A  
sense = Rs IL  
VL = ( ZL + Rs) IL  
A
Vsense)  
charged (3V)  
V
I is the costant current charging the capacitor  
(5µA typ.)  
where AC... is the closed loop gain of Power, Er-  
ror, Sense and Input Amplifier.  
Changing in the #1 the transfer function between  
the load current and the VIN is:  
The parking voltage is then supplied by the  
PARKING circuit connected to the output that has  
been tristated.  
The value of such a voltage is set by connecting  
an external resistor between the RPARK pin and  
ground.  
#2  
104  
Vbandgap  
V =  
r
ACPW  
I
ACERR ACINP  
L
Rpark  
=
VIN  
ZL + RS + ACPW ACERR ACSENSE RS  
where:  
7/12  
L6246  
Typical Application Circuit  
VDD  
VOICE COIL  
MOTOR  
100nF  
LL  
RL  
Rs 0.2  
10nF  
OUT_  
SENSE_IN-  
SENSE_IN+  
OUT+  
VDD  
C1  
C2  
VCC  
VCC  
VCC  
VCC  
19  
41  
37  
42  
SENSE_OUT  
10  
ERR_OUT  
8
6
5
36  
18  
38  
39  
1K  
1M  
1K  
22µF  
100nF  
G
100nF  
GATE DRV  
S
P322  
44  
9
D
FROM SPINDLE  
DRIVER  
ERR-  
1K  
VBEMF  
VCP  
27  
40  
28  
VIN_OUT  
1µF  
12  
100nF  
10K  
51K  
RPARK  
10K  
10K  
VIN-  
VCTL  
VREF  
13  
14  
5VREF  
VIN+  
21  
24  
5VREF  
GND  
L6246  
5VREFGND  
PQFP44  
10K  
(*)  
(*)  
12SEPT  
5SSEPT  
12SEPT  
5SSEPT  
VCC/2  
26  
25  
22  
3
VCC/2  
15  
34  
CPGND  
GND  
7,35,43  
1µF  
1µF  
AE W GATE  
17  
16  
4
MOTOR START  
THERMAL SHTD  
POR  
20  
32  
30  
31  
29  
ENABLE  
VCM PARK  
FILTER_CAP  
10.5V  
INT.REG.  
2
SPINDLE START  
W GATE  
(*)  
D95IN268  
FILTER CAPACITORS TO BE SET IN APPLICATION  
Current Control Loop Circuit  
VCC/2 + 10VSENSE  
VCC/2 + (RA/RB) (ZC/RC) VIN-10 (ZC/R1) VSENSE  
20K  
ERROR  
AMPL.  
TO SENSE  
AMPLIFIER  
+
-
2K  
VCC/2  
-
+
-
VSENSE  
+
R1  
2K  
20K  
SENSE  
AMPL.  
16.5K  
-
R2  
R3  
17.5K  
ZC  
C
1.1K  
LL  
LOAD  
RS  
RL  
VCC/2  
-
RA  
VCC/2  
+
+
-
+
1.1K  
RC (=R1)  
POWER  
AMPL.  
POWER  
AMPL.  
RB  
RB  
-
VL  
VIN  
+
VCC/2  
INPUT  
AMPL.  
RA  
VL=32 ( (ZC/RC) VIN - 10 (ZC/R1) VSENSE  
)
VCC/2  
VCC/2 - (RA-RB) VIN  
= A  
* A  
( A  
- A  
* V  
)
SENSE  
CPW  
CERR  
CIMP * VIN  
CSENSE  
D95IN269B  
8/12  
L6246  
1
If Now We Define:  
and its pole is at frequency  
2 π L  
(RS + RL)  
#3  
RS  
R + Z  
so around 1KHz if L = 1.2mH.  
Aloop = A  
ACERR ACSENSE  
CPW  
S
L
So considering:  
we obtain:  
#4  
CERR  
CPW  
dB A  
Ax | dB = Aloop | dB  
A
|
|
ACINP  
ACSENSE RS  
1 + Aloop  
1
R
Aloop  
S
dB+ ACSENSE | dB  
+
IL  
V
IN  
dB  
=
RS + RL  
we have these Bode diagrams:  
Atlowfrequencyis:  
RS  
R2  
R1  
Aloop = 32  
10  
(RS + ZL)  
ACPW  
30dB  
S
L
if R2 = 1M, R1 = 1K, R = 0.2, R = 7  
130KHz  
then Aloop = 8889 = 80dB.  
Being Aloop very high we can simplify the #4 in  
this way:  
ACSENSE  
20dB  
I
A
CINP  
1
1
2
1
L
=
=
=
210KHz  
VIN ACSENSE RS  
10 0.2  
For the stability we have to study the stability of  
Aloop, that as we can see from the #3 is a multi-  
plication, so in dB is a sum:  
-31dB  
Aloop |  
= ACPW | dB+ACERR | dB+ACSENSE |  
dB  
dB  
S
LOAD  
AX  
R
+
dB  
+
RS ZL  
19dB  
So we can take in consideration the BODE dia-  
grams of the each operational amplifier, with par-  
ticular attentionto the Error amplifier.  
1K  
10K  
100K  
D95IN270A  
1)The Power amplifier is actually composed by  
two operational amplifiers in the way to have  
a gain of +16 and -16 (in voltage) respec-  
tevely, for a total of 32 = 30dB.  
The point at -3dB is around 130KHz.  
As can be easily see the bandwith is narrow and  
the gain is low. It is possible to increase both  
choosing an appropriate compensation of the Er-  
ror amplifier.  
2)The Sense amplifier has a gain of 20dB with  
the point at -3dB around 210KHz.  
The total bandwith should be, of course, at least a  
decade lower of the 130KHz to avoid instability  
problem. The bandwith guaranteed by the Error  
amplifier has a Gmax of 80dB and a gain of 0dB  
at 1MHz approximately, the real is some dB more  
with a larger bandwith.  
3)The load introduce an attenuationof:  
R
S
20log  
= -31dB with RS = 0.2 and RL = 7  
RS + RL  
9/12  
L6246  
As can be seen the choice of the pole influence  
overall in fixing the gain at high frequency.  
The gain at high frequency must be choosen in  
order to not create instability problem, because  
more higher is this gain and lower is the second  
pole that we have at high frequency.  
If this pole is taken close to the other that we  
have already seen at 130KHz and 210KHz, insta-  
bility problems can arise.  
ERROR AMPL. GAIN  
(dB)  
OPEN LOOP GAIN  
120  
100  
80  
Adding together AX |  
taine the Aloop:  
and ACERR  
|
we ob-  
dB  
dB  
60  
ACERR  
(dB)  
40  
20  
COMPENSATION AT 3Hz  
COMPENSATION AT 100Hz  
D95IN271  
1
10  
100  
1K  
10K  
100K  
1M  
10M  
60  
40  
20  
Using the compensation network of the draw of  
pag.8, we have a error amplifier transfer function  
of:  
AX(dB)  
19  
+
VO  
VI  
1
scR3  
ZC  
R1  
R2  
R1  
= −  
= −  
1 + sc (R3 + R2)  
ALOOP (dB)  
so:  
Gmax (DC) =  
R2  
R1  
= 1000= 60dB  
79  
60  
IS STABLE  
IS NOT STABLE  
with R1 = 1M and R2 = 1K  
40  
20  
1
zero =  
2 π R3C  
D95IN273  
10  
100  
1K  
10K 100K  
1M  
10M  
1
pole =  
So the choice of the compensation network must  
be done in order to fix at the beginning the Gmax  
2 π (R3 + R2) C  
R2  
R1  
Note: Fpole is lower than Fzero  
of the error amplifier dependingon the ratio  
.
The best choice is to cancel the pole of the load  
(at around 1KHz) with the zero of the compensa-  
tion.  
To calculate the R3 and C values satisfying the  
following system:  
1
2 π L  
1
=
2 π R3C RL + Rsense  
ACERR (dB)  
Error amplifier zero equal to load pole  
120  
DIFFERENTS  
POLES  
EXAMPLES  
1
Admissible Bandwith  
100  
=
=
X
Gloop  
2 π (R3 + R2)C  
80  
X
60  
130KHz  
10  
8912  
40  
20  
CLOSED LOOP  
ACERR  
=
=
1.5Hz  
X
D95IN272  
1
10  
100  
1K  
10K 100K  
1M  
10M  
This example is for crossing the 0dB one decade  
before the first pole of the Power Amplifier  
(130KHz), starting with a Gloop max of 79dB.  
10/12  
L6246  
PQFP44 (10x10) PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
MIN.  
MAX.  
A
A1  
A2  
B
2.45  
0.096  
0.25  
1.95  
0.30  
0.13  
12.95  
9.90  
0.010  
0.077  
0.012  
0.005  
0.51  
2.00  
2.10  
0.45  
0.079  
0.083  
0.018  
0.009  
0.53  
c
0.23  
D
13.20  
10.00  
8.00  
13.45  
10.10  
0.52  
D1  
D3  
e
0.390  
0.394  
0.315  
0.031  
0.520  
0.394  
0.315  
0.031  
0.063  
0.398  
0.80  
E
12.95  
9.90  
13.20  
10.00  
8.00  
13.45  
10.10  
0.510  
0.390  
0.530  
0.398  
E1  
E3  
L
0.65  
0.80  
0.95  
0.026  
0.037  
L1  
K
1.60  
0 (min.), 7 (max.)  
°
°
D
D1  
D3  
A
A2  
A1  
23  
33  
22  
34  
0.10mm  
.004  
Seating Plane  
44  
12  
11  
1
C
e
K
PQFP44  
11/12  
L6246  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-  
THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
1998 SGS-THOMSON Microelectronics – Printedin Italy – All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
12/12  

相关型号:

L624F

Power Modules
CRYDOM

L625

Interface IC
ETC

L6254

12V DISK DRIVE SPINDLE & VCM, POWER & CONTROL “COMBO”
STMICROELECTR

L6256

12V COMBO
STMICROELECTR

L6258

PWM CONTROLLED - HIGH CURRENT DMOS UNIVERSAL MOTOR DRIVER
STMICROELECTR

L6258A

Stepper Motor Controller/Driver
ETC

L6258E

PWM CONTROLLED - HIGH CURRENT DMOS UNIVERSAL MOTOR DRIVER
STMICROELECTR

L6258EA

PWM controlled high current DMOS universal motor driver
STMICROELECTR

L6258EP

PWM CONTROLLED - HIGH CURRENT DMOS UNIVERSAL MOTOR DRIVER
STMICROELECTR

L6258EP_07

PWM controlled high current DMOS universal motor driver
STMICROELECTR

L6258EX

PWM CONTROLLED - HIGH CURRENT DMOS UNIVERSAL MOTOR DRIVER
STMICROELECTR

L6258EXTR

PWM-controlled, high-current DMOS universal motor driver
STMICROELECTR