M24C64-WBN6GB [STMICROELECTRONICS]

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8;
M24C64-WBN6GB
型号: M24C64-WBN6GB
厂家: ST    ST
描述:

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8

存储 内存集成电路 光电二极管 双倍数据速率 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总26页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24C64  
M24C32  
64Kbit and 32Kbit Serial I²C Bus EEPROM  
FEATURES SUMMARY  
Two-Wire I2C Serial Interface  
Supports 400kHz Protocol  
Figure 1. Packages  
Single Supply Voltage:  
4.5 to 5.5V for M24Cxx  
2.5 to 5.5V for M24Cxx-W  
1.8 to 5.5V for M24Cxx-R  
Write Control Input  
BYTE and PAGE WRITE (up to 32 Bytes)  
RANDOM and SEQUENTIAL READ Modes  
Self-Timed Programming Cycle  
8
1
Automatic Address Incrementing  
PDIP8 (BN)  
Enhanced ESD/Latch-Up Protection  
More than 1 Million Erase/Write Cycles  
More than 40-Year Data Retention  
8
1
SO8 (MN)  
150 mil width  
Table 1. Product List  
Reference  
Part Number  
M24C64  
M24C64  
M24C32  
M24C64-W  
M24C64-R  
M24C32  
TSSOP8 (DW)  
169 mil width  
M24C32-W  
M24C32-R  
UFDFPN8 (MB)  
2x3mm² (MLP)  
January 2005  
1/26  
M24C64, M24C32  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. DIP, SO, TSSOP and UFDFPN Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus . . . . . . . . . . . . . . . . 5  
Figure 5. I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3. Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 4. Most Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 5. Least Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 6. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 7. Write Mode Sequences with WC=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 8. Write Mode Sequences with WC=0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 9. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 10.Read Mode Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Random Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2/26  
M24C64, M24C32  
Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 8. Operating Conditions (M24Cxx-6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 9. Operating Conditions (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 10. Operating Conditions (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 12. Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 13. DC Characteristics (M24Cxx(1), M24Cxx-W6 and M24Cxx-W3). . . . . . . . . . . . . . . . . . . 16  
Table 14. DC Characteristics (M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 15. DC Characteristics (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 16. AC Characteristics (M24Cxx-6, M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . 18  
Table 17. AC Characteristics (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 20  
Table 18. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 20  
Figure 14.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 21  
Table 19. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,  
Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 22  
Table 20. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 22  
Figure 16.UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm. . . 23  
Table 21. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm,  
Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 23. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3/26  
M24C64, M24C32  
SUMMARY DESCRIPTION  
These I2C-compatible electrically erasable pro-  
grammable memory (EEPROM) devices are orga-  
nized as 8192 x 8 bits (M24C64) and 4096 x 8 bits  
(M24C32).  
Table 2. Signal Names  
E0, E1, E2  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply Voltage  
Ground  
Figure 2. Logic Diagram  
SCL  
WC  
V
CC  
V
V
CC  
SS  
3
Power On Reset: VCC Lock-Out Write Protect  
E0-E2  
SDA  
In order to prevent data corruption and inadvertent  
Write operations during Power-up, a Power On  
Reset (POR) circuit is included. At Power-up, the  
internal reset is held active until VCC has reached  
the Power On Reset (POR) threshold voltage, and  
all operations are disabled – the device will not re-  
spond to any command. In the same way, when  
VCC drops from the operating voltage, below the  
Power On Reset (POR) threshold voltage, all op-  
erations are disabled and the device will not re-  
spond to any command.  
M24C64  
M24C32  
SCL  
WC  
V
SS  
AI01844B  
A stable and valid VCC (as defined in Table 9. and  
Table 10.) must be applied before applying any  
logic signal.  
I2C uses a two-wire serial interface, comprising a  
bi-directional data line and a clock line. The devic-  
es carry a built-in 4-bit Device Type Identifier code  
(1010) in accordance with the I2C bus definition.  
The device behaves as a slave in the I2C protocol,  
with all memory operations synchronized by the  
serial clock. Read and Write operations are initiat-  
ed by a Start condition, generated by the bus mas-  
ter. The Start condition is followed by a Device  
Select Code and Read/Write bit (RW) (as de-  
scribed in Table 3.), terminated by an acknowl-  
edge bit.  
When writing data to the memory, the device in-  
serts an acknowledge bit during the 9th bit time,  
following the bus master’s 8-bit transmission.  
When data is read by the bus master, the bus  
master acknowledges the receipt of the data byte  
in the same way. Data transfers are terminated by  
a Stop condition after an Ack for Write, and after a  
NoAck for Read.  
Figure 3. DIP, SO, TSSOP and UFDFPN  
Connections  
M24C64  
M24C32  
E0  
E1  
E2  
1
2
3
4
8
V
CC  
WC  
7
6
5
SCL  
SDA  
V
SS  
AI01845C  
Note: See PACKAGE MECHANICAL section for package dimen-  
sions, and how to identify pin-1.  
4/26  
M24C64, M24C32  
SIGNAL DESCRIPTION  
Serial Clock (SCL). This input signal is used to  
strobe all data in and out of the device. In applica-  
tions where this signal is used by slave devices to  
synchronize the bus to a slower clock, the bus  
master must have an open drain output, and a  
pull-up resistor must be connected from Serial  
Clock (SCL) to VCC. (Figure 4. indicates how the  
value of the pull-up resistor can be calculated). In  
most applications, though, this method of synchro-  
nization is not employed, and so the pull-up resis-  
tor is not necessary, provided that the bus master  
has a push-pull (rather than open drain) output.  
Serial Data (SDA). This bi-directional signal is  
used to transfer data in or out of the device. It is an  
open drain output that may be wire-OR’ed with  
other open drain or open collector signals on the  
bus. A pull up resistor must be connected from Se-  
rial Data (SDA) to VCC. (Figure 4. indicates how  
the value of the pull-up resistor can be calculated).  
Chip Enable (E0, E1, E2). These input signals  
are used to set the value that is to be looked for on  
the three least significant bits (b3, b2, b1) of the 7-  
bit Device Select Code. These inputs must be tied  
to VCC or VSS, to establish the Device Select  
Code.  
Write Control (WC). This input signal is useful  
for protecting the entire contents of the memory  
from inadvertent write operations. Write opera-  
tions are disabled to the entire memory array when  
Write Control (WC) is driven High. When uncon-  
nected, the signal is internally read as VIL, and  
Write operations are allowed.  
When Write Control (WC) is driven High, Device  
Select and Address bytes are acknowledged,  
Data bytes are not acknowledged.  
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus  
V
CC  
20  
16  
12  
R
R
L
L
SDA  
MASTER  
C
BUS  
8
SCL  
fc = 100kHz  
4
0
fc = 400kHz  
C
BUS  
10  
100  
(pF)  
1000  
C
BUS  
AI01665  
5/26  
M24C64, M24C32  
Figure 5. I2C Bus Protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 3. Device Select Code  
1
2
RW  
b0  
Device Type Identifier  
Chip Enable Address  
b7  
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
b1  
Device Select Code  
1
E1  
E0  
RW  
Note: 1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
Table 4. Most Significant Byte  
Table 5. Least Significant Byte  
b15  
b14  
b13 b12 b11  
b10 b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
6/26  
M24C64, M24C32  
MEMORY ORGANIZATION  
The memory is organized as shown in Figure 6..  
Figure 6. Block Diagram  
WC  
E0  
High Voltage  
Generator  
Control Logic  
E1  
E2  
SCL  
SDA  
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
1 Page  
X Decoder  
AI06899  
7/26  
M24C64, M24C32  
DEVICE OPERATION  
The device supports the I2C protocol. This is sum-  
marized in Figure 5.. Any device that sends data  
on to the bus is defined to be a transmitter, and  
any device that reads the data to be a receiver.  
The device that controls the data transfer is known  
as the bus master, and the other as the slave de-  
vice. A data transfer can only be initiated by the  
bus master, which will also provide the serial clock  
for synchronization. The M24Cxx device is always  
a slave in all communication.  
Data (SDA) Low to acknowledge the receipt of the  
eight data bits.  
Data Input  
During data input, the device samples Serial Data  
(SDA) on the rising edge of Serial Clock (SCL).  
For correct device operation, Serial Data (SDA)  
must be stable during the rising edge of Serial  
Clock (SCL), and the Serial Data (SDA) signal  
must change only when Serial Clock (SCL) is driv-  
en Low.  
Start Condition  
Memory Addressing  
Start is identified by a falling edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable in the  
High state. A Start condition must precede any  
data transfer command. The device continuously  
monitors (except during a Write cycle) Serial Data  
(SDA) and Serial Clock (SCL) for a Start condition,  
and will not respond unless one is given.  
To start communication between the bus master  
and the slave device, the bus master must initiate  
a Start condition. Following this, the bus master  
sends the Device Select Code, shown in Table 3.  
(on Serial Data (SDA), most significant bit first).  
The Device Select Code consists of a 4-bit Device  
Type Identifier, and a 3-bit Chip Enable “Address”  
(E2, E1, E0). To address the memory array, the 4-  
bit Device Type Identifier is 1010b.  
Up to eight memory devices can be connected on  
a single I2C bus. Each one is given a unique 3-bit  
code on the Chip Enable (E0, E1, E2) inputs.  
When the Device Select Code is received, the de-  
vice only responds if the Chip Enable Address is  
the same as the value on the Chip Enable (E0, E1,  
E2) inputs.  
The 8th bit is the Read/Write bit (RW). This bit is  
set to 1 for Read and 0 for Write operations.  
If a match occurs on the Device Select code, the  
corresponding device gives an acknowledgment  
on Serial Data (SDA) during the 9th bit time. If the  
device does not match the Device Select code, it  
deselects itself from the bus, and goes into Stand-  
by mode.  
Stop Condition  
Stop is identified by a rising edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable and driv-  
en High. A Stop condition terminates communica-  
tion between the device and the bus master. A  
Read command that is followed by NoAck can be  
followed by a Stop condition to force the device  
into the Stand-by mode. A Stop condition at the  
end of a Write command triggers the internal Write  
cycle.  
Acknowledge Bit (ACK)  
The acknowledge bit is used to indicate a success-  
ful byte transfer. The bus transmitter, whether it be  
bus master or slave device, releases Serial Data  
(SDA) after sending eight bits of data. During the  
9th clock pulse period, the receiver pulls Serial  
Table 6. Operating Modes  
1
Mode  
RW bit  
Bytes  
Initial Sequence  
WC  
X
Current Address Read  
1
0
1
1
0
0
1
START, Device Select, RW = 1  
X
START, Device Select, RW = 0, Address  
reSTART, Device Select, RW = 1  
Similar to Current or Random Address Read  
START, Device Select, RW = 0  
Random Address Read  
1
X
Sequential Read  
Byte Write  
X
1  
1
VIL  
VIL  
Page Write  
32  
START, Device Select, RW = 0  
Note: 1. X = VIH or VIL.  
8/26  
M24C64, M24C32  
Figure 7. Write Mode Sequences with WC=1 (data write inhibited)  
WC  
ACK  
ACK  
ACK  
NO ACK  
DATA IN  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
R/W  
WC  
ACK  
ACK  
ACK  
NO ACK  
DATA IN 1 DATA IN 2  
PAGE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
PAGE WRITE  
(cont'd)  
DATA IN N  
AI01120C  
Write Operations  
slot), either at the end of a Byte Write or a Page  
Write, the internal Write cycle is triggered. A Stop  
condition at any other time slot does not trigger the  
internal Write cycle.  
After the Stop condition, the delay tW, and the suc-  
cessful completion of a Write operation, the de-  
vice’s internal address counter is incremented  
automatically, to point to the next byte address af-  
ter the last one that was modified.  
Following a Start condition the bus master sends  
a Device Select Code with the Read/Write bit  
(RW) reset to 0. The device acknowledges this, as  
shown in Figure 8., and waits for two address  
bytes. The device responds to each address byte  
with an acknowledge bit, and then waits for the  
data byte.  
Writing to the memory may be inhibited if Write  
Control (WC) is driven High. Any Write instruction  
with Write Control (WC) driven High (during a pe-  
riod of time from the Start condition until the end of  
the two address bytes) will not modify the memory  
contents, and the accompanying data bytes are  
not acknowledged, as shown in Figure 7..  
Each data byte in the memory has a 16-bit (two  
byte wide) address. The Most Significant Byte (Ta-  
ble 4.) is sent first, followed by the Least Signifi-  
cant Byte (Table 5.). Bits b15 to b0 form the  
address of the byte in memory.  
When the bus master generates a Stop condition  
immediately after the Ack bit (in the “10th bit” time  
During the internal Write cycle, Serial Data (SDA)  
is disabled internally, and the device does not re-  
spond to any requests.  
Byte Write  
After the Device Select code and the address  
bytes, the bus master sends one data byte. If the  
addressed location is Write-protected, by Write  
Control (WC) being driven High, the device replies  
with NoAck, and the location is not modified. If, in-  
stead, the addressed location is not Write-protect-  
ed, the device replies with Ack. The bus master  
terminates the transfer by generating a Stop con-  
dition, as shown in Figure 8..  
9/26  
M24C64, M24C32  
Page Write  
The bus master sends from 1 to 32 bytes of data,  
each of which is acknowledged by the device if  
Write Control (WC) is Low. If Write Control (WC) is  
High, the contents of the addressed memory loca-  
tion are not modified, and each data byte is fol-  
lowed by a NoAck. After each byte is transferred,  
the internal byte address counter (the 5 least sig-  
nificant address bits only) is incremented. The  
transfer is terminated by the bus master generat-  
ing a Stop condition.  
The Page Write mode allows up to 32 bytes to be  
written in a single Write cycle, provided that they  
are all located in the same ’row’ in the memory:  
that is, the most significant memory address bits  
(b12-b5 for M24C64, and b11-b5 for M24C32) are  
the same. If more bytes are sent than will fit up to  
the end of the row, a condition known as ‘roll-over’  
occurs. This should be avoided, as data starts to  
become overwritten in an implementation depen-  
dent way.  
Figure 8. Write Mode Sequences with WC=0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
ACK  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
DATA IN  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
PAGE WRITE  
DEV SEL  
BYTE ADDR  
BYTE ADDR  
DATA IN 1  
DATA IN 2  
R/W  
WC (cont'd)  
ACK  
ACK  
PAGE WRITE  
(cont'd)  
DATA IN N  
AI01106C  
10/26  
M24C64, M24C32  
Figure 9. Write Cycle Polling Flowchart using ACK  
WRITE Cycle  
in Progress  
START Condition  
DEVICE SELECT  
with RW = 0  
ACK  
Returned  
NO  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
Addressing the  
Memory  
NO  
YES  
Send Address  
and Receive ACK  
ReSTART  
START  
NO  
YES  
STOP  
Condition  
DATA for the  
WRITE Operation  
DEVICE SELECT  
with RW = 1  
Continue the  
Continue the  
Random READ Operation  
WRITE Operation  
AI01847C  
Minimizing System Delays by Polling On ACK  
Initial condition: a Write cycle is in progress.  
During the internal Write cycle, the device discon-  
nects itself from the bus, and writes a copy of the  
data from its internal latches to the memory cells.  
Step 1: the bus master issues a Start condition  
followed by a Device Select Code (the first  
byte of the new instruction).  
The maximum Write time (t ) is shown in Table  
w
Step 2: if the device is busy with the internal  
Write cycle, no Ack will be returned and the  
bus master goes back to Step 1. If the device  
has terminated the internal Write cycle, it  
responds with an Ack, indicating that the  
device is ready to receive the second part of  
the instruction (the first byte of this instruction  
having been sent during Step 1).  
16. and Table 17., but the typical time is shorter.  
To make use of this, a polling sequence can be  
used by the bus master.  
The sequence, as shown in Figure 9., is:  
11/26  
M24C64, M24C32  
Figure 10. Read Mode Sequences  
ACK  
NO ACK  
DATA OUT  
CURRENT  
ADDRESS  
READ  
DEV SEL  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT  
RANDOM  
ADDRESS  
READ  
DEV SEL *  
BYTE ADDR  
BYTE ADDR  
DEV SEL *  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
SEQUENTIAL  
CURRENT  
READ  
DEV SEL  
DATA OUT 1  
DATA OUT N  
R/W  
ACK  
ACK  
ACK  
ACK  
ACK  
SEQUENTIAL  
RANDOM  
READ  
DEV SEL *  
BYTE ADDR  
BYTE ADDR  
DEV SEL * DATA OUT 1  
R/W  
R/W  
ACK  
NO ACK  
DATA OUT N  
AI01105C  
st  
th  
Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1 and 4 bytes) must be identical.  
Read Operations  
Read operations are performed independently of  
the state of the Write Control (WC) signal.  
dressed byte. The bus master must not  
acknowledge the byte, and terminates the transfer  
with a Stop condition.  
Current Address Read  
After the successful completion of a Read opera-  
tion, the device’s internal address counter is incre-  
mented by one, to point to the next byte address.  
For the Current Address Read operation, following  
a Start condition, the bus master only sends a De-  
vice Select Code with the Read/Write bit (RW) set  
to 1. The device acknowledges this, and outputs  
the byte addressed by the internal address  
counter. The counter is then incremented. The bus  
master terminates the transfer with a Stop condi-  
tion, as shown in Figure 10., without acknowledg-  
ing the byte.  
Random Address Read  
A dummy Write is first performed to load the ad-  
dress into this address counter (as shown in Fig-  
ure 10.) but without sending a Stop condition.  
Then, the bus master sends another Start condi-  
tion, and repeats the Device Select Code, with the  
Read/Write bit (RW) set to 1. The device acknowl-  
edges this, and outputs the contents of the ad-  
12/26  
M24C64, M24C32  
Sequential Read  
Acknowledge in Read Mode  
This operation can be used after a Current Ad-  
dress Read or a Random Address Read. The bus  
master does acknowledge the data byte output,  
and sends additional clock pulses so that the de-  
vice continues to output the next byte in sequence.  
To terminate the stream of bytes, the bus master  
must not acknowledge the last byte, and must  
generate a Stop condition, as shown in Figure 10..  
For all Read commands, the device waits, after  
each byte read, for an acknowledgment during the  
9th bit time. If the bus master does not drive Serial  
Data (SDA) Low during this time, the device termi-  
nates the data transfer and switches to its Stand-  
by mode.  
The output data comes from consecutive address-  
es, with the internal address counter automatically  
incremented after each byte output. After the last  
memory address, the address counter ‘rolls-over’,  
and the device continues to output data from  
memory address 00h.  
INITIAL DELIVERY STATE  
The device is delivered with all bits in the memory  
array set to 1 (each byte contains FFh).  
13/26  
M24C64, M24C32  
MAXIMUM RATING  
Stressing the device outside the ratings listed in  
Table 7. may cause permanent damage to the de-  
vice. These are stress ratings only, and operation  
of the device at these, or any other conditions out-  
side those indicated in the Operating sections of  
this specification, is not implied. Exposure to Ab-  
solute Maximum Rating conditions for extended  
periods may affect device reliability. Refer also to  
the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 7. Absolute Maximum Ratings  
Symbol  
TSTG  
TLEAD  
VIO  
Parameter  
Min.  
Max.  
150  
1
Unit  
Storage Temperature  
–65  
°C  
Lead Temperature during Soldering  
Input or Output range  
°C  
V
See note  
–0.50  
–0.50  
–4000  
6.5  
6.5  
VCC  
Supply Voltage  
V
2
VESD  
4000  
V
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
14/26  
M24C64, M24C32  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 8. Operating Conditions (M24Cxx-6)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
1
V
CC  
Supply Voltage  
TA  
Ambient Operating Temperature  
–40  
85  
°C  
Note: 1. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range.  
Table 9. Operating Conditions (M24Cxx-W)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
CC  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 10. Operating Conditions (M24Cxx-R)  
Symbol  
Parameter  
Min.  
1.8  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
–40  
85  
°C  
15/26  
M24C64, M24C32  
Table 11. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
Input Levels  
50  
0.2V to 0.8V  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Levels  
V
CC  
Figure 11. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Table 12. Input Parameters  
1,2  
Symbol  
CIN  
Test Condition  
Min.  
Max.  
8
Unit  
pF  
Parameter  
Input Capacitance (SDA)  
Input Capacitance (other pins)  
WC Input Impedance  
CIN  
6
pF  
ZWCL  
ZWCH  
VIN < 0.3VCC  
VIN > 0.7VCC  
50  
200  
kΩ  
kΩ  
WC Input Impedance  
500  
Pulse width ignored  
(Input Filter on SCL and SDA)  
tNS  
200  
ns  
Note: 1. T = 25°C, f = 400kHz  
A
2. Sampled only, not 100% tested.  
Table 13. DC Characteristics (M24Cxx(1), M24Cxx-W6 and M24Cxx-W3)  
Test Condition  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to those in Table 8.)  
Input Leakage Current  
(SCL, SDA, E2, E1, E0)  
V
IN = VSS or VCC  
ILI  
± 2  
µA  
device in Stand-by mode  
ILO  
ICC  
Output Leakage Current  
Supply Current  
V
OUT = VSS or VCC, SDA in Hi-Z  
± 2  
2
µA  
mA  
µA  
V
V
CC=5V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
VIL  
Stand-by Supply Current  
Input Low Voltage  
V
IN = VSS or VCC, VCC = 5 V  
10  
–0.45  
0.3VCC  
VCC+1  
0.4  
VIH  
VOL  
Input High Voltage  
Output Low Voltage  
0.7VCC  
V
IOL = 3 mA, VCC = 5 V  
V
Note: 1. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range.  
16/26  
M24C64, M24C32  
Table 14. DC Characteristics (M24Cxx-W6 and M24Cxx-W3)  
Test Condition  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to those in Table 9.)  
Input Leakage Current  
(SCL, SDA, E2, E1, E0)  
V
IN = VSS or VCC  
ILI  
± 2  
± 2  
1
µA  
µA  
device in Stand-by mode  
ILO  
ICC  
Output Leakage Current  
Supply Current  
V
OUT = VSS or VCC, SDA in Hi-Z  
V
CC =2.5V, f =400kHz (rise/fall time <  
c
mA  
30ns)  
ICC1  
VIL  
Stand-by Supply Current  
Input Low Voltage  
V
IN = VSS or VCC, VCC = 2.5 V  
2
µA  
V
–0.45  
0.3VCC  
VCC+1  
0.4  
VIH  
VOL  
Input High Voltage  
Output Low Voltage  
0.7VCC  
V
IOL = 2.1 mA, VCC = 2.5 V  
V
Table 15. DC Characteristics (M24Cxx-R)  
Test Condition  
(in addition to those in Table 10.)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Input Leakage Current  
(SCL, SDA, E2, E1, E0)  
V
IN = VSS or VCC  
ILI  
± 2  
± 2  
0.8  
µA  
µA  
device in Stand-by mode  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
VCC =1.8V, f =100kHz (rise/fall time <  
c
mA  
30ns)  
ICC1  
VIL  
Stand-by Supply Current  
Input Low Voltage  
V
IN = VSS or VCC, VCC = 1.8 V  
0.2  
0.3 VCC  
VCC+1  
0.2  
µA  
V
–0.45  
VIH  
VOL  
Input High Voltage  
Output Low Voltage  
0.7VCC  
V
IOL = 0.7 mA, VCC = 1.8 V  
V
17/26  
M24C64, M24C32  
Table 16. AC Characteristics (M24Cxx-6, M24Cxx-W6 and M24Cxx-W3)  
Test conditions specified in Table 11. and Table 8. or Table 9.  
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Min.  
Max.  
Unit  
kHz  
ns  
Clock Frequency  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
600  
1300  
20  
ns  
2
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
100  
0
ns  
ns  
200  
200  
600  
600  
600  
1300  
ns  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
ns  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
Start Condition Hold Time  
ns  
Stop Condition Set Up Time  
ns  
Time between Stop Condition and Next Start Condition  
Write Time  
ns  
5 or4 10  
tWR  
ms  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. The Write Time of 5 ms only applies to devices bearing the process letter “B” in the package marking (on the top side of the pack-  
age), otherwise (for devices bearing the process letter “N”) the Write Time is 10 ms. For further details, please contact your nearest  
ST sales office, and ask for a copy of the Product Change Notice PCEE0036.  
Table 17. AC Characteristics (M24Cxx-R)  
Test conditions specified in Table 11. and Table 10.  
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Min.  
Max.  
Unit  
kHz  
ns  
Clock Frequency  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
600  
1300  
20  
ns  
2
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
100  
0
ns  
ns  
200  
200  
600  
600  
600  
1300  
ns  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
ns  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
Start Condition Hold Time  
ns  
Stop Condition Set Up Time  
ns  
Time between Stop Condition and Next Start Condition  
Write Time  
ns  
tWR  
10  
ms  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
18/26  
M24C64, M24C32  
Figure 12. AC Waveforms  
tCHCL  
tCLCH  
SCL  
tDLCL  
SDA In  
tCHDX  
tCLDX  
tDXCX  
SDA  
tCHDH tDHDL  
Change  
START  
Condition  
START  
Condition  
SDA  
Input  
STOP  
Condition  
SCL  
SDA In  
tCHDH  
STOP  
tCHDX  
START  
Condition  
tW  
Write Cycle  
Condition  
SCL  
tCLQV  
tCLQX  
Data Valid  
SDA Out  
AI00795C  
19/26  
M24C64, M24C32  
PACKAGE MECHANICAL  
Figure 13. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Note: Drawing is not to scale.  
Table 18. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
20/26  
M24C64, M24C32  
Figure 14. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
C
A
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 19. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,  
Package Mechanical Data  
millimeters  
Symbol  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Typ.  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
21/26  
M24C64, M24C32  
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Note: Drawing is not to scale.  
Table 20. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
22/26  
M24C64, M24C32  
Figure 16. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
Note: Drawing is not to scale.  
Table 21. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm,  
Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
0.60  
0.05  
0.30  
Typ  
Max  
0.024  
0.002  
0.012  
A
A1  
b
0.55  
0.50  
0.022  
0.020  
0.000  
0.008  
0.00  
0.25  
2.00  
0.20  
0.010  
0.079  
D
D2  
ddd  
E
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
3.00  
0.118  
E2  
e
0.15  
0.25  
0.006  
0.010  
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
N
0.30  
8
0.012  
8
23/26  
M24C64, M24C32  
PART NUMBERING  
Table 22. Ordering Information Scheme  
Example:  
M24C32  
W MN  
6
T
P
Device Type  
2
M24 = I C serial access EEPROM  
Device Function  
64 = 64 Kbit (8192 x 8)  
32 = 32 Kbit (4096 x 8)  
Operating Voltage  
(2)  
blank = V = 4.5 to 5.5V  
CC  
W = V = 2.5 to 5.5V  
CC  
R = V = 1.8 to 5.5V  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
(3)  
MB = UFDFPN8 (MLP8)  
Device Grade  
6 = Industrial: device tested with standard test flow over –40 to 85 °C  
(1)  
3 = Automotive: device tested with High Reliability Certified Flow over –40 to 125 °C.  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P or G = RoHS compliant  
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Cer-  
tified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.  
2. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range.  
3. The UFDFPN8 package is available in M24C32 devices only. It is not available in M24C64 devices.  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
24/26  
M24C64, M24C32  
REVISION HISTORY  
Table 23. Document Revision History  
Date  
Rev.  
Description of Revision  
22-Dec-1999  
28-Jun-2000  
2.3 TSSOP8 package in place of TSSOP14 (pp 1, 2, OrderingInfo, PackageMechData).  
2.4 TSSOP8 package data corrected  
References to Temperature Range 3 removed from Ordering Information  
Voltage range -S added, and range -R removed from text and tables throughout.  
31-Oct-2000  
20-Apr-2001  
16-Jan-2002  
2.5  
Lead Soldering Temperature in the Absolute Maximum Ratings table amended  
2.6 Write Cycle Polling Flow Chart using ACK illustration updated  
References to PSDIP changed to PDIP and Package Mechanical data updated  
Test condition for I made more precise, and value of I for E2-E0 and WC added  
LI  
LI  
2.7  
-R voltage range added  
Document reformatted using new template.  
02-Aug-2002  
04-Feb-2003  
2.8 TSSOP8 (3x3mm² body size) package (MSOP8) added.  
5ms write time offered for 5V and 2.5V devices  
2.9 SO8W package removed. -S voltage range removed  
27-May-2003 2.10 TSSOP8 (3x3mm² body size) package (MSOP8) removed  
Table of contents, and Pb-free options added. Minor wording changes in Summary  
Description, Power-On Reset, Memory Addressing, Write Operations, Read Operations.  
V (min) improved to -0.45V.  
22-Oct-2003  
3.0  
4.0  
5.0  
IL  
Absolute Maximum Ratings for V (min) and V (min) improved. Soldering temperature  
IO  
CC  
01-Jun-2004  
information clarified for RoHS compliant devices. Device Grade clarified  
Product List summary table added. Device Grade 3 added. 4.5-5.5V range is Not for New  
Design. Some minor wording changes. AEC-Q100-002 compliance. t (max) changed.  
04-Nov-2004  
05-Jan-2005  
NS  
V (min) is the same on all input pins of the device. Z  
changed.  
IL  
WCL  
6.0 UFDFPN8 package added. Small text changes.  
25/26  
M24C64, M24C32  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
ECOPACK is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

M24C64-WBN6P

64Kbit and 32Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C64-WBN6P/B

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR

M24C64-WBN6P/C

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, ROHS COMPLIANT, DIP-8
STMICROELECTR

M24C64-WBN6P/P

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR

M24C64-WBN6PB

暂无描述
STMICROELECTR

M24C64-WBN6PF

暂无描述
STMICROELECTR

M24C64-WBN6PP

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
STMICROELECTR

M24C64-WBN6T

64Kbit and 32Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C64-WBN6T/B

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, DIP-8
STMICROELECTR

M24C64-WBN6TG/C

8KX8 I2C/2-WIRE SERIAL EEPROM, PDIP8, PLASTIC, ROHS COMPLIANT, DIP-8
STMICROELECTR

M24C64-WBN6TG/P

暂无描述
STMICROELECTR

M24C64-WBN6TP

64Kbit and 32Kbit Serial IC Bus EEPROM
STMICROELECTR