M24C32-RBN5PP [STMICROELECTRONICS]

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8;
M24C32-RBN5PP
型号: M24C32-RBN5PP
厂家: ST    ST
描述:

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 光电二极管 内存集成电路
文件: 总41页 (文件大小:718K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24C32-W M24C32-R M24C32-F  
M24C32-X M24C32-DF  
32-Kbit serial I²C bus EEPROM  
Datasheet - production data  
Features  
2
Compatible with all I C bus modes:  
– 1 MHz  
– 400 kHz  
– 100 kHz  
TSSOP8 (DW)  
169 mil width  
Memory array:  
– 32Kbit (4 Kbytes) of EEPROM  
– Page size: 32 bytes  
– Additional Write lockable page  
(M24C32-D order codes)  
Single supply voltage:  
– 1.7 V to 5.5 V over –40 °C / +85 °C  
SO8 (MN)  
150 mil width  
– 1.6 V to 5.5 V over –20 °C / +85 °C  
Write:  
– Byte Write within 5 ms (10 ms when  
V
= 1.6 V)  
CC  
– Page Write within 5 ms (10 ms when  
= 1.6 V)  
V
CC  
Random and sequential Read modes  
Write protect of the whole memory array  
Enhanced ESD/Latch-Up protection  
More than 4 million Write cycles  
PDIP8 (BN)  
More than 200-year data retention  
Packages  
UFDFPN8  
(MC)  
®
PDIP8 ECOPACK1  
®
SO8 ECOPACK2  
®
TSSOP8 ECOPACK2  
®
UFDFPN8 ECOPACK2  
®
UFDFPN5 ECOPACK2  
UFDFPN5  
(MH)  
May 2014  
DocID4578 Rev 22  
1/41  
This is information on a product in full production.  
www.st.com  
Contents  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Enable (E2, E1, E0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
Operating supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
CC  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
4.5  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 17  
Lock Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 17  
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 17  
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18  
5.2  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.2.1  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/41  
DocID4578 Rev 22  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Contents  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 20  
Read the lock status (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7
8
9
10  
11  
DocID4578 Rev 22  
3/41  
3
List of tables  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Operating conditions (voltage range W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating conditions (voltage range R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating conditions (voltage range F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating conditions (voltage range X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Cycling performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC characteristics (M24C32-W, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC characteristics (M24C32-R, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC characteristics (M24C32-F, device grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M24C32-X, device grade 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 33  
SO8N – 8-lead plastic small outline, 150 mils body width, package data. . . . . . . . . . . . . . 34  
PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package mechanical data. . . . . . . . . . . . 35  
UFDFPN8 (MLP8) – package dimensions (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
UFDFPN5 (MLP5) – package dimensions (UFDFPN: Ultra thin Fine pitch  
Table 24.  
Dual Flat Package, No lead). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 25.  
Table 26.  
4/41  
DocID4578 Rev 22  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections, top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
UFDFPN5 package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chip enable inputs connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 11. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 12. Maximum R  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
C
Figure 13. Maximum R  
value versus bus parasitic capacitance C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
C
Figure 14. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 15. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 16. SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 34  
Figure 17. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package outline . . . . . . . . . . . . . . . . . . . 35  
Figure 18. UFDFPN8 (MLP8) – package outline (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 19. UFDFPN5 (MLP5) – package outline (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DocID4578 Rev 22  
5/41  
5
Description  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
1
Description  
2
The M24C32 is a 32-Kbit I C-compatible EEPROM (Electrically Erasable PROgrammable  
Memory) organized as 4 K × 8 bits.  
The M24C32-W can operate with a supply voltage from 2.5 V to 5.5 V, the M24C32-R can  
operate with a supply voltage from 1.8 V to 5.5 V, and the M24C32-F and M24C32-DF can  
operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of  
-40 °C / +85 °C; while the M24C32-X can operate with a supply voltage from 1.6 V to 5.5 V  
over an ambient temperature range of -20 °C / +85 °C.  
The M24C32-D offers an additional page, named the Identification Page (32 bytes). The  
Identification Page can be used to store sensitive application parameters which can be  
(later) permanently locked in Read-only mode.  
Figure 1. Logic diagram  
6
##  
%ꢀꢅ%ꢆ  
3$!  
-ꢆꢃXXX  
3#,  
7#  
6
!)ꢀꢁꢂꢃꢃF  
33  
Table 1. Signal names  
Function  
Signal name  
Direction  
E2, E1, E0  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply voltage  
Ground  
Input  
I/O  
Input  
Input  
-
SCL  
WC  
VCC  
VSS  
-
6/41  
DocID4578 Rev 22  
 
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Description  
Figure 2. 8-pin package connections, top view  
%ꢀ  
%ꢁ  
%ꢆ  
6
##  
7#  
3#,  
3$!  
6
33  
!)ꢀꢁꢂꢃꢇF  
1. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.  
Figure 3. UFDFPN5 package connections  
6
6
ꢇ 7#  
ꢆ 6  
##  
33  
!"#$  
89:7  
33  
3$!  
3#,  
4OP VIEW  
"OTTOM VIEW  
ꢊPADS SIDEꢋ  
ꢊMARKING SIDEꢋ  
-3ꢄꢆꢁꢁꢈ6ꢁ  
1. Inputs E2, E1, E0 are not connected, therefore read as (000). Please refer to Section 2.3 for further  
explanations.  
DocID4578 Rev 22  
7/41  
40  
 
 
Signal description  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
2
Signal description  
2.1  
Serial Clock (SCL)  
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to  
output the data on SDA(out).  
2.2  
2.3  
Serial Data (SDA)  
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an  
open drain output that may be wire-OR’ed with other open drain or open collector signals on  
the bus. A pull-up resistor must be connected from Serial Data (SDA) to V (Figure 12  
CC  
indicates how to calculate the value of the pull-up resistor).  
Chip Enable (E2, E1, E0)  
(E2,E1,E0) input signals are used to set the value that is to be looked for on the three least  
significant bits (b3, b2, b1) of the 7-bit device select code (see Table 2). These inputs must  
be tied to V or V , as shown in Figure 4. When not connected (left floating), these inputs  
CC  
SS  
are read as low (0).  
For the UFDFPN5 package, the (E2,E1,E0) inputs are not connected, therefore read as  
(0,0,0).  
Figure 4. Chip enable inputs connection  
V
V
CC  
CC  
M24xxx  
M24xxx  
E
E
i
i
V
V
SS  
SS  
Ai12806  
2.4  
Write Control (WC)  
This input signal is useful for protecting the entire contents of the memory from inadvertent  
write operations. Write operations are disabled to the entire memory array when Write  
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either  
driven low or left floating.  
When Write Control (WC) is driven high, device select and address bytes are  
acknowledged, Data bytes are not acknowledged.  
8/41  
DocID4578 Rev 22  
 
 
 
 
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Signal description  
2.5  
VSS (ground)  
V
is the reference for the V supply voltage.  
CC  
SS  
2.6  
Supply voltage (VCC)  
2.6.1  
Operating supply voltage (V )  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Operating conditions  
CC  
CC  
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is  
recommended to decouple the V line with a suitable capacitor (usually of the order of  
CC  
10 nF to 100 nF) close to the V /V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a write instruction, until the completion of the internal write cycle (t ).  
W
2.6.2  
2.6.3  
Power-up conditions  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
(see Operating conditions in Section 8: DC and AC parameters) and the rise time must not  
vary faster than 1 V/µs.  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V has reached the  
CC  
internal reset threshold voltage. This threshold is lower than the minimum V operating  
CC  
voltage (see Operating conditions in Section 8: DC and AC parameters). When V passes  
CC  
over the POR threshold, the device is reset and enters the Standby Power mode; however,  
the device must not be accessed until V reaches a valid and stable DC voltage within the  
CC  
specified [V (min), V (max)] range (see Operating conditions in Section 8: DC and AC  
CC  
CC  
parameters).  
In a similar way, during power-down (continuous decrease in V ), the device must not be  
CC  
accessed when V drops below V (min). When V drops below the internal reset  
CC  
CC  
CC  
threshold voltage, the device stops responding to any instruction sent to it.  
2.6.4  
Power-down conditions  
During power-down (continuous decrease in V ), the device must be in the Standby Power  
CC  
mode (mode reached after decoding a Stop condition, assuming that there is no internal  
write cycle in progress).  
DocID4578 Rev 22  
9/41  
40  
 
 
 
 
 
 
Memory organization  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
3
Memory organization  
The memory is organized as shown below.  
Figure 5. Block diagram  
7#  
%ꢀ  
%ꢁ  
%ꢆ  
(IGH VOLTAGE  
GENERATOR  
#ONTROL LOGIC  
3#,  
3$!  
)ꢍ/ SHIFT REGISTER  
$ATA  
REGISTER  
!DDRESS REGISTER  
AND COUNTER  
ꢁ PAGE  
)DENTIFICATION PAGE  
8 DECODER  
-3ꢄꢀꢌꢁꢆ6ꢁ  
10/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Device operation  
4
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 6. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The device is always a slave in all  
communications.  
2
Figure 6. I C bus protocol  
3#,  
3$!  
3$!  
)NPUT  
3$!  
#HANGE  
34!24  
#ONDITION  
34/0  
#ONDITION  
3#,  
3$!  
!#+  
-3"  
34!24  
#ONDITION  
3#,  
3$!  
-3"  
!#+  
34/0  
#ONDITION  
!)ꢀꢀꢈꢌꢆ"  
DocID4578 Rev 22  
11/41  
40  
 
 
Device operation  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
4.1  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer instruction. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition.  
4.2  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and  
driven high. A Stop condition terminates communication between the device and the bus  
master. A Read instruction that is followed by NoAck can be followed by a Stop condition to  
force the device into the Standby mode.  
A Stop condition at the end of a Write instruction triggers the internal Write cycle.  
4.3  
4.4  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
12/41  
DocID4578 Rev 22  
 
 
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Device operation  
4.5  
Device addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 2 (on Serial Data (SDA), most significant bit first).  
Table 2. Device select code  
Device type identifier(1)  
Chip Enable address(2)  
RW  
b0  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
Device select code  
when addressing the  
memory array  
1
0
1
0
E2  
E1  
E0  
RW  
RW  
Device select code  
when accessing the  
Identification page  
1
0
1
1
E2  
E1  
E0  
1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared with the value read on input pins E0, E1,and E2.  
When the device select code is received, the device only responds if the Chip Enable  
address is the same as the value on its Chip Enable E2,E1,E0 inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the device select code, the device deselects itself from the bus, and goes into Standby  
mode.  
DocID4578 Rev 22  
13/41  
40  
 
 
Instructions  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
5
Instructions  
5.1  
Write operations  
Following a Start condition the bus master sends a device select code with the R/W bit (RW)  
reset to 0. The device acknowledges this, as shown in Figure 7, and waits for two address  
bytes. The device responds to each address byte with an acknowledge bit, and then waits  
for the data byte.  
Table 3. Most significant address byte  
A15  
A7  
A14  
A6  
A13  
A12  
A11  
A10  
A9  
A1  
A8  
A0  
Table 4. Least significant address byte  
A5 A4 A3 A2  
When the bus master generates a Stop condition immediately after a data byte Ack bit (in  
th  
the “10 bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write  
cycle t is triggered. A Stop condition at any other time slot does not trigger the internal  
W
Write cycle.  
After the Stop condition and the successful completion of an internal Write cycle (t ), the  
W
device internal address counter is automatically incremented to point to the next byte after  
the last modified byte.  
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
If the Write Control input (WC) is driven High, the Write instruction is not executed and the  
accompanying data bytes are not acknowledged, as shown in Figure 8.  
14/41  
DocID4578 Rev 22  
 
 
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Instructions  
5.1.1  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is Write-protected, by Write Control (WC) being driven high, the  
device replies with NoAck, and the location is not modified. If, instead, the addressed  
location is not Write-protected, the device replies with Ack. The bus master terminates the  
transfer by generating a Stop condition, as shown in Figure 7.  
Figure 7. Write mode sequences with WC = 0 (data write enabled)  
7#  
!#+  
!#+  
!#+  
!#+  
"YTE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN  
2ꢍ7  
7#  
!#+  
!#+  
!#+  
!#+  
0AGE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN ꢁ  
$ATA IN ꢆ  
2ꢍ7  
7# ꢊCONTgDꢋ  
!#+  
!#+  
0AGE 7RITE ꢊCONTgDꢋ  
$ATA IN .  
!)ꢀꢁꢁꢀꢉD  
DocID4578 Rev 22  
15/41  
40  
 
 
Instructions  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
5.1.2  
Page Write  
The Page Write mode allows up to 32 bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits, b16-b5, are the same. If more bytes are sent than will fit up to the end  
of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the  
same page, from location 0.  
The bus master sends from 1 to 32 bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the  
addressed memory location are not modified, and each data byte is followed by a NoAck, as  
shown in Figure 8. After each transferred byte, the internal page address counter is  
incremented.  
The transfer is terminated by the bus master generating a Stop condition.  
Figure 8. Write mode sequences with WC = 1 (data write inhibited)  
7#  
!#+  
!#+  
!#+  
./ !#+  
"YTE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN  
2ꢍ7  
7#  
!#+  
!#+  
!#+  
./ !#+  
$ATA IN ꢆ  
0AGE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN ꢁ  
2ꢍ7  
7# ꢊCONTgDꢋ  
./ !#+  
./ !#+  
0AGE 7RITE ꢊCONTgDꢋ  
$ATA IN .  
!)ꢀꢁꢁꢆꢀD  
16/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Instructions  
5.1.3  
Write Identification Page (M24C32-D only)  
The Identification Page (32 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode. It is written by issuing the Write Identification Page  
instruction. This instruction uses the same protocol and format as Page Write (into memory  
array), except for the following differences:  
Device type identifier = 1011b  
MSB address bits A15/A5 are don't care except for address bit A10 which must be ‘0’.  
LSB address bits A4/A0 define the byte address inside the Identification page.  
If the Identification page is locked, the data bytes transferred during the Write Identification  
Page instruction are not acknowledged (NoAck).  
5.1.4  
5.1.5  
Lock Identification Page (M24C32-D only)  
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page  
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with  
the following specific conditions:  
Device type identifier = 1011b  
Address bit A10 must be ‘1’; all other address bits are don't care  
The data byte must be equal to the binary value xxxx xx1x, where x is don't care  
ECC (Error Correction Code) and Write cycling  
(1)  
The Error Correction Code (ECC) is an internal logic function which is transparent for the  
2
I C communication protocol.  
(2)  
The ECC logic is implemented on each group of four EEPROM bytes . Inside a group, if a  
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC  
detects this bit and replaces it with the correct value. The read reliability is therefore much  
improved.  
Even if the ECC function is performed on groups of four bytes, a single byte can be  
written/cycled independently. In this case, the ECC function also writes/cycles the three  
(2)  
other bytes located in the same group . As a consequence, the maximum cycling budget is  
defined at group level and the cycling can be distributed over the 4 bytes of the group: the  
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain  
below the maximum value defined Table 12: Cycling performance.  
1. The ECC is implemented only in the devices identified with process letter K  
2. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.  
DocID4578 Rev 22  
17/41  
40  
 
 
 
Instructions  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
5.1.6  
Minimizing Write delays by polling on ACK  
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC  
parameters, but the typical time is shorter. To make use of this, a polling sequence can be  
used by the bus master.  
The sequence, as shown in Figure 9, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
Figure 9. Write cycle polling flowchart using ACK  
tƌŝƚĞꢀĐLJĐůĞ  
ŝŶꢀƉƌŽŐƌĞƐƐꢀꢀ  
^ƚĂƌƚꢀĐŽŶĚŝƚŝŽŶ  
ꢁĞǀŝĐĞꢀƐĞůĞĐƚ  
ǁŝƚŚꢀZtꢀсꢀϬ  
ꢂꢃ<  
EK  
ƌĞƚƵƌŶĞĚ  
)LUVWꢅE\WHꢅRIꢅLQVWUXFWLRQ  
ZLWKꢅ5:ꢅ ꢅꢀꢅDOUHDG\  
GHFRGHGꢅE\ꢅWKHꢅGHYLFH  
zꢄ^  
EĞdžƚ  
KƉĞƌĂƚŝŽŶꢀŝƐ  
ĂĚĚƌĞƐƐŝŶŐꢀƚŚĞ  
ŵĞŵŽƌLJ  
EK  
zꢄ^  
^ĞŶĚꢀꢂĚĚƌĞƐƐ  
ĂŶĚꢀZĞĐĞŝǀĞꢀꢂꢃ<  
ZĞ^ƚĂƌƚ  
EK  
zꢄ^  
^ƚŽƉ  
6WDUW&RQGLWLRQ  
ꢁĂƚĂꢀĨŽƌꢀƚŚĞ  
tƌŝƚĞꢀĐƉĞƌĂƚŝŽŶ  
'HYLFHꢅVHOHFW  
ZLWKꢅ5:ꢅ ꢅꢁ  
ꢃŽŶƚŝŶƵĞꢀƚŚĞ  
ZĂŶĚŽŵꢀZĞĂĚꢀŽƉĞƌĂƚŝŽŶ  
ꢃŽŶƚŝŶƵĞꢀƚŚĞ  
tƌŝƚĞꢀŽƉĞƌĂƚŝŽŶ  
$,ꢀꢁꢂꢃꢄH  
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the  
figure) must be identical to the seven most significant bits of the Device Select code of the Write (polling  
instruction in the figure).  
18/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Instructions  
5.2  
Read operations  
Read operations are performed independently of the state of the Write Control (WC) signal.  
After the successful completion of a Read operation, the device internal address counter is  
incremented by one, to point to the next byte address.  
For the Read instructions, after each byte read (data out), the device waits for an  
acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge  
during this 9th time, the device terminates the data transfer and switches to its Standby  
mode.  
Figure 10. Read mode sequences  
ACK  
NO ACK  
Current  
Address  
Read  
Dev sel  
Data out  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Random  
Address  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev sel  
Data out 1  
R/W  
ACK  
R/W  
ACK  
ACK  
ACK  
R/W  
ACK  
Sequention  
Random  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out1  
ACK  
NO ACK  
Data out N  
AI01105d  
DocID4578 Rev 22  
19/41  
40  
 
 
Instructions  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
5.2.1  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 10) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
5.2.2  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the R/W bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 10, without acknowledging the byte.  
Note that the address counter value is defined by instructions accessing either the memory  
or the Identification page. When accessing the Identification page, the address counter  
value is loaded with the byte location in the Identification page, therefore the next Current  
Address Read in the memory uses this new address counter value. When accessing the  
memory, it is safer to always use the Random Address Read instruction (this instruction  
loads the address counter with the byte location to read in the memory, see Section 5.2.1)  
instead of the Current Address Read instruction.  
5.2.3  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 10.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter “rolls-over”, and the device continues to output data from memory address  
00h.  
5.2.4  
Read Identification Page (M24C32-D only)  
The Identification Page (32 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode.  
The Identification Page can be read by issuing an Read Identification Page instruction. This  
instruction uses the same protocol and format as the Random Address Read (from memory  
array) with device type identifier defined as 1011b. The MSB address bits A15/A5 are don't  
care, the LSB address bits A4/A0 define the byte address inside the Identification Page. The  
number of bytes to read in the ID page must not exceed the page boundary (e.g.: when  
reading the Identification Page from location 10d, the number of bytes should be less than  
or equal to 22, as the ID page boundary is 32 bytes).  
20/41  
DocID4578 Rev 22  
 
 
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Initial delivery state  
5.2.5  
Read the lock status (M24C32-D only)  
The locked/unlocked status of the Identification page can be checked by transmitting a  
specific truncated command [Identification Page Write instruction + one data byte] to the  
device. The device returns an acknowledge bit if the Identification page is unlocked,  
otherwise a NoAck bit if the Identification page is locked.  
Right after this, it is recommended to transmit to the device a Start condition followed by a  
Stop condition, so that:  
Start: the truncated command is not executed because the Start condition resets the  
device internal logic,  
Stop: the device is then set back into Standby mode by the Stop condition.  
6
Initial delivery state  
The device is delivered with all the memory array bits and Identification page bits set to 1  
(each byte contains FFh).  
DocID4578 Rev 22  
21/41  
40  
 
 
Maximum rating  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
7
Maximum rating  
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 5. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
°C  
mA  
V
TSTG  
Lead temperature during soldering  
PDIP-specific lead temperature during soldering  
DC output current (SDA = 0)  
Input or output range  
see note(1)  
TLEAD  
-
260(2)  
IOL  
VIO  
-
5
–0.50  
–0.50  
-
6.5  
VCC  
VESD  
Supply voltage  
6.5  
V
Electrostatic pulse (Human Body model)(3)  
2000(4)  
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS  
directive 2011/65/EU of July 2011).  
2. TLEAD max must not be applied for more than 10 s.  
3. Positive and negative pulses applied on different combinations of pin connections, according to AEC-  
Q100-002 (compliant with JEDEC Std JESD22-A114, C1=100 pF, R1=1500 Ω).  
4. 4000V for devices identified with process letter K and P.  
22/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
DC and AC parameters  
8
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device.  
Table 6. Operating conditions (voltage range W)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
2.5  
–40  
-
5.5  
85  
1
V
Ambient operating temperature  
Operating clock frequency  
°C  
fC  
MHz  
Table 7. Operating conditions (voltage range R)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
1.8  
–40  
-
5.5  
85  
1
V
Ambient operating temperature  
Operating clock frequency  
°C  
fC  
MHz  
Table 8. Operating conditions (voltage range F)  
Parameter Min.  
Symbol  
Max.  
Unit  
VCC  
Supply voltage  
1.6  
-40  
0
1.7  
-40  
5.5  
85  
85  
-
V
Ambient operating temperature:READ  
Ambient operating temperature: WRITE  
Operating clock frequency  
TA  
fC  
°C  
-40  
400  
1000  
kHz  
Table 9. Operating conditions (voltage range X)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
1.6  
–20  
-
5.5  
85  
1
V
Ambient operating temperature  
Operating clock frequency  
°C  
fC  
MHz  
Table 10. AC measurement conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Cbus  
Load capacitance  
100  
pF  
ns  
V
SCL input rise/fall time, SDA input fall time  
Input levels  
-
50  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
Input and output timing reference levels  
V
DocID4578 Rev 22  
23/41  
40  
 
 
 
 
 
 
DC and AC parameters  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Figure 11. AC measurement I/O waveform  
)NPUT VOLTAGE LEVELS  
)NPUT AND OUTPUT  
4IMING REFERENCE LEVELS  
ꢀꢎꢂ6  
##  
ꢀꢎꢈ6  
##  
ꢀꢎꢄ6  
##  
ꢀꢎꢆ6  
##  
-3ꢁꢌꢈꢈꢃ6ꢁ  
Table 11. Input parameters  
Symbol  
Parameter(1)  
Test condition  
Min. Max. Unit  
CIN  
CIN  
ZL  
Input capacitance (SDA)  
-
-
-
8
6
-
pF  
pF  
kΩ  
kΩ  
Input capacitance (other pins)  
-
VIN < 0.3 VCC  
VIN > 0.7 VCC  
30  
500  
Input impedance (E2, E1, E0, WC)(2)  
ZH  
-
1. Characterized only, not tested in production.  
2. E2, E1, E0 input impedance when the memory is selected (after a Start condition).  
Table 12. Cycling performance  
Symbol  
Parameter  
Test condition(1)  
Max.  
Unit  
Write cycle(3)  
TA 25 °C, VCC(min) < VCC < VCC(max)  
4,000,000  
1,200,000  
Write cycle  
Ncycle  
endurance(2)  
TA = 85 °C, VCC(min) < VCC < VCC(max)  
1. Cycling performance for products identified by process letter K or T.  
2. The Write cycle endurance is defined by characterization and qualification. For devices embedding the  
ECC functionality (see Chapter 5.1.5), the write cycle endurance is defined for group of four bytes located  
at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where N is an integer.  
3. A Write cycle is executed when either a Page Write, a Byte write, a Write Identification Page or a Lock  
Identification Page instruction is decoded. When using the Byte Write, the Page Write or the Write  
Identification Page, refer also to Section 5.1.5: ECC (Error Correction Code) and Write cycling  
Table 13. Memory cell data retention  
Parameter  
Data retention(1)  
Test condition  
TA = 55 °C  
Min.  
Unit  
200  
Year  
1. For products identified by process letter K or T. The data retention behavior is checked in production, while  
the 200-year limit is defined from characterization and qualification results.  
24/41  
DocID4578 Rev 22  
 
 
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
DC and AC parameters  
Table 14. DC characteristics (M24C32-W, device grade 6)  
Test conditions (in addition to those  
Symbol  
Parameter  
Min.  
Max.  
Unit  
in Table 6)  
Input leakage current  
(SCL, SDA, E2, E1,  
E0)  
VIN = VSS or VCC, device in Standby  
mode  
ILI  
-
± 2  
µA  
Output leakage  
current  
SDA in Hi-Z, external voltage applied  
on SDA: VSS or VCC  
ILO  
-
-
-
-
± 2  
2
µA  
mA  
mA  
mA  
2.5 V < VCC < 5.5 V, fc = 400 kHz  
(rise/fall time < 50 ns)  
ICC  
ICC0  
ICC1  
Supply current (Read)  
Supply current (Write)  
2.5 V < VCC < 5.5 V, fc = 1 MHz(1)  
(rise/fall time < 50 ns)  
2.5  
5(2)  
During tW,  
2.5 V VCC 5.5 V  
Device not selected(3)  
VIN = VSS or VCC, VCC = 2.5 V  
,
-
-
2
µA  
µA  
Standby supply  
current  
Device not selected(3)  
VIN = VSS or VCC, VCC = 5.5 V  
,
3(4)  
Input low voltage  
VIL  
-
–0.45  
0.3 VCC  
6.5  
V
(SCL, SDA, WC, E2,  
E1, E0)(5)  
Input high voltage  
(SCL, SDA)  
-
-
0.7 VCC  
V
V
V
VIH  
Input high voltage  
(WC, E2, E1, E0)(6)  
0.7 VCC VCC+1  
IOL = 2.1 mA, VCC = 2.5 V or  
IOL = 3 mA, VCC = 5.5 V  
VOL  
Output low voltage  
-
0.4  
1. Only for devices identified with process letter K or T.  
2. Characterized value, not tested in production.  
3. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
4. 5 µA for previous devices identified by process letter P.  
5. Ei inputs should be tied to Vss (see Section 2.3).  
6. Ei inputs should be tied to Vcc (see Section 2.3).  
DocID4578 Rev 22  
25/41  
40  
 
DC and AC parameters  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Table 15. DC characteristics (M24C32-R, device grade 6)  
Test conditions(1) (in addition to  
Symbol  
Parameter  
Min.  
Max.  
Unit  
those in Table 7)  
Input leakage current  
(E0, E1, E2, SCL, SDA)  
VIN = VSS or VCC, device in  
Standby mode  
ILI  
-
-
-
-
-
-
± 2  
± 2  
0.8  
2.5  
3(4)  
1
µA  
µA  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
Supply current (Read)  
Supply current (Write)(3)  
VCC = 1.8 V, fc= 400 kHz  
fc= 1 MHz(2)  
mA  
mA  
mA  
µA  
ICC  
During tW,  
1.8 V VCC 2.5 V  
ICC0  
ICC1  
Device not selected(5)  
VIN = VSS or VCC, VCC = 1.8 V  
,
Standby supply current  
Input low voltage  
VIL  
(SCL, SDA, WC, E2, E1, 1.8 V VCC < 2.5 V  
–0.45 0.25 VCC  
V
V
E0)(6)  
Input high voltage  
1.8 V VCC < 2.5 V  
(SCL, SDA)  
0.75 VCC  
0.75 VCC VCC+1  
0.2  
6.5  
VIH  
Input high voltage  
1.8 V VCC < 2.5 V  
(WC, E2, E1, E0)(7)  
V
V
VOL  
Output low voltage  
IOL = 1 mA, VCC = 1.8 V  
-
1. If the application uses the voltage range R device with 2.5 V < Vcc < 5.5 V and -40 °C < TA < +85 °C,  
please refer to Table 14 instead of this table.  
2. Only for devices operating at fC max = 1 MHz (see note (1) in Table 19).  
3. For devices identified with process letter K or T  
4. Characterized value, not tested in production.  
5. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
6. Ei inputs should be tied to Vss (see Section 2.3).  
7. Ei inputs should be tied to Vcc (see Section 2.3).  
26/41  
DocID4578 Rev 22  
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
DC and AC parameters  
Table 16. DC characteristics (M24C32-F, device grade 6)  
Test conditions(1) (in addition  
Symbol  
Parameter  
Min.  
Max.  
Unit  
µA  
to those in Table 8)  
VIN = VSS or VCC  
Input leakage current  
(E1, E2, SCL, SDA)  
ILI  
-
-
-
± 2  
± 2  
0.8  
device in Standby mode  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
µA  
VCC = 1.6 V or 1.7 V, fc= 400 kHz  
mA  
ICC  
Supply current (Read)  
fc= 1 MHz(2)  
-
-
2.5  
mA  
mA  
ICC0  
ICC1  
Supply current (Write)  
Standby supply current  
During tW VCC < 2.5 V  
3(3)  
Device not selected(4)  
VIN = VSS or VCC  
,
,
-
1
µA  
VCC = 1.6 V or 1.7 V  
Input low voltage  
VIL  
VCC < 2.5 V  
–0.45  
0.25 VCC  
6.5  
V
V
(SCL, SDA, WC, Ei)(5)  
Input high voltage  
(SCL, SDA)  
V
CC < 2.5 V  
VCC < 2.5 V  
IOL = 1 mA, VCC = 1.6 V or 1.7 V  
0.75 VCC  
VIH  
Input high voltage  
(WC, E2, E1, E0)(6)  
0.75 VCC VCC+1  
0.2  
V
V
VOL  
Output low voltage  
-
1. If the application uses the voltage range F device with 2.5 V < VCC < 5.5 V and -40 °C < TA < +85 °C,  
please refer to Table 14 instead of this table.  
2. Only for devices operating at fC max = 1 MHz (see note(1) in Table 19).  
3. Characterized value, not tested in production.  
4. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
5. Ei inputs should be tied to VSS (see Section 2.3).  
6. Ei inputs should be tied to VCC (see Section 2.3).  
DocID4578 Rev 22  
27/41  
40  
 
DC and AC parameters  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Table 17. DC characteristics (M24C32-X, device grade 5)  
Test conditions(1) (in addition  
Symbol  
Parameter  
Min.  
Max.  
Unit  
µA  
to those in Table 9)  
VIN = VSS or VCC  
Input leakage current  
(E1, E2, SCL, SDA)  
ILI  
± 2  
± 2  
device in Standby mode  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
Supply current (Read)  
µA  
VCC = 1.6 V, fc= 400 kHz  
0.8  
2.5  
3(3)  
ICC  
mA  
fc= 1 MHz(2)  
ICC0  
ICC1  
Supply current (Write)  
Standby supply current  
During tW, 1.6 V < VCC < 2.5 V  
mA  
µA  
Device not selected(4)  
,
1
VIN = VSS or VCC, VCC = 1.6 V  
Input low voltage  
VIL  
1.6 V VCC < 2.5 V  
–0.45  
0.25 VCC  
6.5  
V
V
(SCL, SDA, WC, Ei)(5)  
Input high voltage  
(SCL, SDA)  
1.6 V VCC < 2.5 V  
0.75 VCC  
VIH  
Input high voltage  
(WC, E2, E1, E0)(6)  
1.6 V VCC < 2.5 V  
0.75 VCC VCC+0.6  
0.2  
V
V
VOL  
Output low voltage  
IOL = 1 mA, VCC = 1.6 V  
1. If the application uses the device with 2.5 V < VCC < 5.5 V and -20 °C < TA < +85 °C, please refer to  
Table 14 instead of this table.  
2. Only for devices operating at fC max = 1 MHz (see note(1) in Table 19)  
3. Characterized value, not tested in production.  
4. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
5. Ei inputs should be tied to VSS (see Section 2.3).  
6. Ei inputs should be tied to VCC (see Section 2.3).  
28/41  
DocID4578 Rev 22  
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
DC and AC parameters  
Table 18. 400 kHz AC characteristics  
Parameter  
Symbol  
Alt.  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tF  
Clock frequency  
-
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
SDA (out) fall time  
600  
-
-
1300  
20(2)  
300  
(1)  
tQL1QL2  
tXH1XH2  
tXL1XL2  
tDXCH  
(3)  
(3)  
tR  
Input signal rise time  
Input signal fall time  
(3)  
(3)  
tF  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
-
tCLDX  
-
(4)  
tCLQX  
tDH  
tAA  
Data out hold time  
100(5)  
-
(6)  
tCLQV  
Clock low to next data valid (access time)  
-
900  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
600  
600  
600  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tBUF  
1300  
-
ns  
(7)(1)  
tWLDL  
tSU:WC WC set up time (before the Start condition)  
tHD:WC WC hold time (after the Stop condition)  
0
1
-
-
-
µs  
µs  
(8)(1)  
tDHWH  
tW  
tWR  
Internal Write cycle duration  
5(9)  
ms  
Pulse width ignored (input filter on SCL and  
SDA) - single glitch  
80(10)  
ns  
(1)  
tNS  
-
1. Characterized only, not tested in production.  
2. With CL = 10 pF.  
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when  
f
C < 400 kHz.  
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
5. The previous product identified by process letter P was specified with tCLQX = 200 ns (min). Both values  
offer a safe margin compared to the I2C specification recommendations.  
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or  
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 12.  
7. WC=0 set up time condition to enable the execution of a WRITE command.  
8. WC=0 hold time condition to enable the execution of a WRITE command.  
9. 10 ms for the M24C32-X, when VCC< 1.7 V.  
10. The previous M24C32 device (identified by process letter P) offers tNS = 100 ns (max), while the current  
M24C32 device offers tNS = 80 ns (max). Both products offer a safe margin compared to the 50 ns  
minimum value recommended by the I2C specification.  
DocID4578 Rev 22  
29/41  
40  
 
DC and AC parameters  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Table 19. 1 MHz AC characteristics  
Symbol  
Alt.  
Parameter(1)  
Min.  
Max.  
Unit  
fC  
fSCL  
Clock frequency  
0
1
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tHIGH Clock pulse width high  
260  
tCLCH  
tLOW  
tR  
Clock pulse width low  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
500  
-
(2)  
(2)  
tXH1XH2  
tXL1XL2  
(2)  
(2)  
tF  
20(4)  
50  
120  
(3)  
tQL1QL2  
tF  
tDXCH  
tCLDX  
tSU:DAT Data in setup time  
tHD:DAT Data in hold time  
-
0
-
(5)  
tCLQX  
tDH  
tAA  
Data out hold time  
100  
-
-
(6)  
tCLQV  
Clock low to next data valid (access time)  
450  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition setup time  
250  
250  
250  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tBUF  
500  
-
ns  
(7)(3)  
tWLDL  
tSU:WC WC set up time (before the Start condition)  
tHD:WC WC hold time (after the Stop condition)  
0
1
-
-
-
µs  
µs  
(8)(3)  
tDHWH  
tW  
tWR  
Write time  
5(9)  
ms  
Pulse width ignored (input filter on SCL and  
SDA)  
(3)  
tNS  
-
80  
ns  
1. Only for devices identified by the process letter K or T (devices qualified at 1 MHz).  
2. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the  
I²C specification that the input signal rise and fall times be less than 120 ns when fC < 1 MHz.  
3. Characterized only, not tested in production.  
4. With CL = 10 pF.  
5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or  
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 13.  
7. WC=0 set up time condition to enable the execution of a WRITE command.  
8. WC=0 hold time condition to enable the execution of a WRITE command.  
9. 10 ms for the M24C32-X, when VCC< 1.7 V.  
30/41  
DocID4578 Rev 22  
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
DC and AC parameters  
Figure 12. Maximum R  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz  
C
ꢁꢀꢀ  
4HE 2  
X # TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢃꢀꢀ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢎ  
6
##  
ꢁꢀ  
2
BUS  
(ERE 2  
BUS  
§ # ꢏ ꢁꢆꢀ NS  
BUS  
ꢃ K½  
3#,  
3$!  
)£# BUS  
MASTER  
-ꢆꢃXXX  
ꢄꢀ P&  
#
BUS  
ꢁꢀ  
ꢁꢀꢀ  
"US LINE CAPACITOR ꢊP&ꢋ  
ꢁꢀꢀꢀ  
AIꢁꢃꢈꢌꢉB  
Figure 13. Maximum R  
value versus bus parasitic capacitance C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 1MHz  
C
6
ꢀ  
##  
2
BUS  
4HE 2  
§ #  
TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢁꢇꢀ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢎ  
3#,  
3$!  
)£# BUS  
MASTER  
ꢁꢀ  
-ꢆꢃXXX  
(EREꢐ  
#
§
BUS  
ꢏ ꢁꢆꢀ NS  
#
2
BUS  
BUS  
ꢁꢀ  
ꢄꢀ  
"US LINE CAPACITOR ꢊP&ꢋ  
ꢁꢀꢀ  
-3ꢁꢌꢈꢃꢇ6ꢁ  
DocID4578 Rev 22  
31/41  
40  
 
 
DC and AC parameters  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Figure 14. AC waveforms  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ƚŽƉ  
ĐŽŶĚŝƚŝŽŶ  
ƚy>ϭy>Ϯ  
ƚꢃ,ꢃ>  
ƚy,ϭy,Ϯ  
^ꢃ>  
ƚꢃ>ꢃ,  
ƚꢁ>ꢃ>  
ƚy>ϭy>Ϯ  
^ꢁꢂꢀ/Ŷ  
tꢃ  
^ꢁꢂ  
/ŶƉƵƚ  
ƚꢃ,ꢁ>  
ƚꢃ>ꢁy  
ƚꢁyꢃ,  
^ꢁꢂ  
ꢃŚĂŶŐĞ  
ƚy,ϭy,Ϯ  
ƚꢃ,ꢁ,  
ƚꢁ,ꢁ>  
ƚꢁ,t,  
ƚt>ꢁ>  
^ƚŽƉ  
ĐŽŶĚŝƚŝŽŶ  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ꢃ>  
^ꢁꢂꢀ/Ŷ  
ƚt  
tƌŝƚĞꢀĐLJĐůĞ  
ƚꢃ,ꢁ,  
ƚꢃ,ꢁ>  
ƚꢃ,ꢃ>  
^ꢃ>  
ƚꢃ>Ys  
ƚꢃ>Yy  
ꢁĂƚĂꢀǀĂůŝĚ  
ƚY>ϭY>Ϯ  
ꢁĂƚĂꢀǀĂůŝĚ  
^ꢁꢂꢀKƵƚ  
ꢂ/ϬϬϳϵϱŝ  
32/41  
DocID4578 Rev 22  
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 15. TSSOP8 – 8-lead thin shrink small outline, package outline  
1. Drawing is not to scale.  
Table 20. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
1. Values in inches are converted from mm and rounded to four decimal digits.  
DocID4578 Rev 22  
33/41  
40  
 
 
 
Package mechanical data  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Figure 16. SO8N – 8-lead plastic small outline, 150 mils body width, package outline  
Kꢅ[ꢅꢃꢇƒ  
$ꢈ  
$
F
FFF  
E
H
ꢀꢉꢈꢇꢅPP  
*$8*(ꢅ3/$1(  
'
N
(ꢁ  
(
/
$ꢁ  
/ꢁ  
62ꢆ$  
1. Drawing is not to scale.  
Table 21. SO8N – 8-lead plastic small outline, 150 mils body width, package data  
millimeters  
Min  
inches (1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
1.750  
0.250  
0.0689  
0.0098  
A1  
A2  
b
0.100  
1.250  
0.280  
0.170  
0.0039  
0.0492  
0.0110  
0.0067  
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
c
ccc  
D
4.900  
6.000  
3.900  
1.270  
4.800  
5.800  
3.800  
0.1929  
0.2362  
0.1535  
0.0500  
0.1890  
0.2283  
0.1496  
E
E1  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.400  
1.270  
0.0157  
0.0500  
L1  
1.040  
0.0409  
1. Values in inches are converted from mm and rounded to four decimal digits.  
34/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Package mechanical data  
Figure 17. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package outline  
%
Bꢆ  
!ꢆ  
!ꢁ  
!
,
C
B
E
E!  
E"  
$
%ꢁ  
0$)0ꢅ"  
1. Drawing is not to scale.  
Table 22. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
5.33  
0.2098  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.0150  
0.1150  
0.0142  
0.0449  
0.0079  
0.3551  
0.3000  
0.2402  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.1299  
0.0181  
0.0598  
0.0098  
0.3650  
0.3098  
0.2500  
0.1000  
0.3000  
0.1949  
0.0220  
0.0701  
0.0142  
0.4000  
0.3252  
0.2799  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.4299  
0.1500  
3.30  
2.92  
0.1299  
0.1150  
1. Values in inches are converted from mm and rounded to four decimal digits.  
DocID4578 Rev 22  
35/41  
40  
 
 
Package mechanical data  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Figure 18. UFDFPN8 (MLP8) – package outline (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead)  
E
B
$
,ꢁ  
,ꢄ  
0IN ꢁ  
%ꢆ  
+
%
,
!
$ꢆ  
EEE  
!ꢁ  
1. Drawing is not to scale.  
:7?-%E6ꢆ  
2. The central pad (area E2 by D2 in the above illustration) is internally pulled to VSS. It must not be  
connected to any other voltage or signal line on the PCB, for example during the soldering process.  
Table 23. UFDFPN8 (MLP8) – package dimensions (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead)  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
0.550  
0.450  
0.000  
0.200  
1.900  
1.200  
2.900  
1.200  
0.600  
0.050  
0.300  
2.100  
1.600  
3.100  
1.600  
0.0217  
0.0177  
0.0000  
0.0079  
0.0748  
0.0472  
0.1142  
0.0472  
0.0236  
0.0020  
0.0118  
0.0827  
0.0630  
0.1220  
0.0630  
A1  
0.020  
0.0008  
b
0.250  
0.0098  
D
2.000  
0.0787  
D2 (rev MC)  
E
3.000  
0.1181  
E2 (rev MC)  
e
0.500  
0.0197  
K (rev MC)  
0.300  
0.300  
0.0118  
0.0118  
L
L1  
0.500  
0.150  
0.0197  
0.0059  
L3  
0.300  
0.080  
0.0118  
0.0031  
eee(2)  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
36/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Package mechanical data  
Figure 19. UFDFPN5 (MLP5) – package outline (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead)  
'
N
/
3LQꢅꢁ  
3LQꢅꢁ  
E
(
(ꢁ  
H
$
$ꢁ  
'ꢁ  
7RSꢅYLHZꢅ  
ꢊPDUNLQJꢅVLGHꢋ  
%RWWRPꢅYLHZꢅ  
ꢊSDGVꢅVLGHꢋ  
6LGHꢅYLHZ  
$ꢀ8.B0(B9ꢁ  
1. On the bottom side, pin 1 is identified by the specific pad shape and, on the top side, pin 1 is defined from  
the orientation of the marking: when reading the marking, pin 1 is below the upper left package corner.  
Table 24. UFDFPN5 (MLP5) – package dimensions (UFDFPN: Ultra thin Fine pitch  
Dual Flat Package, No lead)  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
b
0.550  
0.500  
0
0.600  
0.050  
0.260  
1.800  
1.600  
1.500  
0.260  
0.0217  
0.0197  
0
0.0236  
0.0020  
0.0102  
0.0709  
0.0630  
0.0591  
0.0102  
0.220  
1.700  
1.500  
1.400  
0.220  
0.400  
0.550  
0.400  
0.180  
1.600  
1.400  
1.300  
0.180  
0.0087  
0.0669  
0.0591  
0.0551  
0.0087  
0.0157  
0.0217  
0.0157  
0.0071  
0.0630  
0.0551  
0.0512  
0.0071  
D
D1  
E
E1  
e
L
0.500  
0.600  
0.0197  
0.0236  
k
1. Values in inches are converted from mm and rounded to four decimal digits.  
DocID4578 Rev 22  
37/41  
40  
 
 
Part numbering  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
10  
Part numbering  
Table 25. Ordering information scheme  
M24C32-D  
Example:  
W
MN 6  
T
P /P  
Device type  
M24 = I2C serial access EEPROM  
Device function  
C32 = 32 Kbit (4096 x 8)  
Device family  
Blank = Without Identification page  
D = With additional Identification page  
Operating voltage  
W = VCC = 2.5 V to 5.5 V  
R = VCC = 1.8 V to 5.5 V  
F = VCC = 1.7 V to 5.5 V  
X = VCC = 1.6 V to 5.5 V  
Package  
BN = PDIP8 (1)  
MN = SO8 (150 mil width) (2)  
DW = TSSOP8 (169 mil width)(2)  
MC = UFDFPN8 (MLP8) (2)  
MH = UFDFPN5 (MLP5)(2)  
Device grade  
6 = Industrial: device tested with standard test flow over –40 to 85 °C  
5 = Consumer: device tested with standard test flow over –20 to 85°C  
Option  
T = Tape and reel packing  
blank = tube packing  
Plating technology  
P or G = ECOPACK® (RoHS compliant)  
Process(3)  
/P or /K or /T = Manufacturing technology code  
1. RoHS-compliant (ECOPACK1®)  
2. RoHS-compliant and halogen-free (ECOPACK2®)  
3. The process letters appear on the device package (marking) and/or on the shipment box. Please contact  
your nearest ST Sales Office for further information.  
38/41  
DocID4578 Rev 22  
 
 
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Revision history  
11  
Revision history  
Table 26. Document revision history  
Changes  
Date  
Revision  
Added:  
– M24C32-DF and all information concerning the Identification Page:  
sections 4.9, 4.10, 4.17, 4.18  
– ECC section 4.11  
– AC table with clock frequency of 1 MHz (Table 18)  
– Table 4: Device select code  
Updated:  
– Section 1: Description  
18-Mar-2011  
18  
– Section 4.5: Memory addressing  
– Section 4.18: Read the lock status (M24C32-D)  
– Table 6: Absolute maximum ratings  
– AC/DC tables 13, 17 with values specific to the device identified with  
process letter K  
Deleted:  
– Table 2: Device select code  
– Table 23: Available M24C32 products (package, voltage range,  
temperature grade)  
Updated:  
– Figure 4: I2C Fast mode (fC = 400 kHz): maximum Rbus value versus  
bus parasitic capacitance (Cbus)  
– Figure 5: I2C Fast mode Plus (fC = 1 MHz): maximum Rbus value  
versus bus parasitic capacitance (Cbus)  
14-Sep-2011  
19  
Added tWLDL and tDHWH in:  
– Table 17: 400 kHz AC characteristics  
– Table 18: 1 MHz AC characteristics  
– Figure 13: AC waveforms  
Minor text changes.  
Datasheet split into:  
– M24C32-DF, M24C32-W, M24C32-R,M24C32-F (this datasheet) for  
standard products (range 6),  
21-May-2012  
20  
– M24C32-125 datasheet for automotive products (range 3).  
DocID4578 Rev 22  
39/41  
40  
 
 
Revision history  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Table 26. Document revision history (continued)  
Date  
Revision  
Changes  
Added reference M24C32-X.  
Updated:  
25-Jul-2012  
21  
– AC and DC tables in Section 8: DC and AC parameters.  
Section Figure 56.: M24C16-FCS5TP/S WLCSP 5 bumps package  
outline.  
Add new package UFDFPN5, description onFigure 19 and Table 24.  
Updated:  
Figure 5: Block diagram  
– VESD value on Table 5  
– Icc1 values on Table 14  
19-May-2014  
22  
– Icc and Icc0 test conditions on Table 16  
– VIH(max) values on Table 14, Table 15  
– Icc, Icc0 ,Icc1, VIL, VOL and VIH test conditions onTable 16  
– Note on Table 12, Table 13, Table 14, Table 16, Table 17 and Table 19  
Table 25  
– Section numbering for Section 5.2.4 and Section 5.2.5.  
40/41  
DocID4578 Rev 22  
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID4578 Rev 22  
41/41  
41  
 

相关型号:

M24C32-RBN5TP/B

128 Kbit, 64 Kbit and 32 Kbit serial I2C bus EEPROM
STMICROELECTR

M24C32-RBN6

64Kbit and 32Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C32-RBN6/B

128 Kbit, 64 Kbit and 32 Kbit serial I2C bus EEPROM
STMICROELECTR

M24C32-RBN6/P

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, DIP-8
STMICROELECTR

M24C32-RBN6B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, DIP-8
STMICROELECTR

M24C32-RBN6G/B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR

M24C32-RBN6G/K

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24C32-RBN6G/P

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR

M24C32-RBN6G/T

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24C32-RBN6GP

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR

M24C32-RBN6P

64Kbit and 32Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C32-RBN6P/B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR