M24128X-FCU6T/TF [STMICROELECTRONICS]

128-Kbit serial I²C bus EEPROM with configurable device address and software write protection, delivered in 4-ball CSP;
M24128X-FCU6T/TF
型号: M24128X-FCU6T/TF
厂家: ST    ST
描述:

128-Kbit serial I²C bus EEPROM with configurable device address and software write protection, delivered in 4-ball CSP

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总35页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24128X-FCU  
Datasheet  
128-Kbit serial I²C bus EEPROM with configurable device address and software  
write protection, delivered in 4-ball CSP  
Features  
Compatible with the 400 kHz I²C protocol  
High speed 1 MHz transfer rate  
Memory array:  
128 Kbit (16 Kbyte) of EEPROM  
Page size: 32 byte  
WLCSP  
(CU)  
Supply voltage range:  
1.7 V to 5.5 V over –40 °C / +85 °C  
1.6 V to 5.5 V over 0 °C / +85 °C  
Write  
Byte write within 5 ms  
Page write within 5 ms  
Random and sequential read modes  
Configurable device address  
Software write protection  
ESD protection  
Human body model: 4 kV  
Enhanced ESD / Latch-Up protection  
More than 4 million write cycles  
More than 200-year data retention  
Package  
Product status link  
RoHS and halogen free (ECOPACK2)  
M24128X-FCU  
DS12680 - Rev 2 - October 2019  
www.st.com  
For further information contact your local STMicroelectronics sales office.  
M24128X-FCU  
Description  
1
Description  
This EEPROM device supports standard I²C instruction set.  
The M24128X-FCU is a 128-Kbit I2C-compatible EEPROM (electrically erasable PROgrammable memory)  
organized as 16 K × 8 bits and delivered in a 4-ball WLCSP package.  
The M24128X-FCU can operate with a supply voltage of 1.7 V to 5 V, over an ambient temperature range of -40  
°C/+85 °C. It can also operate down to 1.6 V, under some restricting conditions  
The M24128X-FCU additionally offers an 8-bit chip enable register for the configurable device address (CDA), to  
configure by software up to eight possibilities of chip enable address, and the memory write protection, enabled  
by setting, always through software, the write protection bit.  
Figure 1. Logic diagram  
VCC  
M24128X-FCU  
SCL  
SDA  
VSS  
Table 1. Signal names  
Signal name  
SDA  
Function  
Serial Data  
Direction  
I/O  
Input  
-
SCL  
Serial Clock  
Supply voltage  
V
CC  
V
Ground  
-
SS  
DS12680 - Rev 2  
page 2/35  
 
 
 
M24128X-FCU  
Description  
Figure 2. 4-bump WLCSP connections  
1
2
2
1
A
B
VCC  
SCL  
SCL  
VCC  
A
B
SDA  
VSS  
VSS  
SDA  
Marking side  
(top view)  
Bump side  
(bottom view)  
Table 2. Signals vs. bump position  
A
Position  
B
V
1
2
SDA  
CC  
V
SCL  
SS  
DS12680 - Rev 2  
page 3/35  
 
 
M24128X-FCU  
Signal description  
2
Signal description  
2.1  
Serial Clock (SCL)  
SCL is an input. The signal applied on the SCL input is used to strobe the data available on SDA(in) and to output  
the data on SDA(out).  
2.2  
2.3  
Serial Data (SDA)  
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open drain output that  
may be wire-OR with other open drain or open collector signals on the bus. A pull-up resistor must be connected  
from Serial Data (SDA) to VCC (Figure 12 indicates how to calculate the value of the pull-up resistor).  
V
(ground)  
SS  
VSS is the reference for the VCC supply voltage.  
2.4  
Supply voltage (V )  
CC  
2.4.1  
Operating supply voltage (V  
)
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified  
[VCC(min), VCC(max)] range must be applied (see Operating conditions in Section 9 DC and AC parameters). In  
order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor  
(usually from 10 to 100 nF) close to the VCC / VSS package pins.  
This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write  
instruction, until the completion of the internal write cycle (tW).  
2.4.2  
2.4.3  
Power-up conditions  
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage (see Table 9 in  
Section 9 DC and AC parameters).  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included.  
At power-up, the device does not respond to any instruction until VCC has reached the internal reset threshold  
voltage. This threshold is lower than the minimum VCC operating voltage (see Operating conditions in Section  
9 DC and AC parameters). When VCC passes over the POR threshold, the device is reset and enters the  
Standby Power mode; however, the device must not be accessed until VCC reaches a valid and stable DC voltage  
within the specified [VCC(min), VCC(max)] range (see Operating conditions in Section 9 DC and AC parameters).  
In a similar way, during power-down (continuous decrease in VCC), the device must not be accessed when VCC  
drops below VCC(min). When VCC drops below the power-on-reset threshold voltage, the device stops responding  
to any instruction sent to it.  
2.4.4  
Power-down conditions  
During power-down (continuous decrease in VCC), the device must be in the Standby Power mode (mode  
reached after decoding a Stop condition, assuming that there is no internal write cycle in progress).  
DS12680 - Rev 2  
page 4/35  
 
 
 
 
 
 
 
 
 
M24128X-FCU  
Memory organization  
3
Memory organization  
The memory is organized as shown below.  
Figure 3. Block diagram  
SENSE AMPLIFIERS  
DATA REGISTER  
PAGE LATCHES  
X DECODER  
SCL  
SDA  
ARRAY  
I/O  
CONTROL  
LOGIC  
START & STOP  
DETECT  
HV GENERATOR  
+
SEQUENCER  
ADDRESS  
REGISTER  
DS12680 - Rev 2  
page 5/35  
 
 
M24128X-FCU  
Features  
4
Features  
4.1  
Chip enable register  
As the M24128X is delivered in 4-ball WLCSP without chip enable inputs, the device provides a non-volatile 8-bit  
register allowing the user to define a configurable device address (CDA) and a software write protection. This  
register can be written and read with the device type identifier (1010b) and with a specific address.The description  
of the chip enable register is given Table 3.  
Table 3. Chip enable register values  
bit 7 bit 6 bit 5 bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2  
C1  
C0  
b0  
x (1) x(1) x(1) x(1)  
Configurable device  
address bit  
Configurable device  
address bit  
Configurable device  
address bit  
SWP: Write protection  
activation bit  
1. x = Don’t care bits. Factory delivery of the register is X0b  
Bit 7:4  
Don’t care bits  
Bits 3:1  
Chip enable address configuration:  
(b3,b2,b1) = (0,0,0): the chip enable address is 000 (factory delivery value)  
(b3,b2,b1) = (0,0,1): the chip enable address is 001  
(b3,b2,b1) = (0,1,0): the chip enable address is 010  
(b3,b2,b1) = (1,0,0): the chip enable address is 100  
(b3,b2,b1) = (1,1,0): the chip enable address is 110  
(b3,b2,b1) = (1,1,1): the chip enable address is 111  
(b3,b2,b1) = (0,1,1): the chip enable address is 011  
(b3,b2,b1) = (1,0,1): the chip enable address is 101  
Bit 0  
Enables or disables the write protection of the memory array:  
b0 = 0: the whole memory array can be written and read (factory delivery value)  
b0 = 1: the whole memory array is write protected and is in read-only mode  
4.2  
4.3  
Configurable device address  
C2, C1 and C0 are defining the chip enable address in the Device Select Code. These bits can be written and re-  
configured with a Write command.  
Factory delivery value is 000b.  
At power up or after reprogramming, the device will load the last configuration of C2, C1 and C0 values.  
Software write protect  
In order to prevent unwanted write sequence, the M24128X offers the SWP feature, which makes it possible to  
protect the whole memory content. write operations are disabled (read-only memory) when the SWP is set to 1  
(SWP=1b). In the same way, the write operations are enabled when the SWP is set to 0 (SWP=0b).  
Factory default values is 0b.  
At power up, the device will load the last configuration of the SWP value.  
Updating the SWP to a new value is a reversible action: the SWP bit can be updated from 0 to 1 and from 1 to 0.  
When SWP is set to '1', device select and address bytes are acknowledged, data bytes are not acknowledged.  
DS12680 - Rev 2  
page 6/35  
 
 
 
 
 
 
M24128X-FCU  
Device operation  
5
Device operation  
The device supports the I2C protocol. This is summarized in Figure 4. Any device that sends data on to the bus is  
defined to be a transmitter, and any device that reads the data is defined to be a receiver. The device that controls  
the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be  
initiated by the bus master, which will also provide the serial clock for synchronization. The device is always a  
slave in all communications.  
Figure 4. I2C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
STOP  
Condition  
START  
Condition  
1
2
3
7
8
9
SCL  
ACK  
MSB  
SDA  
START  
Condition  
1
2
3
7
8
9
SCL  
MSB  
ACK  
SDA  
STOP  
Condition  
DS12680 - Rev 2  
page 7/35  
 
 
M24128X-FCU  
Start condition  
5.1  
5.2  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the high state. A Start  
condition must precede any data transfer instruction. The device continuously monitors (except during a Write  
cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition.  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driven high. A Stop  
condition terminates communication between the device and the bus master. A Read instruction that is followed  
by NoAck can be followed by a Stop condition to force the device into the Standby mode.  
A Stop condition at the end of a Write instruction triggers the internal Write cycle.  
5.3  
5.4  
5.5  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL). For correct  
device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial  
Data (SDA) signal must change only when Serial Clock (SCL) is driven low.  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master  
or slave device, releases Serial Data (SDA) after sending eight bits of data. During the 9th clock pulse period, the  
receiver pulls Serial Data (SDA) low to acknowledge the receipt of the eight data bits.  
Device addressing  
To start communication between the bus master and the slave device, the bus master must initiate a start  
condition. Following this, the bus master sends the device select code, shown in Table 4 on serial data (SDA),  
most significant bit first.  
Table 4. Device select code  
Device type identifier (1)  
Chip enable address (2)  
RW  
b0  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
1
0
1
0
C2  
C1  
C0  
RW  
1. The most significant bit, b7, is sent first.  
2. b3, b2 and b1 are compared with the C2, C1 and C0 values programmed in the chip enable register.  
When the device select code is received, the device responds only if the b3, b2 and b1 values match the values  
of the C2, C1 and C0 bits programmed in the chip enable register.  
If a match occurs, the corresponding device gives an acknowledgment on serial data (SDA) during the 9th bit  
time.  
If the device does not acknowledge the device select code, the device de-selects itself from the bus, and goes  
into standby mode (therefore will not acknowledge the device select code).  
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
DS12680 - Rev 2  
page 8/35  
 
 
 
 
 
 
 
 
M24128X-FCU  
Instructions  
6
Instructions  
6.1  
Write operations on memory array  
Following a start condition the bus master sends a device select code with the R/W bit (RW) reset to 0. The  
device acknowledges this, as shown in Figure 5, and waits for two address bytes. The device responds to each  
address byte with an acknowledge bit, and then waits for the data byte.  
Table 5. Most significant address byte  
A15  
A7  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
Table 6. Least significant address byte  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
When the bus master generates a stop condition immediately after a data byte ACK bit (in the “10th bit” time slot),  
either at the end of a byte write or a page write, the internal write cycle tW is triggered. A stop condition at any  
other time slot does not trigger the internal write cycle.  
After the stop condition and the successful completion of an internal write cycle (tW), the device internal address  
counter is automatically incremented to point to the next byte after the last modified byte.  
During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any  
requests.  
If the software write protection is enabled with the SWP bit set to '1', the write instruction is not executed and the  
accompanying data bytes are not acknowledged, as shown in Figure 5.  
DS12680 - Rev 2  
page 9/35  
 
 
 
 
M24128X-FCU  
Write operations on memory array  
6.1.1  
Byte write  
After the device select code and the address bytes, the bus master sends one data byte. If the addressed location  
is write-protected, with the SWP bit set to '1', the device replies with NoACK, and the location is not modified, as  
shown in Figure 6. If, instead, the addressed location is not Write-protected, the device replies with ACK. The bus  
master terminates the transfer by generating a stop condition, as shown in Figure 5.  
Figure 5. Write mode sequence SWP bit = 0 (data write enabled)  
ACK  
ACK  
ACK  
ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
ACK  
ACK  
ACK  
ACK  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
Data in 2  
R/W  
ACK  
ACK  
Page Write (cont'd)  
Data in N  
DS12680 - Rev 2  
page 10/35  
 
 
M24128X-FCU  
Write operations on memory array  
6.1.2  
Page write  
The page write mode allows up to 32 bytes to be written in a single write cycle, provided they are all located in the  
same page in the memory: that is, the most significant memory address bits, A15/A5, are the same. If more bytes  
than those that will fit up to the end of the page are sent, a “roll-over” occurs, i.e. the bytes exceeding the page  
end are written on the same page, from location 0.  
The bus master sends from 1 to 32 bytes of data, each one is acknowledged by the device if the software write  
protection is disabled with the SWP bit set to '0'. If the software write protection is enabled with the SWP bit set to  
'1', the contents of the addressed memory location are not modified, and each data byte is followed by a NoACK,  
as shown in Figure 6. After each transferred byte, the internal page address counter is incremented.  
The transfer is terminated by the bus master generating a stop condition.  
Figure 6. Write mode sequence with SWP bit = 1 (data write inhibited)  
ACK  
ACK  
ACK  
NO ACK  
Byte addr  
Byte Write  
Dev sel  
Byte addr  
Data in  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data in 2  
Byte addr  
Page Write  
Byte addr  
Data in 1  
Dev sel  
R/W  
NO ACK  
NO ACK  
Page Write (cont'd)  
Data in N  
DS12680 - Rev 2  
page 11/35  
 
 
M24128X-FCU  
Write operations on memory array  
6.1.3  
Minimizing write delays by polling on ACK  
During the internal write cycle, the device disconnects itself from the bus, and writes a copy of the data from its  
internal latches to the memory cells. The maximum write time (tw) is shown in AC characteristics tables in Section  
9 DC and AC parameters, but the typical time is shorter. To make use of this, a polling sequence can be used by  
the bus master.  
The sequence, as shown in Figure 7, is:  
Initial condition: a write cycle is in progress.  
Step 1: the bus master issues a start condition followed by a device select code (the first byte of the new  
instruction).  
Step 2: if the device is busy with the internal write cycle, no ACK will be returned and the bus master goes  
back to step 1. If the device has terminated the internal write cycle, it responds with an ACK, indicating that  
the device is ready to receive the second part of the instruction (the first byte of this instruction having been  
sent during step 1).  
Note:  
In case of write to chip enable register when C2, C1 and C0 are re-configured, the device will return ACK only if:  
- chip enable address of the device select code is equal to the new C2, C1 and C0 values  
- an internal write cycle is completed (new C2, C1 and C0 values have been programmed in the chip enable  
register).  
Figure 7. Write cycle polling flowchart using ACK  
Write cycle  
in progress  
Start condition  
Device select  
with RW = 0  
ACK  
returned  
NO  
YES  
First byte of instruction  
with RW = 0 already  
decoded by the device  
Next  
operation is  
NO  
YES  
addressing the  
memory  
Send address  
and receive ACK  
Re-start  
Stop  
NO  
YES  
StartCondition  
Data for the  
write operation  
Device select  
with RW = 1  
Continue the  
Continue the  
random read operation  
write operation  
1.  
The seven most significant bits of the device select code of a random read (bottom right box in the figure)  
must be identical to the seven most significant bits of the device select code of the write (polling instruction  
in the figure).  
DS12680 - Rev 2  
page 12/35  
 
 
M24128X-FCU  
Write operations on chip enable register  
6.2  
Write operations on chip enable register  
Write operations on chip enable register are performed independently of the state software write protect bit  
(SWP) .  
Following a start condition the bus master sends a device select code with the R/W bit (RW) set to 0. The device  
acknowledges this, as shown in Figure 8, and waits for the address bytes where the register is located. The  
device responds to each address byte with an acknowledge bit, and then waits for the data byte.  
In order to write the chip enable register, address bytes must have A15 bit set to 1, all other bits A14 to A0 being  
don't care.  
Table 7. Address of the chip enable register  
A15 (1)  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
X (2)  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1. MSB A15 is sent first.  
2. X means Don’t Care bits.  
When the bus master generates a stop condition immediately after the data byte ACK bit (in the “10th bit” time  
slot), the internal write cycle tW is triggered. A stop condition at any other time slot does not trigger the internal  
write cycle.  
During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any  
requests (NoACK).  
If the three bits C2, C1 and C0 have been re-configured with a correct write command, the device will  
acknowledge if the chip enable address of the device select code is equal to the new values of C2, C1 and C0,  
otherwise NoACK.  
Sending more than one byte will abort the write cycle (chip enable register content will not be changed).  
Figure 8. Write on chip enable register  
ACK  
ACK  
ACK  
ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
RW  
MSv45963V1  
DS12680 - Rev 2  
page 13/35  
 
 
 
 
 
M24128X-FCU  
Read operations on memory array  
6.3  
Read operations on memory array  
Read operations are performed independently of the state of the software write protect bit (SWP).  
After the successful completion of a read operation, the device internal address counter is incremented by one, to  
point to the next byte address.  
For the read instructions, after each byte read (data out), the device waits for an acknowledgement (data in)  
during the 9th bit time. If the bus master does not acknowledge during this 9th time, the device terminates the data  
transfer and switches to its Standby mode.  
Figure 9. Read mode sequences  
ACK  
NO ACK  
Data out  
Current  
Address  
Read  
Dev sel  
RW  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Data out  
Random  
Address  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
RW  
RW  
ACK  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev sel  
Data out 1  
RW  
ACK  
ACK  
ACK  
Sequential  
Random  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out1  
RW  
RW  
ACK  
NO ACK  
Data out N  
DS12680 - Rev 2  
page 14/35  
 
 
M24128X-FCU  
Read operations on memory array  
6.3.1  
6.3.2  
Random address read  
A dummy write is first performed to load the address into this address counter (as shown in Figure 8) but without  
sending a stop condition. Then, the bus master sends another start condition, and repeats the device select code,  
with the RW bit set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus  
master must not acknowledge the byte, and terminates the transfer with a stop condition.  
Current address read  
For the current address read operation, following a start condition, the bus master only sends a device select  
code with the R/W bit set to 1. The device acknowledges this, and outputs the byte addressed by the internal  
address counter. The counter is then incremented. The bus master terminates the transfer with a stop condition,  
as shown in Figure 8, without acknowledging the byte.  
Note that the address counter value is defined by instructions accessing either the memory or the identification  
page. When accessing the identification page, the address counter value is loaded with the identification page  
byte location, therefore the next current address read in the memory uses this new address counter value. When  
accessing the memory, it is safer to use the random address read instruction (this instruction loads the address  
counter with the byte location to read in the memory) instead of the current address read instruction.  
6.3.3  
Sequential read  
This operation can be used after a Current Address Read or a Random Address Read. The bus master does  
acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the  
next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and  
must generate a Stop condition, as shown in Figure 9.  
The output data comes from consecutive addresses, with the internal address counter automatically incremented  
after each byte output. After the last memory address, the address counter “rolls-over”, and the device continues  
to output data from memory address 00h.  
DS12680 - Rev 2  
page 15/35  
 
 
 
M24128X-FCU  
Read operations on chip enable register  
6.4  
Read operations on chip enable register  
Read operations are performed independently of the state software write protect bit (SWP).  
Following a start condition the bus master sends a device select code with the R/W bit (RW) set to 0. The device  
acknowledges this and waits for the address bytes where the register is located. The device responds to each  
address byte with an acknowledge. Then, the bus master sends another start condition, and repeats the device  
select code with the RW bit set to 1. The device acknowledges this, and outputs the contents of the chip enable  
register.  
To terminate the stream of data byte, the bus master must not acknowledge the byte, and must generate a stop  
condition, as shown in Figure 10.  
After the successful completion of a random address read operation, the device internal address counter is not  
incremented by one, to point to the next byte address. Reading more than one byte will loop on reading the chip  
enable register value.  
Reading the chip enable register is performed with a random read instruction at address 1xxx.xxxx.xxxx.xxxxb:  
Bits b7, b6, b5, b4 of the chip enable register content are read as 0, 0, 0, 0.  
The configurable device address bits b3, b2, b1 are described in Section 4.1 Chip enable register.  
The software write protection bit b0 is defined in Section 4.1 Chip enable register.  
The chip enable register cannot be read while a write cycle (tw) is ongoing.  
The chip enable address value can be checked by sending the device select code.  
If the chip enable address b3, b2, b1 sent in the device select code is matching with the C2, C1 and C0  
values, device will send an acknowledge.  
Otherwise, device will answer NoACK.  
Figure 10. Read on chip enable register  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Dev sel(1)  
Byte addr  
Byte addr  
Dev sel(1)  
Data out  
R/W  
R/W  
1.  
The seven most significant bits of the device select code of a random read (in the first and fourth bytes) must  
be identical.  
DS12680 - Rev 2  
page 16/35  
 
 
M24128X-FCU  
Initial delivery state  
7
Initial delivery state  
The device is delivered with all the memory array bits set to 1 (each byte contains FFh).  
The chip enable register is set to 0 (00h).  
DS12680 - Rev 2  
page 17/35  
 
M24128X-FCU  
Maximum ratings  
8
Maximum ratings  
Stressing the device outside the ratings listed in Table 8 may cause permanent damage to the device. These are  
stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the  
operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 8. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
–40  
–65  
Max.  
130  
Unit  
°C  
°C  
°C  
mA  
V
-
Ambient operating temperature  
Storage temperature  
T
150  
STG  
see note (1)  
T
LEAD  
Lead temperature during soldering  
DC output current (SDA = 0)  
Input or output range  
I
-
5
OL  
V
–0.50  
–0.50  
-
6.5  
IO  
V
CC  
Supply voltage  
6.5  
V
Electrostatic pulse (human body model)(2)  
V
4000  
V
ESD  
1. Compliant with JEDEC standard J-STD-020D (for small-body, Sn-Pb or Pb free assembly), the ST ECOPACK 7191395  
specification, and the European directive on Restrictions on Hazardous Substances (RoHS directive 2011/65/EU of July  
2011).  
2. Positive and negative pulses applied on different combinations of pin connections, according to AECQ100-002 (compliant  
with ANSI/ESDA/JEDEC JS-001-2012, C1=100 pF, R1=1500 Ω).  
DS12680 - Rev 2  
page 18/35  
 
 
 
 
M24128X-FCU  
DC and AC parameters  
9
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the  
device.  
Table 9. Operating conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
V
Supply voltage  
1.6  
–40  
0
1.7  
-40  
-40  
5.5  
V
CC  
Ambient operating temperature: Read  
Ambient operating temperature: Write  
T
85  
°C  
A
Operating clock frequency V = 1.6 V  
-
-
400  
CC  
f
C
kHz  
Operating clock frequency V ≥ 1.7 V  
1000  
CC  
Table 10. AC measurement conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
bus  
Load capacitance  
-
-
100  
50  
-
-
-
SCL input rise/fall time, SDA input fall time  
Input levels  
0.2 V to 0.8 V  
CC  
CC  
CC  
0.3 V to 0.7 V  
Input and output timing reference levels  
V
CC  
Figure 11. AC measurement I/O waveform  
Input voltage levels  
Input and output  
Timing reference levels  
0.8V  
CC  
0.7VCC  
0.3VCC  
0.2VCC  
Table 11. Input parameters  
Parameter (1)  
Symbol  
Test condition  
Min.  
Max.  
Unit  
pF  
C
IN  
Input capacitance (SDA)  
-
-
-
-
8
6
C
IN  
Input capacitance (other pins)  
pF  
1. Characterized only, not tested in production.  
DS12680 - Rev 2  
page 19/35  
 
 
 
 
 
 
M24128X-FCU  
DC and AC parameters  
Table 12. Cycling performance  
Symbol  
Parameter  
Test condition  
Max.  
Unit  
T
T
≤ 25 °C, V (min) < V < V (max)  
4,000,000  
1.200.000  
A
A
CC  
CC  
CC  
Write cycle endurance (1)  
Write cycles (2)  
Ncycle  
= 85°C, V (min) < V < V (max)  
CC  
CC  
CC  
1. The Write cycle endurance is defined by characterization and qualification.  
2. A Write cycle is executed when either a page write, or a byte write or a write chip enable register instruction  
is decoded.  
Table 13. Memory cell data retention  
Parameter  
Data retention (1)  
Cycling  
Test condition  
Min.  
200  
Unit  
Year  
T
T
= 55 °C  
= 25 °C  
A
4 million  
Cycle  
A
1. The data retention behaviour is checked in production, while the data retention limit defined in this table is extracted from  
characterization and qualification results.  
Table 14. DC characteristics  
Symbol  
Parameter  
Test conditions (in addition to those in Table 9)  
Min.  
Max.  
Unit  
µA  
V
= V or V  
CC  
Input leakage current  
(SCL, SDA)  
IN  
SS  
I
-
± 2  
LI  
device in Standby mode  
I
SDA in Hi-Z, external voltage applied on SDA: V or V  
CC  
Output leakage current  
Supply current (Read)  
Supply current (Write)(1)  
-
-
-
-
-
± 2  
0.8  
2
µA  
LO  
SS  
V
CC  
V
CC  
V
CC  
< 1.7 V, f = 400 kHz  
C
I
≥ 1.7 V, f = 400 kHz  
mA  
mA  
CC  
C
≥ 1.7 V, f = 1 MHz  
2.5  
2
C
I
During t  
W
CC0  
Device not selected, 6  
= V or V , V = 1.7 V  
-
1
V
IN  
SS  
CC  
CC  
I
Standby supply current  
µA  
CC1  
Device not selected, 6V = V or V , V = 2.5 V  
-
-
2
3
IN  
SS  
CC  
CC  
Device not selected, 6V = V or V , V = 5.5 V  
IN  
SS  
CC  
CC  
Input low voltage  
(SCL, SDA)  
V
0.25 V  
-
–0.45  
V
V
IL  
CC  
Input high voltage  
(SCL, SDA)  
V
0.75 V  
V
CC  
+ 1  
-
I
IH  
CC  
= 1 mA, V < 1.8 V  
-
-
-
0.2  
V
V
V
OL  
CC  
V
I
OL  
I
OL  
= 2.1 mA, V = 2.5 V  
Output low voltage  
0.4  
0.4  
OL  
CC  
= 3 mA, V = 5.5 V  
CC  
1. Characterized value, not tested in production  
2. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the  
internal write cycle t (t is triggered by the correct decoding of a write instruction).  
W
W
DS12680 - Rev 2  
page 20/35  
 
 
 
 
 
 
 
M24128X-FCU  
DC and AC parameters  
Table 15. 400 kHz AC characteristics (fast mode);  
Parameter  
Symbol  
Alt.  
Min.  
-
Max. Unit  
f
f
SCL  
Clock frequency  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
C
t
t
HIGH  
Clock pulse width high  
600  
1300  
-
-
CHCL  
t
t
LOW  
Clock pulse width low  
CLCH  
(1)  
20 (2)  
t
F
t
SDA (out) fall time  
300  
QL1QL2  
(3)  
(3)  
t
t
Input signal rise time  
XH1XH2  
R
(3)  
(3)  
t
t
Input signal fall time  
XL1XL2  
F
t
t
t
Data in set up time  
100  
0
-
DXCH  
SU:DAT  
t
Data in hold time  
-
CLDX  
HD:DAT  
(4)  
t
t
Data out hold time  
50  
-
-
DH  
CLQX  
(5)  
t
t
Clock low to next data valid (access time)  
Start condition setup time  
Start condition hold time  
900  
AA  
CLQV  
t
t
600  
600  
600  
1300  
-
-
-
CHDL  
SU:STA  
HD:STA  
t
t
t
DLCL  
t
Stop condition set up time  
Time between Stop condition and next Start condition  
Write time  
-
CHDH  
SU:STO  
t
t
-
DHDL  
BUF  
t
t
5
50  
W
WR  
(1)  
t
-
Pulse width ignored (input filter on SCL and SDA) - single glitch  
-
NS  
1. Characterized only, not tested in production.  
2. With C = 10 pF.  
L
3. There is no min. or max. value for the input signal rise and fall times. It is however recommended by the I²C specification  
that the input signal rise and fall times be more than 20 ns and less than 300 ns when f < 400 kHz.  
C
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of  
SDA  
5.  
t is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3V or 0.7V , assuming  
CLQV CC CC  
that R  
× C  
time constant is within the values specified in Figure 12.  
bus  
bus  
DS12680 - Rev 2  
page 21/35  
 
 
 
 
 
 
M24128X-FCU  
DC and AC parameters  
Table 16. 1 MHz AC characteristics  
Parameter  
Symbol  
Alt.  
Min.  
0
Max.  
Unit  
MHz  
ns  
f
f
SCL  
Clock frequency  
1
-
C
t
t
HIGH  
Clock pulse width high  
260  
CHCL  
t
t
LOW  
Clock pulse width low  
700  
-
ns  
CLCH  
(1)  
(1)  
t
t
Input signal rise time  
ns  
XH1XH2  
R
(1)  
(1)  
t
t
F
Input signal fall time  
ns  
XL1XL2  
(2)  
20 (3)  
50  
0
t
t
SDA (out) fall time  
120  
ns  
F
QL1QL2  
t
t
t
Data in setup time  
-
ns  
DXCH  
SU:DAT  
t
Data in hold time  
-
ns  
CLDX  
HD:DAT  
(4)  
t
t
t
Data out hold time  
50  
-
-
ns  
DH  
CLQX  
(5)  
t
Clock low to next data valid (access time)  
Start condition setup time  
Start condition hold time  
Stop condition setup time  
Time between Stop condition and next Start condition  
Write time  
650  
ns  
AA  
CLQV  
t
t
250  
250  
250  
500  
-
-
-
ns  
CHDL  
SU:STA  
HD:STA  
t
t
t
ns  
DLCL  
t
-
ns  
CHDH  
SU:STO  
t
t
-
ns  
DHDL  
BUF  
t
t
5
50  
ms  
ns  
W
WR  
(2)  
t
-
Pulse width ignored (input filter on SCL and SDA)  
-
NS  
1. There is no min. or max. values for the input signal rise and fall times. However, it is recommended by the I²C specification  
that the input signal rise and fall times be more than 20 ns and less than 120 ns when f < 1 MHz.  
C
2. Characterized only, not tested in production.  
3. With CL = 10 pF.  
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of  
SDA.  
5.  
t
is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 V or 0.7 V , assuming  
CLQV CC CC  
that the Rbus × Cbus time constant is within the values specified in Figure 13.  
DS12680 - Rev 2  
page 22/35  
 
 
 
 
 
 
M24128X-FCU  
DC and AC parameters  
Figure 12. Maximum Rbus value vs. bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency  
fC = 400 kHz  
100  
The Rbus x Cbus time constant  
VCC  
must be below the 400 ns  
time constant line represented  
on the left.  
R
bu  
10  
s
×
C
bu  
Rbus  
s
= 400 ns  
Here Rbus x Cbus = 120 ns  
4 k  
SCL  
SDA  
I²C bus  
master  
M24xxx  
1
10  
30  
100  
1000  
Cbus  
Bus line capacitor (pF)  
Figure 13. Maximum Rbus value vs. bus parasitic capacitance (Cbus) for an I2C bus at fC = 1MHz  
VCC  
100  
The Rbus x Cbus time constant  
Must be below the 150 ns  
Time constant line  
Rbus  
SCL  
SDA  
I²C bus  
master  
10  
4
M24xxx  
represented on the left  
Here,  
Rbus x Cbus = 120 ns  
Cbus  
1
10  
100  
30  
Bus line capacitor (pF)  
DS12680 - Rev 2  
page 23/35  
 
 
M24128X-FCU  
DC and AC parameters  
Figure 14. AC waveforms  
Start  
condition  
Stop  
Start  
condition condition  
tXL1XL2  
tCHCL  
tXH1XH2  
SCL  
tCLCH  
tDLCL  
tXL1XL2  
SDA In  
SDA  
Input  
tCHDL  
tCLDX  
tDXCH  
SDA  
Change  
tXH1XH2  
tCHDH  
tDHDL  
Stop  
condition  
Start  
condition  
SCL  
SDA In  
tW  
Write cycle  
tCHDH  
tCHDL  
tCHCL  
SCL  
tCLQV  
tCLQX  
tQL1QL2  
Data valid  
Data valid  
SDA Out  
DS12680 - Rev 2  
page 24/35  
 
M24128X-FCU  
Package information  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
10.1  
Ultra thin WLCSP4 package information  
Figure 15. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, wafer level chip scale package outline  
bbb  
Z
Orientation  
reference  
Detail A  
e1  
X
Y
D
F
F
E
e
aaa  
(4X)  
A
A2  
Orientation  
reference  
G
G
Wafer back side  
Side view  
Bump  
A1  
eee  
Z
Z
b (4X)  
Seating plane  
Ø
Ø
Z
Z
ccc M  
ddd M  
X Y  
Detail A  
Rotated 90 °  
1.  
2.  
Drawing is not to scale.  
Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
DS12680 - Rev 2  
page 25/35  
 
 
 
M24128X-FCU  
Ultra thin WLCSP4 package information  
Table 17. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, wafer level chip scale package mechanical data  
inches(1)  
Typ  
millimeters  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b(2)(3)  
D
0.240  
0.270  
0.095  
0.175  
0.185  
0.851  
0.851  
0.400  
0.500  
0.226  
0.176  
0.110  
0.110  
0.110  
0.060  
0.060  
0.300  
0.0094  
0.0106  
0.0037  
0.0079  
0.0073  
0.0335  
0.0335  
0.0157  
0.0197  
0.0089  
0.0069  
0.0043  
0.0043  
0.0043  
0.0024  
0.0024  
0.0118  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.871  
0.0343  
E
0.871  
0.0343  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
F
G
aaa  
bbb  
ccc  
ddd  
eee  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
DS12680 - Rev 2  
page 26/35  
 
 
 
M24128X-FCU  
Ultra thin WLCSP4 package information  
Figure 16. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, with BSC, wafer level chip scale package outline  
Back side coating  
thickness 0.025 mm  
bbb  
Z
Orientation  
reference  
Detail A  
e1  
X
Y
D
F
F
E
e
aaa  
(4X)  
A
A2  
Orientation  
reference  
G
G
A3  
Wafer back side  
Side view  
Bump  
A1  
eee  
Z
Z
b (4X)  
Seating plane  
Ø
Ø
Z
Z
ccc M  
ddd M  
X Y  
Detail A  
Rotated 90 °  
1.  
2.  
Drawing is not to scale.  
Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
DS12680 - Rev 2  
page 27/35  
 
M24128X-FCU  
Ultra thin WLCSP4 package information  
Table 18. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, with BSC, wafer level chip scale package  
mechanical data  
inches(1)  
Typ  
millimeters  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
0.265  
0.295  
0.095  
0.175  
0.025  
0.185  
0.851  
0.851  
0.400  
0.500  
0.226  
0.176  
0.110  
0.110  
0.110  
0.060  
0.060  
0.330  
0.0104  
0.0116  
0.0037  
0.0079  
0.0010  
0.0073  
0.0335  
0.0335  
0.0157  
0.0197  
0.0089  
0.0069  
0.0043  
0.0043  
0.0043  
0.0024  
0.0024  
0.0130  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A2  
-
-
A3 (BSC)  
b(2)(3)  
D
-
-
-
-
0.871  
0.0343  
E
0.871  
0.0343  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
F
G
aaa  
bbb  
ccc  
ddd  
eee  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
Figure 17. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, wafer level chip scale recommended footprint  
e1  
4 bumps x Ø 0.185 mm  
e
DS12680 - Rev 2  
page 28/35  
 
 
 
 
 
M24128X-FCU  
Ordering information  
11  
Ordering information  
Table 19. Ordering information scheme  
Example:  
M24  
128X -  
F
CU  
6
T
/T  
F
Device type  
2
M24 = I C serial access EEPROM  
Device function  
128X = 128 Kbit (16384 x 8 bit)  
Operating voltage  
F = V = 1.7 V to 5.5 V  
CC  
Package (1)  
CU = 4-bump WLCSP ultra-thin  
Device grade  
6 = Industrial: device tested with standard test flow over -40 to 85 °C  
Option  
T = Tape and reel packing  
blank = tube packing  
Process technology(2)  
/T =Process letter  
Option  
Blank = No back side coating  
F = Back side coating  
1. ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimony oxide flame retardants).  
2. The process letter appears on the device package (marking) and on the shipment box. Contact your nearest ST Sales  
Office for further information.  
Note:  
Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not  
responsible for any consequences resulting from such use. In no event will ST be liable for the customer using  
any of these engineering samples in production. ST’s Quality department must be contacted prior to any  
decision to use these engineering samples to run a qualification activity.  
DS12680 - Rev 2  
page 29/35  
 
 
 
 
M24128X-FCU  
Revision history  
Table 20. Document revision history  
Changes  
Date  
Revision  
16-Nov-2018  
01-Oct-2019  
1
Initial release  
Updated: Figure 3. Block diagram, Section 6.4 Read operations on chip enable register,  
Figure 10. Read on chip enable register  
2
DS12680 - Rev 2  
page 30/35  
 
 
M24128X-FCU  
Contents  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.1  
2.2  
2.3  
2.4  
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
VSS (ground). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power-down conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
4.1  
4.2  
4.3  
Chip enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Configurable device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Software Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
5.1  
5.2  
5.3  
5.4  
5.5  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Acknowledge bit (ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Device addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
6.1  
Write operations on memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1.1  
6.1.2  
6.1.3  
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Page write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Minimizing write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.2  
6.3  
Write operations on chip enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Read operations on memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6.3.1  
Random address read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DS12680 - Rev 2  
page 31/35  
M24128X-FCU  
Contents  
6.3.2  
6.3.3  
Current address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Sequential read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.4  
Read operations on chip enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
7
8
9
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
10 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
10.1 Ultra thin WLCSP4 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
11 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
DS12680 - Rev 2  
page 32/35  
M24128X-FCU  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Signals vs. bump position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Chip enable register values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Most significant address byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Address of the chip enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 10. AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 11. Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 12. Cycling performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 13. Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 14. DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 15. 400 kHz AC characteristics (fast mode); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 16. 1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 17. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, wafer level chip scale package mechanical data . . . . . . . . . . . . 26  
Table 18. Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, with BSC, wafer level chip scale package mechanical data . . . . . 28  
Table 19. Ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 20. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DS12680 - Rev 2  
page 33/35  
M24128X-FCU  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Logic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
4-bump WLCSP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Write mode sequence SWP bit = 0 (data write enabled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write mode sequence with SWP bit = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write on chip enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read on chip enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12.  
Maximum Rbus value vs. bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 400 kHz . 23  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Maximum Rbus value vs. bus parasitic capacitance (Cbus) for an I2C bus at fC = 1MHz. . . . . . . . . . . . . . . . . . 23  
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, wafer level chip scale package outline. . . . . . . . . . . . . . . . . . 25  
Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, with BSC, wafer level chip scale package outline . . . . . . . . . . 27  
Ultra thin WLCSP- 4-bump, 0.851 x 0.851 mm, wafer level chip scale recommended footprint . . . . . . . . . . . . 28  
DS12680 - Rev 2  
page 34/35  
M24128X-FCU  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2019 STMicroelectronics – All rights reserved  
DS12680 - Rev 2  
page 35/35  

相关型号:

M24128_07

128 Kbit, 64 Kbit and 32 Kbit serial I²C bus EEPROM
STMICROELECTR

M24128_08

128 Kbit, 64 Kbit and 32 Kbit serial I²C bus EEPROM
STMICROELECTR

M2412GD1

DC-DC Regulated Power Supply Module, 2 Output, 1W, Hybrid
SENSITRON

M2412GD1U-G

DC-DC Unregulated Power Supply Module, 2 Output, 1W, Hybrid, DIP-14/6
SENSITRON

M2412GD2

DC-DC Regulated Power Supply Module, 2 Output, 2W, Hybrid, SIP-10
SENSITRON

M2412GD2U

DC-DC Unregulated Power Supply Module, 2 Output, 2W, Hybrid, DIP-14/6
SENSITRON

M2412GD2U-G

DC-DC Unregulated Power Supply Module, 2 Output, 2W, Hybrid, DIP-14/6
SENSITRON

M2412GD5

DC-DC Regulated Power Supply Module, 2 Output, 5W, Hybrid, DIP-5
SENSITRON

M2412GD6

DC-DC Regulated Power Supply Module, 2 Output, 6W, Hybrid
SENSITRON

M2412GD6-G

DC-DC Regulated Power Supply Module, 2 Output, 6W, Hybrid
SENSITRON

M2412GM1U

Analog Circuit
SENSITRON

M2412GS1

DC-DC Regulated Power Supply Module, 2 Output, 1W, Hybrid, SIP-10/5
SENSITRON