M24512-WLA5G [STMICROELECTRONICS]

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, LGA-8;
M24512-WLA5G
型号: M24512-WLA5G
厂家: ST    ST
描述:

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, LGA-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管
文件: 总24页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24512  
512 Kbit Serial I²C Bus EEPROM  
FEATURES SUMMARY  
2
Two Wire I C Serial Interface  
Figure 1. Packages  
Supports 400 kHz Protocol  
Single Supply Voltage:  
– 4.5V to 5.5V for M24512  
– 2.5V to 5.5V for M24512-W  
– 1.8V to 3.6V for M24512-S  
Write Control Input  
8
BYTE and PAGE WRITE (up to 128 Bytes)  
RANDOM and SEQUENTIAL READ Modes  
Self-Timed Programming Cycle  
Automatic Address Incrementing  
Enhanced ESD/Latch-Up Behavior  
More than 100,000 Erase/Write Cycles  
More than 40 Year Data Retention  
1
PDIP8 (BN)  
8
1
SO8 (MW)  
200 mil width  
LGA  
LGA8 (LA)  
October 2003  
1/24  
M24512  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. DIP, SO and LGA Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus. . . . . . . . . . . . . . . . 5  
Figure 5. I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Device Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3. Most Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 4. Least Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 5. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. Write Mode Sequences with WC=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7. Write Mode Sequences with WC=0 (data write enabled). . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 8. Write Cycle Polling Flowchart using ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 9. Read Mode Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2/24  
M24512  
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 7. Operating Conditions (M24512) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 8. Operating Conditions (M24512-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 9. Operating Conditions (M24512-S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 10. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 11. Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 12. DC Characteristics (M24512) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 13. DC Characteristics (M24512-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 14. DC Characteristics (M24512-S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 15. AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11. AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 19  
Table 16. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . . 19  
Figure 13. SO8 wide – 8 lead Plastic Small Outline, 200 mils body width, Package Outline . . . . . 20  
Table 17. SO8 wide – 8 lead Plastic Small Outline, 200 mils body width, Package Mechanical Data  
20  
Figure 14. LGA8 - 8 lead Land Grid Array, Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 18. LGA8 - 8 lead Land Grid Array, Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . 21  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 19. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 20. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23  
3/24  
M24512  
SUMMARY DESCRIPTION  
2
These I C-compatible electrically erasable  
ter. The Start condition is followed by a Device  
Select Code and RW bit (as described in Table 2),  
terminated by an acknowledge bit.  
programmable memory (EEPROM) devices are  
organized as 64K x 8 bits.  
When writing data to the memory, the device in-  
th  
serts an acknowledge bit during the 9 bit time,  
Figure 2. Logic Diagram  
following the bus master’s 8-bit transmission.  
When data is read by the bus master, the bus  
master acknowledges the receipt of the data byte  
in the same way. Data transfers are terminated by  
a Stop condition after an Ack for Write, and after a  
NoAck for Read.  
V
CC  
3
Power On Reset: V  
Lock-Out Write Protect  
CC  
E0-E2  
SCL  
WC  
SDA  
In order to prevent data corruption and inadvertent  
Write operations during Power-up, a Power On  
Reset (POR) circuit is included. At Power-up, the  
internal reset is held active until V has reached  
the POR threshold value, and all operations are  
M24512  
CC  
disabled – the device will not respond to any  
command. In the same way, when V drops from  
CC  
the operating voltage, below the POR threshold  
value, all operations are disabled and the device  
will not respond to any command. A stable and  
V
SS  
AI02275  
valid V  
must be applied before applying any  
CC  
logic signal.  
Figure 3. DIP, SO and LGA Connections  
Table 1. Signal Names  
E0, E1, E2  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply Voltage  
Ground  
M24512  
SCL  
E0  
E1  
E2  
1
2
3
4
8
V
CC  
WC  
WC  
7
V
6
5
SCL  
SDA  
CC  
V
SS  
V
SS  
AI04035B  
2
I C uses a two wire serial interface, comprising a  
bi-directional data line and a clock line. The devic-  
es carry a built-in 4-bit Device Type Identifier code  
2
(1010) in accordance with the I C bus definition.  
The device behaves as a slave in the I C protocol,  
Note: 1. See page 19 (onwards) for package dimensions, and how  
to identify pin-1.  
2
with all memory operations synchronized by the  
serial clock. Read and Write operations are initiat-  
ed by a Start condition, generated by the bus mas-  
4/24  
M24512  
SIGNAL DESCRIPTION  
Serial Clock (SCL). This input signal is used to  
strobe all data in and out of the device. In applica-  
tions where this signal is used by slave devices to  
synchronize the bus to a slower clock, the bus  
master must have an open drain output, and a  
pull-up resistor must be connected from Serial  
Chip Enable (E0, E1, E2). These input signals  
are used to set the value that is to be looked for on  
the three least significant bits (b3, b2, b1) of the 7-  
bit Device Select Code. These inputs must be tied  
to V  
or V , to establish the Device Select  
CC  
SS  
Code. When not connected (left floating), these in-  
puts are read as Low (0,0,0).  
Clock (SCL) to V . (Figure 4 indicates how the  
CC  
value of the pull-up resistor can be calculated). In  
most applications, though, this method of synchro-  
nization is not employed, and so the pull-up resis-  
tor is not necessary, provided that the bus master  
has a push-pull (rather than open drain) output.  
Write Control (WC). This input signal is useful  
for protecting the entire contents of the memory  
from inadvertent write operations. Write opera-  
tions are disabled to the entire memory array when  
Write Control (WC) is driven High. When uncon-  
Serial Data (SDA). This bi-directional signal is  
used to transfer data in or out of the device. It is an  
open drain output that may be wire-OR’ed with  
other open drain or open collector signals on the  
bus. A pull up resistor must be connected from Se-  
nected, the signal is internally read as V , and  
Write operations are allowed.  
When Write Control (WC) is driven High, Device  
Select and Address bytes are acknowledged,  
Data bytes are not acknowledged.  
IL  
rial Data (SDA) to V . (Figure 4 indicates how the  
CC  
value of the pull-up resistor can be calculated).  
2
Figure 4. Maximum R Value versus Bus Capacitance (C  
) for an I C Bus  
L
BUS  
V
CC  
20  
16  
12  
R
R
L
L
SDA  
MASTER  
C
BUS  
8
SCL  
fc = 100kHz  
4
fc = 400kHz  
C
BUS  
0
10  
100  
(pF)  
1000  
C
BUS  
AI01665  
5/24  
M24512  
2
Figure 5. I C Bus Protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 2. Device Select Code  
1
2
RW  
Device Type Identifier  
Chip Enable Address  
b7  
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
E1  
b1  
E0  
b0  
Device Select Code  
1
RW  
Note: 1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
Table 3. Most Significant Byte  
Table 4. Least Significant Byte  
b15  
b14  
b13 b12  
b11 b10 b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
6/24  
M24512  
DEVICE OPERATION  
2
The device supports the I C protocol. This is sum-  
marized in Figure 5. Any device that sends data on  
to the bus is defined to be a transmitter, and any  
device that reads the data to be a receiver. The  
device that controls the data transfer is known as  
the bus master, and the other as the slave device.  
A data transfer can only be initiated by the bus  
master, which will also provide the serial clock for  
synchronization. The M24512 device is always a  
slave in all communication.  
Data (SDA) Low to acknowledge the receipt of the  
eight data bits.  
Data Input  
During data input, the device samples Serial Data  
(SDA) on the rising edge of Serial Clock (SCL).  
For correct device operation, Serial Data (SDA)  
must be stable during the rising edge of Serial  
Clock (SCL), and the Serial Data (SDA) signal  
must change only when Serial Clock (SCL) is driv-  
en Low.  
Start Condition  
Memory Addressing  
Start is identified by a falling edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable in the  
High state. A Start condition must precede any  
data transfer command. The device continuously  
monitors (except during a Write cycle) Serial Data  
(SDA) and Serial Clock (SCL) for a Start condition,  
and will not respond unless one is given.  
To start communication between the bus master  
and the slave device, the bus master must initiate  
a Start condition. Following this, the bus master  
sends the Device Select Code, shown in Table 2  
(on Serial Data (SDA), most significant bit first).  
The Device Select Code consists of a 4-bit Device  
Type Identifier, and a 3-bit Chip Enable “Address”  
(E2, E1, E0). To address the memory array, the 4-  
bit Device Type Identifier is 1010b.  
Stop Condition  
Stop is identified by a rising edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable and driv-  
en High. A Stop condition terminates communica-  
tion between the device and the bus master. A  
Read command that is followed by NoAck can be  
followed by a Stop condition to force the device  
into the Stand-by mode. A Stop condition at the  
end of a Write command triggers the internal EE-  
PROM Write cycle.  
Up to eight memory devices can be connected on  
2
a single I C bus. Each one is given a unique 3-bit  
code on the Chip Enable (E0, E1, E2) inputs.  
When the Device Select Code is received, the de-  
vice only responds if the Chip Enable Address is  
the same as the value on the Chip Enable (E0, E1,  
E2) inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is  
Acknowledge Bit (ACK)  
set to 1 for Read and 0 for Write operations.  
The acknowledge bit is used to indicate a success-  
ful byte transfer. The bus transmitter, whether it be  
bus master or slave device, releases Serial Data  
If a match occurs on the Device Select code, the  
corresponding device gives an acknowledgment  
th  
on Serial Data (SDA) during the 9 bit time. If the  
(SDA) after sending eight bits of data. During the  
device does not match the Device Select code, it  
deselects itself from the bus, and goes into Stand-  
by mode.  
th  
9
clock pulse period, the receiver pulls Serial  
Table 5. Operating Modes  
Mode  
1
RW bit  
Bytes  
Initial Sequence  
WC  
X
Current Address Read  
Random Address Read  
1
0
1
1
0
0
1
START, Device Select, RW = 1  
X
START, Device Select, RW = 0, Address  
reSTART, Device Select, RW = 1  
Similar to Current or Random Address Read  
START, Device Select, RW = 0  
1
X
Sequential Read  
Byte Write  
X
1  
1
VIL  
VIL  
Page Write  
128  
START, Device Select, RW = 0  
Note: 1. X = VIH or VIL.  
7/24  
M24512  
Figure 6. Write Mode Sequences with WC=1 (data write inhibited)  
WC  
ACK  
ACK  
ACK  
NO ACK  
DATA IN  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
R/W  
WC  
ACK  
ACK  
ACK  
NO ACK  
DATA IN 1 DATA IN 2  
PAGE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
PAGE WRITE  
(cont'd)  
DATA IN N  
AI01120C  
Write Operations  
Write, the internal memory Write cycle is triggered.  
A Stop condition at any other time slot does not  
trigger the internal Write cycle.  
Following a Start condition the bus master sends  
a Device Select Code with the RW bit reset to 0.  
The device acknowledges this, as shown in Figure  
7, and waits for two address bytes. The device re-  
sponds to each address byte with an acknowledge  
bit, and then waits for the data byte.  
Writing to the memory may be inhibited if Write  
Control (WC) is driven High. Any Write instruction  
with Write Control (WC) driven High (during a pe-  
riod of time from the Start condition until the end of  
the two address bytes) will not modify the memory  
contents, and the accompanying data bytes are  
not acknowledged, as shown in Figure 6.  
Each data byte in the memory has a 16-bit (two  
byte wide) address. The Most Significant Byte (Ta-  
ble 3) is sent first, followed by the Least Significant  
Byte (Table 4). Bits b15 to b0 form the address of  
the byte in memory.  
When the bus master generates a Stop condition  
immediately after the Ack bit (in the “10 bit” time  
After the Stop condition, the delay t , and the suc-  
W
cessful completion of a Write operation, the de-  
vice’s internal address counter is incremented  
automatically, to point to the next byte address af-  
ter the last one that was modified.  
During the internal Write cycle, Serial Data (SDA)  
is disabled internally, and the device does not re-  
spond to any requests.  
Byte Write  
After the Device Select code and the address  
bytes, the bus master sends one data byte. If the  
addressed location is Write-protected, by Write  
Control (WC) being driven High, the device replies  
with NoAck, and the location is not modified. If, in-  
stead, the addressed location is not Write-protect-  
ed, the device replies with Ack. The bus master  
terminates the transfer by generating a Stop con-  
dition, as shown in Figure 7.  
th  
slot), either at the end of a Byte Write or a Page  
8/24  
M24512  
Page Write  
The bus master sends from 1 to 128 bytes of data,  
each of which is acknowledged by the device if  
Write Control (WC) is Low. If Write Control (WC) is  
High, the contents of the addressed memory loca-  
tion are not modified, and each data byte is fol-  
lowed by a NoAck. After each byte is transferred,  
the internal byte address counter (the 7 least sig-  
nificant address bits only) is incremented. The  
transfer is terminated by the bus master generat-  
ing a Stop condition.  
The Page Write mode allows up to 128 bytes to be  
written in a single Write cycle, provided that they  
are all located in the same ’row’ in the memory:  
that is, the most significant memory address bits (b  
-b7 for , and b15-b7 for M24512) are the same. If  
more bytes are sent than will fit up to the end of the  
row, a condition known as ‘roll-over’ occurs. This  
should be avoided, as data starts to become over-  
written in an implementation dependent way.  
Figure 7. Write Mode Sequences with WC=0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
ACK  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
DATA IN  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
PAGE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
DATA IN 1  
DATA IN 2  
R/W  
WC (cont'd)  
ACK  
ACK  
PAGE WRITE  
(cont'd)  
DATA IN N  
AI01106C  
9/24  
M24512  
Figure 8. Write Cycle Polling Flowchart using ACK  
WRITE Cycle  
in Progress  
START Condition  
DEVICE SELECT  
with RW = 0  
ACK  
Returned  
NO  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
Addressing the  
Memory  
NO  
YES  
Send Address  
and Receive ACK  
ReSTART  
START  
NO  
YES  
STOP  
Condition  
DATA for the  
WRITE Operation  
DEVICE SELECT  
with RW = 1  
Continue the  
Continue the  
Random READ Operation  
WRITE Operation  
AI01847C  
Minimizing System Delays by Polling On ACK  
– Step 1: the bus master issues a Start condition  
followed by a Device Select Code (the first byte  
of the new instruction).  
During the internal Write cycle, the device discon-  
nects itself from the bus, and writes a copy of the  
data from its internal latches to the memory cells.  
– Step 2: if the device is busy with the internal  
Write cycle, no Ack will be returned and the bus  
master goes back to Step 1. If the device has  
terminated the internal Write cycle, it responds  
with an Ack, indicating that the device is ready  
to receive the second part of the instruction (the  
first byte of this instruction having been sent  
during Step 1).  
The maximum Write time (t ) is shown in Table  
w
15, but the typical time is shorter. To make use of  
this, a polling sequence can be used by the bus  
master.  
The sequence, as shown in Figure 8, is:  
– Initial condition: a Write cycle is in progress.  
10/24  
M24512  
Figure 9. Read Mode Sequences  
ACK  
NO ACK  
DATA OUT  
CURRENT  
ADDRESS  
READ  
DEV SEL  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT  
RANDOM  
ADDRESS  
READ  
DEV SEL *  
BYTE ADDR  
BYTE ADDR  
DEV SEL *  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
SEQUENTIAL  
CURRENT  
READ  
DEV SEL  
DATA OUT 1  
DATA OUT N  
R/W  
ACK  
ACK  
ACK  
ACK  
ACK  
SEQUENTIAL  
RANDOM  
READ  
DEV SEL *  
BYTE ADDR  
BYTE ADDR  
DEV SEL * DATA OUT 1  
R/W  
R/W  
ACK  
NO ACK  
DATA OUT N  
AI01105C  
st  
th  
Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1 and 4 bytes) must be identical.  
Read Operations  
puts the contents of the addressed byte. The bus  
master must not acknowledge the byte, and termi-  
nates the transfer with a Stop condition.  
Read operations are performed independently of  
the state of the Write Control (WC) signal.  
Current Address Read  
After the successful completion of a Read opera-  
tion, the device’s internal address counter is incre-  
mented by one, to point to the next byte address.  
For the Current Address Read operation, following  
a Start condition, the bus master only sends a De-  
vice Select Code with the RW bit set to 1. The de-  
vice acknowledges this, and outputs the byte  
addressed by the internal address counter. The  
counter is then incremented. The bus master ter-  
minates the transfer with a Stop condition, as  
shown in Figure 9, without acknowledging the  
byte.  
Random Address Read  
A dummy Write is first performed to load the ad-  
dress into this address counter (as shown in Fig-  
ure 9) but without sending a Stop condition. Then,  
the bus master sends another Start condition, and  
repeats the Device Select Code, with the RW bit  
set to 1. The device acknowledges this, and out-  
11/24  
M24512  
Sequential Read  
Acknowledge in Read Mode  
This operation can be used after a Current Ad-  
dress Read or a Random Address Read. The bus  
master does acknowledge the data byte output,  
and sends additional clock pulses so that the de-  
vice continues to output the next byte in sequence.  
To terminate the stream of bytes, the bus master  
must not acknowledge the last byte, and must  
generate a Stop condition, as shown in Figure 9.  
For all Read commands, the device waits, after  
each byte read, for an acknowledgment during the  
9 bit time. If the bus master does not drive Serial  
Data (SDA) Low during this time, the device termi-  
nates the data transfer and switches to its Stand-  
by mode.  
th  
The output data comes from consecutive address-  
es, with the internal address counter automatically  
incremented after each byte output. After the last  
memory address, the address counter ‘rolls-over’,  
and the device continues to output data from  
memory address 00h.  
INITIAL DELIVERY STATE  
The device is delivered with the memory array  
erased: all bits are set to 1 (each byte contains  
FFh).  
12/24  
M24512  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings" table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 6. Absolute Maximum Ratings  
Symbol  
TA  
Parameter  
Ambient Operating Temperature  
Min.  
–40  
–65  
Max.  
125  
Unit  
°C  
TSTG  
Storage Temperature  
150  
°C  
2
PDIP  
SO  
260  
1
3
TLEAD  
°C  
Lead Temperature during Soldering  
260  
3
LGA  
260  
VIO  
VCC  
VESD  
Input or Output range  
Supply Voltage  
–0.6  
–0.3  
6.5  
6.5  
V
V
V
4
–4000  
4000  
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with the ECOPACK 7191395 specifiication for lead-free soldering processes  
2. No longer than 10 seconds  
3. Not exceeding 250°C for more than 30 seconds, and peaking at 260°C  
4. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
13/24  
M24512  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 7. Operating Conditions (M24512)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
85  
Unit  
V
V
CC  
Supply Voltage  
–40  
–20  
°C  
°C  
TA  
Ambient Operating Temperature  
85  
Table 8. Operating Conditions (M24512-W)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
85  
Unit  
V
V
Supply Voltage  
CC  
–40  
–20  
°C  
°C  
TA  
Ambient Operating Temperature  
85  
Table 9. Operating Conditions (M24512-S)  
Symbol  
Parameter  
Min.  
1.8  
Max.  
3.6  
Unit  
V
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
–20  
85  
°C  
Table 10. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
Input Levels  
50  
0.2V to 0.8V  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Levels  
V
CC  
Figure 10. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
14/24  
M24512  
Table 11. Input Parameters  
1,2  
Symbol  
CIN  
Test Condition  
Min.  
Max.  
Unit  
pF  
Parameter  
Input Capacitance (SDA)  
8
6
CIN  
Input Capacitance (other pins)  
pF  
Input Impedance  
(E2, E1, E0, WC)  
ZL  
ZH  
tNS  
VIN < 0.5 V  
VIN > 0.7VCC  
Single glitch  
30  
kΩ  
kΩ  
ns  
Input Impedance  
(E2, E1, E0, WC)  
500  
Pulse width ignored  
(Input Filter on SCL and SDA)  
100  
Note: 1. T = 25 °C, f = 400 kHz  
A
2. Sampled only, not 100% tested.  
Table 12. DC Characteristics (M24512)  
Test Condition  
(in addition to those in Table 7)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
V
IN = VSS or VCC  
Input Leakage Current  
(SCL, SDA)  
ILI  
± 2  
µA  
device in Stand-by mode  
ILO  
ICC  
V
OUT = VSS or VCC, SDA in Hi-Z  
Output Leakage Current  
Supply Current  
± 2  
2
µA  
mA  
µA  
V
V
CC=5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
Stand-by Supply Current  
Input Low Voltage (SCL, SDA)  
VIN = VSS or VCC , VCC = 5 V  
10  
–0.45  
–0.45  
0.3VCC  
VIL  
Input Low Voltage  
(E2, E1, E0, WC)  
0.5  
V
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
V
V
VOL  
Output Low Voltage  
IOL = 3 mA, VCC = 5 V  
Table 13. DC Characteristics (M24512-W)  
Test Condition  
(in addition to those in Table 8)  
Symbol  
Parameter  
Max.  
Unit  
Min.  
V
IN = VSS or VCC  
Input Leakage Current  
(SCL, SDA)  
ILI  
± 2  
µA  
device in Stand-by mode  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
µA  
mA  
µA  
V
V
CC =2.5V, f =400kHz (rise/fall time < 30ns)  
1
2
c
ICC1  
Stand-by Supply Current  
Input Low Voltage (SCL, SDA)  
VIN = VSS or VCC , VCC = 2.5 V  
–0.45  
–0.45  
0.3VCC  
VIL  
Input Low Voltage  
(E2, E1, E0, WC)  
0.5  
V
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
V
V
VOL  
Output Low Voltage  
IOL = 2.1 mA, VCC = 2.5 V  
15/24  
M24512  
Table 14. DC Characteristics (M24512-S)  
Test Condition  
(in addition to those in Table 9)  
Symbol  
Parameter  
Max.  
Unit  
Min.  
Input Leakage Current  
(SCL, SDA)  
VIN = VSS or VCC  
device in Stand-by mode  
ILI  
± 2  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
µA  
mA  
µA  
V
1
V
CC =1.8V, f =400kHz (rise/fall time < 30ns)  
c
0.8  
1
ICC1  
VIN = VSS or VCC , VCC = 1.8 V  
Stand-by Supply Current  
Input Low Voltage (SCL, SDA)  
1
–0.45  
–0.45  
0.3 VCC  
0.5  
VIL  
Input Low Voltage  
(E2, E1, E0, WC)  
V
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+0.6  
V
V
1
VOL  
IOL = 0.7 mA, VCC = 1.8 V  
Output Low Voltage  
0.2  
Note: 1. Preliminary data  
16/24  
M24512  
Table 15. AC Characteristics  
Test conditions specified in Table 10 and Table 7 or 8 or 9  
4
4
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Unit  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min.  
Max.  
Clock Frequency  
400  
tCHCL  
tHIGH  
tLOW  
tR  
Clock Pulse Width High  
Clock Pulse Width Low  
Clock Rise Time  
600  
tCLCH  
1300  
tCH1CH2  
tCL1CL2  
300  
300  
300  
300  
tF  
Clock Fall Time  
2
tR  
SDA Rise Time  
20  
20  
tDH1DH2  
2
tF  
SDA Fall Time  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
100  
0
Data Out Hold Time  
200  
200  
600  
600  
600  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
Start Condition Hold Time  
Stop Condition Set Up Time  
900  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tCHDX  
tDLCL  
tCHDH  
Time between Stop Condition and Next Start  
Condition  
tDHDL  
tW  
tBUF  
tWR  
1300  
ns  
Write Time  
10  
ms  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. For the M24512-S, this is preliminary data  
17/24  
M24512  
Figure 11. AC Waveforms  
tCHCL  
tCLCH  
SCL  
tDLCL  
SDA In  
tCHDX  
tCLDX  
tDXCX  
SDA  
tCHDH tDHDL  
Change  
START  
Condition  
START  
Condition  
SDA  
Input  
STOP  
Condition  
SCL  
SDA In  
tCHDH  
STOP  
tCHDX  
START  
Condition  
tW  
Write Cycle  
Condition  
SCL  
tCLQV  
tCLQX  
Data Valid  
SDA Out  
AI00795C  
18/24  
M24512  
PACKAGE MECHANICAL  
Figure 12. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Notes: 1. Drawing is not to scale.  
Table 16. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
19/24  
M24512  
Figure 13. SO8 wide – 8 lead Plastic Small Outline, 200 mils body width, Package Outline  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Note: Drawing is not to scale.  
Table 17. SO8 wide – 8 lead Plastic Small Outline, 200 mils body width, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
2.03  
0.25  
1.78  
0.45  
Typ.  
Max.  
0.080  
0.010  
0.070  
0.018  
A
A1  
A2  
B
0.10  
0.004  
0.35  
0.014  
C
0.20  
0.008  
0.050  
D
5.15  
5.20  
5.35  
5.40  
0.203  
0.205  
0.211  
0.213  
E
e
1.27  
H
7.70  
0.50  
0°  
8.10  
0.80  
10°  
0.303  
0.020  
0°  
0.319  
0.031  
10°  
L
α
N
8
8
CP  
0.10  
0.004  
20/24  
M24512  
Figure 14. LGA8 - 8 lead Land Grid Array, Package Outline  
CONTACT 1  
D
D1  
T3  
E1  
k
E
E2  
T1  
T2  
E3  
A
A2  
A1  
ddd  
LGA-Z01B  
Notes: 1. Drawing is not to scale.  
Table 18. LGA8 - 8 lead Land Grid Array, Package Mechanical Data  
mm  
inches  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
D
1.040  
0.340  
0.700  
8.000  
0.100  
5.000  
1.270  
3.810  
0.390  
0.100  
0.410  
0.670  
0.970  
0.100  
0.940  
1.140  
0.0409  
0.0134  
0.0276  
0.3150  
0.0039  
0.1969  
0.0500  
0.1500  
0.0154  
0.0039  
0.0161  
0.0264  
0.0382  
0.0039  
0.0370  
0.0449  
0.300  
0.380  
0.0118  
0.0150  
0.640  
0.760  
0.0252  
0.0299  
7.900  
8.100  
0.3110  
0.3189  
D1  
E
4.900  
5.100  
0.1929  
0.2008  
E1  
E2  
E3  
k
T1  
T2  
T3  
ddd  
21/24  
M24512  
PART NUMBERING  
Table 19. Ordering Information Scheme  
Example:  
M24512  
W MW  
6
T
P
Device Type  
2
M24 = I C serial access EEPROM  
Device Function  
512 = 512 Kbit (64K x 8)  
Operating Voltage  
blank = V = 4.5 to 5.5V  
CC  
W = V = 2.5 to 5.5V  
CC  
1
S = V = 1.8 to 3.6V  
CC  
Package  
BN = PDIP8  
MW = SO8 (200 mil width)  
LA = LGA8 (Land Grid Array)  
Temperature Range  
6 = –40 to 85 °C  
5 = –20 to 85 °C  
Option  
blank = Standard Packing  
T = Tape & Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P = Pb-Free, RoHS compliant  
G = Green package  
Note: 1. The -S version (V range 1.8 V to 3.6 V) is only available in temperature range 5.  
CC  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
22/24  
M24512  
REVISION HISTORY  
Table 20. Document Revision History  
Date  
Rev.  
Description of Revision  
Lead Soldering Temperature in the Absolute Maximum Ratings table amended  
Write Cycle Polling Flow Chart using ACK illustration updated  
LGA8 and SO8(wide) packages added  
29-Jan-2001  
1.1  
References to PSDIP8 changed to PDIP8, and Package Mechanical data updated  
LGA8 Package Mechanical data and illustration updated  
SO16 package removed  
10-Apr-2001  
1.2  
16-Jul-2001  
1.3  
LGA8 Package given the designator “LA”  
02-Oct-2001  
1.4  
LGA8 Package mechanical data updated  
Document becomes Preliminary Data  
13-Dec-2001  
12-Jun-2001  
22-Oct-2003  
1.5  
1.6  
4.0  
Test conditions for ILI, ILO, ZL and ZH made more precise  
VIL and VIH values unified. tNS value changed  
Document becomes Full Datasheet  
Table of contents, and Pb-free options added. Minor wording changes in Summary  
Description, Power-On Reset, Memory Addressing, Write Operations, Read Operations.  
V (min) improved to -0.45V.  
IL  
23/24  
M24512  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
24/24  

相关型号:

M24512-WLA5P

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, LEAD FREE, LGA-8
STMICROELECTR

M24512-WLA5T

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, LGA-8
STMICROELECTR

M24512-WLA5TP

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, LEAD FREE, LGA-8
STMICROELECTR
STMICROELECTR

M24512-WMB6G

EEPROM 5V
STMICROELECTR
STMICROELECTR
STMICROELECTR

M24512-WMC6G

EEPROM 5V
STMICROELECTR

M24512-WMJ6T

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO16, 0.300 INCH, PLASTIC, SO-16
STMICROELECTR

M24512-WMN3G/AB

64KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24512-WMN3G/K

64KX8 EEPROM 5V, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24512-WMN3P/K

64KX8 EEPROM 5V, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR