M24C32-WMN3TPP [STMICROELECTRONICS]

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8;
M24C32-WMN3TPP
型号: M24C32-WMN3TPP
厂家: ST    ST
描述:

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, SOP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 双倍数据速率 光电二极管 内存集成电路
文件: 总29页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24C32-125  
Automotive 32-Kbit serial I²C bus EEPROM  
Features  
2
Compatible with all I C bus modes:  
– 400 kHz Fast mode  
– 100 kHz Standard mode  
Memory array:  
– 32 Kbit (4 Kbytes) of EEPROM  
– Page size: 32 bytes  
TSSOP8 (DW)  
169 mil width  
Write  
– Byte Write within 5 ms  
– Page Write within 5 ms  
Single supply voltage: 2.5 V to 5.5 V  
Operating temperature range: from -40 °C up  
to +125 °C  
Random and sequential Read modes  
Write protect of the whole memory array  
Enhanced ESD/Latch-Up protection  
More than 1 million Write cycles  
SO8 (MN)  
150 mil width  
More than 40-year data retention  
Packages  
– RoHS compliant and halogen-free  
®
(ECOPACK )  
February 2012  
Doc ID 022638 Rev 1  
1/29  
www.st.com  
1
Contents  
M24C32-125  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chip Enable (E2, E1, E0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
4.4  
4.5  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1.1  
5.1.2  
5.1.3  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 16  
5.2  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/29  
Doc ID 022638 Rev 1  
M24C32-125  
Contents  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6
7
8
9
10  
11  
Doc ID 022638 Rev 1  
3/29  
List of tables  
M24C32-125  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating conditions (voltage range W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory cell characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC characteristics (M24C32-W, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 25  
SO8N – 8 lead plastic small outline, 150 mils body width, package data. . . . . . . . . . . . . . 26  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4/29  
Doc ID 022638 Rev 1  
M24C32-125  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Maximum R value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
C
Figure 12. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14. SO8N – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 26  
Doc ID 022638 Rev 1  
5/29  
Description  
M24C32-125  
1
Description  
2
The M24C32 is a 32-Kbit I C-compatible EEPROM (Electrically Erasable PROgrammable  
Memory) organized as 4 K × 8 bits.  
2
This I C EEPROM can operate with a supply voltage from 2.5 V up to 5.5 V over an ambient  
temperature range of -40 °C / 125 °C.  
The device is compliant with the Automotive standard AEC-Q100 grade 1.  
Figure 1.  
Logic diagram  
6
##  
%ꢀꢅ%ꢆ  
3$!  
-ꢆꢃXXX  
3#,  
7#  
6
!)ꢀꢁꢂꢃꢃF  
33  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
E2, E1, E0  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply voltage  
Ground  
Input  
I/O  
SCL  
Input  
Input  
WC  
VCC  
VSS  
Figure 2.  
8-pin package connections  
%ꢀ  
%ꢁ  
%ꢆ  
6
##  
7#  
3#,  
3$!  
6
33  
!)ꢀꢁꢂꢃꢇF  
1. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.  
6/29  
Doc ID 022638 Rev 1  
M24C32-125  
Signal description  
2
Signal description  
2.1  
Serial Clock (SCL)  
This input signal is used to strobe all data in and out of the device. In applications where this  
signal is used by slave devices to synchronize the bus to a slower clock, the bus master  
must have an open drain output, and a pull-up resistor must be connected from Serial Clock  
(SCL) to V . (Figure 11 indicates how to calculate the value of the pull-up resistor). In most  
CC  
applications, though, this method of synchronization is not employed, and so the pull-up  
resistor is not necessary, provided that the bus master has a push-pull (rather than open  
drain) output.  
2.2  
2.3  
Serial Data (SDA)  
This bidirectional signal is used to transfer data in or out of the device. It is an open drain  
output that may be wire-OR’ed with other open drain or open collector signals on the bus. A  
pull up resistor must be connected from Serial Data (SDA) to V . (Figure 11 indicates how  
CC  
to calculate the value of the pull-up resistor).  
Chip Enable (E2, E1, E0)  
(E2,E1,E0) input signals are used to set the value that is to be looked for on the three least  
significant bits (b3, b2, b1) of the 7-bit device select code (see Table 2). These inputs must  
be tied to V or V , as shown in Figure 3. When not connected (left floating), these inputs  
CC  
SS  
are read as low (0).  
Figure 3.  
Device select code  
V
V
CC  
CC  
M24xxx  
M24xxx  
E
E
i
i
V
V
SS  
SS  
Ai12806  
2.4  
Write Control (WC)  
This input signal is useful for protecting the entire contents of the memory from inadvertent  
write operations. Write operations are disabled to the entire memory array when Write  
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either  
driven low or left floating.  
When Write Control (WC) is driven high, device select and address bytes are  
acknowledged, Data bytes are not acknowledged.  
Doc ID 022638 Rev 1  
7/29  
 
Signal description  
M24C32-125  
2.5  
VSS (ground)  
V
is the reference for the V supply voltage.  
CC  
SS  
2.6  
Supply voltage (VCC)  
2.6.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Operating conditions  
CC  
CC  
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is  
recommended to decouple the V line with a suitable capacitor (usually of the order of 10  
CC  
nF to 100 nF) close to the V /V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a write instruction, until the completion of the internal write cycle (t ).  
W
2.6.2  
2.6.3  
Power-up conditions  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
(see Operating conditions in Section 8: DC and AC parameters) and the rise time must not  
vary faster than 1 V/µs.  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V has reached the  
CC  
internal reset threshold voltage. This threshold is lower than the minimum V operating  
CC  
voltage (see Operating conditions in Section 8: DC and AC parameters). When V passes  
CC  
over the POR threshold, the device is reset and enters the Standby Power mode; however,  
the device must not be accessed until V reaches a valid and stable DC voltage within the  
CC  
specified [V (min), V (max)] range (see Operating conditions in Section 8: DC and AC  
CC  
CC  
parameters).  
In a similar way, during power-down (continuous decrease in V ), the device must not be  
CC  
accessed when V drops below V (min). When V drops below the power-on-reset  
CC  
CC  
CC  
threshold voltage, the device stops responding to any instruction sent to it.  
2.6.4  
Power-down conditions  
During power-down (continuous decrease in V ), the device must be in the Standby Power  
CC  
mode (mode reached after decoding a Stop condition, assuming that is there is no internal  
write cycle in progress).  
8/29  
Doc ID 022638 Rev 1  
M24C32-125  
Memory organization  
3
Memory organization  
The memory is organized as shown in Figure 4.  
Figure 4.  
Block diagram  
WC  
E0  
E1  
E2  
High Voltage  
Generator  
Control Logic  
SCL  
SDA  
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
1 Page  
X Decoder  
AI06899  
Doc ID 022638 Rev 1  
9/29  
 
Device operation  
M24C32-125  
4
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 5. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The device is always a slave in all  
communications.  
2
Figure 5.  
I C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
10/29  
Doc ID 022638 Rev 1  
 
M24C32-125  
Device operation  
4.1  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer instruction. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition.  
4.2  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable  
and driven high. A Stop condition terminates communication between the device and the  
bus master. A Read instruction that is followed by NoAck can be followed by a Stop  
condition to force the device into the Standby mode.  
A Stop condition at the end of a Write instruction triggers the internal Write cycle.  
4.3  
4.4  
4.5  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Memory addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 2 (on Serial Data (SDA), most significant bit first).  
Table 2.  
Device select code  
Device type identifier(1)  
Chip Enable address(2)  
RW  
b7  
b6  
b5  
b4  
b3  
E2  
b2  
b1  
E0  
b0  
1
0
1
0
E1  
RW  
1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
The device select code consists of a 4-bit device type identifier 1010b, and a 3-bit Chip  
Enable address (E2, E1, E0). A device select code handling a value other than 1010b is not  
acknowledged by the device.  
Doc ID 022638 Rev 1  
11/29  
 
Device operation  
M24C32-125  
2
Up to eight memory devices can be connected on a single I C bus. Each one is given a  
unique 3-bit code on the Chip Enable (E2, E1, E0) inputs. When the device select code is  
received, the device only responds if the Chip Enable Address is the same as the value on  
the Chip Enable (E2, E1, E0) inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the device select code, it deselects itself from the bus, and goes into Standby mode.  
Table 3.  
Mode  
Operating modes  
RW bit WC(1)  
Bytes  
Initial sequence  
Current Address  
Read  
1
X
1
Start, device select, RW = 1  
0
1
X
X
Start, device select, RW = 0, Address  
reStart, device select, RW = 1  
Random Address  
Read  
1
Similar to Current or Random Address  
Read  
Sequential Read  
1
X
1  
Byte Write  
Page Write  
0
0
VIL  
VIL  
1
Start, device select, RW = 0  
Start, device select, RW = 0  
32  
1. X = V or V .  
IH  
IL  
12/29  
Doc ID 022638 Rev 1  
M24C32-125  
Instructions  
5
Instructions  
5.1  
Write operations  
Following a Start condition the bus master sends a device select code with the R/W bit (RW)  
reset to 0. The device acknowledges this, as shown in Figure 6, and waits for two address  
bytes. The device responds to each address byte with an acknowledge bit, and then waits  
for the data byte.  
Each byte location is defined by several address bits inside two address bytes. If the  
address bits are less than 16, the most significant bits (A15 and lower) are Don't Care. The  
most significant address byte (Table 4) is sent first, followed by the least significant address  
byte (Table 5).  
When the bus master generates a Stop condition immediately after a data byte Ack bit (in  
th  
the “10 bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write  
cycle t is triggered. A Stop condition at any other time slot does not trigger the internal  
W
Write cycle.  
After the Stop condition and the successful completion of an internal Write cycle (t ), the  
W
device internal address counter is automatically incremented to point to the next byte after  
the last modified byte.  
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
If the Write Control input (WC) is driven High, the Write instruction is not executed and the  
accompanying data bytes are not acknowledged, as shown in Figure 7.  
Table 4.  
Most significant address byte  
A14 A13 A12  
A15  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
Table 5.  
Least significant address byte  
A6 A5 A4  
A7  
Doc ID 022638 Rev 1  
13/29  
 
 
Instructions  
M24C32-125  
5.1.1  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is Write-protected, by Write Control (WC) being driven high, the  
device replies with NoAck, and the location is not modified. If, instead, the addressed  
location is not Write-protected, the device replies with Ack. The bus master terminates the  
transfer by generating a Stop condition, as shown in Figure 6.  
Figure 6.  
Write mode sequences with WC = 0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
Data in 2  
R/W  
WC (cont'd)  
ACK  
ACK  
Page Write (cont'd)  
Data in N  
AI01106d  
14/29  
Doc ID 022638 Rev 1  
 
M24C32-125  
Instructions  
5.1.2  
Page Write  
The Page Write mode allows up to 32 bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits, b11-b5, are the same. If more bytes are sent than will fit up to the end  
of the page, a condition known as “roll-over” occurs. In case of roll-over, the first bytes of the  
page are overwritten.  
The bus master sends from 1 to 32 bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the  
addressed memory location are not modified, and each data byte is followed by a NoAck, as  
shown in Figure 7. After each byte is transferred, the internal byte address counter is  
incremented. The transfer is terminated by the bus master generating a Stop condition.  
Figure 7.  
Write mode sequences with WC = 1 (data write inhibited)  
WC  
ACK  
ACK  
ACK  
NO ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
WC  
ACK  
ACK  
ACK  
NO ACK  
Data in 2  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
Page Write (cont'd)  
Data in N  
AI01120d  
Doc ID 022638 Rev 1  
15/29  
 
Instructions  
M24C32-125  
5.1.3  
Minimizing Write delays by polling on ACK  
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy  
of the data from its internal latches to the memory cells. The maximum Write time (tw) is  
shown in AC characteristics tables in Section 8: DC and AC parameters, but the typical time  
is shorter. To make use of this, a polling sequence can be used by the bus master.  
The sequence, as shown in Figure 8, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
Figure 8.  
Write cycle polling flowchart using ACK  
Write cycle  
in progress  
Start condition  
Device select  
with RW = 0  
ACK  
NO  
returned  
First byte of instruction  
YES  
with RW = 0 already  
decoded by the device  
Next  
Operation is  
addressing the  
memory  
NO  
YES  
Send Address  
and Receive ACK  
ReStart  
NO  
YES  
Stop  
StartCondition  
Data for the  
Write cperation  
Device select  
with RW = 1  
Continue the  
Continue the  
Random Read operation  
Write operation  
AI01847de  
16/29  
Doc ID 022638 Rev 1  
 
M24C32-125  
Instructions  
5.2  
Read operations  
Read operations are performed independently of the state of the Write Control (WC) signal.  
After the successful completion of a Read operation, the device’s internal address counter is  
incremented by one, to point to the next byte address.  
Figure 9.  
Read mode sequences  
ACK  
NO ACK  
Current  
Address  
Read  
Dev sel  
Data out  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Random  
Address  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev sel  
Data out 1  
R/W  
ACK  
ACK  
ACK  
ACK  
R/W  
ACK  
Sequention  
Random  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out1  
R/W  
ACK  
NO ACK  
Data out N  
AI01105d  
5.2.1  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 9) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
Doc ID 022638 Rev 1  
17/29  
 
Initial delivery state  
M24C32-125  
5.2.2  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the R/W bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 9, without acknowledging the byte.  
5.2.3  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 9.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter ‘rolls-over’, and the device continues to output data from memory address  
00h.  
5.2.4  
Acknowledge in Read mode  
For all Read instructions, the device waits, after each byte read, for an acknowledgment  
th  
during the 9 bit time. If the bus master does not drive Serial Data (SDA) low during this  
time, the device terminates the data transfer and switches to its Standby mode.  
6
Initial delivery state  
The device is delivered with all the memory array bits set to 1 (each byte contains FFh).  
18/29  
Doc ID 022638 Rev 1  
M24C32-125  
Maximum rating  
7
Maximum rating  
Stressing the device outside the ratings listed in Table 6 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VIO  
Lead temperature during soldering  
Input or output range  
see note (1)  
–0.50  
6.5  
5
IOL  
DC output current (SDA = 0)  
Supply voltage  
-
–0.50  
-
mA  
V
VCC  
6.5  
4000  
VESD  
Electrostatic pulse (Human Body model)(2)  
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
2. Positive and negative pulses applied on pin pairs, according to AEC-Q100-002 (compliant with JEDEC Std  
JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω)  
Doc ID 022638 Rev 1  
19/29  
 
DC and AC parameters  
M24C32-125  
8
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device.  
Table 7.  
Symbol  
Operating conditions (voltage range W)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
2.5  
5.5  
V
Ambient operating temperature  
–40  
125  
°C  
Table 8.  
Symbol  
AC measurement conditions  
Parameter  
Min.  
Max.  
Unit  
Cbus  
Load capacitance  
100  
pF  
ns  
V
SCL input rise/fall time, SDA input fall time  
Input levels  
50  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
Input and output timing reference levels  
V
Figure 10. AC measurement I/O waveform  
)NPUT VOLTAGE LEVELS  
)NPUT AND OUTPUT  
4IMING REFERENCE LEVELS  
ꢀꢋꢂ6  
##  
ꢀꢋꢈ6  
##  
ꢀꢋꢄ6  
##  
ꢀꢋꢆ6  
##  
-3ꢁꢊꢈꢈꢃ6ꢁ  
20/29  
Doc ID 022638 Rev 1  
 
 
 
M24C32-125  
DC and AC parameters  
Table 9.  
Symbol  
Input parameters  
Parameter(1)  
Test condition  
Min. Max. Unit  
CIN  
CIN  
ZL  
Input capacitance (SDA)  
8
6
pF  
pF  
kΩ  
kΩ  
Input capacitance (other pins)  
VIN < 0.3 VCC  
VIN > 0.7 VCC  
30  
Input impedance (E2, E1, E0, WC)(2)  
ZH  
500  
1. Characterized only, not tested in production.  
2. E2, E1, E0 input impedance when the memory is selected (after a Start condition).  
Table 10. Memory cell characteristics  
Symbol Parameter  
Test condition  
Min.  
Max.  
Unit  
Ncycle Endurance TA = 25 °C, 2.5 V < Vcc < 5.5 V  
1,000,000  
-
Write cycle  
Note:  
This parameter is not tested but established by characterization and qualification. For  
endurance estimates in a specific application, please refer to AN2014.  
Doc ID 022638 Rev 1  
21/29  
DC and AC parameters  
M24C32-125  
Table 11. DC characteristics (M24C32-W, device grade 3)  
Test conditions (in addition to those  
Symbol  
Parameter  
Min.  
Max.  
Unit  
in Table 7 and Table 8)  
Input leakage current  
(SCL, SDA, E2, E1,  
E0)  
V
IN = VSS or VCC  
ILI  
2
2
µA  
µA  
device in Standby mode  
Output leakage  
current  
SDA in Hi-Z, external voltage applied  
on SDA: VSS or VCC  
ILO  
ICC  
Supply current (Read) fc = 400 kHz  
Supply current (Write) During tW  
2
mA  
mA  
ICC0  
5(1)  
Device not selected(2)  
VIN = VSS or VCC  
,
Standby supply  
current  
ICC1  
10  
0.3 VCC  
6.5  
µA  
V
Input low voltage  
(SCL, SDA, WC)  
VIL  
–0.45  
Input high voltage  
(SCL, SDA)  
0.7 VCC  
V
VIH  
Input high voltage  
(WC, E2, E1, E0)  
0.7 VCC VCC+0.6  
V
I
OL = 2.1 mA, VCC = 2.5 V or  
VOL  
Output low voltage  
0.4  
V
IOL = 3 mA, VCC = 5.5 V  
1. Characterized only, not tested in production.  
2. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
22/29  
Doc ID 022638 Rev 1  
M24C32-125  
DC and AC parameters  
Table 12. 400 kHz AC characteristics  
Symbol  
Alt.  
Parameter(1)  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tF  
Clock frequency  
-
400  
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
SDA (out) fall time  
600  
1300  
20(3)  
120  
(2)  
tQL1QL2  
tXH1XH2  
tXL1XL2  
tDXCX  
(4)  
(4)  
tR  
Input signal rise time  
Input signal fall time  
(4)  
(4)  
tF  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
-
tCLDX  
-
(5)  
tCLQX  
tDH  
tAA  
Data out hold time  
200  
200  
600  
600  
600  
-
(6)  
tCLQV  
Clock low to next data valid (access time)  
900  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tW  
tBUF  
tWR  
1300  
-
5
ns  
ms  
ns  
Write time  
-
-
Pulse width ignored (input filter on SCL and  
SDA) - single glitch  
(2)  
tNS  
100  
1. Test conditions (in addition to those specified under Operating conditions and AC test measurement  
conditions in Section 8: DC and AC parameters).  
2. Characterized only, not tested in production.  
3. With CL = 10 pF.  
4. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when  
fC < 400 kHz.  
5. The min value for tCLQX (Data out hold time) of the M24xxx devices offers a safe timing to bridge the  
undefined region of the falling edge SCL.  
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or  
0.7 VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 11.  
Doc ID 022638 Rev 1  
23/29  
 
DC and AC parameters  
Figure 11. Maximum R  
M24C32-125  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz  
C
ꢁꢀꢀ  
4HE 2  
X # TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢃꢀꢀ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢋ  
6
##  
ꢁꢀ  
2
BUS  
(ERE 2  
BUS  
§ # ꢎ ꢁꢆꢀ NS  
BUS  
ꢃ K½  
3#,  
3$!  
)£# BUS  
MASTER  
-ꢆꢃXXX  
ꢄꢀ P&  
#
BUS  
ꢁꢀ  
ꢁꢀꢀ  
"US LINE CAPACITOR ꢌP&ꢍ  
ꢁꢀꢀꢀ  
AIꢁꢃꢈꢊꢉB  
Figure 12. AC waveforms  
T8,ꢁ8,ꢆ  
T#(#,  
T8(ꢁ8(ꢆ  
3#,  
T#,#(  
T$,#,  
T8,ꢁ8,ꢆ  
3$! )N  
T#($,  
3TART  
CONDITION  
T#,$8  
T$8#(  
3$!  
#HANGE  
T8(ꢁ8(ꢆ  
T#($( T$($,  
3TOP  
3TART  
3$!  
)NPUT  
CONDITION  
CONDITION  
3#,  
3$! )N  
T7  
7RITE CYCLE  
T#($(  
T#($,  
3TOP  
CONDITION  
3TART  
CONDITION  
T#(#,  
3#,  
T#,16  
T#,18  
$ATA VALID  
T1,ꢁ1,ꢆ  
$ATA VALID  
3$! /UT  
!)ꢀꢀꢈꢊꢇF  
24/29  
Doc ID 022638 Rev 1  
M24C32-125  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 13. TSSOP8 – 8-lead thin shrink small outline, package outline  
1. Drawing is not to scale.  
Table 13. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Doc ID 022638 Rev 1  
25/29  
Package mechanical data  
M24C32-125  
Figure 14. SO8N – 8 lead plastic small outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 14. SO8N – 8 lead plastic small outline, 150 mils body width, package data  
millimeters  
inches (1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
1.750  
0.250  
0.0689  
0.0098  
A1  
A2  
b
0.100  
1.250  
0.280  
0.170  
0.0039  
0.0492  
0.0110  
0.0067  
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
c
ccc  
D
4.900  
6.000  
3.900  
1.270  
4.800  
5.800  
3.800  
0.1929  
0.2362  
0.1535  
0.0500  
0.1890  
0.2283  
0.1496  
E
E1  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.400  
1.270  
0.0157  
0.0500  
L1  
1.040  
0.0409  
1. Values in inches are converted from mm and rounded to four decimal digits.  
26/29  
Doc ID 022638 Rev 1  
M24C32-125  
Part numbering  
10  
Part numbering  
Table 15. Ordering information scheme  
Example:  
M24C32  
W
MN 3  
T
P /P  
Device type  
M24 = I2C serial access EEPROM  
Device function  
C32 = 32 Kbit (4096 X 8)  
Operating voltage  
W = VCC = 2.5 V to 5.5 V  
Package  
MN = SO8 (150 mil width)(1)  
DW = TSSOP8 (169 mil width)(1)  
Device grade  
3 = Device tested with high-reliability certified flow over -40 to 125 °C  
Option  
blank = standard packing  
T = Tape and reel packing  
Plating technology  
P = ECOPACK® (RoHS compliant)  
Process  
/P = Manufacturing technology code  
1. RoHS-compliant and halogen-free (ECOPACK2®)  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of the devices, please contact your nearest ST sales office.  
Doc ID 022638 Rev 1  
27/29  
 
Revision history  
M24C32-125  
11  
Revision history  
Table 16. Document revision history  
Date  
Revision  
Changes  
22-Feb-2012  
1
Initial release.  
28/29  
Doc ID 022638 Rev 1  
M24C32-125  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 022638 Rev 1  
29/29  

相关型号:

M24C32-WMN5/B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5/C

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5G/B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5G/C

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5GB

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5GP

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5PB

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5PP

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5T/B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5T/C

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5TB

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SOP-8
STMICROELECTR

M24C32-WMN5TG/B

4KX8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOP-8
STMICROELECTR