L7983PUR [STMICROELECTRONICS]

60 V, 300 mA synchronous step-down switching regulator with 10 μA quiescent current;
L7983PUR
型号: L7983PUR
厂家: ST    ST
描述:

60 V, 300 mA synchronous step-down switching regulator with 10 μA quiescent current

文件: 总43页 (文件大小:1938K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L7983  
Datasheet  
60 V, 300 mA synchronous step-down switching regulator with 10 µA quiescent  
current  
Features  
3.5 V to 60 V operating input voltage  
Fixed output voltage (3.3 V and 5 V) or adjustable from 0.85 V to VIN  
300 mA DC output current  
Dynamic low consumption mode to low noise mode selection  
10 µA operating quiescent current (L7983PU33R, VIN > 24 V, LCM)  
2.3 µA shutdown current  
200 kHz to 2.2 MHz programmable switching frequency  
Optional spread spectrum (dithering)  
Internal soft-start  
Enable / adjustable UVLO threshold  
Synchronization to external clock  
Internal compensation network  
Internal current limiting  
Overvoltage protection  
Output voltage sequencing  
Thermal shutdown  
Applications  
Designed for 12 V, 24 V and 48 V buses  
Battery powered applications  
Decentralized intelligent nodes  
Fail safe system  
Maturity status link  
L7983  
Sensors and low noise applications (LNM)  
Description  
The L7983 device is a step-down monolithic switching regulator able to deliver up to  
300 mA DC based on peak current mode architecture.  
The output voltage adjustability ranges from 0.85 V to VIN. The wide input voltage  
range and adjustable UVLO threshold meet the specification for the 12 V, 24 V and  
48 V industrial bus standards.  
The “Low Consumption Mode” (LCM) is designed for applications active during idle  
mode, so it maximizes the efficiency at light load with controlled output voltage ripple.  
The “Low Noise Mode” (LNM) makes the switching frequency constant overload  
current range, meeting the low noise application specification. The L7983 supports  
dynamic LCM to LNM transition.  
The soft-start time is internally fixed and the output voltage supervisor manages the  
reset phase for any digital load (microcontroller, FPGA, etc.).  
The internal compensation network features high noise immunity, simple design and  
saves on the component cost.  
The RST open collector output can also implement output voltage sequencing during  
the power-up phase.  
DS13354 - Rev 1 - October 2020  
www.st.com  
For further information contact your local STMicroelectronics sales office.  
L7983  
The synchronous rectification, designed for high efficiency at medium - heavy load,  
and the high switching frequency capability make the size of the application compact.  
Pulse-by-pulse current sensing on both power elements implements an effective  
constant current protection.  
DS13354 - Rev 1  
page 2/43  
L7983  
Application schematic and block diagram  
1
Application schematic and block diagram  
Application circuit  
1.1  
Figure 1. Typical application circuit  
RESET  
VOUT  
L7983  
VIN  
RST  
LX  
VIN  
EN/UVLO  
VOUT(FB)  
VCC  
GND  
FSW  
VBIAS  
GND  
GND  
LNM/LCM  
EP  
Figure 2. Block diagram  
VBIAS  
EN/UVLO  
+
-
VCC  
+
ENABLE  
VIN MONITOR  
UVLO  
VCC  
LDO  
-
OTP  
MONITOR  
BIAS  
and  
CLOCK  
VIN  
REFERENCE  
SLOPE  
VIN  
+ +  
ENABLE  
CLOCK  
HS MOS  
SENSE  
-
SENSE  
+
IPK  
+
LX  
PWM  
SOFT-START  
CONTROL  
END SS  
LOGIC  
and  
CONTROL  
-
END SS  
DRIVER  
and  
ANTI XC  
LX  
VMAX  
VMIN  
LX  
+
-
VREF  
COMP  
gm  
VOUT(FB)  
+
LX  
ZCD  
-
LS MOS  
CLOCK  
RST  
+
-
OVP  
GND  
-
IVY  
+
-
LX  
+
SYNCH  
FSW SET  
VCC  
FSW  
LNM/LCM  
DS13354 - Rev 1  
page 3/43  
 
 
 
 
L7983  
Pin settings  
2
Pin settings  
Figure 3. Pin connection (top view)  
1
VOUT/FB  
VBIAS  
VCC  
10  
9
GND  
LX  
2
3
4
8
VIN  
EXPOSED  
PAD TO  
GND  
FSW  
7
EN/UVLO  
RST  
LNM/LCM  
6
5
Table 1. Pin description  
N°  
Pin  
Description  
Output voltage sensing. This pin operates as VOUT or FB accordingly with  
selected part number:  
1
VOUT/FB  
VOUT is output voltage sensing with selected internal voltage divider.  
FB is output voltage sensing with external resistor divider.  
Input supply of the integrated LDO. Typically connected to the regulated output  
voltage or an auxiliary rail to increase the efficiency at light load. Connect to GND  
if not used or bypass with a 100 nF ceramic capacitor if supplied by the output  
voltage or by an auxiliary rail.  
2
VBIAS  
Output of the integrated LDO that supplies the embedded analog circuitry.  
Connect a ceramic capacitor (470 nF typ.) to filter internal voltage reference.  
3
4
VCC  
FSW  
Switching frequency programming pin. Connect an external resistor to VCC or  
GND.  
Dynamic pin selection between Low Consumption Mode (LCM, active low) and  
Low Noise Mode operation (LNM, active high). This pin can also be used for  
synchronization with an external clock (clock-in function).  
5
LNM/LCM  
Active low open collector output for output monitoring and power-up reset  
sequencing. RST is driven in low impedance when the output voltage is out of  
regulation and released once the output voltage becomes valid.  
6
7
RST  
Active high enable pin, VIN compatible. It can be exploited with an external  
resistor divider to adjust the input undervoltage lockout (UVLO).  
EN/UVLO  
8
9
VIN  
LX  
DC input voltage  
Switching node  
10  
--  
GND  
E.P.  
Ground  
Exposed pad must be connected to GND  
DS13354 - Rev 1  
page 4/43  
 
 
 
L7983  
Absolute maximum ratings  
3
Absolute maximum ratings  
Stressing the device above the ratings listed in Table 2 may cause permanent damage to the device. These are  
stress ratings only and operation of the device at these or any other conditions above those indicated in the  
operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 2. Absolute maximum ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VIN  
See Table 1  
-0.3  
63  
V
VIN + 0.3 or  
max. 3.6  
V
-0.3  
-0.3  
V
CC  
EN/UVLO  
RST  
V
V
V
VIN + 0.3  
LX  
-0.3  
-0.3  
VIN + 0.3  
VIN + 0.3 or  
max. 14  
VBIAS  
V
VOUT/FB  
LNM/LCM  
FSW  
V
V
V
A
-0.3  
-0.3  
5.5  
VCC + 0.3  
0.3  
I , I  
HS LS  
High-side / low-side RMS switch current  
Operating temperature range  
T
-40  
-65  
150  
J
T
STG  
Storage temperature range  
150  
°C  
T
Lead temperature (soldering 10 sec.)  
260  
LEAD  
3.1  
3.2  
Thermal characteristics  
Table 3. Thermal data  
Symbol  
Parameter  
Value  
50  
Unit  
°C/W  
Thermal resistance junction to ambient (device soldered on a  
standard demonstration board)  
R
thJA  
ESD protection  
Table 4. ESD performance  
Symbol  
Test conditions  
HBM  
Value  
Unit  
2
kV  
V
ESD  
CDM  
500  
DS13354 - Rev 1  
page 5/43  
 
 
 
 
 
 
L7983  
Operating conditions  
3.3  
Operating conditions  
Table 5. Recommended operating conditions  
Value  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
V
Power supply voltage  
3.5  
0
60  
14  
V
V
IN  
V
BIAS  
DS13354 - Rev 1  
page 6/43  
 
 
L7983  
Electrical characteristics  
4
Electrical characteristics  
TJ = 25 °C, VIN = 24 V, VEN/UVLO = VIN, LNM selected, fSW = 1 MHz unless otherwise specified.  
Table 6. Electrical characteristics  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Turn on and power section characteristics  
V
V
V
turn-on  
turn-off  
VIN rising  
VIN falling  
Hysteresis  
2.6  
2.5  
2.8  
2.7  
0.1  
3.0  
2.9  
INH  
IN  
IN  
V
V
INL  
V
V
V
V
V
rising  
falling  
rising  
falling  
Wake-up ON threshold  
Wake-up OFF threshold  
Enable ON threshold  
0.7  
WAKEUPH  
EN  
EN  
EN  
EN  
V
0.2  
1.1  
0.9  
WAKEUPL  
V
V
1.2  
1.0  
1.3  
1.1  
ENH  
V
Enable OFF threshold  
Peak current limit  
ENL  
Hysteresis  
0.2  
Duty cycle < 20% (1)  
0.42  
0.35  
0.43  
0.47  
0.39  
0.52  
0.08  
- 0.15  
1.9  
0.52  
0.43  
0.61  
I
PK  
Duty cycle = 100%, closed loop operation (1)  
(1)  
I
VY  
Valley current limit  
A
(1)  
I
Skip current limit  
SKIP  
LNM selected, VFB = 0.9 V (1)  
I
Reverse current limit  
HS MOS ON resistance  
LS MOS ON resistance  
NEG  
HS R  
LS R  
I
I
= 0.2 A  
= 0.2 A  
2.5  
1.2  
DSON  
DSON  
LX  
Ω
0.85  
500  
LX  
R
R
R
= 5.6 kΩ  
450  
900  
1980  
0
550  
1100  
2420  
100  
FSW  
f
= 0 Ω  
Selected switching frequency  
1000  
2200  
kHz  
SW  
FSW  
FSW  
= 56 kΩ  
D
Duty cycle  
%
ns  
t
Minimum HS MOS on-time  
Internal soft-start time  
60  
2
ON MIN  
t
1.3  
2.7  
ms  
SS  
VCC and VBIAS  
VBIAS = GND  
VBIAS = 5 V  
VBIAS increasing  
Hysteresis  
2.9  
2.9  
3.3  
3.3  
3.6  
3.6  
V
LDO output voltage  
Switchover threshold  
V
CC  
SWO  
3.2  
V
V
0.075  
Power consumption  
I
V
= GND  
EN/UVLO  
Shutdown current from VIN  
2.3  
3
3.2  
6
SHTDWN  
(2)  
Quiescent current from VIN, LCM  
(refer to Section 5.5 VCC and  
switchover)  
VBIAS = 5 V, VOUT = 1.05 * V  
REF  
(2)  
VBIAS = GND, VOUT = 1.05 * V  
VBIAS = 5 V, VOUT = 1.05 * V  
35  
50  
µA  
REF  
I
QVIN  
170  
1300  
205  
1500  
REF  
Quiescent current from VIN, LNM  
VBIAS = GND, VOUT = 1.05 * V  
REF  
DS13354 - Rev 1  
page 7/43  
 
 
L7983  
Electrical characteristics  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
37  
Max.  
50  
Unit  
(2)  
LCM, VBIAS = 5 V, VOUT = 1.05 * V  
REF  
µA  
I
Quiescent current from VBIAS  
QVBIAS  
LNM, VBIAS = 5 V, VOUT = 1.05 * V  
1200  
1400  
REF  
Voltage reference and OVP  
T = 25 °C  
0.844  
0.840  
3.267  
3.250  
4.950  
4.925  
115  
0.850  
0.850  
3.300  
3.300  
5.000  
5.000  
120  
0.856  
0.860  
3.333  
3.350  
5.050  
5.075  
125  
J
Voltage feedback, L7983PUR  
-40 °C ≤ T ≤ 125 °C (3)  
J
T = 25 °C  
J
V
V
Voltage feedback, L7983PU33R  
Voltage feedback, L7983PU50R  
V
REF  
-40 °C ≤ T ≤ 125 °C (3)  
J
T = 25 °C  
J
-40 °C ≤ T ≤ 125 °C (3)  
J
Overvoltage trip (V  
/V  
)
%
%
OVP  
OUT REF  
V
Overvoltage hysteresis  
2
OVP,HYST  
Synchronization (clock-in) and LNM/LCM  
f
Synchronization range  
CLKIN allowed high level  
CLKIN allowed low level  
LNM selection level  
180  
2
2400  
5
kHz  
V
CLKIN  
V
CLKINH  
V
0
1.3  
5
V
CLKINL  
V
V
2
V
LNM  
LCM  
LCM selection level  
0
1.3  
V
Minimum allowed delay between  
LNM to LCM or LCM to LNM  
dynamic selection  
T
14  
92  
µs  
LNM/LCM  
Reset  
T = 25 °C  
90  
88  
94  
96  
RST release threshold  
J
V
RSTTHR  
OUT REF  
-40 °C ≤ T ≤ 125 °C (3)  
(V  
/V  
)
%
J
V
RST hysteresis  
Delay from V  
detection and RST pin release  
RST open collector output  
RST leakage current  
2
RSTHYST  
threshold  
RSTTHR  
T
2.0  
ms  
RSTDLY  
V
/V  
= 80%, 4 mA sinking current  
0.3  
0.5  
0.4  
0.8  
0.2  
OUT REF  
V
I
V
RSTLOW  
2 < V < V , 4 mA sinking current  
IN  
INH  
V
= 60 V, V  
/V  
= 110%  
µA  
RSTLKG  
IN  
OUT REF  
Thermal shutdown  
(4)  
(4)  
T
Thermal shutdown threshold  
Thermal shutdown hysteresis  
165  
30  
SHDWN  
°C  
T
HYS  
1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic  
application condition.  
2. LCM enables SLEEP mode at light load.  
3. Specifications in the -40 to +125 °C temperature range are assured by characterization and statistical  
correlation.  
4. Not tested in production.  
DS13354 - Rev 1  
page 8/43  
 
 
 
 
L7983  
Functional description  
5
Functional description  
The L7983 device is a monolithic step-down (“buck”) DC-DC voltage regulator based on a peak current mode,  
constant frequency architecture, with integrated control loop compensation network.  
The main internal blocks are shown in Figure 2 and can be summarized as follows:  
Power section, including high-side and low-side power MOSFETs, gate driver and current sensing  
Control loop blocks, including the trans-conductor (gm), the PWM comparator and the slope generator  
The control logic for low noise mode (LNM) or low consumption mode (LCM) operation selection and  
synchronization to external clock  
The frequency programming circuitry for device configuration  
Input voltage monitor and enable circuit with soft-start management and RST output signal for sequencing  
programming  
The low drop-out linear regulator (LDO) and switchover block to improve the power conversion efficiency.  
The fault management, including the overcurrent (OCP), the overvoltage (OVP) and overtemperature (OTP)  
protection  
5.1  
Power section  
The L7983 integrates both power MOSFETs for synchronous operation; one P-channel (high-side, HS) and one  
N-channel (low-side, LS), optimized for fast switching transition and high efficiency over the entire load range. The  
power stage is designed to deliver a continuous output current up to 0.3 A.  
The HS MOSFET source is connected to the VIN pin, the LS MOSFET source is connected to the GND pin  
(power ground). The HS MOSFET drain and LS MOSFET drain are connected together and to the LX pin (see  
Figure 2).  
The L7983 embodies an anti-shoot-through and adaptive deadtime control to minimize low-side body diode  
conduction time and consequently reduce power losses. This feature is implemented by comparing LX with HS  
and LS gate driving voltage.  
Following the HS turn-off, the LS MOSFET is suddenly switched on as soon as the voltage at the LX pin  
drops  
Following the LS turn-off, the HS MOSFET is suddenly switched on as soon as the gate driving voltage of  
LS drops  
If the current flowing in the inductor is negative (i.e. from VOUT to VIN), the voltage on the LX pin can’t drop after  
HS MOS turn-off. A watchdog controller is implemented to allow the LS MOSFET to turn on even in this case,  
allowing the negative current of the inductor to flow to ground. This mechanism allows the system to regulate  
even if the current is negative (if LNM mode is enabled).  
5.2  
Control loop and voltage programming  
The L7983 is based on a constant frequency peak current mode architecture.  
Thanks to integrated compensation network and slope generation, no additional external components are  
necessary for loop stabilization.  
DS13354 - Rev 1  
page 9/43  
 
 
 
L7983  
Control loop and voltage programming  
Figure 4. Control loop block diagram  
Vin  
HS  
Current  
sense  
Slope  
compensation  
Power  
Switches  
Vout  
L
LS  
+
gcs  
Ru  
Cu  
+
Ro  
Rd  
Co  
Integrated  
compensation  
FB  
E/A  
PWM  
Comparator  
Cp  
Rc  
Cc  
VREF  
Refer to Section 5.7 for further details on power components design.  
For the adjustable version (L7983PUR), the output voltage can be programmed through an external resistor  
divider, from 0.85 V up to VIN.  
The design equation is:  
R
U
V
= 0.85 1 +  
(1)  
OUT  
R
D
For the fixed version (L7983PU33R or L7983PU50R), the output voltage programming is achieved by simply  
shorting the VOUT(FB) pin to the output capacitor.  
DS13354 - Rev 1  
page 10/43  
 
L7983  
Control loop and voltage programming  
Figure 5. Output voltage programming - adjustable version  
RST  
LX  
VIN  
EN/UVLO  
VOUT(FB)  
VCC  
RU  
RD  
FSW  
VBIAS  
GND  
LNM/LCM  
EP  
Figure 6. Output voltage programming - fixed version  
RST  
LX  
VIN  
EN/UVLO  
VOUT(FB)  
VCC  
VBIAS  
GND  
FSW  
LNM/LCM  
EP  
DS13354 - Rev 1  
page 11/43  
 
 
L7983  
Control loop and voltage programming  
5.2.1  
LNM/LCM selection and synchronization  
Depending on the low-side power MOSFET management, the inductor current can be allowed to reverse or not.  
The choice can be performed during device operation by acting on the LNM/LCM pin.  
When the low-noise mode (LNM) operation is selected, by forcing high pin LNM/LCM, the inductor current can  
reverse. In this way a constant switching frequency is achieved, so limiting the output voltage ripple and providing  
a prompt transient response.  
Figure 7. LNM selected, no load  
If the LNM/LCM pin is forced low, the low-consumption mode (LCM) is activated, with the aim of maximizing the  
light load efficiency. When LCM is selected, the high-side MOSFET is turned on as soon as the FB pin is sensed  
lower than VREFLCM, i.e. VREF reference voltage increased by 2% typ.:  
V
= V  
REF  
1,02 typ.  
(2)  
REFLCM  
In LCM mode the HS MOS is turned on until ISKIP current is reached, then it is turned-off. The low-side MOSFET  
is then turned on until one of the following conditions occurs:  
The sensed inductor current drops to zero  
The switching period (programmed through the FSW pin) has expired and the FB pin is still lower than the  
voltage reference. In this case a new switching cycle is performed.  
In LCM working mode the regulator switching frequency is load-dependent (i.e. LX pulses can be skipped) with  
greater advantage to power conversion efficiency at light load.  
The following waveforms are showing the switching activity in LCM working mode and different load.  
DS13354 - Rev 1  
page 12/43  
 
 
L7983  
Control loop and voltage programming  
Figure 8. LCM selected, no load  
Figure 9. LCM selected, 10 mA load  
DS13354 - Rev 1  
page 13/43  
 
 
L7983  
Control loop and voltage programming  
Figure 10. LCM selected, 50 mA load  
If an external clock is applied on the LNM/LCM pin, the L7983 switching activity is synchronized to the applied  
clock and the LNM operation is enabled. The external clock must meet the electrical requirements summarized in  
Table 7. In case no external clock is detected on LNM/LCM for TLNM/LCM (14 µs typ.), the free running clock  
programmed on pin FSW through RFSW resistor is restored as switching frequency. Refer to  
Section 5.3 Switching frequency programming and dithering.  
TLNM/LCM is also the typical delay between LNM to LCM and the opposite transition.  
Figure 11. LCM to LNM transition, no load  
DS13354 - Rev 1  
page 14/43  
 
 
L7983  
Switching frequency programming and dithering  
5.3  
Switching frequency programming and dithering  
The L7983 has one programming pin, FSW (pin 4), which is used to set the regulator free running switching  
frequency.  
The switching frequency programming feature is performed by selecting the proper 1% accuracy resistor, to be  
mounted between pin 4 and ground or VCC, as summarized in the following table. The pinstrapping is active only  
before the soft-start phase to minimize the IC consumption.  
Refer also to Figure 1 for reference schematic.  
Table 7. FSW pin programming resistor  
Dithering enabled  
Dithering disabled  
Fsw [kHz] (1)  
1000  
200  
Fsw [kHz] (1)  
1000  
200  
#
1
2
3
4
5
6
7
8
RVCC [kΩ]  
RGND [kΩ]  
#
1
2
3
4
5
6
7
8
RVCC [kΩ]  
RGND [kΩ]  
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
1,8  
3,3  
5,6  
10  
18  
33  
56  
1,8  
3,3  
5,6  
10  
18  
33  
56  
400  
400  
500  
500  
700  
700  
1500  
2000  
2200  
1500  
2000  
2200  
1. Typical value. Refer to Table 6 for details.  
DS13354 - Rev 1  
page 15/43  
 
 
 
L7983  
Switching frequency programming and dithering  
The dithering function, enabled by connecting the proper RFSW resistor to VCC, is intended to reduce the DC-DC  
electromagnetic emissions, with small impact on output voltage ripple.  
Figure 12. RVCC = 0 Ω, dithering enabled, no load  
Figure 13. RVCC = 0 Ω, dithering enabled, no load. Detail  
The internal dithering circuitry changes the switching frequency in the range of ± 5% of the nominal value. The  
device updates the frequency every clock period by fixed steps:  
Ramps up in 63 steps from minimum to maximum switching frequency  
Ramps down in 63 steps from maximum to minimum switching frequency  
The resulting frequency modulation is almost triangular, with a frequency of:  
F
SW  
F
=
(3)  
Ditℎ  
126  
DS13354 - Rev 1  
page 16/43  
 
 
L7983  
Enable and Reset  
5.4  
Enable and Reset  
In order to maximize both the EN threshold accuracy and the current consumption, the device implements two  
different enable thresholds:  
The wake-up threshold, VWAKEUPH = 0.5 V typ.  
The start-up threshold, VENH = 1.2 V typ.  
As soon as the EN pin is detected above VWAKEUPH and VIN voltage is higher than VINH, the regulator turns on  
the internal circuitry and waits for the VENH before starting the switching activity. When this occurs, the internal  
voltage reference is increased by about 2 ms (typ.) in order to limit the inrush current and perform a smooth  
output capacitor charge.  
Figure 14. Turn-on example  
DS13354 - Rev 1  
page 17/43  
 
 
L7983  
Enable and Reset  
If the EN pin is forced lower than VENL the switching activity is stopped. The L7983 can further reduce the input  
current as soon as EN is forced lower than the VWAKEUPL threshold. When this occurs the input current is reduced  
to ISHTDWN = 2.3 µA (typ.).  
Figure 15. Turn-off example  
A divider from VIN can be used to program the input voltage threshold for controlled power-up, as shown in  
Figure 16.  
The EN pin is VIN compatible.  
Figure 16. Input voltage turn-on threshold programming  
RST  
LX  
VIN  
EN/UVLO  
VOUT(FB)  
VCC  
FSW  
VBIAS  
GND  
LNM/LCM  
EP  
During the soft-start, the L7983 is not allowed to sink current from the output, also if LNM operation is selected.  
This feature is intended to guarantee the proper power-up also in case of output voltage pre-bias condition.  
Following the L7983 turn-on, if the output voltage (sensed through the VOUT(FB) pin) is detected higher than the  
VRSTTHR threshold, the RST pin is left floating.  
During the operation, the RST pin is asserted low if the output voltage is found lower than the VRSTTHR  
VRSTHYST threshold, i.e. a typical 2% hysteresis is implemented.  
-
DS13354 - Rev 1  
page 18/43  
 
 
L7983  
VCC and switchover  
In case of overvoltage detection (OVP), the RST pin is asserted low. A 2% hysteresis (typ.) is required before  
releasing RST.  
Figure 17. Output voltage and RST behavior  
VOUT  
VTHR  
VTHR-HYST  
RST  
Td  
A built-in 2 ms typ. delay is always implemented before releasing RST.  
5.5  
VCC and switchover  
The internal LDO (low drop-out) linear regulator is turned on when VIN is higher than the VINH threshold and EN  
pin is detected above VWAKEUPH. The output voltage is available on pin VCC, which must be properly bypassed to  
GND by 470 nF ceramic capacitor. No external load is expected on VCC pin.  
The switchover function is enabled in case VBIAS is detected higher than the SWO threshold (refer to Table 7).  
When this occurs, the internal LDO power supply is switched from VIN to VBIAS, so increasing the power  
conversion efficiency. This is the typical case when VBIAS is connected to the regulator output.  
If the programmed output voltage is lower than the SWO threshold and no auxiliary rail lower than VIN is  
available, VBIAS must be connected to GND (refer to Figure 29, Figure 35 and Figure 41 for no load input current  
in typical application conditions).  
5.6  
Fault management  
The L7983 fault management is continuously monitoring the inductor current, the output voltage and the device  
junction temperature.  
Furthermore, thanks to the input UVLO (undervoltage lock-out) circuitry, the switching activity is guaranteed only  
with the proper VIN level. All the protections are auto-recovery.  
DS13354 - Rev 1  
page 19/43  
 
 
 
L7983  
Fault management  
5.6.1  
Overcurrent protection (OCP)  
In normal operation the HS MOS is turned off when the sensed current is equal to programmed current (refer to  
Figure 2). The maximum available current is limited by the internal OCP (overcurrent protection) comparator,  
cycle by cycle. The IPK threshold is gradually reduced during the switching period by slope contribution, as shown  
in Figure 18.  
Figure 18. Peak current limit  
IPK  
ILX  
TON_min  
The inductor current is also monitored during LS MOS on-time. This feature, also known as “valley current  
limitation”, is effective in case of current runaway due to HS MOS minimum on-time limitation and very low  
VOUT / VIN ratio. This protection can avoid the HS MOS turn-on if the inductor current, sensed during LS MOS  
on-time, is higher than the IVY threshold (Figure 19).  
Figure 19. Valley current limit  
ILX  
IPK  
IVY  
TON_min  
DS13354 - Rev 1  
page 20/43  
 
 
 
L7983  
Fault management  
In LNM mode, the L7983 can sink current from the output. However, to protect the power components, a negative  
current limit is implemented. If the sensed current is found lower than the INEG threshold, the low-side MOS is  
promptly turned off and the high-side one is turned on until the inductor is discharged. When this occurs, the LS  
MOS is allowed to turn on again.  
Figure 20. Negative current limit example  
DS13354 - Rev 1  
page 21/43  
 
L7983  
Fault management  
5.6.2  
Overvoltage protection (OVP)  
In case the VOUT(FB) pin is detected above the VOVP threshold, the output overvoltage protection is triggered.  
When this occurs, the RST pin is forced low and the L7983 actively discharges the output voltage by sinking  
current (refer to Section 5.6.1 Overcurrent protection (OCP)).  
Figure 21. Overvoltage protection  
VOUT  
VOVP  
VOVP-HYST  
RST  
ILX  
INEG  
As soon as the OVP cause is removed, the proper switching activity is restored and RST output is released, with  
the delay and threshold described in Section 5.4 .  
5.6.3  
Overtemperature protection (OTP)  
If the device junction temperature increases above TSHDWN (165 °C typ.) the switching activity is inhibited until a  
temperature drop of THYS (30 °C typ.) is detected.  
When the switching activity is resumed, a soft-start is implemented. The OTP protection is always active.  
DS13354 - Rev 1  
page 22/43  
 
 
 
L7983  
Application design guidelines  
5.7  
Application design guidelines  
5.7.1  
Input capacitor selection  
The input capacitor must be rated for the maximum input operating voltage and the maximum expected RMS  
input current.  
Since the step-down converters' input current is a sequence of pulses from 0A to IOUT, the input capacitor must  
absorb the equivalent RMS current which can be up to the load current divided by two (worst case, with duty cycle  
of 50%). For this reason, the quality of these capacitors must be very high to minimize the power dissipation  
generated by the internal ESR, thereby improving system reliability and efficiency.  
The RMS input current (flowing through the input capacitor) is roughly estimated by:  
I
≅ I  
OUT  
D ⋅ 1 − D  
(4)  
CIN, RMS  
Considering D = VOUT / VIN the theoretical DC-DC conversion ratio, the above equation provides a maximum  
value equal to IOUT / 2 when D = 0.5.  
The amount of the input voltage ripple can be roughly estimated by Eq. (5).  
D ⋅ 1 − D ⋅ I  
OUT  
V
=
+ R  
⋅ I  
(5)  
IN, PP  
ES, IN OUT  
C
⋅ F  
IN SW  
In case of MLCC ceramic input capacitors, the equivalent series resistance (RES,IN) is almost negligible.  
The suggested component is a ceramic MLCC capacitor with value 1 µF or higher, with adequate voltage rating  
(100 V typ.), placed as close as possible to the VIN and GND pins.  
Very fast VIN transitions must be avoided to guarantee the proper operation. Additional input voltage filtering must  
be implemented in case of expected VIN transitions faster than 0.1 V/μs.  
5.7.2  
Inductor selection  
In low consumption mode (LCM) the light load operation is implemented with constant current pulses (ISKIP = 80  
mA typ., as described in Section 5.2.1 ). In LCM, to achieve a smooth transition from discontinuous to  
continuous operation, i.e. from pulse skipping to constant frequency working mode, the inductor should be  
selected assuming a target current ripple close to ISKIP  
.
V
OUT  
V
1 −  
OUT  
V
IN  
SKIP SW  
L =  
(6)  
I
⋅ F  
In low noise mode (LNM) the inductance value is typically selected in order to keep the current ripple in the range  
20% - 40% of the maximum DC output current. However, in order to prevent the sub-harmonic instability in the  
peak current mode control loop, a fixed slope compensation mechanism is implemented in L7983 by adding a  
current ramp to the sensed current (see Figure 4). This approach is effective if the inductor current ripple, in the  
expected input voltage range, is comparable with the above-mentioned added slope.  
In conclusion, Eq. (6) is the reference design equation for inductor selection, independent of selected working  
mode (LNM or LCM).  
5.7.3  
Output capacitor selection  
In LNM working mode, the current in the output capacitor has a triangular waveform which generates a voltage  
ripple across it. This ripple is due to the capacitive component (charge and discharge of the output capacitor) and  
the resistive component (due to the voltage drop across its ESR). The output capacitor must be selected in order  
to have a voltage ripple compliant with the application requirements.  
The amount of the voltage ripple can be estimated starting from the current ripple obtained by the inductor  
selection. Assuming ∆IL is the inductor current ripple, the output voltage ripple is roughly estimated by Eq. (7).  
ΔI  
L
ΔV  
OUT, PP, LNM  
≈ ΔI ⋅ R  
ES, OUT  
+
(7)  
L
8 ⋅ F  
⋅ C  
SW OUT  
The ESR contribution is usually negligible in case of multi-layer ceramic capacitor (MLCC), which is the most  
common choice for the L7983 typical solution. Neglecting the ESR contribution, the minimum value of the output  
capacitor to guarantee the target output voltage ripple specification in LNM is estimated by:  
DS13354 - Rev 1  
page 23/43  
 
 
 
 
 
 
 
L7983  
Application design guidelines  
ΔI  
L
C
(8)  
OUT, LNM  
8 ⋅ F  
SW  
⋅ ΔV  
OUT, PP, LNM  
In case of light load and LCM working mode, the theoretical output voltage ripple is estimated by:  
2
L ∙ I  
V
IN  
∙ V − V  
IN OUT  
SKIP  
ΔV  
OUT, PP, LCM  
=
(9)  
2 ⋅ C  
OUT  
V
OUT  
The output capacitor selection is important also to guarantee the control loop stability.  
A minimum capacitance value is necessary to limit the system bandwidth, FBW. A reasonable limit for FBW is the  
minimum between FSW/8 and 150 kHz, which provides the following design equation:  
0.8 A  
C
(10)  
OUT, BW  
F
⋅ V  
BW, MAX OUT  
In the peak current mode architecture, working in LNM, there is a close relationship between the programmed  
inductor peak current and the error amplifier input error (i.e. the difference between the output voltage sensed on  
the FB pin and the internal reference voltage, VREF).  
During a load transient, ΔIOUT, the theoretical loop response depends on output capacitor and designed system  
bandwidth:  
∆ I  
OUT  
⋅ C  
∆ V  
OUT, LTR  
(11)  
2π ∙ F  
BW OUT  
The L7983 implements a fixed integrated compensation network so the output capacitor selection, as highlighted  
by Eq. (10), directly impacts the system bandwidth and, at the end, also the expected load transient performance  
as described by Eq. (11).  
The above listed design suggestions are summarized in Table 8 below which considers the most common voltage  
conversions.  
Table 8. Reference applications – VIN = 24 V, CIN = 1 µF, CVCC = 470 nF  
V
[V]  
F
[kHz]  
C
[µF]  
R
FSW  
[kΩ]  
R
U
[kΩ]  
R [kΩ]  
D
L [µH]  
100  
33  
Note  
OUT  
SW  
OUT  
200  
22  
1.8  
1.5  
500  
1000  
200  
10  
4.7  
10  
5.6  
0
43  
56  
VBIAS = GND  
22  
220  
68  
1.8  
5.6  
0
500  
4.7  
2.2  
2.2  
6.8  
3.3  
2.2  
2.2  
3.3  
2.2  
1
L7983PU33R to avoid R and  
R . VBIAS = VOUT  
U
3.3  
180  
300  
510  
62  
62  
39  
D
1000  
1500  
200  
47  
22  
18  
1.8  
5.6  
0
330  
100  
47  
500  
L7983PU50R to avoid R and  
R . VBIAS = VOUT  
U
5
D
1000  
2200  
200  
22  
56  
1.8  
5.6  
0
330  
150  
68  
500  
12  
VBIAS = VOUT  
1000  
2200  
33  
1
56  
5.7.4  
Layout considerations  
The PCB layout of the switching DC-DC regulators minimizes the noise injected in high impedance nodes and  
interference generated by the high current switching loops.  
DS13354 - Rev 1  
page 24/43  
 
 
 
 
L7983  
Application design guidelines  
In a step-down converter, the input loop (including the input capacitor, the DC-DC regulator and ground  
connection) is the most critical one due to high value pulsed currents flowing through it. In order to minimize the  
EMI, this loop must be as short as possible with an adequate input capacitor placed very close to L7983 VIN and  
GND (pin 8 and 10 respectively).  
The feedback pin (FB) connection to the external resistor divider is a high impedance node, so the interference  
can be minimized by placing the routing of the feedback node as far as possible from the high current paths. To  
reduce the pick-up noise, the resistor divider must be placed very close to the device.  
Thanks to the exposed pad of the device, the ground plane helps to reduce the junction to ambient thermal  
resistance, so a wide ground plane enhances the thermal performance of the converter, allowing the high-power  
conversion.  
Refer to Section 6 Evaluation board for an example of the PCB layout.  
5.7.5  
Thermal considerations  
The thermal design prevents the thermal shutdown of the device if junction temperature goes above 165 °C (typ.).  
The three different sources of losses within the device are:  
Conduction losses due to the non-negligible RDS(on) of the integrated power switches; these are equal to  
2
2
P
= R  
HS, ON  
∙ D ∙ I  
OUT  
+ R  
LS, ON  
1 − D ∙ I  
OUT  
(12)  
COND  
where D is the duty cycle of the application and RHS,ON and RLS,ON are the maximum resistance overtemperature  
of the power switches. Note that the duty cycle is theoretically given by the ratio between VOUT and VIN but  
actually it is higher in order to compensate the losses of the regulator, so the conduction losses increase  
compared with the ideal case;  
Switching losses due to power MOSFETs turn-ON and OFF; these can be calculated as:  
T
+ T  
RISE  
FALL  
P
= V ∙ I  
IN OUT  
∙ F  
SW  
= V ∙ I  
∙ T ∙ F  
(13)  
SW  
IN OUT TR SW  
2
where TRISE and TFALL are the overlap times of the voltage across the high-side power switch (VDS) and the  
current flowing into it during turn-ON and turn-OFF phases. TTR is the equivalent switching time. For this device  
the typical value for the equivalent switching time is 10 ns.  
Quiescent current losses, calculated as follows:  
P
= V ∙ I  
IN QVIN  
+ V  
∙ I  
(14)  
Q
BIAS QVBIAS  
where IQVIN and IQVBIAS are the L7983 quiescent currents in case of separate bias supply.  
If VBIAS = VOUT the L7983 power conversion efficiency ηL7983 must be included in the previous equation:  
V
1
BIAS  
P
= V ∙ I  
IN QVIN, VBIAS = 3.3V  
+
(15)  
Q
VBIAS = VOUT  
η
V
L7983  
IN  
∙ I  
QVBIAS, VBIAS = 3.3V  
If the switch-over feature is not used the total quiescent current losses are represented by:  
P
= V ∙ I  
IN QVIN, VBIAS = GND  
(16)  
(17)  
(18)  
Q
VBIAS = GND  
The L7983 total power losses are given by:  
P
= P  
COND  
+ P + P  
SW Q  
LOSS  
The junction temperature TJ can be estimated with the following equation:  
T
= T + P  
∙ R  
J
A
LOSS TH, JA  
where TA is the ambient temperature. RTH,JA is the equivalent thermal resistance junction to ambient of the  
device; it can be calculated as the parallel of many paths of heat conduction from the junctions to the ambient. For  
this device the path through the exposed pad is the one conducting the largest amount of heat. The RTH.JA  
measured on the demonstration board described in the following section is about 50 °C/W.  
DS13354 - Rev 1  
page 25/43  
 
L7983  
Evaluation board  
6
Evaluation board  
6.1  
Schematic and PCB layout  
Figure 22. Evaluation board schematic  
TP5  
LX  
TP4  
GND  
R9  
VOUT  
R10  
C6  
TP3  
VOUT  
R2  
R1  
U1  
L7983  
C4  
1
2
3
4
5
10  
9
VOUT/FB  
VBIAS  
VCC  
GND  
LX  
L1  
VBIAS  
VOUT  
100nF  
TP2  
VIN  
VCC  
8
VIN  
VIN  
C2  
FSW  
7
C1  
1uF  
FSW  
EN/UVLO  
R3  
C3  
LNM-LCM  
6
VIN  
LNM/LCM  
RESET  
470nF  
EP  
11  
VIN  
R8  
R4  
100k  
R5  
100k  
+
C10  
ENABLE  
TP1  
GND  
VIN  
TP6  
ENABLE  
TP8  
GND  
TP7  
LNM-LCM  
R6  
TP9  
RESET  
TP11  
VCC  
TP12  
VBIAS  
100k  
ENABLE  
LNM-LCM  
VBIAS  
VCC  
RESET  
R7  
C5  
N.M.  
NM  
DS13354 - Rev 1  
page 26/43  
 
 
 
L7983  
Schematic and PCB layout  
Figure 24. PCB layout (Bottom)  
Figure 23. PCB layout (Top)  
DS13354 - Rev 1  
page 27/43  
 
 
L7983  
L7983PUR - Evaluation board  
6.2  
L7983PUR - Evaluation board  
In this section the L7983PUR (adjustable VOUT) evaluation board is described.  
The board schematic is shown in Figure 22 and the PCB layout is depicted in Figure 23 and Figure 24.  
The main features are:  
Programmed VOUT = 12 V  
Max. IOUT = 300 mA  
Selected FSW = 1 MHz  
VBIAS = VOUT (switch-over enabled)  
Table 9. L7983PUR evaluation board component list (BOM)  
Reference  
Part  
1 μF  
Package  
1206  
Details  
Manufacturer P/N  
TDK C3216X7R2A105K  
TDK C3216X7R2A105K  
C1  
X7R/100V/10%  
X7R/100V/10%  
X7R/16V/10%  
C2  
C3  
1 μF  
1206  
470 nF  
N.M.  
0603  
C4, C5, C10  
C6  
100 nF  
68 μH  
510 kΩ  
39 kΩ  
N.M.  
0603  
4x4 mm  
0603  
X7R/16V/10%  
0.46 A sat/ 950 mΩ  
1% tolerance  
L1  
COILCRAFT LPS4018-683M  
R1  
R2  
0603  
1% tolerance  
R3, R7  
R4, R9, R10  
R5, R6, R8  
U1  
0
0603  
0603  
100 kΩ  
L7983  
1% tolerance  
DFN10_3x3  
STM L7983PUR  
Figure 25. 12 V efficiency (LCM)  
Figure 26. 12 V load regulation (LCM)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12.1  
18V  
12.05  
24V  
36V  
48V  
60V  
12  
18V  
24V  
11.95  
36V  
11.9  
48V  
60V  
11.85  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.0001  
0.001  
0.01  
0.1  
Output current [A]  
Output current [A]  
DS13354 - Rev 1  
page 28/43  
 
 
 
L7983  
L7983PUR - Evaluation board  
Figure 27. 12 V efficiency (LNM)  
Figure 28. 12 V load regulation (LNM)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
11.92  
11.91  
11.9  
11.89  
11.88  
11.87  
11.86  
11.85  
11.84  
11.83  
18V  
24V  
36V  
48V  
60V  
18V  
24V  
36V  
48V  
60V  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Output current [A]  
Output current [A]  
Figure 29. 12 V input current - LCM  
Figure 30. 12 V input current and FSW - LNM  
60  
50  
40  
30  
20  
10  
0
7
6.5  
6
1040  
Quiescent  
Shutdown  
IIN  
1030  
1020  
1010  
1000  
990  
FSW  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
980  
20  
25  
30  
35  
40  
45  
50  
55  
60  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input voltage [V]  
Input voltage [V]  
DS13354 - Rev 1  
page 29/43  
 
 
L7983  
L7983PU33R - Evaluation board  
6.3  
L7983PU33R - Evaluation board  
In this section the L7983PU33R (VOUT=3.3 V fixed) evaluation board is described.  
The board schematic is shown in Figure 22 and the PCB layout is depicted in Figure 23 and Figure 24.  
The main features are:  
Programmed VOUT = 3.3 V (fixed)  
Max. IOUT = 300 mA  
Selected FSW = 1 MHz  
VBIAS = VOUT (switch-over enabled)  
Table 10. L7983PU33R evaluation board component list (BOM)  
Reference  
Part  
1 μF  
Package  
1206  
Details  
Manufacturer P/N  
TDK C3216X7R2A105K  
TDK C2012X7R1C225K  
C1  
X7R/100V/10%  
X7R/16V/10%  
X7R/16V/10%  
C2  
C3  
2.2 μF  
470 nF  
N.M.  
0805  
0603  
C4, C5, C10  
C6  
100 nF  
47 μH  
0 Ω  
0603  
4x4 mm  
0603  
X7R/16V/10%  
L1  
0.56 A sat/ 650 mΩ  
COILCRAFT LPS4018-473M  
R1, R4, R9  
R2, R3, R7, R10  
R5, R6, R8  
U1  
N.M.  
100 kΩ  
L7983  
0603  
1% tolerance  
DFN10_3x3  
STM L7983PU33R  
Figure 31. 3.3 V fix efficiency (LCM)  
Figure 32. 3.3 V fix load regulation (LCM)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
12V  
24V  
36V  
48V  
60V  
12 V  
24 V  
36 V  
48 V  
60 V  
3.29  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.0001  
0.001  
0.01  
0.1  
Output current [A]  
Output current [A]  
DS13354 - Rev 1  
page 30/43  
 
 
 
L7983  
L7983PU33R - Evaluation board  
Figure 33. 3.3 V fix efficiency (LNM)  
Figure 34. 3.3 V fix load regulation (LNM)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
12V  
24V  
36V  
48V  
60V  
12V  
24V  
36V  
48V  
60V  
3.29  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Output current [A]  
Output current [A]  
Figure 35. 3.3 V fix input current, no load (LCM)  
Figure 36. 3.3 V fix input current, no load (LNM)  
20  
18  
4
3.5  
3
1200  
1000  
800  
600  
400  
200  
0
IIN  
Quiescent  
Shutdown  
16  
FSW  
14  
12  
10  
8
2.5  
2
6
1.5  
1
4
2
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input voltage [V]  
Input voltage [V]  
DS13354 - Rev 1  
page 31/43  
 
 
L7983  
L7983PU50R - Evaluation board  
6.4  
L7983PU50R - Evaluation board  
In this section the L7983PU50R (VOUT = 5 V fixed) evaluation board is described.  
The board schematic is shown in Figure 22 and the PCB layout is depicted in Figure 23 and Figure 24.  
The main features are:  
Programmed VOUT = 5 V (fixed)  
Max. IOUT = 300 mA  
Selected FSW = 1 MHz  
VBIAS = VOUT (switch-over enabled)  
Table 11. L7983PU50R evaluation board component list (BOM)  
Reference  
Part  
1 μF  
Package  
1206  
Details  
Manufacturer P/N  
TDK C3216X7R2A105K  
TDK C2012X7R1C225K  
C1  
X7R/100V/10%  
X7R/16V/10%  
X7R/16V/10%  
C2  
C3  
2.2 μF  
470 nF  
N.M.  
0805  
0603  
C4, C5, C10  
C6  
100 nF  
47 μH  
0 Ω  
0603  
4x4 mm  
0603  
X7R/16V/10%  
L1  
0.56 A sat/ 650 mΩ  
COILCRAFT LPS4018-473M  
R1, R4, R9  
R2, R3, R7, R10  
R5, R6, R8  
U1  
N.M.  
100 kΩ  
L7983  
0603  
1% tolerance  
DFN10_3x3  
STM L7983PU50R  
Figure 37. 5 V fix efficiency (LCM)  
Figure 38. 5 V fix load regulation (LCM)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.1  
5.08  
5.06  
5.04  
5.02  
5
12V  
24V  
36V  
48V  
60V  
12 V  
24 V  
36 V  
48 V  
60 V  
4.98  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.0001  
0.001  
0.01  
0.1  
Output current [A]  
Output current [A]  
DS13354 - Rev 1  
page 32/43  
 
 
 
L7983  
L7983PU50R - Evaluation board  
Figure 39. 5 V fix efficiency (LNM)  
Figure 40. 5 V fix load regulation (LNM)  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12V  
24V  
36V  
48V  
60V  
12V  
24V  
36V  
48V  
60V  
4.99  
4.98  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Output current [A]  
Output current [A]  
Figure 41. 5 V fix input current, no load (LCM)  
Figure 42. 5 V fix input current, no load (LNM)  
35  
4
3.5  
3
1200  
30  
25  
20  
15  
10  
5
Quiescent  
Shutdown  
1000  
800  
600  
400  
200  
0
2.5  
2
IIN  
FSW  
1.5  
1
0
10  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input voltage [V]  
Input voltage [V]  
DS13354 - Rev 1  
page 33/43  
 
 
L7983  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
DS13354 - Rev 1  
page 34/43  
 
L7983  
DFN10 (3 x 3 x 0.8 mm) package information  
7.1  
DFN10 (3 x 3 x 0.8 mm) package information  
Figure 43. DFN10 (3 x 3 x 0.8 mm) package outline  
BOTTOM VIEW  
SIDE VIEW  
TOP VIEW  
DS13354 - Rev 1  
page 35/43  
 
 
L7983  
DFN10 (3 x 3 x 0.8 mm) package information  
Table 12. DFN10 (3 x 3 x 0.8 mm) mechanical data  
Dimensions (mm)  
Typ.  
SYMBOL  
Min.  
0.70  
0.0  
Max.  
0.80  
0.05  
A
A1  
A3  
b
0.75  
0.02  
0.20 Ref.  
0.23  
0.16  
0.27  
0.28  
0.52  
D
3.00 BSC  
0.42  
D2  
e
0.50 BSC  
3.0 BSC  
0.78  
E
E2  
L
0.63  
0.30  
0.20  
0.88  
0.50  
0.40  
K
N
10  
5
NE  
Figure 44. DFN10 (3 x 3 x 0.8 mm) recommended footprint  
DS13354 - Rev 1  
page 36/43  
 
 
L7983  
Ordering information  
8
Ordering information  
Table 13. Order codes  
Part numbers  
L7983PUR  
Output voltage  
Package  
Packaging  
Adjustable  
Fixed 3.3 V  
Fixed 5.0 V  
L7983PU33R  
L7983PU50R  
DFN10  
Tape and reel  
DS13354 - Rev 1  
page 37/43  
 
 
L7983  
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
01-Oct-2020  
1
Initial release.  
DS13354 - Rev 1  
page 38/43  
 
 
L7983  
Contents  
Contents  
1
Application schematic and block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2
3
Pin settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.1  
3.2  
3.3  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
5
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Functional description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
5.1  
5.2  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Control loop and voltage programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.2.1  
LNM/LCM selection and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.3  
5.4  
5.5  
5.6  
Switching frequency programming and dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Enable and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
VCC and switchover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.6.1  
5.6.2  
5.6.3  
Overcurrent protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overvoltage protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Overtemperature protection (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.7  
Application design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.7.1  
5.7.2  
5.7.3  
5.7.4  
5.7.5  
Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output capacitor selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Thermal considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
Evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
6.1  
6.2  
6.3  
Schematic and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
L7983PUR - Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
L7983PU33R - Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
DS13354 - Rev 1  
page 39/43  
L7983  
Contents  
6.4  
L7983PU50R - Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
7
8
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7.1  
DFN10 (3x3) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
DS13354 - Rev 1  
page 40/43  
L7983  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
FSW pin programming resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reference applications – VIN = 24 V, CIN = 1 µF, CVCC = 470 nF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
L7983PUR evaluation board component list (BOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10. L7983PU33R evaluation board component list (BOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 11. L7983PU50R evaluation board component list (BOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 12. DFN10 (3 x 3 x 0.8 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 13. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 14. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DS13354 - Rev 1  
page 41/43  
L7983  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Control loop block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output voltage programming - adjustable version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output voltage programming - fixed version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
LNM selected, no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
LCM selected, no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
LCM selected, 10 mA load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
LCM selected, 50 mA load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LCM to LNM transition, no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
RVCC = 0 Ω, dithering enabled, no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
RVCC = 0 Ω, dithering enabled, no load. Detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Turn-on example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Turn-off example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input voltage turn-on threshold programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output voltage and RST behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Peak current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Valley current limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Negative current limit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Overvoltage protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Evaluation board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCB layout (Top). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PCB layout (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
12 V efficiency (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
12 V load regulation (LCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
12 V efficiency (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
12 V load regulation (LNM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
12 V input current - LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
12 V input current and FSW - LNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.3 V fix efficiency (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.3 V fix load regulation (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.3 V fix efficiency (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.3 V fix load regulation (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.3 V fix input current, no load (LCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.3 V fix input current, no load (LNM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5 V fix efficiency (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5 V fix load regulation (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5 V fix efficiency (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5 V fix load regulation (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5 V fix input current, no load (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5 V fix input current, no load (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DFN10 (3 x 3 x 0.8 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DFN10 (3 x 3 x 0.8 mm) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
DS13354 - Rev 1  
page 42/43  
L7983  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13354 - Rev 1  
page 43/43  

相关型号:

L7985

Voltage feed-forward
STMICROELECTR

L7985ATR

Voltage feed-forward
STMICROELECTR

L7986

3 A step-down switching regulator
STMICROELECTR

L7986TA

3 A step-down switching regulator
STMICROELECTR

L7986TR

3 A step-down switching regulator
STMICROELECTR

L799

8mm BI-COLOR INDICATOR LAMPS
KINGBRIGHT

L799EGW

8mm BI-COLOR INDICATOR LAMPS
KINGBRIGHT

L799SRSGW/CC

8mm BI-COLOR INDICATOR LAMPS
KINGBRIGHT

L799SURKMGKW

8mm BI-COLOR INDICATOR LAMPS
KINGBRIGHT

L799SURKSGW

Dual Color LED, Hyper Red/super Bright Green, Diffused Milky White, T-3, 8mm,
KINGBRIGHT

L79C-G2-W

LED Indicator lights mounting hole
VCC

L79C-R2-W

LED Indicator lights mounting hole
VCC