L6398D

更新时间:2024-09-18 22:09:50
描述:High voltage high and low side driver

L6398D 概述

High voltage high and low side driver

L6398D 数据手册

通过下载L6398D数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
L6398  
High voltage high and low side driver  
Features  
High voltage rail up to 600 V  
dV/dt immunity ±±0 V/ns in full temperature  
range  
Driver current capability:  
– 290 mA source,  
– 430 mA sink  
3/ꢀꢁ  
$)0ꢀꢁ  
Switching times 7±/3± ns rise/fall with 1 nF load  
3.3 V, ± V TTL/CMOS input comparators with  
hysteresis  
Description  
Integrated bootstrap diode  
Fixed 320 ns dead-time  
Interlocking function  
The L6398 is a high-voltage device manufactured  
with the BCD “OFF-LINE” technology. It is a single  
chip half-bridge gate driver for N-channel power  
MOSFET or IGBT.  
Compact and simplified layout  
Bill of material reduction  
Flexible, easy and fast design  
The high side (floating) section is designed to  
stand a voltage rail up to 600 V. The logic inputs  
are CMOS/TTL compatible down to 3.3 V for easy  
interfacing microcontroller/DSP.  
Applications  
Motor driver for home appliances, factory  
automation, industrial drives and fans.  
Table 1.  
Device summary  
Order codes  
Package  
Packaging  
L6398N  
L6398D  
DIP-8  
SO-8  
SO-8  
Tube  
Tube  
L6398DTR  
Tape and reel  
April 2011  
Doc ID 18199 Rev 3  
1/16  
www.st.com  
16  
Contents  
L6398  
Contents  
1
2
3
4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
4.2  
4.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
±.1  
±.2  
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
7
8
Waveforms definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
8.1  
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
10  
2/16  
Doc ID 18199 Rev 3  
L6398  
1
Block diagram  
Block diagram  
Figure 1.  
Block diagram  
#005453"1ꢀ%3*7&3  
'-0"5*/(ꢀ4536$563&  
7$$  
#005  
GSPNꢀ-7(  
67  
67  
%&5&$5*0/  
%&5&$5*0/  
)7(  
%3*7&3  
-0(*$  
ꢂ7  
4
3
-&7&-  
4)*'5&3  
)7(  
4)005  
5)306()  
13&7&/5*0/  
-*/  
065  
-7(  
7$$  
-7(  
%3*7&3  
)*/  
%&"%ꢀ5*.&  
(/%  
!-ꢀꢁꢂꢃꢄVꢅ  
Doc ID 18199 Rev 3  
3/16  
Pin connection  
L6398  
2
Pin connection  
Figure 2.  
Pin connection (top view)  
-*/  
)*/  
#005  
)7(  
065  
-7(  
7$$  
(/%  
!-ꢀꢁꢂꢆꢀVꢅ  
Table 2.  
Pin n #  
Pin description  
Pin name  
Type  
Function  
1
2
3
4
±
6
7
8
LIN  
HIN  
I
Low side driver logic input (active low)  
High side driver logic input (active high)  
Lower section supply voltage  
Ground  
I
VCC  
P
P
O
P
O
P
GND  
LVG (1)  
Low side driver output  
OUT  
High side (floating) common voltage  
High side driver output  
HVG (1)  
BOOT  
Bootstrapped supply voltage  
1. The circuit guarantees less than 1 V on the LVG and HVG pins (@ Isink = 10 mA), with VCC > 3 V. This  
allows omitting the “bleeder” resistor connected between the gate and the source of the external MOSFET  
normally used to hold the pin low.  
4/16  
Doc ID 18199 Rev 3  
L6398  
Truth table  
3
Truth table  
Table 3.  
Truth table  
Input  
Output  
LIN  
HIN  
LVG  
HVG  
H
L
L
H
L
L
L
L
L
L
H
L
L
H
H
H
Doc ID 18199 Rev 3  
±/16  
Electrical data  
L6398  
4
Electrical data  
4.1  
Absolute maximum ratings  
Table 4.  
Absolute maximum rating  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Vcc  
Vout  
Vboot  
Vhvg  
Vlvg  
Vi  
Supply voltage  
-0.3  
Vboot - 21  
-0.3  
21  
Vboot + 0.3  
620  
V
V
Output voltage  
Bootstrap voltage  
V
High side gate output voltage  
Low side gate output voltage  
Logic input voltage  
Vout - 0.3  
-0.3  
Vboot + 0.3  
Vcc + 0.3  
1±  
V
V
-0.3  
V
dVout/dt Allowed output slew rate  
±0  
V/ns  
mW  
°C  
°C  
Ptot  
TJ  
Total power dissipation (TA = 2± °C)  
800  
Junction temperature  
Storage temperature  
1±0  
Tstg  
-±0  
1±0  
Note:  
ESD immunity for pins 6, 7 and 8 is guaranteed up to 1 kV (human body model)  
4.2  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Parameter  
Thermal resistance junction to ambient  
SO-8  
DIP-8  
Unit  
Rth(JA)  
1±0  
100  
°C/W  
4.3  
Recommended operating conditions  
Table 6.  
Symbol  
Recommended operating conditions  
Pin  
Parameter  
Supply voltage  
Test condition  
Min  
Max  
Unit  
Vcc  
3
8-6  
6
10  
9.8  
20  
20  
V
V
(1)  
VBO  
Floating supply voltage  
Output voltage  
Vout  
fsw  
TJ  
- 11 (2)  
±80  
800  
12±  
V
Switching frequency  
Junction temperature  
HVG, LVG load CL = 1 nF  
kHz  
°C  
-40  
1. VBO = Vboot - Vout  
2. LVG off. Vcc = 10 V  
Logic is operational if Vboot > ± V  
6/16  
Doc ID 18199 Rev 3  
L6398  
Electrical characteristics  
5
Electrical characteristics  
5.1  
AC operation  
Table 7.  
Symbol  
AC operation electrical characteristics (V = 15 V; T = +25 °C)  
CC J  
Pin  
Parameter  
Test condition  
Min Typ Max Unit  
High/low side driver turn-on Vout = 0 V  
ton  
±0 12± 200 ns  
propagation delay  
1, 2  
vs  
Vboot = Vcc  
CL = 1 nF  
High/low side driver turn-off  
propagation delay  
±, 7  
VIN = 0 to 3.3 V  
toff  
±0 12± 200 ns  
See Figure 3  
DT  
tr  
Dead time (1)  
Rise time  
Fall time  
CL = 1 nF  
CL = 1 nF  
CL = 1 nF  
22± 320 41± ns  
7± 120 ns  
±, 7  
tf  
3±  
70  
ns  
1. See Figure 4 on page 9.  
Figure 3.  
Timing  
50%  
50%  
LIN  
tr  
tf  
90%  
90%  
10%  
10%  
LVG  
ton  
toff  
50%  
50%  
HIN  
tr  
tf  
90%  
90%  
10%  
10%  
HVG  
ton  
toff  
Doc ID 18199 Rev 3  
7/16  
 
Electrical characteristics  
L6398  
Unit  
5.2  
DC operation  
Table 8.  
Symbol  
DC operation electrical characteristics (V = 15 V; T = + 25 °C)  
CC J  
Pin  
Parameter  
Test condition  
Min  
Typ  
Max  
Vcc_hys  
Vcc_thON  
Vcc_thOFF  
Vcc UV hysteresis  
1.2  
9
1.±  
9.±  
8
1.8  
10  
V
V
V
Vcc UV turn ON threshold  
Vcc UV turn OFF threshold  
7.6  
8.4  
3
Vcc = 7 V  
Undervoltage quiescent  
supply current  
Iqccu  
90  
1±0  
440  
μA  
μA  
LIN = ± V; HIN = GND;  
Vcc = 1± V  
Iqcc  
Quiescent current  
380  
LIN = ± V; HIN = GND;  
Bootstrapped supply voltage section (1)  
VBO_hys  
VBO_thON  
VBO_thOFF  
VBO UV hysteresis  
0.8  
8.2  
7.3  
1
9
8
1.2  
9.8  
8.7  
V
V
V
VBO UV turn ON threshold  
VBO UV turn OFF threshold  
8
Undervoltage VBO quiescent  
current  
IQBOU  
VBO = 7 V, LIN = HIN = ±V  
VBO = 1± V, LIN = HIN = ±V  
30  
60  
μA  
IQBO  
ILK  
VBO quiescent current  
190  
240  
10  
μA  
μA  
High voltage leakage current Vhvg = Vout = Vboot = 600 V  
Bootstrap driver on resistance  
RDS(on)  
LVG ON  
120  
Ω
(2)  
Driving buffers section  
High/low side source short  
circuit current  
Iso  
VIN = Vih (tp < 10 μs)  
VIN = Vil (tp < 10 μs)  
200  
2±0  
290  
430  
mA  
mA  
±,  
7
High/low side sink short  
circuit current  
Isi  
Logic inputs  
Vil  
Low logic level voltage  
High logic level voltage  
0.8  
V
V
1, 2  
1, 2  
Vih  
2.2±  
110  
3
LIN and HIN connected  
together and floating  
Vil_S  
IHINh  
IHINl  
Single input voltage  
0.8  
260  
1
V
HIN logic “1” input bias  
current  
HIN = 1± V  
HIN = 0 V  
17±  
6
μA  
μA  
2
1
HIN logic “0” input bias  
current  
ILINl  
LIN logic “0” input bias current LIN = 0 V  
LIN logic “1” input bias current LIN = 1± V  
20  
1
μA  
μA  
ILINh  
1. VBO = Vboot - Vout  
2. RDSON is tested in the following way: RDSON = [(VCC - VCBOOT1) - (VCC - VCBOOT2)] / [I1(VCC,VCBOOT1) - I2(VCC,VCBOOT2)]  
where I1 is pin 8 current when VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2  
.
8/16  
Doc ID 18199 Rev 3  
 
L6398  
Waveforms definitions  
6
Waveforms definitions  
Figure 4.  
Dead time and interlocking waveforms definitions  
LIN  
HIN  
CONTROL SIGNAL EDGES  
OVERLAPPED:  
INTERLOCKING + DEAD TIME  
LVG  
HVG  
DTHL  
DTLH  
DTLH  
DTLH  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
LIN  
HIN  
CONTROL SIGNALS EDGES  
SYNCHRONOUS (*):  
DEAD TIME  
LVG  
HVG  
DTHL  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
LIN  
HIN  
CONTROL SIGNALS EDGES  
NOT OVERLAPPED,  
BUT INSIDE THE DEAD TIME:  
DEAD TIME  
LVG  
HVG  
DTHL  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
LIN  
HIN  
CONTROL SIGNALS EDGES  
NOT OVERLAPPED,  
OUTSIDE THE DEAD TIME:  
DIRECT DRIVING  
LVG  
HVG  
DTLH  
DTHL  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
(*) HIN and LIN can be connected togheter and driven by just one control signal  
Doc ID 18199 Rev 3  
9/16  
Typical application diagram  
L6398  
7
Typical application diagram  
Figure 5.  
Application diagram  
#005453"1ꢀ%3*7&3  
'-0"5*/(ꢀ4536$563&  
#005  
)7(  
7$$  
GSPNꢀ-7(  
67  
%&5&$5*0/  
67  
%&5&$5*0/  
)ꢉ7ꢉ  
)7(  
%3*7&3  
$CPPU  
-0(*$  
ꢂ7  
4
3
-&7&-  
4)*'5&3  
4)005  
5)306()  
13&7&/5*0/  
'30.ꢀ$0/530--&3  
'30.ꢀ$0/530--&3  
-*/  
065  
-7(  
50ꢀ-0"%  
)*/  
7$$  
-7(  
%3*7&3  
%&"%ꢀ5*.&  
(/%  
!-ꢀꢁꢂꢃꢇVꢅ  
10/16  
Doc ID 18199 Rev 3  
L6398  
Bootstrap driver  
8
Bootstrap driver  
A bootstrap circuitry is needed to supply the high voltage section. This function is normally  
accomplished by a high voltage fast recovery diode (Figure 6). In the L6398 a patented  
integrated structure replaces the external diode. It is realized by a high voltage DMOS,  
driven synchronously with the low side driver (LVG), with diode in series, as shown in  
Figure 7. An internal charge pump (Figure 7) provides the DMOS driving voltage.  
8.1  
CBOOT selection and charging  
To choose the proper CBOOT value the external MOS can be seen as an equivalent  
capacitor. This capacitor CEXT is related to the MOS total gate charge:  
Equation 1  
Qgate  
CEXT = -------------  
Vgate  
The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss.  
It has to be:  
Equation 2  
C
>>> C  
EXT  
BOOT  
e.g.: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be  
300 mV.  
If HVG has to be supplied for a long time, the CBOOT selection has to take into account also  
the leakage and quiescent losses.  
e.g.: HVG steady state consumption is lower than 190 μA, so if HVG TON is ± ms, CBOOT has  
to supply 1 μC to CEXT. This charge on a 1 μF capacitor means a voltage drop of 1V.  
The internal bootstrap driver gives a great advantage: the external fast recovery diode can  
be avoided (it usually has great leakage current).  
This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the  
LVG is on. The charging time (Tcharge) of the CBOOT is the time in which both conditions are  
fulfilled and it has to be long enough to charge the capacitor.  
The bootstrap driver introduces a voltage drop due to the DMOS RDSon (typical value:  
120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it  
must be taken in to account.  
The following equation is useful to compute the drop on the bootstrap DMOS:  
Equation 3  
Qgate  
------------------  
Rdson  
Vdrop = IchargeRdson Vdrop  
=
Tcharge  
Doc ID 18199 Rev 3  
11/16  
Bootstrap driver  
L6398  
where Qgate is the gate charge of the external power MOS, Rdson is the on resistance of the  
bootstrap DMOS and Tcharge is the charging time of the bootstrap capacitor.  
For example: using a power MOS with a total gate charge of 30nC the drop on the bootstrap  
DMOS is about 1 V, if the Tcharge is ± μs. In fact:  
Equation 4  
30nC  
±μs  
--------------  
120Ω ∼ 0.7V  
Vdrop  
=
Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop  
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode  
can be used.  
Figure 6.  
Bootstrap driver with high voltage fast recovery diode  
DBOOT  
VCC  
BOOT  
H.V.  
HVG  
LVG  
CBOOT  
OUT  
TO LOAD  
Figure 7.  
Bootstrap driver with internal charge pump  
BOOT  
VCC  
H.V.  
HVG  
CBOOT  
OUT  
TO LOAD  
LVG  
12/16  
Doc ID 18199 Rev 3  
L6398  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Table 9.  
Dim.  
DIP-8 mechanical data  
mm.  
inch  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
3.32  
0.131  
a1  
B
0.±1  
1.1±  
0.020  
0.04±  
0.014  
0.008  
1.6±  
0.±±  
0.06±  
0.022  
0.012  
0.430  
0.384  
b
0.3±6  
0.204  
b1  
D
E
0.304  
10.92  
9.7±  
7.9±  
0.313  
e
2.±4  
7.62  
7.62  
0.100  
0.300  
0.300  
e3  
e4  
F
6.6  
0.260  
0.200  
0.1±0  
0.060  
I
±.08  
3.81  
1.±2  
L
3.18  
0.12±  
Z
Figure 8.  
Package dimensions  
Doc ID 18199 Rev 3  
13/16  
Package mechanical data  
L6398  
Table 1. SO-8 mechanical data  
mm.  
inch  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
1.3±  
1.7±  
0.0±3  
0.069  
A1  
A2  
B
0.10  
1.10  
0.33  
0.19  
4.80  
0.2±  
1.6±  
0.±1  
0.2±  
±.00  
0.004  
0.043  
0.013  
0.007  
0.189  
0.010  
0.06±  
0.020  
0.010  
0.197  
C
(1)  
D
E
e
3.80  
4.00  
0.1±  
0.1±7  
1.27  
0.0±0  
H
±.80  
0.2±  
0.40  
6.20  
0.±0  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.0±0  
h
L
k
0° (min.), 8° (max.)  
0.10  
ddd  
0.004  
1. Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs  
shall not exceed 0.1±mm (.006inch) in total (both side).  
Figure 9. Package dimensions  
14/16  
Doc ID 18199 Rev 3  
L6398  
Revision history  
10  
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
14-Dec-2010  
16-Feb-2011  
01-Apr-2011  
1
2
3
First release.  
Updated Table 8.  
Typo in coverpage  
Doc ID 18199 Rev 3  
1±/16  
L6398  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
16/16  
Doc ID 18199 Rev 3  

L6398D CAD模型

  • 引脚图

  • 封装焊盘图

  • L6398D 相关器件

    型号 制造商 描述 价格 文档
    L6398DTR STMICROELECTRONICS High voltage high and low side driver 获取价格
    L6398N STMICROELECTRONICS High voltage high and low side driver 获取价格
    L6399 STMICROELECTRONICS 高压高侧和低侧驱动器 获取价格
    L63B1A801-A1Z00-000 Carling Technologies Rocker Switch, 获取价格
    L63GD KINGBRIGHT T-1 3/4 (5MM) SOLID STATE LAMPS 获取价格
    L63GT KINGBRIGHT T-1 3/4 (5MM) SOLID STATE LAMPS 获取价格
    L63ID KINGBRIGHT T-1 3/4 (5MM) SOLID STATE LAMPS 获取价格
    L63IT KINGBRIGHT T-1 3/4 (5MM) SOLID STATE LAMPS 获取价格
    L63SRC KINGBRIGHT T-1 3/4 (5MM) SOLID STATE LAMPS 获取价格
    L63SRD KINGBRIGHT T-1 3/4 (5MM) SOLID STATE LAMPS 获取价格

    L6398D 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6