M1014A [STMICROELECTRONICS]

Low Consumption Voltage and Current Controller for Battery Chargers and Adaptors; 低消耗电压和电流控制器电池充电器及转换器
M1014A
型号: M1014A
厂家: ST    ST
描述:

Low Consumption Voltage and Current Controller for Battery Chargers and Adaptors
低消耗电压和电流控制器电池充电器及转换器

转换器 电池 控制器
文件: 总10页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSM1014  
Low Consumption Voltage and Current  
Controller for Battery Chargers and Adaptors  
Constant voltage and constant current  
control  
Low consumption  
Low voltage operation  
Low external component count  
Current sink output stage  
Easy compensation  
D
SO-8  
(Plastic Package)  
High ac mains voltage rejection  
2kV ESD protection (HBM)  
Voltage Reference:  
Fixed output voltage reference 1.25V  
0.5% and 1% Voltage precision  
S
MiniSO-8  
(Plastic Micropackage)  
DESCRIPTION  
TSM1014 is a highly integrated solution for SMPS  
applications requiring CV (constant voltage) and  
CC (constant current) mode.  
PIN CONNECTIONS (top view)  
TSM1014 integrates one voltage reference and  
two operational amplifiers.  
1
2
3
4
Vref  
Cc-  
Cc+  
Cv-  
Vcc  
8
Cc Out 7  
Gnd 6  
The voltage reference combined with one  
operational amplifier makes it an ideal voltage  
controller. The other operational amplifier,  
combined with few external resistors and the  
voltage reference, can be used as a current  
limiter.  
Cv Out 5  
APPLICATIONS  
Adapters  
Battery chargers  
ORDER CODES  
Part Number  
TSM1014ID  
Temperature Range  
Package  
Packaging  
VRef (%)  
Marking  
Tube  
1
1
M1014  
M1014  
M1014A  
M1014A  
M808  
TSM1014IDT  
TSM1014AID  
TSM1014AIDT  
TSM1014IST  
TSM1014AIST  
Tape & Reel  
Tube  
SO-8  
0.5  
0.5  
1
-40 to 105°C  
Tape & Reel  
Tape & Reel  
Tape & Reel  
mini SO-8  
0.5  
M809  
July 2004  
Revision 1  
1/10  
TSM1014  
Pin Descriptions  
1 Pin Descriptions  
The table below gives the pin descriptions for both SO8 & MiniSO8 packages.  
Name  
VRef  
Pin #  
Type  
Function  
1
2
3
4
5
6
7
8
Analog Output  
Analog Input  
Analog Input  
Analog Input  
Analog Output  
Power Supply  
Analog Output  
Power Supply  
Voltage Reference  
CC-  
Input pin of the operational amplifier  
Input pin of the operational amplifier  
Input pin of the operational amplifier  
Output of the operational amplifier  
Ground Line. 0V Reference For All Voltages  
Output of the operational amplifier  
Power supply line.  
CC+  
CV-  
CVOUT  
Gnd  
CCOUT  
Vcc  
2 Absolute Maximum Ratings  
Symbol  
DC Supply Voltage  
Value  
-0.3V to Vz  
Unit  
Vcc  
Vi  
DC Supply Voltage (50mA =< Icc)  
Input Voltage  
V
V
-0.3 to Vcc  
PT  
Power dissipation  
W
Toper Operational temperature  
0 to 105  
-55 to 150  
150  
°C  
Tstg  
Tj  
Storage temperature  
°C  
Junction temperature  
°C  
Iref  
Voltage reference output current  
Electrostatic Discharge  
2.5  
mA  
kV  
ESD  
Rthja  
Rthja  
2
Thermal Resistance Junction to Ambient Mini SO8 package  
Thermal Resistance Junction to Ambient SO8 package  
180  
°C/W  
°C/W  
175  
3 Operating Conditions  
Symbol  
Parameter  
Value  
Unit  
Vcc  
DC Supply Conditions  
4.5 to Vz  
V
Toper Operational temperature  
-40 to 105  
°C  
2/10  
Electrical Characteristics  
TSM1014  
4 Electrical Characteristics  
Tamb = 25°C and Vcc = +18V (unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Total Current Consumption  
Total Supply Current, excluding current Vcc = 18V, no load  
Icc  
Vz  
100  
28  
180  
µA  
V
1
Tmin. < Tamb < Tmax.  
in Voltage Reference .  
Vcc clamp voltage  
Icc = 50mA  
Operator 1: Op-amp with non-inverting input connected to the internal VRef  
Input Offset Voltage + Voltage reference Tamb = 25°C  
TSM1014  
1.251  
1.25  
Tmin. Tamb Tmax.  
Tamb = 25°C  
Tmin. Tamb Tmax.  
1.266  
1.279  
1.258  
1.267  
VRef+Vio  
TSM1014A  
V
DVio  
Input Offset Voltage Drift  
7
µV/°C  
Operator 2  
Input Offset Voltage  
TSM1014  
T
amb = 25°C  
4
5
2
3
1
0.5  
7
Tmin. Tamb Tmax.  
Tamb = 25°C  
Tmin. Tamb Tmax.  
Vio  
mV  
TSM1014A  
DVio  
Iib  
Input Offset Voltage Drift  
Input Bias Current  
µV/°C  
nA  
Tamb = 25°C  
Tmin. Tamb Tmax.  
20  
50  
150  
200  
Supply Voltage Rejection Ration  
Input Common Mode Voltage Range  
Common Mode Rejection Ratio  
VCC = 4.5V to 28V  
SVR  
Vicm  
65  
0
100  
dB  
Vcc-1.5  
V
Tamb = 25°C  
Tmin. Tamb Tmax.  
70  
60  
85  
CMR  
dB  
Output stage  
Transconduction Gain. Sink Current  
Tamb = 25°C  
Tmin. Tamb Tmax.  
1
1
Gm  
Vol  
Ios  
mA/mV  
mV  
2
0.5  
Only  
Low output voltage at 5 mA sinking cur- Tmin. Tamb Tmax.  
rent  
250  
10  
400  
Output Short Circuit Current. Output to  
(Vcc-0.6V). Sink Current Only  
Tamb = 25°C  
Tmin. Tamb Tmax.  
6
5
mA  
Voltage reference  
Reference Input Voltage  
TSM1014 1% precision  
Tamb = 25°C  
Tmin. Tamb Tmax.  
Tamb = 25°C  
1.238  
1.225  
1.244  
1.237  
1.25  
1.25  
1.262  
1.273  
1.256  
1.261  
V
Ref  
V
TSM1014A 0.5% precision  
Tmin. Tamb Tmax.  
Reference Input Voltage Deviation Over Tmin. Tamb Tmax.  
Temperature Range  
VRef  
20  
30  
20  
10  
mV  
mV  
mV  
Reference input voltage deviation over Iload = 1mA  
Vcc range.  
RegLine  
RegLoad  
Reference input voltage deviation over Vcc = 18V,  
output current.  
0 < Iload < 2.5mA  
1) Test conditions: pin 2 and 6 connected to GND, pin 4 and 5 connected to 1.25V, pin 3 connected to 200mV.  
2) The current depends on the voltage difference between the negative and the positive inputs of the amplifier. If the voltage on the minus  
input is 1mV higher than the positive amplifier, the sinking current at the output OUT will be increased by Gm*1mA.  
3/10  
TSM1014  
Electrical Characteristics  
Figure 1: Internal schematic  
Vref  
Cc-  
Vcc  
1
2
3
4
8
7
6
5
Vref  
28V  
Ccout  
CC  
CV  
Cc+  
Cv-  
Gnd  
Cvout  
Figure 2: Typical adapter or battery charger application using TSM1014  
Vcc  
OUT+  
Rlimit  
D
Vcc  
1
R2  
Vref  
28V  
IL  
DS  
R3  
100  
5
4
7
CV Out  
Cv-  
CV  
R4  
100K  
+
TSM1014  
CC  
Cvc1  
2.2nF  
3
Cc+  
Rvc1  
22K  
CC Out  
R1  
CS  
Cic1  
2.2nF  
+
+
Cc-  
Gnd  
Ric1  
22K  
R5  
10K  
Ric2  
1K  
Vsense  
OUT-  
Rsense  
IL  
In the application schematic shown in Figure 2, the TSM1014 is used on the secondary side of a flyback  
adapter (or battery charger) to provide an accurate voltage and current control. The above feedback loop  
is made with optocoupler.  
4/10  
Principles of Operation and Application Tips  
TSM1014  
5 Principles of Operation and Application Tips  
5.1 Voltage control  
The voltage loop is controlled via a first trans-conductance operational amplifier, the resistor bridge R1,  
R2, and the optocoupler which is directly connected to the output.  
The relation between the values of R1 and R2 should be chosen as written in Equation 1.  
R1 = R2 x V  
/ (V - V )  
Ref  
Equation 1  
Ref  
out  
where V is the desired output voltage.  
out  
To avoid the discharge of the load, the resistor bridge R1, R2 should be highly resistive. For this type of  
application, a total value of 100K(or more) would be appropriate for the resistors R1 and R2.  
As an example, with R2 = 100K, V = 4.10V, V ) = 1.210V, then R1 = 41.9K.  
out  
Ref  
Note that if the low drop diode is inserted between the load and the voltage regulation resistor bridge to  
avoid current flowing from the load through the resistor bridge, this drop should be taken into account in  
the above calculations by replacing V by (V + V ).  
drop  
out  
out  
5.2 Current control  
The current loop is controlled via the second trans-conductance operational amplifier, the sense resistor  
R
, and the optocoupler.  
sense  
V
threshold is achieved externally by a resistor bridge tied to the V  
voltage reference. Its middle  
Ref  
sense  
point is tied to the positive input of the current control operational amplifier, and its foot is to be connected  
to lower potential point of the sense resistor as shown on the following figure. The resistors of this bridge  
are matched to provide the best precision possible.  
The control equation verifies:  
Rsense × Ilim = Vsense  
Equation 2  
R5 Vref  
Vsense = -----------------------  
(R4 + R5)  
R5 Vref Rsense  
Ilim = ---------------------------------------  
Equation 3  
(R4 + R5)  
where I is the desired limited current, and V  
is the threshold voltage for the current control loop.  
lim  
sense  
Note that the R  
resistor should be chosen taking into account the maximum dissipation (P  
)
lim  
sense  
through it during full load operation.  
Plim = Ilim × Vsense  
Equation 4  
5/10  
TSM1014  
Principles of Operation and Application Tips  
Therefore, for most adapter and battery charger applications, a quarter-watt, or half-watt resistor to make  
the current sensing function is sufficient.  
The current sinking outputs of the two trans-conductance operational amplifiers are common (to the  
output of the IC). This makes an ORing function which ensures that whenever the current or the voltage  
reaches too high values, the optocoupler is activated.  
The relation between the controlled current and the controlled output voltage can be described with a  
square characteristic as shown in the following V/I output-power graph.  
Figure 3: Output Voltage versus Output Current  
Vout  
Voltage regulation  
TSM1014 Vcc : independent power supply  
Secondary current regulation  
Iout  
0
TSM1014 Vcc : On power output  
Primary current regulation  
5.3 Compensation  
The voltage-control trans-conductance operational amplifier can be fully compensated. Both its output  
and negative input are directly accessible for external compensation components.  
An example of a suitable voltage-control compensation network is shown in Figure 2 on page 4. It  
consists of a capacitor Cvc1=2.2nF and a resistor Rcv1=22Kin series.  
The current-control trans-conductance operational amplifier can be fully compensated. Both of its output  
and negative input are directly accessible for external compensation components.  
An example of a suitable current-control compensation network is also shown in Figure 2 on page 4. It  
consists of a capacitor Cic1=2.2nF and a resistor Ric1=22Kin series.  
5.4 Start-up and short circuit conditions  
Under start-up or short-circuit conditions the TSM1014 is not provided with a high enough supply voltage.  
This is due to the fact that the chip has its power supply line in common with the power supply line of the  
system.  
Therefore, the current limitation can only be ensured by the primary PWM module, which should be  
chosen accordingly.  
If the primary current limitation is considered not to be precise enough for the application, then a sufficient  
supply for the TSM1014 has to be ensured under all conditions. For this, it would be necessary to add  
some circuitry to supply the chip with a separate power line. This can be achieved in a number of ways,  
including putting an additional winding on the transformer.  
6/10  
Principles of Operation and Application Tips  
5.5 Voltage clamp  
TSM1014  
The following schematic shows how to realize a low-cost power supply for the TSM1014 (with no  
additional windings).Please pay attention to the fact that in the particular case presented here, this low-  
cost power supply can reach voltages as high as twice the voltage of the regulated line. Since the  
Absolute Maximum Rating of the TSM1014 supply voltage is 28V. In the aim to protect he TSM1014  
against such how voltage values a internal zener clamp is integrated.  
Rlimit = (Vcc Vz) Ivz  
Figure 4: Clamp voltage  
Vcc  
Rlimit  
Vcc  
Ivz  
Vz  
TSM1014  
28V  
Figure 5: Voltage controller and over current detection schematic  
OUT+  
CV  
OCP  
D
Vcc  
1
R2  
Vref  
To primary  
28V  
IL  
R3  
1k  
R6  
1K  
Rvc1  
5
4
7
CV Out  
Cv-  
CV  
CC  
22K  
R4  
Cvc1  
100K  
2.2nF  
+
3
Cc+  
CC Out  
R1  
+
Cc-  
Gnd  
Cic1  
2.2nF  
Ric1  
22K  
R5  
10K  
Ric2  
1K  
Vsense  
OUT-  
Rsense  
IL  
7/10  
TSM1014  
Package Mechanical Data  
6 Package Mechanical Data  
SO-8 MECHANICAL DATA  
mm.  
inch  
DIM.  
MIN.  
TYP  
MAX.  
MIN.  
TYP.  
MAX.  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.053  
0.069  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.04  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
h
L
k
˚ (max.)  
8
ddd  
0.1  
0.04  
0016023/C  
8/10  
Package Mechanical Data  
TSM1014  
9/10  
TSM1014  
Revision History  
7 Revision History  
Date  
Revision  
Description of Changes  
01 July 2004  
1
First Release  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
10/10  

相关型号:

M101EXXXX.XXXXAK

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101EXXXX.XXXXCK

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101EXXXX.XXXXDK

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101EXXXX.XXXXDL

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101PXXXX.XXXXAK

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101PXXXX.XXXXCK

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101PXXXX.XXXXCL

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101PXXXX.XXXXDK

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M101PXXXX.XXXXDL

Clock Generator, 1000MHz, CMOS, MDIP24, DOUBLE WIDTH, METAL, DIP-24
SPECTRUM

M1020

M series PRTDs are designed for large volume applications where long term stability
ETC

M1020-01-155.5200T

CLCC-36, Reel
IDT

M1020-11-125.0000

CLCC-36, Tube
IDT