L6986H5V [STMICROELECTRONICS]

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current;
L6986H5V
型号: L6986H5V
厂家: ST    ST
描述:

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current

文件: 总68页 (文件大小:18008K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6986H  
Datasheet  
38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current  
Features  
2 A DC output current  
4 V to 38 V operating input voltage  
Low consumption mode or low noise mode  
30 µA IQ at light-load (LCM VOUT = 3.3 V)  
8 µA IQ-SHTDWN  
Adjustable fSW (250 kHz - 2 MHz)  
Fixed output voltage (3.3 V and 5 V) or adjustable from 0.85 V to VIN  
Embedded output voltage supervisor  
Synchronization  
Adjustable soft-start time  
Internal current limiting  
Overvoltage protection  
Output voltage sequencing  
Peak current mode architecture  
RDS(on) HS = 180 mΩ, RDS(on) LS = 150 mΩ  
Thermal shutdown  
Applications  
Product status link  
Designed for 12 V and 24 V buses  
L6986H  
Programmable logic controllers (PLCs)  
Decentralized intelligent nodes  
Sensors and low noise applications (LNM)  
Description  
The L6986H is a step-down monolithic switching regulator able to deliver up to 2 A  
DC. The output voltage adjustability ranges from 0.85 V to VIN. Thanks to the P-  
channel MOSFET high-side power element, the device features 100% duty cycle  
operation. The wide input voltage range meets the specification for the 5 V, 12 V and  
24 V power supplies.  
The “low consumption mode” (LCM) is designed for applications active during idle  
mode, so it maximizes the efficiency at light-load with controlled output voltage ripple.  
The “low noise mode” (LNM) makes the switching frequency constant and minimizes  
the output voltage ripple overload current range, meeting the low noise application  
specifications. The output voltage supervisor manages the reset phase for any digital  
load (µC, FPGA). The RST open collector output can also implement output voltage  
sequencing during the power-up phase. The synchronous rectification, designed for  
high efficiency at medium - heavy load, and the high switching frequency capability  
make the size of the application compact. Pulse by pulse current sensing on both  
power elements implements an effective constant current protection.  
DS12905 - Rev 2 - February 2020  
www.st.com  
For further information contact your local STMicroelectronics sales office.  
L6986H  
Application schematic  
1
Application schematic  
Figure 1. Application schematic  
uC RST  
4
15  
2
1
SYNCH  
VIN  
RST  
16  
VIN  
VBIAS  
13  
14  
VOUT  
VCC  
FSW  
MLF  
LX  
LX  
10uH  
75k  
5
10uF  
1uF  
240k  
82k  
L6986H  
6
9
7
FB  
3
SS/INH  
DELAY  
EP  
20uF  
8
COMP  
PGND  
12  
PGND  
SGND  
10  
470nF 68nF  
10nF  
330p  
2.2p  
17  
11  
signal GND  
power GND  
GND  
DS12905 - Rev 2  
page 2/68  
 
 
L6986H  
Pin settings  
2
Pin settings  
2.1  
Pin connection  
Figure 2. Pin connection (top view)  
RST  
VCC  
1
2
3
16  
15  
14  
VBIAS  
VIN  
LX  
SS/INH  
EXPOSED  
PAD TO  
SYNCH/ISKIP  
4
13  
LX  
SGND+PGND  
PGND  
PGND  
SGND  
VOUT  
FSW  
MLF  
5
6
7
8
12  
11  
10  
9
COMP  
DELAY  
2.2  
Pin description  
Table 1. Pin description  
Number  
Pin  
Description  
The RST open collector output is driven low when the output  
voltage is out of regulation. The RST is released after an  
adjustable time DELAY once the output voltage is over the active  
delay threshold.  
1
RST  
Connect a ceramic capacitor (≥ 470 nF) to filter internal voltage  
reference. This pin supplies the embedded analog circuitry.  
2
3
VCC  
An open collector stage can disable the device clamping this pin  
to GND (INH mode). An internal current generator (4 µA typ.)  
charges the external capacitor to implement the soft-start.  
SS/INH  
The pin features master / slave synchronization in LNM (see Low  
noise mode (LNM)) and skip current level selection in LCM (see  
Low consumption mode (LCM)). In LNM, leave this pin floating  
when it is not used.  
4
5
SYNCH/ ISKP  
FSW  
A pull-up resistor (E24 series only) to VCC or pull down to GND  
selects the switching frequency. Pin strapping is active only  
before the soft-start phase to minimize the IC consumption.  
A pull-up resistor (E24 series only) to VCC or pull-down to GND  
selects the low consumption mode/low noise mode and the active  
RST threshold. Pin strapping is active only before the soft-start  
phase to minimize the IC consumption.  
6
7
MLF  
Output of the error amplifier. The designed compensation  
network is connected at this pin.  
COMP  
An external capacitor connected to this pin sets the time DELAY  
to assert the rising edge of the RST o.c. after the output voltage  
is over the reset threshold. If this pin is left floating, RST is like a  
Power Good.  
8
9
DELAY  
VOUT  
Output voltage sensing  
DS12905 - Rev 2  
page 3/68  
 
 
 
 
 
L6986H  
Maximum ratings  
Number  
10  
Pin  
SGND  
PGND  
PGND  
LX  
Description  
Signal GND  
11  
Power GND  
12  
Power GND  
13  
Switching node  
Switching node  
DC input voltage  
14  
LX  
15  
VIN  
Typically connected to the regulated output voltage. An external  
voltage reference can be used to supply part of the analog  
circuitry to increase the efficiency at light-load. Connect to GND if  
not used.  
16  
VBIAS  
-
Exposed pad  
Exposed pad must be connected to SGND, PGND  
2.3  
Maximum ratings  
Stressing the device above the rating listed in Table 2. Absolute maximum ratings may cause permanent damage  
to the device. These are stress ratings only and operation of the device at these or any other conditions above  
those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 2. Absolute maximum ratings  
Symbol  
Description  
Min.  
-0.3  
Max.  
40  
Unit  
V
V
IN  
DELAY  
PGND  
SGND  
-0.3  
VCC+ 0.3  
SGND + 0.3  
-
V
SGND - 0.3  
-
V
V
V
-0.3  
(VIN+ 0.3) or (max. 4)  
VIN+ 0.3  
VCC+ 0.3  
VCC+ 0.3  
10  
V
CC  
SS /INH  
MLF  
-0.3  
V
-0.3  
V
See Table 1  
COMP  
VOUT  
FSW  
-0.3  
V
-0.3  
V
-0.3  
VCC+ 0.3  
VIN+ 0.3  
(VIN+ 0.3) or (max. 6)  
VIN+ 0.3  
VIN+ 0.3  
150  
V
SYNCH  
-0.3  
V
V
-0.3  
V
BIAS  
RST  
LX  
-0.3  
V
-0.3  
V
T
Operating temperature range  
Storage temperature range  
-40  
°C  
J
T
-
-
-
-65 to 150  
°C  
°C  
A
STG  
T
LEAD  
Lead temperature (soldering 10 s.)  
High-side / low-side switch current  
260  
2
I
, I  
HS LS  
DS12905 - Rev 2  
page 4/68  
 
 
L6986H  
Thermal data  
2.4  
Thermal data  
Table 3. Thermal data  
Parameter  
Symbol  
Value Unit  
Thermal resistance junction ambient (device soldered on the STMicroelectronics demonstration  
board)  
R
R
40  
5
°C/W  
°C/W  
thJA  
Thermal resistance junction to exposed pad for board design (not suggested to estimate T from  
J
thJC  
power losses)  
2.5  
ESD protection  
Table 4. ESD protection  
Symbol  
Test conditions  
HBM  
Value  
2
Unit  
kV  
V
ESD  
CDM  
500  
DS12905 - Rev 2  
page 5/68  
 
 
 
 
L6986H  
Electrical characteristics  
3
Electrical characteristics  
TJ =25 °C, VIN = 12 V unless otherwise specified.  
Table 5. Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Note  
Min.  
Typ.  
Max.  
Unit  
Operating input voltage  
range  
V
-
-
4
-
38  
IN  
V
UVLO rising  
threshold  
CC  
V
-
-
2.7  
-
3.5  
V
IN_H  
V
UVLO falling  
threshold  
CC  
V
-
-
-
-
2.4  
2.55  
2.1  
-
-
-
3.5  
IN_L  
Duty cycle < 20%  
-
-
I
Peak current limit  
Valley current limit  
PK  
Duty cycle = 100% closed  
loop operation  
A
I
-
-
2.7  
-
-
0.8  
-
VY  
(1)  
I
LCM, V  
LCM, V  
= GND  
= VCC  
0.6  
0.2  
1
SKIPH  
SYNCH  
Programmable skip  
current limit  
(2)  
I
-
0.8  
-
-
-
SKIPL  
SYNCH  
I
LNM or V  
overvoltage  
OUT  
Reverse current limit  
High-side RDSON  
Low-side RDSON  
-
-
-
2
VY_SNK  
R
I
I
=1 A  
0.18  
0.15  
0.36  
0.30  
DS(on) HS  
SW  
SW  
Ω
R
=1 A  
-
DS(on) LS  
Selected switching  
frequency  
FSW pinstrapping before  
SS  
f
See Table 6. f  
selection  
500  
-
-
SW  
SW  
I
FSW biasing current  
SS ended  
-
0
nA  
FSW  
See Table 7. LNM/ LCM selection  
(L6986H3V3), Table 8. LNM/ LCM selection  
(L6986H5V) and Table 9. LNM/ LCM selection  
(L6986H)  
Low noise mode /low  
consumption mode  
selection  
LCM/LNM  
MLF pinstrapping before SS  
-
I
MLF biasing current  
Duty cycle  
SS ended  
-
-
0
-
0
-
500  
100  
-
nA  
%
MLF  
(2)  
D
-
T
Minimum on-time  
-
-
80  
ns  
ON MIN  
VCC regulator  
V
= GND (no  
switchover)  
BIAS  
-
-
2.9  
2.9  
3.3  
3.3  
3.6  
3.6  
VCC  
LDO output voltage  
V
= 5 V (switchover)  
BIAS  
Switch internal supply from  
V
V
IN  
-
-
2.85  
2.78  
-
-
3.2  
V
threshold  
BIAS  
to V  
BIAS  
SWO  
(3 V< V  
<5.5 V)  
BIAS  
Switch internal supply from  
to V  
3.15  
V
BIAS  
IN  
Power consumption  
VSS/INH =GND  
Shutdown current from  
I
-
4
8
15  
µA  
SHTDWN  
V
IN  
DS12905 - Rev 2  
page 6/68  
 
 
L6986H  
Electrical characteristics  
Symbol  
Parameter  
Test conditions  
LCM -SWO  
Note  
Min.  
Typ.  
Max.  
Unit  
(3)  
4
10  
15  
V
< V < V  
(SLEEP)  
REF  
FB  
OVP  
V
= 3.3 V  
BIAS  
µA  
LCM -NO SWO  
VREF< VFB<  
VOVP(SLEEP) VBIAS =  
GND  
(3)  
35  
70  
120  
Quiescent current from  
I
Q OPVIN  
V
IN  
LNM -SWO  
-
0.5  
2
1.5  
2.8  
50  
5
6
V
= GND (NO SLEEP)  
FB  
V
= 3.3 V  
BIAS  
mA  
LNM -NO SWO  
-
V
= GND (NO SLEEP)  
FB  
V
= GND  
BIAS  
LCM -SWO  
< V < V (SLEEP)  
(3)  
25  
0.5  
115  
5
µA  
V
REF  
FB  
OVP  
V
= 3.3 V  
BIAS  
Quiescent current from  
I
Q OPVBIAS  
V
BIAS  
LNM -SWO  
-
1.2  
mA  
V
= GND (NO SLEEP)  
FB  
V
= 3.3 V  
BIAS  
Soft-start  
V
VSS threshold  
VSS hysteresis  
SS rising  
-
-
-
200  
-
460  
100  
700  
140  
INH  
mV  
µA  
V
INH HYST  
V
<V  
OR  
INH  
SS  
(2)  
-
-
1
4
-
-
t< T  
t> T  
OR V +>V  
EA FB  
SS SETUP  
I
C
SS  
charging current  
SS CH  
AND V  
SS SETUP  
EA  
(2)  
+<V  
FB  
Start of internal error  
amplifier ramp  
V
-
-
-
0.995  
-
1.1  
3
1.150  
-
V
-
SS START  
SS/INH to internal error  
amplifier gain  
SS  
-
GAIN  
Error amplifier  
3.3 V(L6986H3V3)  
-
-
-
-
-
3.25  
3.3  
5.0  
0.85  
6
3.35  
5.075  
0.859  
8.5  
V
Voltage feedback  
5 V(L6986H5V)  
L6986H  
4.925  
V
OUT  
0.841  
3.3 V(L6986H3V3)  
5 V(L6986H5V)  
L6986H  
4
7.5  
-
µA  
I
VOUT biasing current  
Error amplifier gain  
10  
13.5  
500  
-
VOUT  
-
50  
nA  
dB  
(2)  
A
V
-
-
100  
EA output current  
capability  
I
-
-
±6  
±12  
±25  
µA  
COMP  
Inner current loop  
Current sense  
transconductance  
(2)  
g
CS  
I
= 1 A  
pk  
-
2.5  
-
A/V  
(V  
to inductor  
COMP  
current gain)  
DS12905 - Rev 2  
page 7/68  
L6986H  
Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Note  
Min.  
Typ.  
Max.  
Unit  
(4)  
V
*g  
PP CS  
Slope compensation  
-
0.45  
0.75  
1
A
Overvoltage protection  
Overvoltage trip  
V
-
-
-
-
1.15  
0.5  
1.2  
2
1.25  
5
-
OVP  
(V  
/V  
)
OVP REF  
V
Overvoltage hysteresis  
%
OVP HYST  
Synchronization (fanout: 6 slave devices typ.)  
1400 (2)  
2200 (2)  
1.2  
LNM; FSW=VCC  
LNM; FSW=GND  
LNM,SYNCH rising  
-
275  
475  
0.70  
Synchronization  
frequency  
f
kHz  
SYNCH  
V
SYNCH input threshold  
-
-
-
V
SYN TH  
SYNCH pull-down  
current  
I
LNM, V  
=1.2 V  
SYN  
0.7  
-
mA  
SYN  
High level output  
Low level output  
LNM,5 mA sinking load  
LNM,0.7 mA sourcing load  
Reset  
-
-
1.40  
-
-
-
-
V
V
SYN OUT  
0.6  
See Table 7. LNM/ LCM selection  
(L6986H3V3), Table 8. LNM/ LCM selection  
(L6986H5V) and Table 9. LNM/ LCM selection  
(L6986H)  
V
THR  
Selected RST threshold MLF pinstrapping before SS  
-
(2)  
V
RST hysteresis  
-
-
-
2
-
-
%
THR HYST  
V
>V  
AND V < V  
mA sinking load  
4
TH  
IN  
INH  
FB  
-
0.4  
RST open collector  
output  
V
V
RST  
2 <V < V  
4 mA sinking  
IN  
INH  
-
-
-
0.8  
load  
Delay  
RST open collector  
released as soon as  
V
V
> V  
FB THR  
-
-
1.19  
1
1.234  
2
1.258  
3
V
THD  
V
> V  
DELAY  
THD  
C
charging  
DELAY  
I
V
> V  
FB THR  
µA  
D CH  
current  
Thermal shutdown  
Thermal shutdown  
temperature  
(2)  
(2)  
T
-
-
-
165  
30  
-
-
SHDWN  
°C  
Thermal shutdown  
hysteresis  
T
HYS  
-
1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application conditions.  
2. Not tested in production.  
3. LCM enables SLEEP mode at light-load.  
4. Measured at f =250 kHz  
sw  
DS12905 - Rev 2  
page 8/68  
 
 
 
 
L6986H  
Electrical characteristics  
TJ = 25 °C, VIN= 12 V unless otherwise specified.  
Table 6. fSW selection  
R
VCC  
(E24 series)  
R
GND  
(E24 series)  
T
f
SW  
min.  
f
SW  
typ.  
f
SW  
max.  
Symbol  
Unit  
j
(1)  
(1)(2)  
(3)  
0 Ω  
1.8 Ω  
3.3 kΩ  
5.6 kΩ  
10 kΩ  
NC  
NC  
NC  
225  
250  
275  
-
285  
330  
-
-
-
-
NC  
-
NC  
-
380  
NC  
-
435  
0 Ω  
450  
500  
550  
18 kΩ  
33 kΩ  
56 kΩ  
NC  
NC  
-
575  
-
NC  
-
660  
-
(1) (3)  
f
kHz  
SW  
NC  
-
755  
-
1.8 kΩ  
3.3 kΩ  
5.6 kΩ  
10 kΩ  
18 kΩ  
33 kΩ  
56 kΩ  
-
870  
-
(3)  
NC  
900  
1000  
1150  
1310  
1500  
1750  
2000  
1100  
NC  
-
-
(2) (3)  
NC  
-
-
NC  
-
-
(3)  
(3)  
NC  
1575  
1800  
1925  
2200  
NC  
1. Synchronization as slave in LNM between 275 kHz and 1400 kHz.  
2. Not tested in production  
3. Synchronization as slave in LNM between 475 kHz and 2200 kHz  
TJ = 25 °C, VIN = 12 V unless otherwise specified.  
Table 7. LNM/ LCM selection (L6986H3V3)  
V
/V  
(tgt.  
RST OUT  
R (E24 1%)  
VCC  
R
GND  
(E24 1%)  
V
min.  
V
typ.  
V
max.  
Unit  
RST  
Symbol  
Operating mode  
RST  
RST  
value)  
93%  
80%  
87%  
96%  
93%  
80%  
87%  
96%  
0 Ω  
NC  
NC  
NC  
NC  
0 Ω  
3.008  
2.587  
2.814  
3.105  
3.008  
2.587  
2.814  
3.105  
3.069  
2.640  
2.871  
3.168  
3.069  
2.640  
2.871  
3.168  
3.130  
8.2 kΩ  
18 kΩ  
39 kΩ  
NC  
2.693  
2.928  
3.231  
3.130  
2.693  
2.928  
3.231  
LCM  
V
V
RST  
NC  
8.2 kΩ  
18 kΩ  
39 kΩ  
LNM  
NC  
NC  
DS12905 - Rev 2  
page 9/68  
 
 
 
 
 
L6986H  
Electrical characteristics  
TJ = 25 °C, VIN = 12 V unless otherwise specified.  
Table 8. LNM/ LCM selection (L6986H5V)  
V
/V  
(tgt.  
RST OUT  
R (E24 1%)  
VCC  
R
GND  
(E24 1%)  
V
min.  
V
typ.  
V
max.  
Unit  
RST  
Symbol  
Operating mode  
RST  
RST  
value)  
93%  
80%  
87%  
96%  
93%  
80%  
87%  
96%  
0 Ω  
NC  
NC  
NC  
NC  
0 Ω  
4.557  
3920  
4263  
4704  
4557  
3920  
4263  
4704  
4.650  
4000  
4350  
4800  
4650  
4000  
4350  
4800  
4743  
8.2 kΩ  
18 kΩ  
39 kΩ  
NC  
4080  
4437  
4896  
4743  
4080  
4437  
4896  
LCM  
V
V
RST  
NC  
8.2 kΩ  
18 kΩ  
39 kΩ  
LNM  
NC  
NC  
TJ = 25 °C, VIN = 12 V unless otherwise specified.  
Table 9. LNM/ LCM selection (L6986H)  
V
/V  
(tgt.  
RST OUT  
R (E24 1%)  
VCC  
R
GND  
(E24 1%)  
V
min.  
V
typ.  
V
max.  
Unit  
RST  
Symbol  
Operating mode  
RST  
RST  
value)  
93%  
80%  
87%  
96%  
93%  
80%  
87%  
96%  
0 Ω  
NC  
NC  
NC  
NC  
0 Ω  
0.779  
0.670  
0.728  
0.804  
0.779  
0.670  
0.728  
0.804  
0.791  
0.680  
0.740  
0.816  
0.791  
0.680  
0.740  
0.816  
0.802  
0.690  
0.751  
0.828  
0.802  
0.690  
0.751  
0.828  
8.2 kΩ ±1%  
18 kΩ ±1%  
39 kΩ ±1%  
NC  
LCM  
V
V
RST  
NC  
8.2 kΩ ±1%  
18 kΩ ±1%  
39 kΩ ±1%  
LNM  
NC  
NC  
DS12905 - Rev 2  
page 10/68  
 
 
L6986H  
Functional description  
4
Functional description  
The L6986H device is based on a “peak current mode”, constant frequency control. As a consequence, the  
intersection between the error amplifier output and the sensed inductor current generates the PWM control signal  
to drive the power switch.  
The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to  
increase the efficiency at light-load.  
The main internal blocks shown in the block diagram in Figure 3. Internal block diagram are:  
Embedded power elements. Thanks to the P-channel MOSFET as high-side switch the device features low-  
dropout operation  
A fully integrated sawtooth oscillator with adjustable frequency  
A transconductance error amplifier  
An internal feedback divider GDIV INT  
The high-side current sense amplifier to sense the inductor current  
A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements  
The soft-start blocks to ramp the error amplifier reference voltage and so decreases the inrush current at  
power-up. The SS/INH pin inhibits the device when driven low  
The switchover capability of the internal regulator to supply a portion of the quiescent current when the VBIAS  
pin is connected to an external output voltage  
The synchronization circuitry to manage master / slave operation and the synchronization to an external  
clock  
The current limitation circuit to implement the constant current protection, sensing pulse by pulse high-side /  
low-side switch current. In case of heavy short-circuit the current protection is fold back to decrease the  
stress of the external components  
A circuit to implement the thermal protection function  
The OVP circuitry to discharge the output capacitor in case of overvoltage event  
MLF pin strapping sets the LNM/LCM mode and the thresholds of the RST comparator  
FSW pinstrapping sets the switching frequency  
The RST open collector output  
Figure 3. Internal block diagram  
FSW  
COMP SYNC  
VIN  
SS/INH  
POWER  
PMOS  
SENSE  
MOS  
OSCILLATOR  
P
VREF  
SS/INH  
VOUT  
0
TSS  
PEAK  
CL  
SLOPE  
E/A  
+
-
GDIV INT  
GND  
LOOP  
CONTROL  
OVP  
DRIVER  
LX  
-
+
L.N. / L.C.  
DELAY  
ZERO  
CROSSING  
SENSE  
NMOS  
POWER  
NMOS  
RST TH.  
Vcc  
GND  
RST  
VALLEY  
CL  
DELAY  
GND  
MLF  
DS12905 - Rev 2  
page 11/68  
 
 
L6986H  
Power supply and voltage reference  
4.1  
Power supply and voltage reference  
The internal regulator block consists of a start-up circuit, the voltage pre-regulator that provides current to all the  
blocks and the bandgap voltage reference. The starter supplies the start-up current when the input voltage goes  
high and the device is enabled (SS/INH pin over the inhibits threshold).  
The pre-regulator block supplies the bandgap cell and the rest of the circuitry with a regulated voltage that has a  
very low supply voltage noise sensitivity.  
Switchover feature  
The switchover scheme of the pre-regulator block features to derive the main contribution of the supply current for  
the internal circuitry from an external voltage (3 V < VBIAS<5.5 V is typically connected to the regulated output  
voltage). This helps to decrease the equivalent quiescent current seen at VIN. (Please refer to Switchover  
feature).  
4.2  
Voltage monitor  
An internal block continuously senses the VCC,VBIAS and VBG. If the monitored voltages are good, the regulator  
starts operating. There is also a hysteresis on the VCC (UVLO).  
Figure 4. Internal circuit  
VCC  
STARTER  
PREREGULATOR  
VREG  
BANDGAP  
IC BIAS  
D00IN1126  
VREF  
4.3  
Soft-start and inhibit  
The soft-start and inhibit features are multiplexed on the same pin. An internal current source charges the  
external soft-start capacitor to implement a voltage ramp on the SS/INH pin. The device is inhibited as long as the  
SS/INH pin voltage is lower than the VINH threshold and the soft-start takes place when SS/INH pin crosses VSS  
START. (See Figure 5. Soft-start phase).  
The internal current generator sources 1 mA typ. current when the voltage of the VCC pin crosses the UVLO  
threshold. The current increases to 4 µA typ. as soon as the SS/INH voltage is higher than the VINH threshold.  
This feature helps to decrease the current consumption in inhibit mode. An external open collector can be used to  
set the inhibit operation clamping the SS/INH voltage below VINH threshold.  
The start-up feature minimizes the inrush current and decreases the stress of the power components during the  
power-up phase. The ramp implemented on the reference of the error amplifier has a gain three times higher  
(SSGAIN) than the external ramp present at SS/INH pin.  
DS12905 - Rev 2  
page 12/68  
 
 
 
 
L6986H  
Soft-start and inhibit  
Figure 5. Soft-start phase  
The CSS is dimensioned accordingly with Eq. (1) :  
I
⋅ T  
4μA ⋅ T  
SS  
0.85V  
SSCH SS  
C
= SS  
GAIN  
= 3 ⋅  
(1)  
SS  
V
FB  
where TSS is the soft-start time, ISS CH the charging current and VFB the reference of the error amplifier.  
The soft-start block supports the precharged output capacitor.  
DS12905 - Rev 2  
page 13/68  
 
 
L6986H  
Soft-start and inhibit  
Figure 6. Soft-start phase with precharged COUT  
During normal operation a new soft-start cycle takes place in case of:  
Thermal shutdown event  
UVLO event  
The device is driven in INH mode  
The soft-start capacitor is discharged with a 0.6 mA typ. current capability for 1 ms time max. For complete and  
proper capacitor discharge in case of fault conditions, a maximum CSS = 67 nF value is suggested.  
The application example in Figure 7. Enable the device with external voltage step shows how to enable the  
L6986H and perform the soft-start phase driven by an external voltage step.  
Figure 7. Enable the device with external voltage step  
DS12905 - Rev 2  
page 14/68  
 
 
L6986H  
Soft-start and inhibit  
The maximum capacitor value has to be limited to guarantee the device can discharge it in case of thermal  
shutdown and UVLO events (see Figure 9), so restart the switching activity ramping the error amplifier reference  
voltage  
1ms  
C
<
(2)  
SS  
V
0.9V  
SS_EQ  
SS_FINAL  
R
⋅ In(1 −  
)
SS_EQ  
600μA − R  
where:  
R
⋅ R  
R
UP DWN  
DWN  
+ R  
DWN  
R
=
V
= ( V  
STEP  
− V  
) ⋅  
(3)  
SS_EQ  
SS_FINAL  
DIODE  
R
+ R  
R
UP  
UP  
DWN  
The optional diode prevents the device from disabling if the external source drops to ground.  
RUP value is selected in order to make the capacitor charge at first approximation independent from the internal  
current generator (4 µA typ. current capability, see Table 1), so:  
V
− V  
− V  
SS END  
STEP  
DIODE  
≫ I  
4μA  
(4)  
(5)  
SS CHARGE  
R
UP  
where  
V
FB  
V
= V  
SS START  
+
SS END  
SS  
GAIN  
represents the SS/INH voltage correspondent to the end of the ramp on the error amplifier (see Figure 5. Soft-  
start phase); refer to Table 1 for VSS START, VFB and SSGAIN parameters.  
As a consequence the voltage across the soft-start capacitor can be written as:  
1
V
(t) = V  
SS FINAL  
(6)  
SS  
t
⋅ R  
1 − e  
C
SS SS_EQ  
RSS_DOWN is selected to guarantee the device stays in inhibit mode when the internal generator sources 1 µA typ.  
out of the SS/INH pin and VSTEP is not present:  
R
⋅ I  
≡ R  
DWN  
1μA ≪ V  
INH  
200mV  
(7)  
DWN SSINHIBIT  
so  
R
< 100kΩ  
(8)  
DWN  
RUP and RDWN are selected to guarantee:  
V
2V > V  
SS_END  
(9)  
SS_FINAL  
The time to ramp the internal voltage reference can be calculated as follows  
V
− V  
SS START  
SS_FINAL  
T
= C ⋅ R  
SS SS_EQ  
⋅ In(  
)
(10)  
SS  
V
− V  
SS END  
SS_FINAL  
that is the equivalent soft-start time to ramp the output voltage.  
Figure 8. External soft-start network VSTEP driven shows the soft-start phase with the following component  
selection: RUP = 180 kΩ, RDWN = 33 kΩ, CSS = 200 nF, the 1N4148 is a small signal diode and VSTEP = 13 V.  
DS12905 - Rev 2  
page 15/68  
L6986H  
Soft-start and inhibit  
Figure 8. External soft-start network VSTEP driven  
The circuit in Figure 7. Enable the device with external voltage step introduces a time delay between VSTEP and  
the switching activity that can be calculated as:  
V
SS_FINAL  
− V  
SS START  
T
= C ⋅ R  
SS SS_EQ  
⋅ In(  
)
(11)  
SS  
V
SS_FINAL  
Figure 9. External soft-start after UVLO or thermal shutdown shows how the device discharges the soft-start  
capacitor after an UVLO or thermal shutdown event in order to restart the switching activity ramping the error  
amplifier reference voltage.  
Figure 9. External soft-start after UVLO or thermal shutdown  
DS12905 - Rev 2  
page 16/68  
 
 
L6986H  
Soft-start and inhibit  
4.3.1  
Ratiometric startup  
The ratiometric start-up is implemented sharing the same soft-start capacitor for a set of the L6986H devices  
Figure 10. Ratiometric startup  
V
VOUT3  
VOUT2  
VOUT1  
t
As a consequence all the internal current generators charge in parallel the external capacitor. The capacitor value  
is dimensioned accordingly, as per equation below:  
I
⋅ T  
4μA ⋅ T  
SS  
0.85V  
SSCH SS  
C
= n  
L6986H  
⋅ SS  
GAIN  
= n  
L6986H  
3 ⋅  
(12)  
SS  
V
FB  
where nL6986H represents the number of devices connected in parallel.  
For better tracking of the different output voltages the synchronization of the set of regulators is suggested.  
Figure 11. Ratiometric start-up operation  
DS12905 - Rev 2  
page 17/68  
 
 
 
L6986H  
Error amplifier  
4.3.2  
Output voltage sequencing  
The L6986H device implements sequencing connecting the RST pin of the master device to the SS/INH of the  
slave. The slave is inhibited as long as the master output voltage is outside regulation so implementing the  
sequencing, see Figure 12. Output voltage sequencing.  
Figure 12. Output voltage sequencing  
V
VOUT3  
VOUT2  
VOUT1  
t
tDELAY1  
tDELAY2  
tDELAY3  
High flexibility is achieved thanks to the programmable RST thresholds (Table 7. LNM/ LCM selection  
(L6986H3V3) and Table 8. LNM/ LCM selection (L6986H5V)) and programmable delay time. To minimize the  
component count the DELAY pin capacitor can be also omitted so the pin works as a normal Power Good.  
4.4  
Error amplifier  
The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose  
non inverting input is connected to the internal voltage reference (0.85 V), while the inverting input (FB) is  
connected to the external divider or directly to the output voltage.  
Table 10. Uncompensated error amplifier characteristics  
Description  
Value  
155 µS  
100 dB  
Transconductance  
Low frequency gain  
The error amplifier output is compared with the inductor current sense information to perform PWM control. The  
error amplifier also determines the burst operation at light-load when the LCM is active.  
4.5  
Output voltage line regulation  
The regulator features an enhanced line regulation thanks to the peak current mode architecture. Figure 13. VOUT  
= 3.3 V line regulation shows negligible output voltage variation (normalized to the value measured at VIN = 12 V)  
over the entire input voltage range for the L6986H with VOUT = 3.3V.  
DS12905 - Rev 2  
page 18/68  
 
 
 
 
 
L6986H  
Output voltage load regulation  
Figure 13. VOUT = 3.3 V line regulation  
0.10%  
0.05%  
0.00%  
-0.05%  
-0.10%  
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38  
V [V]  
IN  
4.6  
Output voltage load regulation  
Figure 14. VOUT = 3.3 V load regulation shows negligible output voltage variation (normalized to the value  
measured at IOUT = 0 A) over the entire output current range for the L6986H with VOUT = 3.3 V, measured on the  
L6986H evaluation board (see Section 6.7 Application board).  
Figure 14. VOUT = 3.3 V load regulation  
0.10%  
0.05%  
0.00%  
-0.05%  
-0.10%  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
IOUT[A]  
4.7  
High-side switch resistance vs. input voltage  
Figure 15. Normalized RDS(on),HS variation shows the high-side switch RDS(on) variation over the entire input  
voltage operating range normalized at the value measured at VIN = 12 V (see Section 3 Electrical  
characteristics).  
DS12905 - Rev 2  
page 19/68  
 
 
 
 
L6986H  
Light-load operation  
Figure 15. Normalized RDS(on),HS variation  
R
DS(on),HS @ IOUT =1A (normalized @ VIN =12V)  
3%  
2%  
1%  
0%  
-1%  
-2%  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38  
V [V]  
IN  
4.8  
Light-load operation  
The MLF pinstrapping during the power-up phase determines the light-load operation (refer to Table 7. LNM/ LCM  
selection (L6986H3V3) and Table 8. LNM/ LCM selection (L6986H5V)).  
4.8.1  
Low noise mode (LNM)  
The low noise mode implements a forced PWM operation over the different loading conditions. The LNM features  
a constant switching frequency to minimize the noise in the final application and a constant voltage ripple at fixed  
VIN. The regulator in steady loading condition never skips pulses and it operates in continuous conduction mode  
(CCM) over the different loading conditions, thus making this operation mode ideal for noise sensitive  
applications.  
DS12905 - Rev 2  
page 20/68  
 
 
 
L6986H  
Light-load operation  
Figure 16. Low noise mode operation  
4.8.2  
Low consumption mode (LCM)  
The low consumption mode maximizes the efficiency at light-load. The regulator prevents the switching activity  
whenever the switch peak current request is lower than the ISKIP threshold. As a consequence the L6986H device  
works in bursts and it minimizes the quiescent current request in the meantime between the switching operation.  
In LCM operation, the pin SYNCH/ISKIP level dynamically defines the ISKIP current threshold (see  
Table 5. Electrical characteristics) as shown in Table 11. ISKIP programmable current threshold.  
Table 11. ISKIP programmable current threshold  
I
current threshold  
SYNCH / ISKIP (pin 4)  
SKIP  
ISKIP = 0.6 A typical  
Low  
H
ISKIP = 0.2 A typical  
High  
L
The ISKIP programmability helps to optimize the performance in terms of the output voltage ripple or efficiency at  
the light-load, that are parameters which disagree each other by definition. A lower skip current level minimizes  
the voltage ripple but increases the switching activity (time between bursts gets closer) since less energy per  
burst is transferred to the output voltage at the given load. On the other side, a higher skip level reduces the  
switching activity and improves the efficiency at the light-load but worsen the voltage ripple.  
No difference in terms of the voltage ripple and conversion efficiency for the medium and high load current level,  
that is when the device operates in the discontinuous or continuous mode (DCM vs. CCM).  
The L6986H allows changing the skip current threshold level while the device is switching in order to adapt the  
pulse skipping operation to the loading condition. The time needed to detect and implement this transition is  
negligible with respect to the switching period.  
When the L6986H is configured in the low consumption mode, the SYNCH/ISKIP pin operates as a logic gate  
input pin with an internal pull-down (4.5 µA typ.) guaranteeing the ISKIPH operation when leaving the pin floating.  
Table 12. SYNCH/ISKIP pin voltage thresholds and driving current reports the VSYNCH/ISKIP thresholds and the  
minimum current needed to drive the pin.  
DS12905 - Rev 2  
page 21/68  
 
 
 
L6986H  
Light-load operation  
Table 12. SYNCH/ISKIP pin voltage thresholds and driving current  
Parameter  
Value  
0.65 V  
1.6 V  
V
SKIP_TH_L_MAX  
V
SKIP_TH_H_MIN  
SYNCH/ISKIP_DRIVING_MIN  
I
± 10 µA  
Figure 17. L6986H skip current level transition at ILOAD = 150 mA with L = 10 µH shows a skip current threshold  
transition at ILOAD = 150 mA measured on the L6986H - VOUT = 3.3 V with fsw = 500 kHz and L = 10 µH:  
When V(SYNCH/ISKIP) < VSKIP_TH_L_MAX, the L6986H operates in the pulse skipping mode minimizing  
current consumption  
When V(SYNCH/ISKIP) > VSKIP_TH_H_MIN, the L6986H operates in the continuous conduction mode  
minimizing the output voltage ripple  
Figure 17. L6986H skip current level transition at ILOAD = 150 mA with L = 10 µH  
Figure 18. Light-load efficiency comparison at different ISKIP - linear scale and Figure 19. Light-load efficiency  
comparison at different ISKIP - log scale report the efficiency measurements to highlight the ISKIPH and ISKIPL  
efficiency gap at the light-load also in comparison with the LNM operation. The same efficiency at the medium /  
high load is confirmed at different ISKIP levels.  
DS12905 - Rev 2  
page 22/68  
 
 
L6986H  
Light-load operation  
Figure 18. Light-load efficiency comparison at different ISKIP - linear scale  
VIN=13.5 V; VOUT=3.3V; fsw=500kH z  
90  
85  
80  
75  
70  
65  
60  
55  
LCM ISKIPH=600mA  
LCM ISKIPL=200mA  
LNM - SWO  
LNM  
LCM_ISKIPH - SWO  
LCM_ISKIPL - SWO  
50  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
ILOAD [A]  
Figure 19. Light-load efficiency comparison at different ISKIP - log scale  
VIN=13.5V; VOUT=3.3 V; fsw=5 00kH z  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM ISKIPH=600mA  
LCM ISKIPL=200mA  
LNM  
LNM - SWO  
LCM_ISKIPH - SWO  
LCM_ISKIPL - SWO  
0.001  
0.01  
0.1  
ILOAD [A]  
Figure 20. LCM operation with ISKIPH = 600 mA typ. at zero load and Figure 21. LCM operation with ISKIPL =  
200 mA typ. at zero load show the LCM operation at the different ISKIP level.  
Figure 20. LCM operation with ISKIPH = 600 mA typ. at zero load shows the ISKIPH = 600 mA typ. and so 50 mV  
output voltage ripple.  
Figure 21. LCM operation with ISKIPL = 200 mA typ. at zero load shows the ISKIPL = 200 mA typ. and so less  
than 20 mV output voltage ripple.  
DS12905 - Rev 2  
page 23/68  
 
 
L6986H  
Light-load operation  
Figure 20. LCM operation with ISKIPH = 600 mA typ. at zero load  
Figure 21. LCM operation with ISKIPL = 200 mA typ. at zero load  
DS12905 - Rev 2  
page 24/68  
 
 
L6986H  
Light-load operation  
The LCM operation satisfies the high efficiency requirements of the battery powered applications. In order to  
minimize the regulator quiescent current request from the input voltage, the VBIAS pin can be connected to an  
external voltage source in the range 3 V < VBIAS < 5.5 V (see Section 4.1 Power supply and voltage reference).  
Given the energy stored in the inductor during a burst, the voltage ripple depends on the capacitor value:  
T
0
BURST  
(i (t) ⋅ dt)  
L
ΔQ  
IL  
V
=
=
(13)  
OUT RIPPLE  
C
C
OUT  
OUT  
Figure 22. LCM operation over loading condition (part 1)  
DS12905 - Rev 2  
page 25/68  
 
L6986H  
Light-load operation  
Figure 23. LCM operation over loading condition (part 2-pulse skipping)  
Figure 24. LCM operation over loading condition (part 3-pulse skipping)  
DS12905 - Rev 2  
page 26/68  
 
 
L6986H  
Light-load operation  
Figure 25. LCM operation over loading condition (part 4-CCM)  
4.8.3  
Quiescent current in LCM with switchover  
The current absorbed from the input voltage in the low consumption mode while regulating the output voltage at  
the zero output load depends on the input voltage value and the selected skip current level, as shown in  
Figure 26. Quiescent current at VOUT = 3.3 V and zero output load and Figure 27. Quiescent current at VOUT = 5  
V and zero output load  
Figure 26. Quiescent current at VOUT = 3.3 V and zero output load  
When VIN is adequately higher than VOUT (see Figure 26. Quiescent current at VOUT = 3.3 V and zero output  
load ) the device works in the bursts mode operation, minimizing the power consumption over the entire input  
voltage (see Section 4.8.2 Low consumption mode (LCM)).  
DS12905 - Rev 2  
page 27/68  
 
 
 
L6986H  
Light-load operation  
Figure 27. Quiescent current at VOUT = 5 V and zero output load  
BIAS=V  
OUT=5 V and I LOAD = 0  
L6986H input current with V  
LCM-500kHz  
120  
100  
80  
ISKIPH  
ISKIPL  
60  
40  
20  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
VIN [V]  
When VIN approaches VOUT (see Figure 27. Quiescent current at VOUT = 5 V and zero output load and zoomed  
Figure 28. Quiescent current at VIN while regulating VOUT = 5 V at zero output load) the device increases the  
switching activity towards the continuous conduction mode operation for the internal slope contribution effect on  
the programmed skip current threshold. As a consequence the quiescent current increases.  
When VIN is lower than VOUT (see Figure 28. Quiescent current at VIN while regulating VOUT = 5 V at zero  
output load), the device enters in the low-dropout operation with the high-side always switched on. In this  
operating condition, all the internal circuit blocks are active and the quiescent current corresponds to what  
measured in the low noise mode operation (see IQ OP VIN and IQ OP VBIAS in Table 5. Electrical characteristics  
given VFB = GND).  
Figure 28. Quiescent current at VIN while regulating VOUT = 5 V at zero output load  
L6986H input current VBIAS=VOUT=5 V and ILOAD=0 LCM=500 kHz  
16  
ISKIPH  
14  
ISKIPL  
12  
10  
8
6
Drop Out  
Pulse Skipping  
SLEEP Mode  
No SLEEP Mode  
4
2
0
Continuous  
Conduction Mode  
4
4.2  
4.4  
4.6  
4.8  
5
5.2  
5.4  
5.6  
5.8  
6
V [V]  
IN  
DS12905 - Rev 2  
page 28/68  
 
 
L6986H  
Switchover feature  
4.9  
Switchover feature  
The switchover maximizes the efficiency at the light-load that is crucial for LCM applications.  
The switchover operation features to derive the main contribution of the supply current for the internal circuitry  
from an external voltage (3 V < VBIAS < 5.5 V is typically connected to the regulated output voltage). This helps to  
decrease the equivalent quiescent current seen at VIN.  
In case the regulator output voltage is not compatible with the VBIAS input voltage range, it is possible to use an  
auxiliary voltage source for the switchover operation. The external auxiliary voltage source must always respect  
the condition 3 V < VAUX < 5.5 V, and must be derived from the L6986H power supply (VIN - pin 15) for proper  
power sequencing of the internal circuits.  
4.9.1  
LCM  
The LCM operation satisfies the high efficiency requirements of the battery powered applications.  
In case the VBIAS pin is connected to the regulated output voltage (VOUT), the total current drawn from the input  
voltage can be calculated as:  
V
1
BIAS  
I
= I  
QOPVIN  
+
⋅ I  
QOPVBIAS  
(14)  
QVIN  
η
V
L6986H  
IN  
where IQ OP VIN, IQ OP VBIAS are defined in Table 5. Electrical characteristics and ηL6986H is the efficiency of the  
conversion in the working point.  
4.9.2  
LNM  
is also valid when the device works in LNM and it can increase the efficiency at the medium load since the  
regulator always operates in the continuous conduction mode.  
4.10  
Overcurrent protection  
The current protection circuitry features a constant current protection, so the device limits the maximum peak  
current (see Table 5. Electrical characteristics) in overcurrent condition.  
The L6986H device implements a pulse by pulse current sensing on both power elements (high-side and low-side  
switches) for effective current protection over the duty cycle range. The high-side current sensing is called “peak”  
the low-side sensing “valley”.  
The internal noise generated during the switching activity makes the current sensing circuitry ineffective for a  
minimum conduction time of the power element. This time is called “masking time” because the information from  
the analog circuitry is masked by the logic to prevent an erroneous detection of the overcurrent event. As a  
consequence, the peak current protection is disabled for a masking time after the high-side switch is turned on,  
the valley for a masking time after the low-side switch is turned on. In other words, the peak current protection can  
be ineffective at extremely low duty cycles, the valley current protection at extremely high duty cycles.  
The L6986H device assures an effective overcurrent protection sensing the current flowing in both power  
elements. In case one of the two current sensing circuitry is ineffective because of the masking time, the device is  
protected sensing the current on the opposite switch. Thus, the combination of the “peak” and “valley” current  
limits assures the effectiveness of the overcurrent protection even in extreme duty cycle conditions.  
The valley current threshold is designed higher than the peak to guarantee a proper operation. In case the current  
diverges because of the high-side masking time, the low-side power element is turned on until the switch current  
level drops below the valley current sense threshold. The low-side operation is able to prevent the high-side turn  
on, so the device can skip pulses decreasing the switching frequency.  
DS12905 - Rev 2  
page 29/68  
 
 
 
 
L6986H  
Overcurrent protection  
Figure 29. Valley current sense operation in overcurrent condition  
Figure 29. Valley current sense operation in overcurrent condition shows the switching frequency reduction during  
the valley current sense operation in case of extremely low duty cycle (VIN = 12 V, fSW = 2 MHz short-circuit  
condition).  
In a worst case scenario (like Figure 29. Valley current sense operation in overcurrent condition) of the  
overcurrent protection the switch current is limited to:  
V
− V  
L
IN  
OUT  
I
= I  
VALLEYTH  
+
⋅ T  
MASKHS  
(15)  
MAX  
where IVALLEY_TH is the current threshold of the valley sensing circuitry (see Table 5. Electrical characteristics)  
and TMASK_HS is the masking time of the high-side switch 100 ns typ.).  
In most of the overcurrent conditions the conduction time of the high-side switch is higher than the masking time  
and so the peak current protection limits the switch current.  
I
= I  
PEAK_TH  
(16)  
MAX  
DS12905 - Rev 2  
page 30/68  
 
L6986H  
OCP and switchover feature  
Figure 30. Peak current sense operation in overcurrent condition  
The DC current flowing in the load in overcurrent condition is:  
I
(V  
)
V
− V  
RIPPLE OUT  
IN OUT  
I
(V  
) = I  
MAX  
= I  
MAX  
(  
⋅ T  
)
(17)  
DCOC OUT  
ON  
2
2 ⋅ L  
4.11  
OCP and switchover feature  
Output capacitor discharging the current flowing to ground during heavy short-circuit events is only limited by  
parasitic elements like the output capacitor ESR and short-circuit impedance.  
Due to parasitic inductance of the short-circuit impedance, negative output voltage oscillations can be generated  
with huge discharging current levels (see Figure 1).  
DS12905 - Rev 2  
page 31/68  
 
 
L6986H  
OCP and switchover feature  
Figure 31. Output voltage oscillations during heavy short-circuit  
Figure 32. Zoomed waveforms  
DS12905 - Rev 2  
page 32/68  
 
 
L6986H  
Overvoltage protection  
The VBIAS pin absolute maximum ratings (see Table 1) must be satisfied over the different dynamic conditions.  
If the VBIAS is connected to GND there are no issues (see Figure 31. Output voltage oscillations during heavy  
short-circuit and Figure 32. Zoomed waveforms).  
A small resistor value (few ohms) in series with the VBIAS can help to limit the pin negative voltage (see  
Figure 33. VBIAS in heavy short-circuit event) during heavy short-circuit events if it is connected to the regulated  
output voltage.  
Figure 33. VBIAS in heavy short-circuit event  
4.12  
Overvoltage protection  
The overvoltage protection monitors the VOUT pin and enables the low-side MOSFET to discharge the output  
capacitor if the output voltage is 20% over the nominal value.  
This is a second level protection and should never be triggered in normal operating conditions if the system is  
properly dimensioned. In other words, the selection of the external power components and the dynamic  
performance determined by the compensation network should guarantee an output voltage regulation within the  
overvoltage threshold even during the worst case scenario in term of load transitions.  
The protection is reliable and also able to operate even during normal load transitions for a system whose  
dynamic performance is not in line with the load dynamic request. As a consequence the output voltage regulation  
would be affected.  
Figure 34. Overvoltage operation shows the overvoltage operation during a negative steep load transient for a  
system configured in low consumption mode and designed with a not optimized compensation network. This can  
be considered as an example for a system with dynamic performance not in line with the load request.  
The L6986H device implements a 1 A typ. negative current limitation to limit the maximum reversed switch current  
during the overvoltage operation.  
Moreover, the overvoltage protection also activates the internal pull-down on RST pin. Once OVP is deactivated,  
the L6986H releases the RST pin after the delay programmed by DELAY capacitor (6 ms in  
Figure 34. Overvoltage operation).  
DS12905 - Rev 2  
page 33/68  
 
 
L6986H  
Thermal shutdown  
Figure 34. Overvoltage operation  
4.13  
Thermal shutdown  
The shutdown block disables the switching activity if the junction temperature is higher than a fixed internal  
threshold (165 °C typical). The thermal sensing element is close to the power elements, ensuring fast and  
accurate temperature detection. A hysteresis of approximately 30 °C prevents the device from turning ON and  
OFF continuously. When the thermal protection runs away a new soft-start cycle will take place.  
DS12905 - Rev 2  
page 34/68  
 
 
L6986H  
Closing the loop  
5
Closing the loop  
Figure 35. Block diagram of the loop  
5.1  
G
(s) control to output transfer function  
CO  
The accurate control to output transfer function for a buck peak current mode converter can be written as:  
S
1 +  
ω
1
Z
G
(s) = R  
⋅ g  
⋅ F (s)  
(18)  
CO LOAD CS  
H
R
⋅ T  
S
LOAD SW  
L
1 +  
1 +  
[m ⋅ (1 − D) 0.5]  
C
ω
p
where RLOAD represents the load resistance, gCS the equivalent sensing transconductance of the current sense  
circuitry, wp the single pole introduced by the power stage and wz the zero given by the ESR of the output  
capacitor.  
FH(s) accounts the sampling effect performed by the PWM comparator on the output of the error amplifier that  
introduces a double pole at one half of the switching frequency.  
1
ω
=
(19)  
(20)  
Z
ESR ⋅ C  
OUT  
m ⋅ (1 − D) 0.5  
1
c
ω
=
+
p
R
⋅ C  
L ⋅ C  
⋅ f  
LOAD OUT  
OUT SW  
where:  
S
e
S
n
m
= 1 +  
C
S
= V ⋅ g ⋅ f  
PP CS SW  
(21)  
e
V
− V  
L
IN  
OUT  
S
=
n
Sn represents the on time slope of the sensed inductor current, Se the on time slope of the external ramp (VPP  
peak-to-peak amplitude) that implements the slope compensation to avoid sub-harmonic oscillations at duty cycle  
over 50%.  
Se can be calculated from the parameter VPP × gCS given in Table 1 .  
DS12905 - Rev 2  
page 35/68  
 
 
 
L6986H  
Error amplifier compensation network  
The sampling effect contribution FH(s) is:  
1
F (s) =  
(22)  
(23)  
H
s
1 +  
2
2
S
ω
⋅ Q  
+
n
p
ω
n
where:  
ω
= π ⋅ f  
n
SW  
1
Q
=
p
π ⋅ [m ⋅ (1 − D) 0.5]  
c
5.2  
Error amplifier compensation network  
The typical compensation network required to stabilize the system is shown in Figure 36. Transconductance  
embedded error amplifier:  
Figure 36. Transconductance embedded error amplifier  
RC and CC introduce a pole and a zero in the open loop gain. CP does not significantly affect system stability but it  
is useful to reduce the noise at the output of the error amplifier.  
The transfer function of the error amplifier and its compensation network is:  
A
(1 + s ⋅ R ⋅ C )  
C c  
V0  
A (s) =  
(24)  
0
2
s
⋅ R (C + C ) ⋅ R ⋅ C + s ⋅ (R ⋅ C + R ⋅ (C + C ) + R ⋅ C ) + 1  
0
0
p
C
c
0
c
0
0
p
c
c
Where Avo = Gm · Ro  
The poles of this transfer function are (if Cc >> C0 + CP):  
1
f
=
(25)  
(26)  
PLF  
2 ⋅ π ⋅ R ⋅ C  
0
c
1
f
=
PHF  
2 ⋅ π ⋅ R (C + C )  
0
0
p
DS12905 - Rev 2  
page 36/68  
 
 
L6986H  
Voltage divider  
whereas the zero is defined as:  
1
f
=
(27)  
Z
2 ⋅ π ⋅ R ⋅ C  
c
c
5.3  
Voltage divider  
The contribution of the internal voltage divider for fixed output voltage devices is:  
R
V
FB  
2
0.85  
3.3  
G
(s) =  
=
=
= 0.2575  
L6986H3V  
L698H5V  
DIV  
R
+ R  
V
1
2
OUT  
V
(28)  
R
2
FB  
0.85  
G
(s) =  
=
=
= 0.17  
DIV  
R
+ R  
V
5
1
2
OUT  
while for the adjustable output part number L6986H is:  
R
2
G
(s) =  
L6986H  
(29)  
DIV  
R
+ R  
2
1
A small signal capacitor in parallel to the upper resistor (see Figure 37. Leading network example) of the voltage  
divider implements a leading network (fzero < fpole), sometimes necessary to improve the system phase margin:  
Figure 37. Leading network example  
uC RST  
4
15  
2
1
SYNCH  
VIN  
RST  
16  
VIN  
VBIAS  
13  
14  
VOUT  
VCC  
FSW  
MLF  
LX  
LX  
5
Cr1  
R1  
L6986H  
6
9
7
FB  
3
SS/INH  
DELAY  
EP  
Rc  
8
COMP  
PGND  
12  
PGND  
SGND  
10  
Cc  
Cp  
R2  
17  
11  
signal GND  
Power GND  
GND  
The Laplace transformer of the leading network is:  
R
(1 + s + R ⋅ C  
)
2
1
R1  
G
(s) =  
DIV  
R
+ R  
R ⋅ R  
1 2  
(30)  
(31)  
1
2
(1 + s ⋅  
⋅ C  
)
R1  
R
+ R  
2
1
where  
1
f
=
Z
2 ⋅ π ⋅ R ⋅ C  
1
R1  
1
f
=
p
R
⋅ R  
2
1
2 ⋅ π ⋅  
⋅ C  
R1  
+ R  
2
R
1
f
< f  
p
Z
DS12905 - Rev 2  
page 37/68  
 
 
L6986H  
Total loop gain  
5.4  
Total loop gain  
In summary, the open loop gain can be expressed as:  
G
= G  
(s) ⋅ G (s) ⋅ A (s)  
CO  
(32)  
(s)  
DIV  
0
example 1:  
VIN = 12 V, VOUT = 3.3 V, ROUT = 1.67 Ω  
Selecting the L6986H with VOUT=3.3 V, fSW = 500 kHz, L = 10 µH, COUT = 20 µF and ESR = 3 mΩ, RC = 75 kΩ,  
CC = 330 pF, CP = 2.2 pF (please refer to Table 19. L6986H 3V3 demonstration board BOM), the gain and phase  
bode diagrams are plotted respectively in Figure 38. Module plot and Figure 39. Phase plot.  
Figure 38. Module plot  
BW = 55 kHZ  
phase margin = 60 °  
Figure 39. Phase plot  
The blue solid trace represents the transfer function including the sampling effect term (see ), the dotted blue  
trace neglects the contribution.  
DS12905 - Rev 2  
page 38/68  
 
 
 
L6986H  
Compensation network design  
5.5  
Compensation network design  
The maximum bandwidth of the system can be designed up to fSW/6 up to 150 kHz maximum to guarantee a valid  
small signal model.  
2 ⋅ π ⋅ BW ⋅ C  
⋅ V  
m TYP  
OUT OUT  
R
=
(33)  
C
0.85V ⋅ g ⋅ g  
CS  
where:  
ω
p
f
=
(34)  
POLE  
2 ⋅ π  
ωp is defined by , gCS represents the current sense transconductance (see Table 1) and gm TYP the error  
amplifier transconductance.  
5
C
=
(35)  
C
2 ⋅ π ⋅ R ⋅ BW  
C
Example 2:  
Considering VIN = 12 V, VOUT = 3.3 V, L = 6.8 µH, COUT = 10 µF, fSW = 500 kHz, IOUT = 1 A.  
The maximum system bandwidth is 80 kHz. Assuming to design the compensation network to achieve a system  
bandwidth of 70 kHz:  
f
= 2.7 kHz  
(36)  
POLE  
V
OUT  
R
=
= 3.3Ω  
(37)  
LOAD  
I
OUT  
so accordingly with Eq. (33) and Eq. (35):  
R
= 48.5kΩ 47kΩ  
= 237pF ≈ 270pF  
(38)  
(39)  
C
C
C
The gain and phase bode diagrams are plotted respectively in Figure 40. Magnitude plot for example 2 and  
Figure 41. Phase plot for example 2.  
Figure 40. Magnitude plot for example 2  
DS12905 - Rev 2  
page 39/68  
 
 
 
 
L6986H  
Compensation network design  
Figure 41. Phase plot for example 2  
DS12905 - Rev 2  
page 40/68  
 
L6986H  
Application notes  
6
Application notes  
6.1  
Output voltage adjustment  
The error amplifier reference voltage is 0.85 V typical.  
The output voltage is adjusted accordingly as per equation below: (see Figure 42. L6986H application circuit).  
R
1
V
= 0.85 (1 +  
)
(40)  
OUT  
R
2
Cr1 capacitor is sometimes useful to increase the small signal phase margin (please refer to Compensation  
network design).  
Figure 42. L6986H application circuit  
uC RST  
4
15  
2
1
16  
RST  
SYNCH  
VBIAS  
VIN  
VIN  
13  
VOUT  
LX  
LX  
VCC  
FSW  
MLF  
14  
5
Cr1  
R1  
L6986H  
6
3
8
9
7
FB  
SS/INH  
DELAY  
Rc  
COMP  
PGND  
PGND  
11  
EP SGND  
Cc  
Cp  
R2  
17  
10  
12  
signal GND  
Power GND  
GND  
6.2  
6.3  
Switching frequency  
A resistor connected to the FSW pin features the selection of the switching frequency. The pinstrapping is  
performed at power-up, before the soft-start takes place. The FSW pin is pinstrapped and then driven floating in  
order to minimize the quiescent current from VIN. Please refer to Table 2 to identify the pull-up / pull-down resistor  
value. fSW = 250 kHz / fSW = 500 kHz preferred codifications do not require any external resistor.  
MLF pin  
A resistor connected to the MLF pin features the selection of the between low noise mode / low consumption  
mode and the different RST thresholds. The pinstrapping is performed at power-up, before the soft-start takes  
place. The FSW pin is pinstrapped and then driven floating in order to minimize the quiescent current from VIN.  
Please refer to Table 7. LNM/ LCM selection (L6986H3V3), Table 8. LNM/ LCM selection (L6986H5V), and  
Table 9. LNM/ LCM selection (L6986H) to identify the pull-up / pull-down resistor value. (LNM, RST threshold  
93%) / (LCM, RST threshold 93%) preferred codifications don't require any external resistor.  
6.4  
Voltage supervisor  
The embedded voltage supervisor (composed of the RST and the DELAY pins) monitors the regulated output  
voltage and keeps the RST open collector output in low impedance as long as the VOUT is out of regulation. In  
order to ensure a proper reset of digital devices with a valid power supply, the device can delay the RST assertion  
with a programmable time.  
DS12905 - Rev 2  
page 41/68  
 
 
 
 
 
 
L6986H  
Voltage supervisor  
Figure 43. Voltage supervisor operation  
The comparator monitoring the FB voltage has four different programmable thresholds (80%, 87%, 93%, 96%  
nominal output voltage) for high flexibility (see MLF pin, Table 7. LNM/ LCM selection (L6986H3V3),  
Table 8. LNM/ LCM selection (L6986H5V), and Table 9. LNM/ LCM selection (L6986H)).  
When the RST comparator detects the output voltage is in regulation, a 2 mA internal current source starts to  
charge an external capacitor to implement a voltage ramp on the DELAY pin. The RST open collector is then  
released as soon as VDELAY = 1.234 V (see Figure 43. Voltage supervisor operation). The CDELAY is dimensioned  
as follows:  
I
⋅ T  
2μA ⋅ T  
DELAY  
SSCH DELAY  
C
=
=
(41)  
DELAY  
V
1.234V  
DELAY  
The maximum suggested capacitor value is 270 nF.  
The L6986H also activates internal pull-down on RST pin in case overvoltage protection is triggered. As soon as  
the output voltage goes below OVP threshold (20% typ.), the 2 µA internal current source starts to charge an  
external capacitor to implement a voltage ramp on the DELAY pin. The RST open collector is then released as  
soon as VDELAY = 1.234 V(see figure below).  
DS12905 - Rev 2  
page 42/68  
 
L6986H  
Synchronization (LNM)  
Figure 44. Voltage supervisor operation during OVP  
6.5  
Synchronization (LNM)  
The synchronization feature helps the hardware designer to prevent beating frequency noise that is an issue  
when multiple switching regulators populate the same application board.  
6.5.1  
Embedded master - slave synchronization  
The L6986H synchronization circuitry features the same switching frequency for a set of regulators simply  
connecting their SYNCH pin together, so preventing beating noise. The master device provides the  
synchronization signal to the others since the SYNCH pin is I/O able to deliver or recognize a frequency signal.  
For proper synchronization of multiple regulators, all of them have to be configured with the same switching  
frequency (see Table 2), so the same resistor connected at the FSW pin.  
In order to minimize the RMS current flowing through the input filter, the L6986H device provides a phase shift of  
180° between the master and the SLAVES. If more than two devices are synchronized, all slaves will have a  
common 180° phase shift with respect to the master.  
Considering two synchronized L6986H which regulate the same output voltage (i.e.: operating with the same duty  
cycle), the input filter RMS current is optimized and is calculated as:  
I
OUT  
2
2D ⋅ (1 2D)  
ifD < 0.5  
I
=
(42)  
RMS  
I
OUT  
2
(2D − 1) (2 2D)  
ifD > 0.5  
The graphical representation of the input RMS current of the input filter in the case of two devices with 0° phase  
shift (synchronized to an external signal) or 180° phase shift (synchronized connecting their SYNCH pins)  
regulating the same output voltage is provided in the figure below. To dimension the proper input capacitor please  
refer to Input capacitor selection).  
DS12905 - Rev 2  
page 43/68  
 
 
 
L6986H  
Synchronization (LNM)  
Figure 45. Input RMS current  
0.5  
0.4  
0.3  
0.2  
0.1  
0
two regulators operating in phase  
two regulators operating out of phase  
0
0.2  
0.4  
0.6  
0.8  
1
Duty cycle  
Figure 46. Two regulators not synchronized shows two not synchronized regulators with unconnected SYNCH  
pin.  
Figure 46. Two regulators not synchronized  
Figure 47. Two regulators synchronized shows the same regulators working synchronized having the SYNCH  
pins connected. The MASTER regulator (LX_reg2 trace) delivers the synchronization signal to the SLAVE device  
(LX_reg1). The SLAVE regulator works in phase with the synchronization signal, which is out of phase with the  
MASTER switching operation.  
DS12905 - Rev 2  
page 44/68  
 
 
L6986H  
Synchronization (LNM)  
Figure 47. Two regulators synchronized  
6.5.2  
External synchronization signal  
Multiple L6986H can be synchronized to an external frequency signal fed to the SYNCH pin. In this case the  
regulator set is phased to the reference and all the devices will work with 0° phase shift.  
The minimum synchronization pulse width is 100 ns and the frequency range of the synchronization signal is:  
[275 kHz - 1.4 MHz] if fSW_PROGRAMMED < 500 kHz  
[475 kHz - 2.2 MHz] if fSW_PROGRAMMED ≥ 500 kHz  
(see Figure 48. Synchronization pulse definition).  
Figure 48. Synchronization pulse definition  
275 kHz < fSYNCHRO < 1.4 MHz if  
475 kHz < fSYNCHRO < 2.2 MHz if  
f
SW_PROGRAMMED < 500 kHz typ  
f
SW_PROGRAMMED 500 kHz typ  
fSYNCHRO  
fSYNCHRO  
100 nsec. min.  
100 nsec. min.  
Since the internal slope compensation contribution that is required to prevent subharmonic oscillations in peak  
current mode architecture depends on the oscillator frequency, it is important to select the same oscillator  
frequency for all regulators (all of them operate as SLAVE) as close as possible to the frequency of the reference  
signal (please refer to Table 2). As a consequence all the regulators have the same resistor value connected to  
the FSW pin, so the slope compensation is optimized accordingly with the frequency of the synchronization  
signal. The slope compensation contribution is latched at power-up and so fixed during the device operation.  
The L6986H normally operates in the MASTER mode, driving the SYNCH line at the selected oscillator frequency  
as shown in Figure 49. L6986H synchronization driving capability.  
DS12905 - Rev 2  
page 45/68  
 
 
 
L6986H  
Synchronization (LNM)  
In the SLAVE mode the L6986H sets the internal oscillator at 250 kHz typ. (see Table 2) and drives the line  
accordingly.  
Figure 49. L6986H synchronization driving capability  
In order to safely guarantee that each regulator recognizes itself in SLAVE mode when synchronized, the external  
master must drive the SYNCH pin with a clock signal frequency higher than the maximum oscillator spread of the  
selected line in Table 2 for at least 10 internal clock cycles.  
Once recognized as SLAVE the synchronization range is:  
275 - 1.4 MHz if fSW < 500 kHz  
475 kHz - 2.2 MHz if fSW >=500 kHz  
example 1: selecting RFSW = 0 Ω to VCC  
Table 13. Example of oscillator frequency selection  
R
VCC  
(E24 series)  
R
GND  
(E24 series)  
f
SW  
min.  
f
SW  
typ.  
f
SW  
max.  
Symbol  
f
NC  
0 Ω  
225  
250  
275  
SW  
the device enters in slave mode after 10 pulses at frequency higher than 275 kHz and so it is able to synchronize  
to a clock signal in the range 275 kHz - 1.4 MHz (see Figure 48. Synchronization pulse definition).  
Example 2: selecting RFSW = 0 Ω to GND  
Table 14. Example of oscillator frequency selection (2)  
R
VCC  
(E24 series)  
R
GND  
(E24 series)  
f
SW  
min.  
f
SW  
typ.  
f
SW  
max.  
Symbol  
f
NC  
0 Ω  
450  
500  
550  
SW  
The device enters in slave mode after 10 pulses at frequency higher than 550 kHz and so it is able to synchronize  
to a clock signal in the range 475 kHz - 2.2 MHz (see Figure 48. Synchronization pulse definition).  
DS12905 - Rev 2  
page 46/68  
 
 
 
L6986H  
Synchronization (LNM)  
As anticipated above, in SLAVE mode the internal oscillator operates at 250 kHz typ. but the slope compensation  
is dimensioned accordingly with FSW resistors so it is important to limit the switching operation around a working  
point close to the selected oscillator frequency (FSW resistor).  
As a consequence, to guarantee the full output current capability and to prevent the subharmonic oscillations, the  
MASTER may limit the driving frequency range within ± 5% of the selected frequency.  
A wider frequency range may generate subharmonic oscillation for duty > 50% or limit the peak current capability  
(see IPK parameter in Table 1) since the internal slope compensation signal may be saturated.  
The device keeps operating in slave mode as far as the master is able to drive the SYNCH pin faster than 275  
kHz, otherwise the L6986H goes back into MASTER mode at the programmed RFSW oscillator frequency after  
successfully driving one pulse 250 kHz typ. (see Figure 50. Slave-to-master mode transition) in the SYNCH line.  
Figure 50. Slave-to-master mode transition  
The external master can force a latched SLAVE mode driving the SYNCH pin low at power-up, before the soft-  
start begins the switching activity. So the oscillator frequency is 250 kHz typ. fixed until a new UVLO event is  
triggered regardless FSW resistor value, that otherwise counts to design the slope compensation. The same  
considerations above are also valid.  
The master driving capability must be able to provide the proper signal levels at the SYNCH pin (see Table 1):  
Low level < VSYN THL = 0.7 V sinking 5 mA  
High level > VSYN THH = 1.2 V sourcing 0.7 mA  
DS12905 - Rev 2  
page 47/68  
 
L6986H  
Design of the power components  
Figure 51. Master driving capability to synchronize the L6986H  
6.6  
Design of the power components  
6.6.1  
Input capacitor selection  
The input capacitor voltage rating must be higher than the maximum input operating voltage of the application.  
During the switching activity a pulsed current flows into the input capacitor and so its RMS current capability must  
be selected accordingly with the application conditions. Internal losses of the input filter depends on the ESR  
value so usually low ESR capacitors (like multilayer ceramic capacitors) have higher RMS current capability. On  
the other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher  
conversion efficiency.  
The maximum RMS input current flowing through the capacitor can be calculated as:  
D
(1 ) ⋅  
η
D
η
I
= I  
OUT  
(43)  
RMS  
Where IOUT is the maximum DC output current, D is the duty cycles, ƞ is the efficiency. This function has a  
maximum at D = 0.5 and, considering h = 1, it is equal to IOUT/2.  
In a specific application the range of possible duty cycles has to be considered in order to find out the maximum  
RMS input current. The maximum and minimum duty cycles can be calculated as:  
V
+ ΔV  
LOWSIDE  
OUT  
LOWSIDE  
+ ΔV  
D
=
(44)  
(45)  
MAX  
V
+ ΔV  
+ ΔV  
− V  
+ ΔV  
INMIN  
INMIN  
HIGHSIDE  
− V + ΔV  
INMIN HIGHSIDE  
V
OUT  
LOWSIDE  
LOWSIDE  
D
=
MIN  
V
INMAX  
Where DVHIGH_SIDE and DVLOW_SIDE are the voltage drops across the embedded switches. The peak-to-peak  
voltage across the input filter can be calculated as follows:  
I
OUT  
⋅ f  
D
η
D
η
C
=
(1 ) + ESR ⋅ (I  
OUT  
+ ΔI )  
(46)  
IN  
L
V
PP SW  
In case of negligible ESR (MLCC capacitor) the equation of CIN as a function of the target VPP can be written as  
follows:  
I
OUT  
⋅ f  
D
(1 ) ⋅  
η
D
η
C
=
(47)  
(48)  
IN  
V
PP SW  
Considering ƞ=1 this function has its maximum in D = 0.5:  
I
OUT  
C
=
INMIN  
4 ⋅ V  
⋅ f  
PPMAX SW  
Typically CIN is dimensioned to keep the maximum peak-peak voltage across the input filter in the order of 5%  
VIN_MAX  
.
DS12905 - Rev 2  
page 48/68  
 
 
 
L6986H  
Design of the power components  
Table 15. Input capacitors  
Manufacturer  
Series  
Size  
1210  
1206  
1210  
Cap value (µF)  
Rated voltage (V)  
C3225X7S1H106M  
C3216X5R1H106M  
UMK325BJ106MM-T  
10  
-
50  
-
TDK  
Taiyo Yuden  
-
-
6.6.2  
Inductor selection  
The inductor current ripple flowing into the output capacitor determines the output voltage ripple (please refer to  
Output capacitor selection). Usually the inductor value is selected in order to keep the current ripple lower than  
20% - 40% of the output current over the input voltage range. The inductance value can be calculated by equation  
below:  
V
− V  
L
V
OUT  
L
IN  
OUT  
ΔI  
=
⋅ T  
ON  
=
⋅ T  
OFF  
(49)  
L
Where TON and TOFF are the on and off time of the internal power switch. The maximum current ripple, at fixed  
VOUT, is obtained at maximum TOFF that is at minimum duty cycle (see Input capacitor selection to calculate  
minimum duty). So fixing ΔIL = 20% to 40% of the maximum output current, the minimum inductance value can be  
calculated:  
V
1 − D  
OUT  
MIN  
L
=
(50)  
MIN  
ΔI  
LMAX  
f
SW  
where fSW is the switching frequency 1/(TON + TOFF).  
For example for VOUT = 3.3 V, VIN = 12 V, IOUT = 2 A and FSW = 500 kHz the minimum inductance value to have  
ΔIL = 30% of IOUT is about 8.2 µH.  
The peak current through the inductor is given by:  
ΔI  
L
I
= I  
OUT  
+
(51)  
L, PK  
2
So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device)  
increases. The higher is the inductor value, the higher is the average output current that can be delivered, without  
reaching the current limit.  
In the table below, some inductor part numbers are listed.  
Table 16. Inductors  
Manufacturer  
Series  
XAL50xx  
XAL60xx  
Inductor value (µH)  
Saturation current (A)  
6.5 to 2.7  
Coilcraft  
2.2 to 22  
12.5 to 4  
6.6.3  
Output capacitor selection  
The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output  
voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). As a  
consequence the output capacitor has to be selected in order to have a voltage ripple compliant with the  
application requirements.  
The voltage ripple equation can be calculated as:  
ΔI  
LMAX  
ΔV  
OUT  
= ESR ⋅ ΔI  
LMAX  
+
(52)  
8 ⋅ C  
⋅ f  
OUT SW  
Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi layer  
ceramic capacitor (MLCC).  
The output capacitor is important also for loop stability: it determines the main pole and the zero due to its ESR.  
(See Closing the loop to consider its effect in the system stability).  
DS12905 - Rev 2  
page 49/68  
 
 
 
 
L6986H  
Application board  
For example with VOUT = 3.3 V, VIN = 12 V, fSW = 500 kHz, ΔIL = 0.6 A, (resulting by the inductor value) and COUT  
= 20 µF MLCC :  
ΔV  
ΔI  
OUT  
1
LMAX  
C ⋅ f  
OUT SW  
1
0.6  
7.5mV  
3.3  
= (  
) =  
= 0.23 %  
(53)  
V
V
3.3 8 20μF ⋅ 500kHz  
OUT  
OUT  
The output capacitor value has a key role to sustain the output voltage during a steep load transient. When the  
load transient slew rate exceeds the system bandwidth, the output capacitor provides the current to the load. In  
case the final application specifies high slew rate load transient, the system bandwidth must be maximized and  
the output capacitor has to sustain the output voltage for time response shorter than the loop response time.  
In Table 17. Output capacitors some capacitor series are listed.  
Table 17. Output capacitors  
Manufacturer  
Series  
GRM32  
GRM31  
ECJ  
Cap value (μF)  
22 to 100  
10 to 47  
Rated voltage (V)  
ESR (mΩ)  
<5  
6.3 to 25  
6.3 to 25  
6.3  
MURATA  
<5  
10 to 22  
<5  
PANASONIC  
EEFCD  
TPA/B/C  
C3225  
10 to 68  
6.3  
15 to 55  
40 to 80  
<5  
SANYO  
TDK  
100 to 470  
22 to 100  
4 to 16  
6.3  
6.7  
Application board  
The reference evaluation board schematic is shown in the figure below.  
Figure 52. Evaluation board schematic  
TP1  
TP3  
R11  
R10  
NM  
NM  
R5  
NM  
TP2  
TP4  
RST  
SS/INH  
SYNCH  
U1  
L6986H  
RST  
R6  
1M  
J3  
4
15  
2
1
VOUT  
SYNCH  
VIN  
VIN_FLT  
16  
VBIAS  
L1  
10uH  
13  
14  
VCC  
FSW  
MLF  
LX  
LX  
J5  
R3  
R1  
NM  
0
L1A  
82k  
NM  
5
J2  
6
C7  
NM  
9
7
FB  
3
SS/INH  
DELAY  
EP  
R8  
75k C8  
C4 2.2p  
330p  
R9  
R7  
240k  
8
COMP  
C11  
NM  
C3  
R2  
NM  
R4  
0
+
+
SGND  
10  
PGND PGND  
11 12  
470nF  
10V  
C5  
68nF  
C6  
10nF  
17  
J1  
signal GND  
power GND  
TP7  
PGND  
GND  
J4  
L3  
size XAL5030 Coilcraft  
L2 4.7uH  
TP8  
TP5  
VIN_FLT  
VIN  
MPZ2012S221A  
size 0805  
VIN_EMI  
TP6  
PGND  
GND  
The additional input filter (C16, L3, C15, L2, C14) limits the conducted emission on the power supply (refer to  
HTSSOP16 package information).  
DS12905 - Rev 2  
page 50/68  
 
 
 
L6986H  
Application board  
Table 18. Bill of material (communal parts)  
Reference  
Part number  
Description  
Manufacturer  
10 µF - 1206 - 50 V - X5R -  
10%  
C1, C9, C10  
CGA5L3X5R1H106K  
TDK  
TDK  
1 µF - 0805 - 50 V - X7R -  
10%  
C2  
C3  
CGA4J3X7R1H105K  
-
470 nF - 10 V - 0603  
See Table 19. L6986H 3V3  
demonstration board BOM,  
Table 20. L6986H 5V  
demonstration board BOM,  
and Table 21. L6986H adj.  
demonstration board BOM  
C4,C7,C8  
-
C5  
C6  
-
-
68 nF - 10 V - 0603  
10 nF - 10 V - 0603  
4.7 µF - 1206 - 50 V - X7R -  
10%  
C14, C15, C16  
CGA5L3X7R1H475K  
TDK  
C11, C13, C13A  
R1, R4  
Not mounted  
0 Ω - 0603  
R6  
1 MΩ - 1%- 0603  
See Table 19. L6986H 3V3  
demonstration board BOM,  
Table 20. L6986H 5V  
demonstration board BOM,  
and Table 21. L6986H adj.  
demonstration board BOM  
R7, R8, R9  
R11  
10 Ω - 1% - 0603  
Not mounted  
10 µH  
R2, R3, R5, R10  
L1  
L2  
L3  
J1  
J2  
XAL5050-103MEC  
XAL4030-472MEC  
MPZ2012S221A  
Open  
Coilcraft  
Coilcraft  
TDK  
4.7 µH  
EMC bead  
Closed  
Switchover disabled  
See Table 19. L6986H 3V3  
demonstration board BOM,  
Table 20. L6986H 5V  
demonstration board BOM,  
and Table 21. L6986H adj.  
demonstration board BOM  
J3  
J4  
J5  
Open  
Open  
To adjust the ISKIP current  
level in LCM operation. Leave  
open in LNM  
See Table 19. L6986H 3V3  
demonstration board BOM,  
Table 20. L6986H 5V  
demonstration board BOM,  
and Table 21. L6986H adj.  
demonstration board BOM  
U1  
L6986H x-  
ST  
DS12905 - Rev 2  
page 51/68  
 
L6986H  
Application board  
Table 19. L6986H 3V3 demonstration board BOM  
Reference  
Part number  
Description  
0 R - 0603  
Manufacturer  
R7  
R9, C7  
R8  
Not mounted  
-
75 kΩ - 1% - 0603  
330 pF - 10 V - 0603  
2.2 pF - 10 V - 0603  
C8  
-
C4  
-
J3  
Open  
U1  
L6986H 3V3  
3.3 V internal divider  
STM  
Table 20. L6986H 5V demonstration board BOM  
Reference  
Part number  
Description  
0 R - 0603  
Manufacturer  
R7  
R9, C7  
R7  
Not mounted  
-
-
-
0 Ω -0603  
R8  
100 kΩ - 1% - 0603  
330 pF - 10 V - 0603  
2.2 pF - 10 V - 0603  
C8  
C4  
J3  
Open  
U1  
L6986H 5V  
5 V internal divider  
STM  
Table 21. L6986H adj. demonstration board BOM  
Reference  
Part number  
Description  
240 kΩ - 1% - 0603  
Not mounted  
Manufacturer  
R7  
C7  
R9  
R8  
C8  
C4  
J3  
-
-
-
82 kΩ - 1% - 0603  
75 kΩ - 1% - 0603  
330 pF - 10 V - 0603  
2.2 pF - 10 V - 0603  
Open  
External divider (V  
=3.3 V)  
U1  
L6986H  
STM  
OUT  
Figure 53. Magnitude bode plot and Figure 54. Phase margin bode plot show the magnitude and phase margin  
Bode plots related to the BOM of Table 21. L6986H adj. demonstration board BOM.  
The small signal dynamic performance in this configuration is:  
BW = 55kHz  
pase margin = 60 ∘  
(54)  
DS12905 - Rev 2  
page 52/68  
 
 
 
L6986H  
Application board  
Figure 53. Magnitude bode plot  
Figure 54. Phase margin bode plot  
DS12905 - Rev 2  
page 53/68  
 
 
L6986H  
Application board  
Figure 55. Top layer  
Figure 56. Bottom layer  
DS12905 - Rev 2  
page 54/68  
 
 
L6986H  
Efficency curves  
6.8  
Efficency curves  
Figure 57. Efficiency: VIN = 13.5 V - VOUT = 3.3 V - fsw = 500 kHz  
Figure 58. Efficiency: VIN = 13.5 V - VOUT = 3.3 V - fsw = 500 kHz (log scale)  
DS12905 - Rev 2  
page 55/68  
 
 
 
L6986H  
Efficency curves  
Figure 59. Efficiency: VIN = 13.5 V - VOUT = 5 V - fsw = 500 kHz  
Figure 60. Efficiency: VIN = 13.5 V - VOUT = 5 V - fsw = 500 kHz (log scale)  
DS12905 - Rev 2  
page 56/68  
 
 
L6986H  
Efficency curves  
Figure 61. Efficiency: VIN = 24 V - VOUT = 3.3 V - fsw = 500 kHz  
Figure 62. Efficiency: VIN = 24 V - VOUT = 3.3 V - fsw = 500 kHz (log scale)  
DS12905 - Rev 2  
page 57/68  
 
 
L6986H  
Efficency curves  
Figure 63. Efficiency: VIN = 24 V - VOUT = 5 V - fsw = 500 kHz  
Figure 64. Efficiency: VIN = 24 V - VOUT = 5 V - fsw = 500 kHz (log scale)  
DS12905 - Rev 2  
page 58/68  
 
 
L6986H  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
7.1  
HTSSOP16 package information  
Figure 65. HTSSOP16 package outline  
DS12905 - Rev 2  
page 59/68  
 
 
 
L6986H  
HTSSOP16 package information  
Table 22. HTSSOP16 mechanical data  
mm  
Symbol  
Min.  
Typ.  
Max.  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
3.2  
A
A1  
A2  
b
0.80  
0.19  
0.09  
4.90  
2.8  
1.00  
c
D
5.00  
3
D1  
E
6.20  
4.30  
2.8  
6.40  
4.40  
3
6.60  
4.50  
3.2  
E1  
E2  
e
0.65  
0.60  
1.00  
L
0.45  
0.00  
0.75  
L1  
K
8.00  
0.10  
aaa  
DS12905 - Rev 2  
page 60/68  
 
L6986H  
Ordering information  
8
Ordering information  
Table 23. Ordering information  
Package  
Part number  
L6986H3V3  
L6986H3V3TR  
L6986H5V  
Packing  
Tube  
Tape and reel  
Tube  
HTSSOP16  
L6986H5VTR  
L6986H  
Tape and reel  
Tube  
L6986HTR  
Tape and reel  
DS12905 - Rev 2  
page 61/68  
 
 
L6986H  
Revision history  
Table 24. Document revision history  
Date  
Version  
Changes  
26-Mar-2019  
27-Feb-2020  
1
2
Initial release.  
Updated I  
Unit value in Table 5. Electrical characteristics.  
Q OPVIN  
DS12905 - Rev 2  
page 62/68  
 
 
L6986H  
Contents  
Contents  
1
2
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Pin settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2.1  
2.2  
2.3  
2.4  
2.5  
Pin connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Functional description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.1  
4.2  
4.3  
Power supply and voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Voltage monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Soft-start and inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.3.1  
4.3.2  
Ratiometric startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output voltage sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.4  
4.5  
4.6  
4.7  
4.8  
Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Output voltage line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Output voltage load regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
High-side switch resistance vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.8.1  
4.8.2  
4.8.3  
Low noise mode (LNM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Quiescent current in LCM with switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.9  
Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.9.1  
4.9.2  
LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.10 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.11 OCP and switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.12 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
4.13 Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
DS12905 - Rev 2  
page 63/68  
L6986H  
Contents  
5
Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5.1  
5.2  
5.3  
5.4  
5.5  
G
(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
CO  
Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Voltage divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Compensation network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6
Application notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6.1  
6.2  
6.3  
6.4  
6.5  
Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
MLF pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Voltage supervisor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Synchronization (LNM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
6.5.1  
6.5.2  
Embedded master - slave synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
External synchronization signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6.6  
Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
6.6.1  
6.6.2  
6.6.3  
Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Output capacitor selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.7  
6.8  
Application board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Efficency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
7
8
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
7.1  
HTSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
DS12905 - Rev 2  
page 64/68  
L6986H  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
fSW selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
LNM/ LCM selection (L6986H3V3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
LNM/ LCM selection (L6986H5V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
LNM/ LCM selection (L6986H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 10. Uncompensated error amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. ISKIP programmable current threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 12. SYNCH/ISKIP pin voltage thresholds and driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 13. Example of oscillator frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 14. Example of oscillator frequency selection (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 15. Input capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 16. Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 17. Output capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 18. Bill of material (communal parts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 19. L6986H 3V3 demonstration board BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 20. L6986H 5V demonstration board BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 21. L6986H adj. demonstration board BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 22. HTSSOP16 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 23. Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 24. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DS12905 - Rev 2  
page 65/68  
L6986H  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Internal circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft-start phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Soft-start phase with precharged COUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Enable the device with external voltage step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
External soft-start network VSTEP driven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External soft-start after UVLO or thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Ratiometric startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ratiometric start-up operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output voltage sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
VOUT = 3.3 V line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VOUT = 3.3 V load regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Normalized RDS(on),HS variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Low noise mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
L6986H skip current level transition at ILOAD = 150 mA with L = 10 µH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Light-load efficiency comparison at different ISKIP - linear scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Light-load efficiency comparison at different ISKIP - log scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LCM operation with ISKIPH = 600 mA typ. at zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LCM operation with ISKIPL = 200 mA typ. at zero load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LCM operation over loading condition (part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LCM operation over loading condition (part 2-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LCM operation over loading condition (part 3-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LCM operation over loading condition (part 4-CCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Quiescent current at VOUT = 3.3 V and zero output load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Quiescent current at VOUT = 5 V and zero output load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Quiescent current at VIN while regulating VOUT = 5 V at zero output load . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Valley current sense operation in overcurrent condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Peak current sense operation in overcurrent condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output voltage oscillations during heavy short-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Zoomed waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
VBIAS in heavy short-circuit event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Overvoltage operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Block diagram of the loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Transconductance embedded error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Module plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Phase plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Magnitude plot for example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Phase plot for example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
L6986H application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Voltage supervisor operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Voltage supervisor operation during OVP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Input RMS current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Two regulators not synchronized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Two regulators synchronized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Synchronization pulse definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
L6986H synchronization driving capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Slave-to-master mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
Figure 47.  
Figure 48.  
Figure 49.  
Figure 50.  
DS12905 - Rev 2  
page 66/68  
L6986H  
List of figures  
Figure 51.  
Figure 52.  
Figure 53.  
Figure 54.  
Figure 55.  
Figure 56.  
Figure 57.  
Figure 58.  
Figure 59.  
Figure 60.  
Figure 61.  
Figure 62.  
Figure 63.  
Figure 64.  
Figure 65.  
Master driving capability to synchronize the L6986H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Evaluation board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Magnitude bode plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Phase margin bode plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Bottom layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Efficiency: VIN = 13.5 V - VOUT = 3.3 V - fsw = 500 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Efficiency: VIN = 13.5 V - VOUT = 3.3 V - fsw = 500 kHz (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Efficiency: VIN = 13.5 V - VOUT = 5 V - fsw = 500 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Efficiency: VIN = 13.5 V - VOUT = 5 V - fsw = 500 kHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Efficiency: VIN = 24 V - VOUT = 3.3 V - fsw = 500 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Efficiency: VIN = 24 V - VOUT = 3.3 V - fsw = 500 kHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Efficiency: VIN = 24 V - VOUT = 5 V - fsw = 500 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Efficiency: VIN = 24 V - VOUT = 5 V - fsw = 500 kHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
HTSSOP16 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
DS12905 - Rev 2  
page 67/68  
L6986H  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS12905 - Rev 2  
page 68/68  

相关型号:

L6986H5VTR

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current
STMICROELECTR

L6986HTR

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current
STMICROELECTR

L6986TR

38 V, 2 A synchronous step-down switching regulator with 30 A quiescent current
STMICROELECTR

L6995

STEP DOWN CONTROLLER FOR HIGH DIFFERENTIAL INPUT-OUTPUT CONVERSION
STMICROELECTR

L6995D

STEP DOWN CONTROLLER FOR HIGH DIFFERENTIAL INPUT-OUTPUT CONVERSION
STMICROELECTR

L6995DTR

STEP DOWN CONTROLLER FOR HIGH DIFFERENTIAL INPUT-OUTPUT CONVERSION
STMICROELECTR

L6995S

SWITCHING CONTROLLER, PDSO20, MO-153-AC, TSSOP-20
STMICROELECTR

L6995STR

SWITCHING CONTROLLER, PDSO20, MO-153-AC, TSSOP-20
STMICROELECTR

L6996

DINAMICALLY PROGRAMMABLE SYNCHRONOUS STEP DOWN CONTROLLER FOR MOBILE CPUs
STMICROELECTR

L6996D

DINAMICALLY PROGRAMMABLE SYNCHRONOUS STEP DOWN CONTROLLER FOR MOBILE CPUs
STMICROELECTR

L6996DTR

DINAMICALLY PROGRAMMABLE SYNCHRONOUS STEP DOWN CONTROLLER FOR MOBILE CPUs
STMICROELECTR

L6997

STEP DOWN CONTROLLER FOR LOW VOLTAGE OPERATIONS
STMICROELECTR