M24C01-LBN3 [STMICROELECTRONICS]

128X8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, DIP-8;
M24C01-LBN3
型号: M24C01-LBN3
厂家: ST    ST
描述:

128X8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, DIP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 光电二极管 内存集成电路
文件: 总29页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24C16, M24C08  
M24C04, M24C02, M24C01  
16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I²C Bus EEPROM  
FEATURES SUMMARY  
2
Two Wire I C Serial Interface  
Figure 1. Packages  
Supports 400 kHz Protocol  
Single Supply Voltage:  
– 4.5V to 5.5V for M24Cxx  
– 2.5V to 5.5V for M24Cxx-W  
– 2.2V to 5.5V for M24Cxx-L  
8
– 1.8V to 5.5V for M24Cxx-R  
Write Control Input  
1
BYTE and PAGE WRITE (up to 16 Bytes)  
RANDOM and SEQUENTIAL READ Modes  
Self-Timed Programming Cycle  
Automatic Address Incrementing  
Enhanced ESD/Latch-Up Behavior  
More than 1 Million Erase/Write Cycles  
More than 40 Year Data Retention  
PDIP8 (BN)  
8
1
SO8 (MN)  
150 mil width  
TSSOP8 (DW)  
169 mil width  
TSSOP8 (DS)  
3x3mm² body size (MSOP)  
October 2003  
1/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DIP, SO and TSSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus . . . . . . . . . . . . . . . . . . . . . . . 5  
I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Write Mode Sequences with WC=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Mode Sequences with WC=0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Read Mode Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Conditions (M24Cxx-xx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Conditions (M24Cxx-xx3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Conditions (M24Cxx-Wxx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Conditions (M24Cxx-Wxx3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Conditions (M24Cxx-Lxx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Conditions (M24Cxx-Rxx6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DC Characteristics (M24Cxx-xx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 16  
DC Characteristics (M24Cxx-xx3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DC Characteristics (M24Cxx-Wxx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DC Characteristics (M24Cxx-Wxx3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DC Characteristics (M24Cxx-Lxx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DC Characteristics (M24Cxx-Rxx6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
AC Characteristics (M24Cxx-xx6, M24Cxx-Wxx3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
AC Characteristics (M24Cxx-xx3, M24Cxx-Wxx6, M24Cxx-Lxx6) . . . . . . . . . . . . . . . . . . . . . . . . . 19  
AC Characteristics (M24Cxx-Rxx6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . . . . . . . . . 22  
SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . . . . . . . . . 23  
SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . . . 23  
TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . . . . . . . . . 24  
TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline . . . . . 25  
TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Mechanical Data  
25  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
How to Identify Current and New Products by the Process Identification Letter . . . . . . . . . . . . . . . 27  
How to Identify Current and New Products by the Process Identification Letter . . . . . . . . . . . . . 27  
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
SUMMARY DESCRIPTION  
2
These I C-compatible electrically erasable  
When writing data to the memory, the device in-  
serts an acknowledge bit during the 9 bit time,  
th  
programmable memory (EEPROM) devices are  
organized  
as  
2048/1024/512/256/128 x 8  
following the bus master’s 8-bit transmission.  
When data is read by the bus master, the bus  
master acknowledges the receipt of the data byte  
in the same way. Data transfers are terminated by  
a Stop condition after an Ack for Write, and after a  
NoAck for Read.  
(M24C16, M24C08, M24C04, M24C02, M24C01).  
Figure 2. Logic Diagram  
V
CC  
Table 1. Signal Names  
E0, E1, E2  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply Voltage  
Ground  
3
E0-E2  
SDA  
SCL  
M24Cxx  
SCL  
WC  
WC  
V
CC  
SS  
V
V
SS  
Power On Reset: V Lock-Out Write Protect  
CC  
AI02033  
In order to prevent data corruption and inadvertent  
Write operations during Power-up, a Power On  
Reset (POR) circuit is included. At Power-up, the  
internal reset is held active until V has reached  
the POR threshold value, and all operations are  
disabled – the device will not respond to any  
CC  
2
I C uses a two wire serial interface, comprising a  
bi-directional data line and a clock line. The devic-  
es carry a built-in 4-bit Device Type Identifier code  
command. In the same way, when V drops from  
CC  
2
the operating voltage, below the POR threshold  
value, all operations are disabled and the device  
will not respond to any command.  
(1010) in accordance with the I C bus definition.  
The device behaves as a slave in the I C protocol,  
2
with all memory operations synchronized by the  
serial clock. Read and Write operations are initiat-  
ed by a Start condition, generated by the bus mas-  
ter. The Start condition is followed by a Device  
Select Code and RW bit (as described in Table 2),  
terminated by an acknowledge bit.  
A stable and valid V (as defined in Tables 7 and  
CC  
10) must be applied before applying any logic sig-  
nal.  
Figure 3. DIP, SO and TSSOP Connections  
M24Cxx  
16Kb/8Kb/4Kb/2Kb  
NC / NC / NC/ E0  
NC / NC/ E1/ E1  
NC/ E2/ E2/ E2  
/1Kb  
/ E0  
/ E1  
/ E2  
1
2
3
4
8
7
6
5
V
CC  
WC  
SCL  
SDA  
V
SS  
AI02034E  
Note: 1. NC = Not Connected  
2. See page 22 (onwards) for package dimensions, and how to identify pin-1.  
4/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
SIGNAL DESCRIPTION  
Serial Clock (SCL). This input signal is used to  
strobe all data in and out of the device. In applica-  
tions where this signal is used by slave devices to  
synchronize the bus to a slower clock, the bus  
master must have an open drain output, and a  
pull-up resistor can be connected from Serial  
Chip Enable (E0, E1, E2). These input signals  
are used to set the value that is to be looked for on  
the three least significant bits (b3, b2, b1) of the 7-  
bit Device Select Code. These inputs must be tied  
to V  
or V , to establish the Device Select  
CC  
SS  
Code.  
Clock (SCL) to V . (Figure 4 indicates how the  
CC  
Write Control (WC). This input signal is useful  
for protecting the entire contents of the memory  
from inadvertent write operations. Write opera-  
tions are disabled to the entire memory array when  
Write Control (WC) is driven High. When uncon-  
value of the pull-up resistor can be calculated). In  
most applications, though, this method of synchro-  
nization is not employed, and so the pull-up resis-  
tor is not necessary, provided that the bus master  
has a push-pull (rather than open drain) output.  
nected, the signal is internally read as V , and  
IL  
Serial Data (SDA). This bi-directional signal is  
used to transfer data in or out of the device. It is an  
open drain output that may be wire-OR’ed with  
other open drain or open collector signals on the  
bus. A pull up resistor must be connected from Se-  
Write operations are allowed.  
When Write Control (WC) is driven High, Device  
Select and Address bytes are acknowledged,  
Data bytes are not acknowledged.  
rial Data (SDA) to V . (Figure 4 indicates how the  
CC  
value of the pull-up resistor can be calculated).  
2
Figure 4. Maximum R Value versus Bus Capacitance (C  
) for an I C Bus  
L
BUS  
V
CC  
20  
16  
12  
R
R
L
L
SDA  
MASTER  
C
BUS  
8
SCL  
fc = 100kHz  
4
fc = 400kHz  
C
BUS  
0
10  
100  
(pF)  
1000  
C
BUS  
AI01665  
5/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
2
Figure 5. I C Bus Protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 2. Device Select Code  
1
2,3  
RW  
Device Type Identifier  
Chip Enable  
b6  
0
b5  
1
b4  
b3  
E2  
b2  
E1  
E1  
E1  
A9  
A9  
b1  
E0  
E0  
A8  
A8  
A8  
b0  
b7  
M24C01 Select Code  
M24C02 Select Code  
M24C04 Select Code  
M24C08 Select Code  
M24C16 Select Code  
1
1
1
1
1
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
0
1
E2  
0
1
E2  
0
1
E2  
0
1
A10  
Note: 1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
3. A10, A9 and A8 represent most significant bits of the address.  
6/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
DEVICE OPERATION  
2
The device supports the I C protocol. This is sum-  
marized in Figure 5. Any device that sends data on  
to the bus is defined to be a transmitter, and any  
device that reads the data to be a receiver. The  
device that controls the data transfer is known as  
the bus master, and the other as the slave device.  
A data transfer can only be initiated by the bus  
master, which will also provide the serial clock for  
synchronization. The M24Cxx device is always a  
slave in all communication.  
Clock (SCL), and the Serial Data (SDA) signal  
must change only when Serial Clock (SCL) is driv-  
en Low.  
Memory Addressing  
To start communication between the bus master  
and the slave device, the bus master must initiate  
a Start condition. Following this, the bus master  
sends the Device Select Code, shown in Table 2  
(on Serial Data (SDA), most significant bit first).  
The Device Select Code consists of a 4-bit Device  
Type Identifier, and a 3-bit Chip Enable “Address”  
(E2, E1, E0). To address the memory array, the 4-  
bit Device Type Identifier is 1010b.  
Start Condition  
Start is identified by a falling edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable in the  
High state. A Start condition must precede any  
data transfer command. The device continuously  
monitors (except during a Write cycle) Serial Data  
(SDA) and Serial Clock (SCL) for a Start condition,  
and will not respond unless one is given.  
Each device is given a unique 3-bit code on the  
Chip Enable (E0, E1, E2) inputs. When the Device  
Select Code is received, the device only responds  
if the Chip Enable Address is the same as the val-  
ue on the Chip Enable (E0, E1, E2) inputs. How-  
ever, those devices with larger memory capacities  
(the M24C16, M24C08 and M24C04) need more  
address bits. E0 is not available for use on devices  
that need to use address line A8; E1 is not avail-  
able for devices that need to use address line A9,  
and E2 is not available for devices that need to use  
address line A10 (see Figure 3 and Table 2 for de-  
tails). Using the E0, E1 and E2 inputs, up to eight  
M24C02 (or M24C01), four M24C04, two M24C08  
or one M24C16 devices can be connected to one  
Stop Condition  
Stop is identified by a rising edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable and driv-  
en High. A Stop condition terminates communica-  
tion between the device and the bus master. A  
Read command that is followed by NoAck can be  
followed by a Stop condition to force the device  
into the Stand-by mode. A Stop condition at the  
end of a Write command triggers the internal EE-  
PROM Write cycle.  
2
I C bus. In each case, and in the hybrid cases, this  
Acknowledge Bit (ACK)  
gives a total memory capacity of 16 Kbits,  
2 KBytes (except where M24C01 devices are  
used).  
The acknowledge bit is used to indicate a success-  
ful byte transfer. The bus transmitter, whether it be  
bus master or slave device, releases Serial Data  
th  
The 8 bit is the Read/Write bit (RW). This bit is  
(SDA) after sending eight bits of data. During the  
th  
set to 1 for Read and 0 for Write operations.  
9
clock pulse period, the receiver pulls Serial  
Data (SDA) Low to acknowledge the receipt of the  
eight data bits.  
Data Input  
During data input, the device samples Serial Data  
(SDA) on the rising edge of Serial Clock (SCL).  
For correct device operation, Serial Data (SDA)  
must be stable during the rising edge of Serial  
If a match occurs on the Device Select code, the  
corresponding device gives an acknowledgment  
on Serial Data (SDA) during the 9 bit time. If the  
device does not match the Device Select code, it  
deselects itself from the bus, and goes into Stand-  
by mode.  
th  
Table 3. Operating Modes  
1
Mode  
RW bit  
Bytes  
Initial Sequence  
WC  
X
Current Address Read  
1
0
1
1
0
0
1
START, Device Select, RW = 1  
X
START, Device Select, RW = 0, Address  
reSTART, Device Select, RW = 1  
Similar to Current or Random Address Read  
START, Device Select, RW = 0  
Random Address Read  
1
X
Sequential Read  
Byte Write  
X
1  
1
VIL  
VIL  
Page Write  
16  
START, Device Select, RW = 0  
Note: 1. X = VIH or VIL.  
7/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 6. Write Mode Sequences with WC=1 (data write inhibited)  
WC  
ACK  
ACK  
NO ACK  
DATA IN  
Byte Write  
DEV SEL  
BYTE ADDR  
R/W  
WC  
ACK  
ACK  
NO ACK  
NO ACK  
DATA IN 3  
Page Write  
DEV SEL  
BYTE ADDR  
DATA IN 1 DATA IN 2  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
Page Write  
(cont'd)  
DATA IN N  
AI02803C  
Write Operations  
the Start condition until the end of the address  
byte), the device replies to the data byte with  
NoAck, as shown in Figure 6, and the location is  
not modified. If, instead, the addressed location is  
not Write-protected, the device replies with Ack.  
The bus master terminates the transfer by gener-  
ating a Stop condition, as shown in Figure 7.  
Following a Start condition the bus master sends  
a Device Select Code with the RW bit reset to 0.  
The device acknowledges this, as shown in Figure  
7, and waits for an address byte. The device re-  
sponds to the address byte with an acknowledge  
bit, and then waits for the data byte.  
Page Write  
When the bus master generates a Stop condition  
immediately after the Ack bit (in the “10 bit” time  
th  
The Page Write mode allows up to 16 bytes to be  
written in a single Write cycle, provided that they  
are all located in the same page in the memory:  
that is, the most significant memory address bits  
are the same. If more bytes are sent than will fit up  
to the end of the page, a condition known as ‘roll-  
over’ occurs. This should be avoided, as data  
starts to become overwritten in an implementation  
dependent way.  
The bus master sends from 1 to 16 bytes of data,  
each of which is acknowledged by the device if  
Write Control (WC) is Low. If the addressed loca-  
tion is Write-protected, by Write Control (WC) be-  
ing driven High (during the period from the Start  
slot), either at the end of a Byte Write or a Page  
Write, the internal memory Write cycle is triggered.  
A Stop condition at any other time slot does not  
trigger the internal Write cycle.  
During the internal Write cycle, Serial Data (SDA)  
and Serial Clock (SCL) are ignored, and the de-  
vice does not respond to any requests.  
Byte Write  
After the Device Select code and the address byte,  
the bus master sends one data byte. If the ad-  
dressed location is Write-protected, by Write Con-  
trol (WC) being driven High (during the period from  
8/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
condition until the end of the address byte), the de-  
vice replies to the data bytes with NoAck, as  
shown in Figure 6, and the locations are not mod-  
ified. After each byte is transferred, the internal  
byte address counter (the 4 least significant ad-  
dress bits only) is incremented. The transfer is ter-  
minated by the bus master generating a Stop  
condition.  
Figure 7. Write Mode Sequences with WC=0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
DATA IN  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
PAGE WRITE  
DEV SEL  
BYTE ADDR  
DATA IN 1  
DATA IN 2  
DATA IN 3  
R/W  
WC (cont'd)  
ACK  
ACK  
PAGE WRITE  
(cont'd)  
DATA IN N  
AI02804B  
9/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 8. Write Cycle Polling Flowchart using ACK  
WRITE Cycle  
in Progress  
START Condition  
DEVICE SELECT  
with RW = 0  
ACK  
Returned  
NO  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
Addressing the  
Memory  
NO  
YES  
Send Address  
and Receive ACK  
ReSTART  
START  
NO  
YES  
STOP  
Condition  
DATA for the  
WRITE Operation  
DEVICE SELECT  
with RW = 1  
Continue the  
Continue the  
Random READ Operation  
WRITE Operation  
AI01847C  
Minimizing System Delays by Polling On ACK  
– Step 1: the bus master issues a Start condition  
followed by a Device Select Code (the first byte  
of the new instruction).  
During the internal Write cycle, the device discon-  
nects itself from the bus, and writes a copy of the  
data from its internal latches to the memory cells.  
– Step 2: if the device is busy with the internal  
Write cycle, no Ack will be returned and the bus  
master goes back to Step 1. If the device has  
terminated the internal Write cycle, it responds  
with an Ack, indicating that the device is ready  
to receive the second part of the instruction (the  
first byte of this instruction having been sent  
during Step 1).  
The maximum Write time (t ) is shown in Tables  
w
19 to 21, but the typical time is shorter. To make  
use of this, a polling sequence can be used by the  
bus master.  
The sequence, as shown in Figure 8, is:  
– Initial condition: a Write cycle is in progress.  
10/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 9. Read Mode Sequences  
ACK  
NO ACK  
CURRENT  
ADDRESS  
READ  
DEV SEL  
DATA OUT  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT  
RANDOM  
ADDRESS  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL *  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT N  
SEQUENTIAL  
CURRENT  
READ  
DEV SEL  
DATA OUT 1  
R/W  
ACK  
ACK  
ACK  
ACK  
SEQUENTIAL  
RANDOM  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL * DATA OUT 1  
R/W  
R/W  
ACK  
NO ACK  
DATA OUT N  
AI01942  
st  
rd  
Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1 and 3 bytes) must be identical.  
Read Operations  
master must not acknowledge the byte, and termi-  
nates the transfer with a Stop condition.  
Current Address Read  
Read operations are performed independently of  
the state of the Write Control (WC) signal.  
The device has an internal address counter which  
is incremented each time a byte is read.  
Random Address Read  
A dummy Write is first performed to load the ad-  
dress into this address counter (as shown in Fig-  
ure 9) but without sending a Stop condition. Then,  
the bus master sends another Start condition, and  
repeats the Device Select Code, with the RW bit  
set to 1. The device acknowledges this, and out-  
puts the contents of the addressed byte. The bus  
For the Current Address Read operation, following  
a Start condition, the bus master only sends a De-  
vice Select Code with the RW bit set to 1. The de-  
vice acknowledges this, and outputs the byte  
addressed by the internal address counter. The  
counter is then incremented. The bus master ter-  
minates the transfer with a Stop condition, as  
shown in Figure 9, without acknowledging the  
byte.  
11/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Sequential Read  
Acknowledge in Read Mode  
This operation can be used after a Current Ad-  
dress Read or a Random Address Read. The bus  
master does acknowledge the data byte output,  
and sends additional clock pulses so that the de-  
vice continues to output the next byte in sequence.  
To terminate the stream of bytes, the bus master  
must not acknowledge the last byte, and must  
generate a Stop condition, as shown in Figure 9.  
For all Read commands, the device waits, after  
each byte read, for an acknowledgment during the  
9 bit time. If the bus master does not drive Serial  
Data (SDA) Low during this time, the device termi-  
nates the data transfer and switches to its Stand-  
by mode.  
th  
The output data comes from consecutive address-  
es, with the internal address counter automatically  
incremented after each byte output. After the last  
memory address, the address counter ‘rolls-over’,  
and the device continues to output data from  
memory address 00h.  
INITIAL DELIVERY STATE  
The device is delivered with the memory array  
erased: all bits are set to 1 (each byte contains  
FFh).  
12/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings" table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 4. Absolute Maximum Ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TSTG  
Storage Temperature  
–65  
150  
°C  
2
PDIP  
SO  
260  
1
3
TLEAD  
°C  
Lead Temperature during Soldering  
260  
3
TSSOP  
260  
VIO  
VCC  
VESD  
Input or Output range  
Supply Voltage  
–0.6  
–0.3  
6.5  
6.5  
V
V
V
4
–4000  
4000  
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with the ECOPACK 7191395 specifiication for lead-free soldering processes  
2. No longer than 10 seconds  
3. Not exceeding 250°C for more than 30 seconds, and peaking at 260°C  
4. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
13/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 5. Operating Conditions (M24Cxx-xx6)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
85  
°C  
Table 6. Operating Conditions (M24Cxx-xx3)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
–40  
125  
°C  
Table 7. Operating Conditions (M24Cxx-Wxx6)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
85  
°C  
Table 8. Operating Conditions (M24Cxx-Wxx3)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
125  
°C  
Table 9. Operating Conditions (M24Cxx-Lxx6)  
Symbol  
Parameter  
Min.  
2.2  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
85  
°C  
Table 10. Operating Conditions (M24Cxx-Rxx6)  
Symbol  
Parameter  
Min.  
1.8  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
85  
°C  
14/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 11. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
Input Levels  
50  
0.2V to 0.8V  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Levels  
V
CC  
Figure 10. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Table 12. Input Parameters  
1,2  
Symbol  
CIN  
Test Condition  
Min.  
Max.  
8
Unit  
pF  
Parameter  
Input Capacitance (SDA)  
Input Capacitance (other pins)  
WC Input Impedance  
CIN  
6
pF  
ZWCL  
ZWCH  
VIN < 0.5 V  
5
70  
kΩ  
kΩ  
VIN > 0.7VCC  
WC Input Impedance  
500  
Pulse width ignored  
(Input Filter on SCL and SDA)  
tNS  
Single glitch  
100  
ns  
Note: 1. T = 25 °C, f = 400 kHz  
A
2. Sampled only, not 100% tested.  
15/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 13. DC Characteristics (M24Cxx-xx6)  
Test Condition  
(in addition to those in Table 5)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
2
µA  
mA  
µA  
V
CC=5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
VIN = VSS or VCC , VCC = 5 V  
Stand-by Supply Current  
1
Input Low Voltage  
(E2, E1, E0, SCL, SDA)  
–0.45  
–0.45  
0.3VCC  
0.5  
V
V
V
V
VIL  
Input Low Voltage (WC)  
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
VOL  
Output Low Voltage  
IOL = 3 mA, VCC = 5 V  
Table 14. DC Characteristics (M24Cxx-xx3)  
Test Condition  
(in addition to those in Table 6)  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
3
µA  
mA  
µA  
V
CC=5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
VIN = VSS or VCC , VCC = 5 V  
Stand-by Supply Current  
5
Input Low Voltage  
(E2, E1, E0, SCL, SDA)  
–0.45  
–0.45  
0.3VCC  
0.5  
V
V
V
V
VIL  
Input Low Voltage (WC)  
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
VOL  
Output Low Voltage  
IOL = 3 mA, VCC = 5 V  
16/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 15. DC Characteristics (M24Cxx-Wxx6)  
Test Condition  
(in addition to those in Table 7)  
Symbol  
Parameter  
Max.  
Unit  
Min.  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
1
µA  
mA  
µA  
V
CC =2.5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
VIN = VSS or VCC , VCC = 2.5 V  
Stand-by Supply Current  
0.5  
Input Low Voltage  
(E2, E1, E0, SCL, SDA)  
–0.45  
–0.45  
0.3VCC  
0.5  
V
V
V
V
VIL  
Input Low Voltage (WC)  
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
VOL  
Output Low Voltage  
IOL = 2.1 mA, VCC = 2.5 V  
Table 16. DC Characteristics (M24Cxx-Wxx3)  
Test Condition  
(in addition to those in Table 8)  
1
1
Symbol  
Parameter  
Unit  
Min.  
Max.  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
3
µA  
mA  
µA  
V
CC =2.5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
VIN = VSS or VCC , VCC = 2.5 V  
Stand-by Supply Current  
2
Input Low Voltage  
(E2, E1, E0, SCL, SDA)  
–0.45  
–0.45  
0.3VCC  
0.5  
V
V
V
V
VIL  
Input Low Voltage (WC)  
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
VOL  
Output Low Voltage  
IOL = 2.1 mA, VCC = 2.5 V  
Note: 1. This is preliminary data.  
17/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 17. DC Characteristics (M24Cxx-Lxx6)  
Test Condition  
(in addition to those in Table 9)  
Symbol  
Parameter  
Max.  
Unit  
Min.  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
1
µA  
mA  
µA  
V
CC =2.5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
VIN = VSS or VCC , VCC = 2.5 V  
Stand-by Supply Current  
0.5  
Input Low Voltage  
(E2, E1, E0, SCL, SDA)  
–0.45  
–0.45  
0.3VCC  
0.5  
V
V
V
V
VIL  
Input Low Voltage (WC)  
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.4  
VOL  
Output Low Voltage  
IOL = 2.1 mA, VCC = 2.2 V  
Table 18. DC Characteristics (M24Cxx-Rxx6)  
Test Condition  
(in addition to those in Table 10)  
Symbol  
Parameter  
Max.  
Unit  
Min.  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
0.8  
µA  
mA  
µA  
V
V
CC =1.8V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
Stand-by Supply Current  
VIN = VSS or VCC , VCC = 1.8 V  
2.5 V VCC  
0.3  
–0.45  
–0.45  
–0.45  
0.3 VCC  
Input Low Voltage  
(E2, E1, E0, SCL, SDA)  
VIL  
1.8 V VCC < 2.5 V  
V
0.25 VCC  
0.5  
Input Low Voltage (WC)  
V
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC  
VCC+1  
0.2  
V
V
VOL  
Output Low Voltage  
IOL = 0.7 mA, VCC = 1.8 V  
18/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 19. AC Characteristics (M24Cxx-xx6, M24Cxx-Wxx3)  
Test conditions specified in Table 11 and Table 5 or 8  
4
4
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Unit  
kHz  
ns  
Min.  
Max.  
Clock Frequency  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
600  
1300  
20  
ns  
2
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
100  
0
ns  
ns  
200  
200  
ns  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
Start Condition Set Up Time  
Start Condition Hold Time  
600  
600  
ns  
ns  
ns  
ns  
ms  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
Stop Condition Set Up Time  
Time between Stop Condition and Next Start Condition  
Write Time  
600  
1300  
tWR  
5
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. This is preliminary data for M24Cxx-Wxx3.  
Table 20. AC Characteristics (M24Cxx-xx3, M24Cxx-Wxx6, M24Cxx-Lxx6)  
Test conditions specified in Table 11 and Table 6 or 7 or 9  
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Unit  
kHz  
ns  
Min.  
Max.  
Clock Frequency  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
600  
1300  
20  
ns  
2
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
100  
0
ns  
ns  
200  
200  
600  
600  
600  
1300  
ns  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
ns  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
Start Condition Hold Time  
ns  
Stop Condition Set Up Time  
ns  
Time between Stop Condition and Next Start Condition  
Write Time  
ns  
4
tWR  
ms  
10 or 5  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. 10ms write time is offered on the standard device. 5ms write time is offered on new products bearing the Process Identification letter  
“W” on the package, as described in Table 27.  
19/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 21. AC Characteristics (M24Cxx-Rxx6)  
Test conditions specified in Table 11 and Table 10  
4
4
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Clock Frequency  
Unit  
kHz  
ns  
Min.  
Max.  
Min.  
Max.  
100  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
4000  
4700  
20  
600  
1300  
20  
ns  
2
300  
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
250  
0
100  
0
ns  
ns  
200  
200  
ns  
Clock Low to Next Data Valid (Access  
Time)  
3
tAA  
200  
3500  
200  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
Start Condition Set Up Time  
Start Condition Hold Time  
Stop Condition Set Up Time  
4700  
4000  
4000  
600  
600  
600  
ns  
ns  
ns  
tCHDX  
tDLCL  
tCHDH  
Time between Stop Condition and  
Next Start Condition  
tDHDL  
tW  
tBUF  
tWR  
4700  
1300  
ns  
Write Time  
10  
10  
ms  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. 100kHz clock frequency is offered on the standard device. 400kHz clock frequency is offered on new products bearing the Process  
Identification letter “W” on the package, as described in Table 27.  
20/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 11. AC Waveforms  
tCHCL  
tCLCH  
SCL  
tDLCL  
SDA In  
tCHDX  
tCLDX  
tDXCX  
SDA  
tCHDH tDHDL  
Change  
START  
Condition  
START  
Condition  
SDA  
Input  
STOP  
Condition  
SCL  
SDA In  
tCHDH  
STOP  
tCHDX  
START  
Condition  
tW  
Write Cycle  
Condition  
SCL  
tCLQV  
tCLQX  
Data Valid  
SDA Out  
AI00795C  
21/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
PACKAGE MECHANICAL  
Figure 12. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Notes: 1. Drawing is not to scale.  
Table 22. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
22/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 13. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
A
C
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 23. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Symb.  
Typ.  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
23/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 14. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Notes: 1. Drawing is not to scale.  
Table 24. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
24/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 15. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline  
D
8
1
5
4
c
E1  
E
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Notes: 1. Drawing is not to scale.  
Table 25. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package  
Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.100  
0.150  
0.950  
0.400  
0.230  
3.100  
5.150  
3.100  
Typ.  
Max.  
0.0433  
0.0059  
0.0374  
0.0157  
0.0091  
0.1220  
0.2028  
0.1220  
A
A1  
A2  
b
0.050  
0.750  
0.250  
0.130  
2.900  
4.650  
2.900  
0.0020  
0.0295  
0.0098  
0.0051  
0.1142  
0.1831  
0.1142  
0.850  
0.0335  
c
D
3.000  
4.900  
3.000  
0.650  
0.1181  
0.1929  
0.1181  
0.0256  
E
E1  
e
CP  
L
0.100  
0.700  
0.0039  
0.0276  
0.550  
0.950  
0.400  
0°  
0.0217  
0.0374  
0.0157  
0°  
L1  
α
6°  
6°  
25/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
PART NUMBERING  
Table 26. Ordering Information Scheme  
Example:  
M24C08  
W DW  
6
T
P
/W  
Device Type  
2
M24 = I C serial access EEPROM  
Device Function  
16 = 16 Kbit (2048 x 8)  
08 = 8 Kbit (1024 x 8)  
04 = 4 Kbit (512 x 8)  
02 = 2 Kbit (256 x 8)  
01 = 1 Kbit (128 x 8)  
Operating Voltage  
blank = V = 4.5 to 5.5V (400kHz)  
CC  
1
W = V = 2.5 to 5.5V (400kHz)  
CC  
L = V = 2.2 to 5.5V (400kHz)  
CC  
R = V = 1.8 to 5.5V (400kHz)  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
DS = TSSOP8 (3x3mm² body size, MSOP8)  
Temperature Range  
6 = –40 to 85 °C  
3 = –40 to 125 °C  
Option  
T = Tape & Reel Packing  
2
Plating Technology  
blank = Standard SnPb plating  
P = Pb-free plating  
G = Green pack  
2
Process  
blank = F6SP20%  
/W = F6SP36%  
Note: 1. 2.5 to 5.5V devices bearing the process letter “W” in the package marking (on the top side of the package, on the right side, see  
Table 27, below), guarantee a maximum write time of 5ms, instead of the standard 10ms. For more information about these devices,  
and their device identification, please ask your ST Sales Office for Process Change Notices PCN MPG/EE/0061 and 0062  
(PCEE0061 and PCEE0062).  
2. Used only for M24Cxx-xx3  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
26/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 27. How to Identify Current and New Products by the Process Identification Letter  
1
1
Markings on Current Products  
Markings on New Products  
24CxxW6  
24CxxW6  
ST xxxxL  
ST xxxxW  
Note: 1. This example comes from the S08 package. Other packages have similar information. For further information, please ask your ST  
Sales Office for Process Change Notices PCN MPG/EE/0061 and 0062 (PCEE0061 and PCEE0062).  
27/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
REVISION HISTORY  
Table 28. Document Revision History  
Date  
Version  
Description of Revision  
TSSOP8 Turned-Die package removed (p 2 and order information)  
Lead temperature added for TSSOP8 in table 2  
10-Dec-1999  
2.4  
18-Apr-2000  
2.5  
Labelling change to Fig-2D, correction of values for ‘E’ and main caption for Tab-13  
Extra labelling to Fig-2D  
05-May-2000  
2.6  
SBGA package information removed to an annex document  
-R range changed to being the -S range, and the new -R range added  
23-Nov-2000  
19-Feb-2001  
3.0  
3.1  
SBGA package information put back in this document  
Lead Soldering Temperature in the Absolute Maximum Ratings table amended  
Write Cycle Polling Flow Chart using ACK illustration updated  
References to PSDIP changed to PDIP and Package Mechanical data updated  
Wording brought in to line with standard glossary  
20-Apr-2001  
08-Oct-2001  
3.2  
3.3  
Revision of DC and AC characteristics for the -S series  
Ball numbers added to the SBGA connections and package mechanical illustrations  
Specification of Test Condition for Leakage Currents in the DC Characteristics table  
improved  
09-Nov-2001  
3.4  
Document reformatted using new template. SBGA5 package removed  
TSSOP8 (3x3mm² body size) package (MSOP8) added. -L voltage range added  
30-Jul-2002  
04-Feb-2003  
3.5  
3.6  
Document title spelt out more fully. W”-marked devices with tw=5ms added.  
-R voltage range upgraded to 400kHz working, and no longer preliminary data.  
5V voltage range at temperature range 3 (-xx3) no longer preliminary data.  
-S voltage range removed. -Wxx3 voltage+temp ranged added as preliminary data.  
05-May-2003  
07-Oct-2003  
3.7  
4.0  
Table of contents, and Pb-free options added. Minor wording changes in Summary  
Description, Power-On Reset, Memory Addressing, Read Operations. V (min) improved to  
IL  
-0.45V. t (max) value for -R voltage range corrected.  
W
28/29  
M24C16, M24C08, M24C04, M24C02, M24C01  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
29/29  

相关型号:

M24C01-LBN3T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
STMICROELECTR

M24C01-LBN6

128X8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, DIP-8
STMICROELECTR

M24C01-LBN6T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
STMICROELECTR

M24C01-LDS3

128X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 3 MM, TSSOP-8
STMICROELECTR

M24C01-LDS3T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
STMICROELECTR

M24C01-LDS6

128X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 3 MM, TSSOP-8
STMICROELECTR

M24C01-LDS6T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
STMICROELECTR

M24C01-LDS6TG

暂无描述
STMICROELECTR

M24C01-LDW3T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
STMICROELECTR

M24C01-LDW6T

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
STMICROELECTR

M24C01-LDW6TG

IC,SERIAL EEPROM,128X8,CMOS,TSSOP,8PIN,PLASTIC
STMICROELECTR

M24C01-LDW6TP

IC,SERIAL EEPROM,128X8,CMOS,TSSOP,8PIN,PLASTIC
STMICROELECTR