LED2001PUR [STMICROELECTRONICS]

4 A monolithic step-down current source with synchronous rectification;
LED2001PUR
型号: LED2001PUR
厂家: ST    ST
描述:

4 A monolithic step-down current source with synchronous rectification

文件: 总42页 (文件大小:2433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LED2001  
4 A monolithic step-down current source with synchronous  
rectification  
Datasheet  
-
production data  
Applications  
High brightness LED driving  
Halogen bulb replacement  
General lighting  
Signage  
HSOP8  
VFQFPN8 4x4  
Description  
Features  
The LED2001 is an 850 kHz fixed switching  
frequency monolithic step-down DC-DC converter  
designed to operate as precise constant current  
source with an adjustable current capability up to  
4 A DC. The embedded PWM dimming circuitry  
features LED brightness control. The regulated  
output current is set connecting a sensing resistor  
to the feedback pin. The embedded synchronous  
rectification and the 100 mV typical RSENSE  
voltage drop enhance the efficiency performance.  
The size of the overall application is minimized  
thanks to the high switching frequency and  
ceramic output capacitor compatibility. The device  
is fully protected against thermal overheating,  
overcurrent and output short-circuit. The  
3.0 V to 18 V operating input voltage range  
850 kHz fixed switching frequency  
100 mV typ. current sense voltage drop  
PWM dimming  
7% output current accuracy  
Synchronous rectification  
95 m HS / 69 m LS typical RDS(on)  
Ω
Ω
Peak current mode architecture  
Embedded compensation network  
Internal current limiting  
Ceramic output capacitor compliant  
Thermal shutdown  
LED2001 is available in VFQFPN 4 mm x 4 mm  
8-lead package, and HSOP8.  
Figure 1. Typical application circuit  
/('ꢀꢁꢁꢂ  
/
9,1  
',0  
9,1B6:  
9,1B$  
',0  
6:  
)%  
3*1' (3  
$*1'  
&,1  
&)/7  
56  
&287  
*1'  
$0ꢂꢀꢅꢈꢀYꢂ  
May 2013  
DocID024346 Rev 1  
1/42  
This is information on a product in full production.  
www.st.com  
42  
 
Contents  
LED2001  
Contents  
1
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
3
4
5
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.1  
5.2  
5.3  
5.4  
5.5  
Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Voltage monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
6
Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 12  
G
CO  
Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
LED small signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Dimming operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.6.1  
Dimming frequency vs. dimming depth . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.7  
eDesign studio software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1  
Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1.1  
7.1.2  
7.1.3  
Sensing resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Inductor and output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.2  
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2/42  
DocID024346 Rev 1  
LED2001  
Contents  
7.3  
7.4  
7.5  
Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9
10  
11  
DocID024346 Rev 1  
3/42  
List of tables  
LED2001  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Uncompensated error amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
List of ceramic capacitors for the LED2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
VFQFPN8 (4x4x1.08 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
HSOP8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4/42  
DocID024346 Rev 1  
LED2001  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
LED2001 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Internal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block diagram of the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Transconductance embedded error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Equivalent series resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Load equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Module plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Phase plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Dimming operation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12. LED current falling edge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Dimming signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. eDesign studio screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. Equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 16. Layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 17. Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 18. Constant current protection triggering Hiccup mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 19. Demonstration board application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 20. PCB layout (component side) DFN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 21. PCB layout (bottom side) DFN package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 22. PCB layout (component side) HSOP8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 23. PCB layout (bottom side) HSOP8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 24. Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 25. Load regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 26. Dimming operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 27. LED current rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 28. LED current falling edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 29. Hiccup current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 30. OCP blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 31. Thermal shutdown protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 32. VFQFPN8 (4x4x1.08 mm) package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 33. HSOP8 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DocID024346 Rev 1  
5/42  
Pin settings  
LED2001  
1
Pin settings  
1.1  
Pin connection  
Figure 2. Pin connection (top view)  
1
8
VINA  
PGND  
9
9
2
3
6
DIM  
FB  
SW  
DIM  
VINSW  
7
5
NC  
4
NC  
GND  
VFQFPN8 4x4  
HSOP8  
AM12893v1  
1.2  
Pin description  
Table 1. Pin description  
Package/pin  
Type  
Description  
VFQFPN8  
HS0P8  
4x4  
1
1
VINA  
DIM  
Analog circuitry power supply connection  
Dimming control input. Logic low prevents the switching  
activity, logic high enables it. A square wave on this pin  
implements LED current PWM dimming. Connect to VINA if  
not used (see Section 6.6)  
2
2
Feedback input. Connect a proper sensing resistor to set  
the LED current  
3
3
FB  
4
5
4
-
AGND  
NC  
Analog circuitry ground connection  
Not connected  
6
6
VINSW  
SW  
Power input voltage  
Regulator switching pin  
Power ground  
7
7
8
8
PGND  
ep  
ep  
Exposed pad Connect the exposed pad to AGND  
6/42  
DocID024346 Rev 1  
LED2001  
Maximum ratings  
2
Maximum ratings  
Table 2. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
VINSW  
VINA  
VDIM  
VSW  
VPG  
VFB  
Power input voltage  
-0.3 to 20  
-0.3 to 20  
-0.3 to VINA  
-1 to VIN  
-0.3 to VIN  
-0.3 to 2.5  
-1 to +1  
Input voltage  
Dimming voltage  
V
Output switching voltage  
Power Good  
Feedback voltage  
IFB  
FB current  
mA  
W
PTOT  
TOP  
Power dissipation at TA < 60 °C  
Operating junction temperature range  
Storage temperature range  
2
-40 to 150  
-55 to 150  
°C  
°C  
Tstg  
3
Thermal data  
Table 3. Thermal data  
Parameter  
Symbol  
Value  
Unit  
°C/W  
VFQFPN8 4x4  
Maximum thermal resistance  
junction-ambient (1)  
RthJA  
40  
HSOP8  
1. Package mounted on demonstration board.  
DocID024346 Rev 1  
7/42  
Electrical characteristics  
LED2001  
4
Electrical characteristics  
TJ=25 °C, VCC=12 V, unless otherwise specified.  
Table 4. Electrical characteristics  
Value  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
Operating input voltage  
range  
(1)  
3
18  
VIN  
V
Device ON level  
Device OFF level  
2.6  
2.4  
90  
2.75  
2.55  
97  
2.9  
2.7  
Tj=25 °C  
104  
110  
600  
VFB  
IFB  
Feedback voltage  
mV  
Tj=125 °C (1)  
90  
100  
(1)  
VFB pin bias current  
nA  
High-side switch on-  
resistance  
RDSON-P  
ISW=750 mA  
95  
mΩ  
Low-side switch on-  
resistance  
RDSON-N  
ISW=750 mA  
69  
mΩ  
(2)  
ILIM  
Maximum limiting current  
5.6  
A
Oscillator  
FSW  
D
Switching frequency  
Duty cycle  
0.7  
0
0.85  
1.5  
1
MHz  
%
(2)  
100  
DC characteristics  
IQ  
Quiescent current  
2.5  
0.4  
mA  
Dimming  
Switching activity  
1.2  
VDIM  
DIM threshold voltage  
DIM current  
V
Switching activity  
prevented  
IDIM  
2
1
μA  
Soft-start  
TSS  
Soft-start duration  
ms  
°C  
Protection  
Thermal shutdown  
Hystereris  
150  
15  
TSHDN  
1. Specifications referred to T from -40 to +125 °C. Specifications in the -40 to +125 °C temperature range  
J
are assured by design, characterization and statistical correlation.  
2. Guaranteed by design.  
8/42  
DocID024346 Rev 1  
LED2001  
Functional description  
5
Functional description  
The LED2001 is based on a “peak current mode” architecture with fixed frequency control.  
As a consequence, the intersection between the error amplifier output and the sensed  
inductor current generates the control signal to drive the power switch.  
The main internal blocks shown in the block diagram in Figure 3 are:  
high-side and low-side embedded power element for synchronous rectification;  
a fully integrated sawtooth oscillator with a typical frequency of 850 kHz;  
a transconductance error amplifier;  
an high-side current sense amplifier to track the inductor current;  
a pulse width modulator (PWM) comparator and the circuitry necessary to drive the  
internal power element;  
the soft-start circuitry to decrease the inrush current at power-up;  
the current limitation circuit based on the pulse-by-pulse current protection with  
frequency divider;  
the dimming circuitry for output current PWM;  
the thermal protection function circuitry.  
Figure 3. LED2001 block diagram  
VI NA  
VI N SW  
OCP  
REF  
OSC  
I2V  
I_ SENSE  
RSENSE  
COMP  
REGULATOR  
UVLO  
_p  
Vdrv  
OCP  
DRIVER  
MOSFET  
Vsum  
Vc  
CONTROL  
LOGIC  
_n  
Vdrv  
PWM  
SW  
OTP  
DMD  
E/A  
DIMMING  
DRIVER  
SOFT-START  
0.1V  
FB  
DIM  
GNDA  
GNDP  
AM12894v1  
DocID024346 Rev 1  
9/42  
 
Functional description  
LED2001  
5.1  
Power supply and voltage reference  
The internal regulator circuit consists of a startup circuit, an internal voltage pre-regulator,  
the BandGap voltage reference and the bias block that provides current to all the blocks.  
The starter supplies the startup current to the entire device when the input voltage goes high  
and the device is enabled. The pre-regulator block supplies the BandGap cell with a pre-  
regulated voltage that has a very low supply voltage noise sensitivity.  
5.2  
Voltage monitor  
An internal block continuously senses the VCC, Vref and Vbg. If the monitored voltages are  
good, the regulator begins operating. There is also a hysteresis on the VCC (UVLO).  
Figure 4. Internal circuit  
Vcc  
PREREGULATOR  
VREG  
STARTER  
BANDGAP  
IC BIAS  
AM12895v1  
D00IN126  
VREF  
5.3  
Soft-start  
The startup phase is implemented ramping the reference of the embedded error amplifier in  
1 ms typ. time. It minimizes the inrush current and decreases the stress of the power  
components at power-up.  
During normal operation a new soft-start cycle takes place in case of:  
thermal shutdown event;  
UVLO event.  
The soft-start is disabled when DIM input goes high in order to maximize the dimming  
performance.  
5.4  
Error amplifier  
The voltage error amplifier is the core of the loop regulation. It is a transconductance  
operational amplifier whose non-inverting input is connected to the internal voltage  
reference (100 mV), while the inverting input (FB) is connected to the output current sensing  
resistor.  
The error amplifier is internally compensated to minimize the size of the final application.  
10/42  
DocID024346 Rev 1  
LED2001  
Functional description  
Table 5. Uncompensated error amplifier characteristics  
Description  
Value  
Transconductance  
250 µS  
96 dB  
Low frequency gain  
CC  
RC  
195 pF  
70 KΩ  
The error amplifier output is compared with the inductor current sense information to  
perform PWM control.  
5.5  
Thermal shutdown  
The shutdown block generates a signal that disables the power stage if the temperature of  
the chip goes higher than a fixed internal threshold (150 ± 10 °C typical). The sensing  
element of the chip is close to the PDMOS area, ensuring fast and accurate temperature  
detection. A 15 °C typical hysteresis prevents the device from turning ON and OFF  
continuously during the protection operation.  
DocID024346 Rev 1  
11/42  
Application notes  
LED2001  
6
Application notes  
6.1  
Closing the loop  
Figure 5. Block diagram of the loop  
GCO(s)  
VIN  
PWM control  
Currentsense  
HS  
switch  
L
VOUT  
LC filter  
LS  
switch  
COUT  
error  
FB  
-
amplifier  
VCONTROL  
+
PWM  
VREF  
+
comparator  
RS  
RC  
CC  
compensation  
network  
α
LED  
AO(s)  
6.2  
G (s) control to output transfer function  
CO  
The accurate control to output transfer function for a buck peak current mode converter can  
be written as:  
Equation 1  
s
ωz  
1 + ------  
R0  
1
GCO(s) = ------ ---------------------------------------------------------------------------------------- --------------------- FH(s)  
Ri  
R0 TSW  
s
1 + ------  
1 + ---------------------- ⋅ [mC ⋅ (1 D) 0.5]  
ωp  
L
where R0 represents the load resistance, Ri the equivalent sensing resistor of the current  
sense circuitry, ωp the single pole introduced by the LC filter and ωz the zero given by the  
ESR of the output capacitor.  
FH(s) accounts for the sampling effect performed by the PWM comparator on the output of  
the error amplifier that introduces a double pole at one half of the switching frequency.  
12/42  
DocID024346 Rev 1  
 
 
LED2001  
Application notes  
Equation 2  
1
ωZ = -------------------------------  
ESR COUT  
Equation 3  
mC ⋅ (1 D) 0.5  
L COUT fSW  
1
ωP = ------------------------------------- + ---------------------------------------------  
RLOAD COUT  
where:  
Equation 4  
Se  
mC = 1 + ------  
Sn  
Se = Vpp fSW  
V
IN VOUT  
Sn = ----------------------------- Ri  
L
Sn represents the slope of the sensed inductor current, Se the slope of the external ramp  
(VPP peak-to-peak amplitude) that implements the slope compensation to avoid sub-  
harmonic oscillations at duty cycle over 50%.  
The sampling effect contribution FH(s) is:  
Equation 5  
1
FH(s) = ------------------------------------------  
s
s2  
1 + ------------------ + ------  
ω2n  
ωn QP  
where:  
Equation 6  
ωn = π ⋅ fSW  
and  
Equation 7  
1
QP = ----------------------------------------------------------  
π ⋅ [mC ⋅ (1 D) 0.5]  
6.3  
Error amplifier compensation network  
The LED2001 embeds (see Figure 6) the error amplifier and a pre-defined compensation  
network which is effective in stabilizing the system in most application conditions.  
DocID024346 Rev 1  
13/42  
Application notes  
LED2001  
Figure 6. Transconductance embedded error amplifier  
E/A  
+
COMP  
FB  
-
RC  
CC  
CP  
V+  
RC  
R0  
C0  
dV  
CP  
Gm dV  
CC  
AM12897v1  
RC and CC introduce a pole and a zero in the open loop gain. CP does not significantly affect  
system stability but it is useful to reduce the noise at the output of the error amplifier.  
The transfer function of the error amplifier and its compensation network is:  
Equation 8  
AV0 ⋅ (1 + s Rc Cc)  
A0(s) = -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
s2 R0 ⋅ (C0 + Cp) ⋅ Rc Cc + s ⋅ (R0 Cc + R0 ⋅ (C0 + Cp) + Rc Cc) + 1  
where Avo = Gm · Ro.  
The poles of this transfer function are (if CC >> C0+CP):  
Equation 9  
1
fP LF = ---------------------------------  
2 ⋅ π ⋅ R0 Cc  
Equation 10  
1
fP HF = ----------------------------------------------------  
2 ⋅ π ⋅ Rc ⋅ (C0 + Cp)  
whereas the zero is defined as:  
Equation 11  
1
FZ = ---------------------------------  
2 ⋅ π ⋅ Rc Cc  
14/42  
DocID024346 Rev 1  
LED2001  
Application notes  
The embedded compensation network is RC=70 K, CC=195 pF while CP and CO can be  
considered as negligible. The error amplifier output resistance is 240 MΩ, so the relevant  
singularities are:  
Equation 12  
fZ = 11, 6 kHz  
fP LF = 3, 4 Hz  
6.4  
LED small signal model  
Once the system reaches the working condition, the LEDs composing the row are biased  
and their equivalent circuit can be considered as a resistor for frequencies << 1 MHz.  
The LED manufacturer typically provides the equivalent dynamic resistance of the LED  
biased at different DC currents. This parameter is required to study the behavior of the  
system in the small signal analysis.  
For instance, the equivalent dynamic resistance of the Luxeon III Star from Lumiled  
measured with different biasing current level is reported below:  
Equation 13  
1.3Ω  
0.9Ω  
I
I
LED= 350mA  
LED= 700mA  
rLED  
If the LED datasheet does not report the equivalent resistor value, it can be simply derived  
as the tangent to the diode I-V characteristic in the present working point (see Figure 7).  
DocID024346 Rev 1  
15/42  
Application notes  
LED2001  
Figure 7. Equivalent series resistor  
[A]  
1
working point  
0.1  
2
[V]  
1
3
4
AM12898v1  
Figure 8 shows the equivalent circuit of the LED constant current generator.  
Figure 8. Load equivalent circuit  
L
Dled1  
D
Dled2  
Rs  
VIN  
COUT  
L
Rd1  
Rd2  
D1  
VIN  
COUT  
Rs  
AM12899v1  
16/42  
DocID024346 Rev 1  
 
LED2001  
Application notes  
As a consequence, the LED equivalent circuit gives the αLED(s) term correlating the output  
voltage with the high impedance FB input:  
Equation 14  
RSENSE  
αLED(nLED)= ---------------------------------------------------------  
nLED rLED + RSENSE  
6.5  
Total loop gain  
In summary, the open loop gain can be expressed as:  
Equation 15  
G(s) = GCO(s) ⋅ A0(s) ⋅ αLED(nLED  
)
Example 1  
Design specification:  
VIN=12 V, VFW_LED=3.5 V, nLED= 2, rLED= 1.1 Ω, ILED= 4 A, ILED RIPPLE= 2%  
The inductor and capacitor value are dimensioned in order to meet the ILED RIPPLE  
specification (see Section 7.1.2 for output capacitor and inductor selection guidelines):  
L=2.2 μH, COUT=2.2 μF MLCC (negligible ESR)  
Accordingly, with Section 7.1.1 the sensing resistor value is:  
Equation 16  
100 mV  
RS = -------------------- 25 mΩ  
4A  
Equation 17  
RSENSE  
25 mΩ  
αLED(nLED)= --------------------------------------------------------- = --------------------------------------------- = 0.011  
nLED rLED + RSENSE  
2 1.1Ω + 25 mΩ  
The gain and phase margin Bode diagrams are plotted respectively in Figure 9 and  
Figure 10.  
DocID024346 Rev 1  
17/42  
Application notes  
LED2001  
Figure 9. Module plot  
(;7(51$/ꢋ/223ꢋ02'8/(  
ꢂꢁꢁ  
ꢅꢆ  
ꢆꢄ  
ꢇꢂ  
ꢄꢅ  
ꢃꢊ  
ꢀꢀ  
ꢂꢆ  
ꢃꢁ  
[  
ꢁꢉꢂ  
ꢂꢁ  
ꢂꢁꢁ  
[  
)UHTXHQF\ꢋ>+]@  
[  
[  
[  
$0ꢂꢀꢈꢁꢁYꢂ  
Figure 10. Phase plot  
(;7(51$/ꢋ/223ꢋ*$,1ꢋ3+$6(  
ꢂꢅꢁ  
ꢂꢊꢆꢉꢊ  
ꢂꢃꢊ  
ꢂꢂꢀꢉꢊ  
ꢈꢁ  
ꢇꢆꢉꢊ  
ꢄꢊ  
ꢀꢀꢉꢊ  
[ꢂꢁ  
ꢁꢉꢂ  
ꢂꢁ  
ꢂꢁꢁ  
[ꢂꢁ  
)UHTXHQF\ꢋ>+]@  
[ꢂꢁ  
[ꢂꢁ  
[ꢂꢁ  
$0ꢂꢀꢈꢁꢂYꢂ  
The cut-off frequency and the phase margin are:  
Equation 18  
fC = 14 kHz  
pm = 120°  
6.6  
Dimming operation  
The dimming input disables the switching activity, masking the PWM comparator output.  
The inductor current dynamic when dimming input goes high depends on the designed  
system response. The best dimming performance is obtained maximizing the bandwidth  
and phase margin, when it is possible.  
As a general rule, the output capacitor minimization improves the dimming performance.  
18/42  
DocID024346 Rev 1  
 
LED2001  
Application notes  
Figure 11. Dimming operation example  
AM12902v1  
In fact, when dimming enables the switching activity, a small capacitor value is fast charged  
with low inductor value. As a consequence, the LEDs current rising edge time is improved  
and the inductor current oscillation reduced. An oversized output capacitor value requires  
extra current for fast charge so generating certain inductor current oscillations  
The switching activity is prevented as soon as the dimming signal goes low. Nevertheless,  
the LED current drops to zero only when the voltage stored in the output capacitor goes  
below a minimum voltage determined by the selected LEDs. As a consequence, a big  
capacitor value makes the LED current falling time worse than a smaller one.  
The LED2001 embeds dedicated circuitry to improve LED current falling time.  
As soon as the dimming input goes low, the low-side is kept enabled to discharge COUT until  
the LED current drops to 60% of the nominal current. A negative current limitation (-1 A  
typical) protects the device during this operation (see Figure 12).  
DocID024346 Rev 1  
19/42  
 
Application notes  
LED2001  
Figure 12. LED current falling edge operation  
AM12903v1  
6.6.1  
Dimming frequency vs. dimming depth  
As seen in Section 6.6, the LEDs current rising and falling edge time mainly depends on the  
system bandwidth (TRISE) and the selected output capacitor value (TRISE and TFALL).  
The dimming performance depends on the minimum current pulse shape specification of  
the final application. The ideal minimum current pulse has rectangular shape, however, it  
degenerates into a trapezoid or, at worst, into a triangle, depending on the ratio (TRISE  
FALL)/ TDIM  
+
T
.
Equation 19  
rectangle  
trapezoid  
triangle  
T
+ T  
T
+ T  
T
+ T  
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
-------------------------------------------- « 1  
-------------------------------------------- < 1  
-------------------------------------------- = 1  
T
T
T
DIM  
DIM  
DIM  
The small signal response in Figure 11 and Figure 12 is considered as an example.  
Equation 20  
T
RISE 20μs  
T
FALL 5μs  
Assuming the minimum current pulse shape specification as:  
Equation 21:  
T
RISE + TFALL = 0.5 TMIN_PULSE = 0.5 DMIN TDIMMING  
it is possible to calculate the maximum dimming depth given the dimming frequency or vice  
versa.  
20/42  
DocID024346 Rev 1  
 
LED2001  
Application notes  
Figure 13. Dimming signal  
AM12904v1  
For example, assuming a 1 kHz dimming frequency the maximum dimming depth is 5% or,  
given a 2% dimming depth, it follows a 200 Hz maximum fDIM  
.
The LED2001 dimming performance is strictly dependent on the system small signal  
response. As a consequence, an optimized compensation (good phase margin and  
bandwidth maximized) and minimized COUT value are crucial for the best performance.  
6.7  
eDesign studio software  
The LED2001 is supported by the eDesign software which can be viewed online at  
www.st.com.  
Figure 14. eDesign studio screenshot  
The software easily supports the component sizing according to the technical information  
given in this datasheet (see Section 6 and Section 7).  
The end user is requested to fill in the requested information such as the input voltage  
range, the selected LED parameters and the number of LEDs composing the row.  
DocID024346 Rev 1  
21/42  
Application information  
LED2001  
The software calculates external components according to the internal database. It is also  
possible to define new components and ask the software to use them.  
Bode plots, estimated efficiency and thermal performance are provided.  
Finally, the user can save the design and print all the information including the bill of material  
of the board.  
7
Application information  
7.1  
Component selection  
7.1.1  
Sensing resistor  
In closed loop operation the LED2001 feedback pin voltage is 100 mV, so the sensing  
resistor calculation is expressed as:  
Equation 22  
100 mV  
RS = --------------------  
ILED  
Since the main loop (see Section 6.1) regulates the sensing resistor voltage drop, the  
average current is regulated into the LEDs. The integration period is at minimum 5*TSW  
since the system bandwidth can be dimensioned up to fSW/5 at maximum.  
The system performs the output current regulation over a period which is at least five times  
longer than the switching frequency. The output current regulation neglects the ripple  
current contribution and its reliance on external parameters like input voltage and output  
voltage variations (line transient and LED forward voltage spread). This performance can  
not be achieved with simpler regulation loops such as a hysteretic control.  
For the same reason, the switching frequency is constant over the application conditions,  
which helps to tune the EMI filtering and to guarantee the maximum LED current ripple  
specification in the application range. This performance can not be achieved using constant  
ON/OFF-time architecture.  
7.1.2  
Inductor and output capacitor selection  
The output capacitor filters the inductor current ripple that, given the application condition,  
depends on the inductor value. As a consequence, the LED current ripple, that is the main  
specification for a switching current source, depends on the inductor and output capacitor  
selection.  
22/42  
DocID024346 Rev 1  
LED2001  
Application information  
Figure 15. Equivalent circuit  
'&5  
'&5  
/
/
'OHGꢂ  
5Gꢂ  
(65  
(65  
'OHGQ  
5V  
9,1  
'
9,1  
'
5GQ  
&287  
&287  
5V  
$0ꢂꢀꢈꢁꢇYꢂ  
The LED ripple current can be calculated as the inductor ripple current ratio flowing into the  
output impedance using the Laplace transform (see Figure 11):  
Equation 23  
8
π2  
----- ⋅ ΔIL ⋅ (1 + s ESR COUT  
)
ΔIRIPPLE(s) = ----------------------------------------------------------------------------------------------------------  
1 + s ⋅ (RS + ESR + nLED RLED) ⋅ COUT  
where the term 8/  
π
2 represents the main harmonic of the inductor current ripple (which has  
a triangular shape) and  
Equation 24  
VOUT  
ΔIL is the inductor current ripple.  
nLED VFW_LED + 100mV  
ΔIL = -------------- TOFF = ----------------------------------------------------------------- TOFF  
L
L
so L value can be calculated as:  
Equation 25  
nLED VFW_LED + 100mV  
nLED VFW_LED + 100mV  
nLED VFW_LED + 100mV  
L = ----------------------------------------------------------------- TOFF = ----------------------------------------------------------------- 1 -----------------------------------------------------------------  
ΔIL  
ΔIL  
VIN  
where TOFF is the OFF-time of the embedded high switch, given by 1-D.  
As a consequence, the lower the inductor value (so the higher the current ripple), the higher  
the COUT value would be to meet the specification.  
A general rule to dimension L value is:  
Equation 26  
ΔIL  
----------- 0.5  
ILED  
Finally, the required output capacitor value can be calculated equalizing the LED current  
ripple specification with the module of the Fourier transformer (see Equation 23) calculated  
at fSW frequency.  
DocID024346 Rev 1  
23/42  
Application information  
Equation 27  
LED2001  
ΔIRIPPLE(s=j ⋅ ω) = ΔIRIPPLE_SPEC  
Example (see Section Example 1):  
VIN=12 V, ILED=700 mA, ILED/ILED=2%, VFW_LED=3.5 V, nLED=2.  
Δ
A lower inductor value maximizes the inductor current slew rate for better dimming  
performance. Equation 26 becomes:  
Equation 28  
ΔIL  
----------- = 0.5  
ILED  
which is satisfied selecting a10 μH inductor value.  
The output capacitor value must be dimensioned according to Equation 27.  
Finally, given the selected inductor value, a 2.2 μF ceramic capacitor value keeps the LED  
current ripple ratio lower than the 2% of the nominal current. An output ceramic capacitor  
type (negligible ESR) is suggested to minimize the ripple contribution given a fixed capacitor  
value.  
Table 6. Inductor selection  
Manufacturer  
Series  
Inductor value (µH)  
Saturation current (A)  
WE-HCI 7040  
WE-HCI 7050  
XPL 7030  
1 to 4.7  
4.9 to 10  
2.2 to 10  
20 to 7  
20 to 4.0  
29 to 7.2  
Wurth Elektronik  
Coilcraft  
7.1.3  
Input capacitor  
The input capacitor must be able to support the maximum input operating voltage and the  
maximum RMS input current.  
Since step-down converters draw current from the input in pulses, the input current is  
squared and the height of each pulse is equal to the output current. The input capacitor  
must absorb all this switching current, whose RMS value can be up to the load current  
divided by two (worst case, with duty cycle of 50%). For this reason, the quality of these  
capacitors must be very high to minimize the power dissipation generated by the internal  
ESR, thereby improving system reliability and efficiency. The critical parameter is usually the  
RMS current rating, which must be higher than the RMS current flowing through the  
capacitor. The maximum RMS input current (flowing through the input capacitor) is:  
Equation 29  
2 D2 D2  
IRMS = IO  
D -------------- + ------  
η2  
η
where η is the expected system efficiency, D is the duty cycle and IO is the output DC  
current. Considering η = 1 this function reaches its maximum value at D = 0.5 and the  
24/42  
DocID024346 Rev 1  
LED2001  
Application information  
equivalent RMS current is equal to IO divided by 2. The maximum and minimum duty cycles  
are:  
Equation 30  
V
OUT + VF  
DMAX = ------------------------------------  
INMIN VSW  
V
and  
Equation 31  
V
OUT + VF  
DMIN = -------------------------------------  
V
INMAX VSW  
where VF is the free-wheeling diode forward voltage and VSW the voltage drop across the  
internal PDMOS. Considering the range DMIN to DMAX, it is possible to determine the max.  
IRMS going through the input capacitor. Capacitors that can be considered are:  
Electrolytic capacitors:  
these are widely used due to their low price and their availability in a wide range of  
RMS current ratings.  
The only drawback is that, considering ripple current rating requirements, they are  
physically larger than other capacitors.  
Ceramic capacitors:  
if available for the required value and voltage rating, these capacitors usually have a  
higher RMS current rating for a given physical dimension (due to very low ESR).  
The drawback is the considerably high cost.  
Tantalum capacitors:  
small tantalum capacitors with very low ESR are becoming more widely available.  
However, they can occasionally burn if subjected to very high current during charge.  
Therefore, it is suggested to avoid this type of capacitor for the input filter of the device  
as they may be stressed by a high surge current when connected to the power supply.  
Table 7. List of ceramic capacitors for the LED2001  
Manufacturer  
Series  
Capacitor value (µC)  
Rated voltage (V)  
Taiyo yuden  
Murata  
UMK325BJ106MM-T  
10  
50  
50  
GRM42-2 X7R 475K 50  
4.7  
If the selected capacitor is ceramic (so neglecting the ESR contribution), the input voltage  
ripple can be calculated as:  
Equation 32  
IO  
D
D
η
VIN PP = ----------------------- 1 --- D + --- ⋅ (1 D)  
CIN fSW  
η
DocID024346 Rev 1  
25/42  
Application information  
LED2001  
7.2  
Layout considerations  
The layout of switching DC-DC converters is very important to minimize noise and  
interference. Power-generating portions of the layout are the main cause of noise and so  
high switching current loop areas should be kept as small as possible and lead lengths as  
short as possible.  
High impedance paths (in particular the feedback connections) are susceptible to  
interference, so they should be as far as possible from the high current paths. A layout  
example is provided in Figure 16.  
The input and output loops are minimized to avoid radiation and high frequency resonance  
problems. The feedback pin to the sensing resistor path must be designed as short as  
possible to avoid pick-up noise. Another important issue is the ground plane of the board.  
As the package has an exposed pad, it is very important to connect it to an extended ground  
plane in order to reduce the thermal resistance junction-to-ambient.  
To increase the design noise immunity, different signal and power ground should be  
implemented in the layout (see Section 7.5: Application circuit). The signal ground serves  
the small signal components, the device analog ground pin, the exposed pad and a small  
filtering capacitor connected to the VCC pin. The power ground serves the device ground  
pin and the input filter. The different grounds are connected underneath the output capacitor.  
Neglecting the current ripple contribution, the current flowing through this component is  
constant during the switching activity and so this is the cleanest ground point of the buck  
application circuit.  
Figure 16. Layout example  
26/42  
DocID024346 Rev 1  
 
LED2001  
Application information  
7.3  
Thermal considerations  
The dissipated power of the device is tied to three different sources:  
Conduction losses due to the RDSON, which are equal to:  
Equation 33  
PON = RRDSON_HS ⋅ (IOUT)2 D  
POFF = RRDSON_LS ⋅ (IOUT)2 ⋅ (1 D)  
where D is the duty cycle of the application. Note that the duty cycle is theoretically given by  
the ratio between VOUT (nLED VLED + 100 mV) and VIN, but in practice it is substantially  
higher than this value to compensate for the losses in the overall application. For this  
reason, the conduction losses related to the RDSON increase compared to an ideal case.  
Switching losses due to turn-ON and turn-OFF. These are derived using the following  
equation:  
Equation 34  
(TRISE + TFALL  
)
PSW = VIN IOUT ---------------------------------------- FSW= VIN IOUT TSW_EQ FSW  
2
where TRISE and TFALL represent the switching times of the power element that cause the  
switching losses when driving an inductive load (see Figure 17). TSW is the equivalent  
switching time.  
Figure 17. Switching losses  
AM12908v1  
Quiescent current losses.  
Equation 35  
PQ = VIN IQ  
Example (see Section Example 1):  
DocID024346 Rev 1  
27/42  
 
Application information  
LED2001  
VIN=12 V, VFW_LED=3.5 V, nLED=2, ILED=700 mA  
The typical output voltage is:  
Equation 36  
VOUT = nLED VFW_LED + VFB = 7.1V  
R
DSON_HS has a typical value of 95 mΩ and RDSON_LS is 69 mΩ @ 25 °C.  
For the calculation we can estimate RDSON_HS = 140 mΩ and RDSON_LS= 100 mΩ as a  
consequence of Tj increase during the operation.  
T
SW_EQ is approximately 12 ns.  
IQ has a typical value of 1.5 mA @ VIN = 12 V.  
The overall losses are:  
Equation 37  
PTOT = RDSON_HS ⋅ (IOUT)2 D + RDSON_LS ⋅ (IOUT)2 ⋅ (1 D) + VIN IOUT fSW TSW + VIN IQ  
Equation 38  
PTOT = 0.14 0.72 0.6 + 0.1 0.72 0.4 + 12 0.7 12 109 850 103 + 12 1.5 103 205mW  
The junction temperature of the device is:  
Equation 39  
TJ = TA + RthJ A PTOT  
where TA is the ambient temperature and RthJ-A is the thermal resistance junction-to-  
ambient. The junction-to-ambient (RthJ-A) thermal resistance of the device assembled in the  
HSO8 package and mounted on the board is about 40 °C/W.  
Assuming the ambient temperature is around 40 °C, the estimated junction temperature is:  
TJ = 60 + 0.205 40 68°C  
7.4  
Short-circuit protection  
In overcurrent protection mode, when the peak current reaches the current limit threshold,  
the device disables the power element and it is able to reduce the conduction time down to  
the minimum value (approximately 100 nsec typical) to keep the inductor current limited.  
This is the pulse-by-pulse current limitation to implement the constant current protection  
feature.  
In overcurrent condition, the duty cycle is strongly reduced and, in most applications, this is  
enough to limit the switch current to the current threshold.  
28/42  
DocID024346 Rev 1  
LED2001  
Application information  
The inductor current ripple during ON and OFF phases can be written as:  
ON phase  
Equation 40  
V
IN VOUT (DCRL + RDSON HS) ⋅ I  
ΔIL TON = ----------------------------------------------------------------------------------------------- (TON  
)
L
OFF phase  
Equation 41  
(VOUT + (DCRL + RDSON LS) ⋅ I)  
ΔIL TON = ---------------------------------------------------------------------------------------(TOFF  
)
L
where DCRL is the series resistance of the inductor.  
The pulse-by-pulse current limitation is effective to implement constant current protection  
when:  
Equation 42  
ΔIL TON = ΔIL TOFF  
From Equation 40 and Equation 41 it can be seen that the implementation of the constant  
current protection becomes more critical the lower the VOUT and the higher the VIN.  
In fact, in short-circuit condition the voltage applied to the inductor during the OFF-time  
becomes equal to the voltage drop across parasitic components (typically the DCR of the  
inductor and the RDSON of the low-side switch) since VOUT is negligible, while during TON  
the voltage applied at the inductor is maximized and is approximately equal to VIN.  
In general, the worst case scenario is heavy short-circuit at the output with maximum input  
voltage. Equation 40 and Equation 41 in overcurrent conditions can be simplified to:  
Equation 43  
V
IN(DCRL + RDSON HS) ⋅ I  
VIN  
ΔIL TON = ------------------------------------------------------------------------ (TON MIN) ≅ --------(90ns)  
L
L
considering TON which has already been reduced to its minimum.  
Equation 44  
(DCRL + RDSON LS) ⋅ I  
(DCRL + RDSON LS) ⋅ I  
ΔIL TOFF = -------------------------------------------------------------(TSW 90ns) ≅ -------------------------------------------------------------(1.18μs)  
L
L
where TSW=1/fSW and considering the nominal fSW  
.
At higher input voltage IL TON may be higher than  
escalate. As a consequence, the system typically meets Equation 42 at a current level  
higher than the nominal value thanks to the increased voltage drop across stray  
Δ
Δ
IL TOFF and so the inductor current can  
components. In most of the application conditions the pulse-by-pulse current limitation is  
effective to limit the inductor current. Whenever the current escalates, a second level current  
protection called “Hiccup mode” is enabled. Hiccup protection offers an additional protection  
against heavy short-circuit conditions at very high input voltage even considering the spread  
DocID024346 Rev 1  
29/42  
Application information  
LED2001  
of the minimum conduction time of the power element. If the hiccup current level (6.2 A  
typical) is triggered, the switching activity is prevented for 12 cycles.  
Figure 18 shows the operation of the constant current protection when a short-circuit is  
applied at the output at the maximum input voltage.  
Figure 18. Constant current protection triggering Hiccup mode  
During pulse skipping, high side OFF, low side keeps ON till 26clks finish (13clks for  
LED2001) or Ipk decreases to be zero value.  
7.5  
Application circuit  
Figure 19. Demonstration board application circuit  
',0  
9,1  
5ꢂ  
8ꢂ  
/('ꢀꢁꢁꢂ  
ꢄNꢆ  
9,1B$  
9,1B6:  
-3ꢂ  
',0  
9/('ꢌ  
6:  
1&  
/ꢂ  
ꢃꢉꢃX+  
)%  
$*1' 3*1' (3  
&ꢀ  
ꢂꢁXꢍꢋꢀꢊ9  
&ꢃ  
ꢄꢉꢆX  
&ꢂ  
5ꢀ  
10  
9/('ꢎ  
ꢂX)  
56  
ꢁ5ꢂꢊ  
*1'  
$0ꢂꢀꢈꢂꢁYꢂ  
30/42  
DocID024346 Rev 1  
 
LED2001  
Application information  
Description Manufacturer  
Table 8. Component list  
Reference  
Part number  
1 μF 25 V  
(size 0805)  
C1  
22 μF 25 V  
(size 1206)  
C2  
C3  
GRM31CR61E226KE15L  
GRM21BR71E475KA73L  
Murata  
Murata  
4.7 μF 25 V  
(size 0805)  
4.7 KΩ 5%  
(size 0603)  
R1  
R2  
Rs  
Not mounted  
0.15 Ω 1%  
(size 1206)  
ERJ14BSFR15U  
Panasonic  
3.3 μH  
I
SAT = 8.4 A  
L1  
XAL6030-332MEB  
(20% drop) IRMS = 7.3 A  
Coilcraft  
(40 °C rise)  
(size 6.36 x 6.56 x 6.1 mm)  
Figure 20. PCB layout (component side) DFN package  
DocID024346 Rev 1  
31/42  
Application information  
LED2001  
Figure 21. PCB layout (bottom side) DFN package  
Figure 22. PCB layout (component side) HSOP8 package  
It is strongly recommended that the input capacitors are to be put as close as possible to the  
pins, see C1 and C2.  
32/42  
DocID024346 Rev 1  
LED2001  
Application information  
Figure 23. PCB layout (bottom side) HSOP8 package  
DocID024346 Rev 1  
33/42  
Typical characteristics  
LED2001  
8
Typical characteristics  
Figure 24. Soft-start  
Figure 25. Load regulation  
Vin 12V  
Vled 7V  
AM12914v1  
AM12913v1  
Figure 26. Dimming operation  
Figure 27. LED current rising edge  
a
AM12915v1  
AM12916v1  
Figure 28. LED current falling edge  
Figure 29. Hiccup current protection  
To maximize the dimming  
performance the embedded LS  
discharges C OUT when DIM goes low.  
(DIM = 0 && V FB > 60mV):  
the low side is enabled  
as long as I > -1A  
L
(implements negative  
current limitation)  
AM12918v1  
AM12917v1  
34/42  
DocID024346 Rev 1  
LED2001  
Typical characteristics  
Figure 30. OCP blanking time  
Figure 31. Thermal shutdown protection  
130 ns typ.  
AM12920v1  
AM12919v1  
DocID024346 Rev 1  
35/42  
Ordering information  
LED2001  
9
Ordering information  
Table 9. Ordering information  
Package  
Order code  
Packaging  
LED2001PUR  
LED2001PHR  
VFQFPN 4x4 8L  
HSOP8  
Tape and reel  
36/42  
DocID024346 Rev 1  
LED2001  
Package mechanical data  
10  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Table 10. VFQFPN8 (4x4x1.08 mm) mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
A
0.80  
0.90  
0.02  
0.20  
1.00  
0.05  
A1  
A3  
b
D
0.23  
3.90  
2.82  
3.90  
2.05  
0.30  
4.00  
3.00  
4.00  
2.20  
0.80  
0.50  
0.38  
4.10  
3.23  
4.10  
2.30  
D2  
E
E2  
e
L
0.40  
0.60  
DocID024346 Rev 1  
37/42  
Package mechanical data  
LED2001  
Figure 32. VFQFPN8 (4x4x1.08 mm) package dimensions  
38/42  
DocID024346 Rev 1  
LED2001  
Package mechanical data  
Table 11. HSOP8 mechanical data  
mm  
Dim  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.70  
0.00  
1.25  
0.31  
0.17  
4.80  
5.80  
3.80  
0.150  
0.51  
0.25  
5.00  
6.20  
4.00  
c
D
4.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0.00  
0.50  
1.27  
8.00  
0.10  
L
k
ccc  
DocID024346 Rev 1  
39/42  
Package mechanical data  
LED2001  
Figure 33. HSOP8 package dimensions  
'ꢂ ꢃꢉꢂꢁꢋPPꢋ7\Sꢉ  
(ꢀ ꢀꢉꢀꢁꢋPPꢋ7\Sꢉ  
$0ꢂꢂꢆꢊꢊYꢂ  
40/42  
DocID024346 Rev 1  
LED2001  
Revision history  
11  
Revision history  
Table 12. Document revision history  
Changes  
Date  
Revision  
20-May-2013  
1
Initial release.  
DocID024346 Rev 1  
41/42  
LED2001  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
42/42  
DocID024346 Rev 1  

相关型号:

LED20FC

Mid-Infrared Light Emitting Diodes and Photodiodes
ROITHNER

LED20W-12

Switch Mode LED Drivers with Isolation, Constant Current, Dimming & Constant Voltage
ETC

LED20W-12-C1660

Switch Mode LED Drivers with Isolation
ETC

LED20W-12-C1660-LE

Constant Current LED Drivers ELV & Inc 100-10% Dimmable Black Magic Thermal Advantage™ Plastic Housing
ETC

LED20W-12-C1660-TE

Constant Current LED Drivers ELV & Inc 100-10% Dimmable Black Magic Thermal Advantage™ Plastic Housing
ETC

LED20W-12-C1660-XX

Switch Mode LED Drivers with Isolation, Constant Current, Dimming & Constant Voltage
ETC

LED20W-13

Switch Mode LED Drivers with Isolation, Constant Current, Dimming & Constant Voltage
ETC

LED20W-13-C1540

Switch Mode LED Drivers with Isolation
ETC

LED20W-13-C1540-XX

Switch Mode LED Drivers with Isolation, Constant Current, Dimming & Constant Voltage
ETC

LED20W-15

Switch Mode LED Drivers with Isolation, Constant Current, Dimming & Constant Voltage
ETC

LED20W-15-C1330

Switch Mode LED Drivers with Isolation
ETC

LED20W-15-C1330-XX

Switch Mode LED Drivers with Isolation, Constant Current, Dimming & Constant Voltage
ETC