M24C64T-FCU [STMICROELECTRONICS]

64-Kbit serial IC bus EEPROM 4 balls CSP;
M24C64T-FCU
型号: M24C64T-FCU
厂家: ST    ST
描述:

64-Kbit serial IC bus EEPROM 4 balls CSP

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总36页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24C64T-FCU  
64-Kbit serial I²C bus EEPROM 4 balls CSP  
Datasheet - production data  
Features  
Compatible with the 400 kHz I²C protocol  
High speed 1MHz transfer rate  
Memory array:  
– 64 Kbit (8 Kbyte) of EEPROM  
– Page size: 32 byte  
Specific device code  
Supply voltage range:  
WLCSP (CU)  
– 1.7 V to 5.5 V  
Operating temperature range  
– V = 1.7 V to 5.5V over -40°C / +85°C  
CC  
– V = 1.6 V to 5.5V over 0°C / +85°C  
CC  
Write  
– Byte Write within 5 ms  
– Page Write within 5 ms  
Random and sequential Read modes  
Software Write protect  
– Upper quarter memory array  
– Upper half memory array  
– Upper 3/4 memory array  
– Whole memory array  
ESD protection  
– Human Body Model: 4 kV  
More than 4 million Write cycles  
More than 200-years data retention  
Package  
– WLCSP, RoHS and Halogen free compliant  
®
(ECOPACK2 )  
October 2015  
DocID028393 Rev 1  
1/36  
This is information on a product in full production.  
www.st.com  
Contents  
M24C64T-FCU  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
Operating supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
CC  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
4.5  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18  
5.2  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read the Write Protect register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/36  
DocID028393 Rev 1  
M24C64T-FCU  
Contents  
7
8
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1  
Ultra Thin WLCSP package information . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10  
11  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DocID028393 Rev 1  
3/36  
3
List of tables  
M24C64T-FCU  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Protect register (Address = 1xxx.xxxx.xxxx.xxxxb) . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
Table 13.  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 14.  
Table 15.  
4/36  
DocID028393 Rev 1  
M24C64T-FCU  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4-bump WLCSP connections  
(top view, marking side, with balls on the underside) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write mode sequence (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write mode sequence (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
2
Maximum R  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
C
Figure 10. Maximum R  
value versus bus parasitic capacitance (C  
)
bus  
bus  
2
for an I C bus at 1 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 11. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 12. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 13. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package outline with BSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 14. Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DocID028393 Rev 1  
5/36  
5
Description  
M24C64T-FCU  
1
Description  
The M24C64T-FCU is a 64-Kbit I2C-compatible EEPROM (Electrically Erasable  
PROgrammable Memory) organized as 8 K × 8 bits  
The M24C64T-FCU can be hooked on the same bus as the standard M24C64S-FCU and  
M24C64M-FCU in WLCSP 4 bump, thanks to specific device select code. See Section 4.5:  
Device addressing.  
The M24C64T-FCU can operate with a supply voltage from 1.7 V to 5.5 V, over an ambient  
temperature range of -40 °C/+85 °C and with an extended supply voltage from 1.6 V to 5.5  
V, over a reduced ambient temperature range.  
The M24C64T-FCU is delivered in a 4-ball WLCSP package.  
Figure 1. Logic diagram  
9&&  
6'$  
0ꢅꢂ&ꢃꢂ7ꢆ)&8  
6&/  
966  
06ꢀꢁꢂꢂꢃ9ꢄ  
Table 1. Signal names  
Signal name  
Function  
Direction  
SDA  
SCL  
VCC  
VSS  
Serial Data  
Serial Clock  
Supply voltage  
Ground  
I/O  
Input  
-
-
6/36  
DocID028393 Rev 1  
 
 
 
M24C64T-FCU  
Description  
Figure 2. 4-bump WLCSP connections  
(top view, marking side, with balls on the underside)  
$
%
9&&  
6&/  
6&/  
9&&  
$
6'$  
966  
966  
6'$  
%
0DUNLQJꢈVLGH  
ꢉWRSꢈYLHZꢊ  
%XPSꢈVLGH  
ꢉERWWRPꢈYLHZꢊ  
06Yꢀꢁꢂꢅꢇ9ꢄ  
DocID028393 Rev 1  
7/36  
35  
 
Signal description  
M24C64T-FCU  
2
Signal description  
2.1  
Serial Clock (SCL)  
SCL is an input. The signal applied on the SCL input is used to strobe the data available on  
SDA(in) and to output the data on SDA(out).  
2.2  
2.3  
Serial Data (SDA)  
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an  
open drain output that may be wire-OR’ed with other open drain or open collector signals on  
the bus. A pull-up resistor must be connected from Serial Data (SDA) to V (Figure 9  
CC  
indicates how to calculate the value of the pull-up resistor).  
VSS (ground)  
V
is the reference for the V supply voltage.  
CC  
SS  
2.4  
Supply voltage (VCC)  
2.4.1  
Operating supply voltage (V )  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Operating conditions  
CC  
CC  
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is  
recommended to decouple the V line with a suitable capacitor (usually from10 nF to  
CC  
100 nF) close to the V /V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a write instruction, until the completion of the internal write cycle (t ).  
W
2.4.2  
2.4.3  
Power-up conditions  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
(see Operating conditions in Section 8: DC and AC parameters) and the rise time must not  
vary faster than 1 V/µs.  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V has reached the  
CC  
internal reset threshold voltage. This threshold is lower than the minimum V operating  
CC  
voltage (see Operating conditions in Section 8: DC and AC parameters). When V passes  
CC  
over the POR threshold, the device is reset and enters the Standby Power mode; however,  
the device must not be accessed until V reaches a valid and stable DC voltage within the  
CC  
specified [V (min), V (max)] range (see Operating conditions in Section 8: DC and AC  
CC  
CC  
parameters).  
8/36  
DocID028393 Rev 1  
 
 
 
 
 
 
 
 
M24C64T-FCU  
Signal description  
In a similar way, during power-down (continuous decrease in V ), the device must not be  
CC  
accessed when V drops below V (min). When V drops below the power-on-reset  
CC  
CC  
CC  
threshold voltage, the device stops responding to any instruction sent to it.  
2.4.4  
Power-down conditions  
During power-down (continuous decrease in V ), the device must be in the Standby Power  
CC  
mode (mode reached after decoding a Stop condition, assuming that there is no internal  
write cycle in progress).  
DocID028393 Rev 1  
9/36  
35  
 
Memory organization  
M24C64T-FCU  
3
Memory organization  
The memory is organized as shown below.  
Figure 3. Block diagram  
(IGH VOLTAGE  
GENERATOR  
#ONTROL LOGIC  
3#,  
3$!  
)ꢅ/ SHIFT REGISTER  
$ATA  
REGISTER  
!DDRESS REGISTER  
AND COUNTER  
ꢄ PAGE  
8 DECODER  
-3ꢀꢁꢂꢃꢁ6ꢄ  
10/36  
DocID028393 Rev 1  
 
 
M24C64T-FCU  
Device operation  
4
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 4. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The device is always a slave in all  
communications.  
2
Figure 4. I C bus protocol  
3#,  
3$!  
3$!  
)NPUT  
3$!  
#HANGE  
34!24  
#ONDITION  
34/0  
#ONDITION  
3#,  
3$!  
!#+  
-3"  
34!24  
#ONDITION  
3#,  
3$!  
-3"  
!#+  
34/0  
#ONDITION  
!)ꢁꢁꢂꢆꢇ"  
DocID028393 Rev 1  
11/36  
35  
 
 
Device operation  
M24C64T-FCU  
4.1  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer instruction. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition.  
4.2  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and  
driven high. A Stop condition terminates communication between the device and the bus  
master. A Read instruction that is followed by NoAck can be followed by a Stop condition to  
force the device into the Standby mode.  
A Stop condition at the end of a Write instruction triggers the internal Write cycle.  
4.3  
4.4  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
12/36  
DocID028393 Rev 1  
 
 
 
 
M24C64T-FCU  
Device operation  
4.5  
Device addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 2 (on Serial Data (SDA), most significant bit first).  
Table 2. Device select code  
Device type identifier(1)  
Chip Enable address  
RW  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
1
0
1
0
0
0
0
RW  
1. The most significant bit, b7, is sent first.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time.  
If the device does not match the device select code, the device deselects itself from the bus,  
and goes into Standby mode (therefore will not acknowledge the device select code).  
DocID028393 Rev 1  
13/36  
35  
 
 
Instructions  
M24C64T-FCU  
5
Instructions  
5.1  
Write operations  
Following a Start condition the bus master sends a device select code with the R/W bit (RW)  
reset to 0. The device acknowledges this, as shown in Figure 5, and waits for two address  
bytes. The device responds to each address byte with an acknowledge bit, and then waits  
for the data byte.  
Table 3. Most significant address byte  
A15  
A7  
A14  
A6  
A13  
A12  
A11  
A10  
A9  
A1  
A8  
A0  
Table 4. Least significant address byte  
A5 A4 A3 A2  
When the bus master generates a Stop condition immediately after a data byte Ack bit (in  
th  
the “10 bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write  
cycle t is triggered. A Stop condition at any other time slot does not trigger the internal  
W
Write cycle.  
After the Stop condition and the successful completion of an internal Write cycle (t ), the  
W
device internal address counter is automatically incremented to point to the next byte after  
the last modified byte.  
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
14/36  
DocID028393 Rev 1  
 
 
 
 
M24C64T-FCU  
Instructions  
5.1.1  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is Write-protected, the device replies with NoAck, and the location is  
not modified, as shown in Figure 6. If, instead, the addressed location is not Write-  
protected, the device replies with Ack, as shown in Figure 5. The bus master shall  
terminates the transfer by generating a Stop condition.  
Figure 5. Write mode sequence (data write enabled)  
!#+  
!#+  
!#+  
!#+  
"YTE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN  
2ꢅ7  
!#+  
!#+  
!#+  
!#+  
0AGE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN ꢄ  
$ATA IN ꢇ  
2ꢅ7  
!#+  
!#+  
0AGE 7RITE ꢊCONTgDꢋ  
$ATA IN .  
!)ꢁꢄꢄꢁꢉE  
DocID028393 Rev 1  
15/36  
35  
 
 
Instructions  
M24C64T-FCU  
5.1.2  
Page Write  
The Page Write mode allows up to 32 bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits, A15/A5, are the same. If more bytes are sent than will fit up to the end  
of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the  
same page, from location 0.  
The bus master sends from 1 to 32 bytes of data, each of which is acknowledged by the  
device if the page is not write-protected, as shown in Figure 5. If the page is write-protected,  
the contents of the addressed memory location are not modified, and each data byte is  
followed by a NoAck, as shown in Figure 6. After each transferred byte, the internal page  
address counter is incremented.  
The transfer is terminated by the bus master generating a Stop condition.  
Figure 6. Write mode sequence (data write inhibited)  
ACK  
ACK  
ACK  
NO ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data in 2  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
R/W  
NO ACK  
NO ACK  
Page Write (cont'd)  
Data in N  
AI01120e  
16/36  
DocID028393 Rev 1  
 
 
M24C64T-FCU  
Instructions  
5.1.3  
Write protection  
By writing specific values in a register (Table 5) located at address 1xxx.xxxx.xxxx.xxxxb,  
the memory array can be write-protected by blocks, which size can be defined as:  
the upper quarter memory array  
the upper half memory array  
the upper 3/4 memory array  
the whole memory array  
Table 5. Write Protect register (Address = 1xxx.xxxx.xxxx.xxxxb)  
b7  
x
b6  
x
b5  
x
b4  
x
b3  
b2  
b1  
b0  
Write  
Read  
Size of write  
protected  
block  
Write protect  
activation  
Size of write  
protected block  
Write protect  
lock  
0
0
0
0
Note:  
Location 1xxx.xxxx.xxxx.xxxxb is outside of the addressing field of the EEPROM memory  
(16 Kbytes are addressed within the 00xx.xxxx.xxxx.xxxx range)  
Bit b3 enables or disables the Write protection  
b3=0: the whole memory can be written (no Write protection)  
b3=1: the concerned block is write-protected  
Bits b2 and b1 define the size of the memory block to be protected against write  
instructions  
b2,b1=0,0: the upper quarter of memory is write-protected  
b2,b1=0,1: the upper half memory is write-protected  
b2,b1=1,0: the upper 3/4 of memory are write-protected  
b2,b1=1,1: the whole memory is write-protected  
bit b0 locks the write protect status  
b0=0: bits b3,b2,b1,b0 can be modified  
b0=1: bits b3,b2,b1,b0 cannot be modified and therefore the memory write  
protection is frozen.  
b7, b6, b5, b4 bits are Don't Care bits.  
Writing the Write Protect register  
Writing in the Write protect register is performed with a Byte Write instruction at address  
1xxx.xxxx.xxxx.xxxxb. Bits b7,b6,b5,b4 of the data byte are not significant (Don't Care).  
Writing more than one byte will discard the write cycle (Write protect register content will not  
be changed).  
DocID028393 Rev 1  
17/36  
35  
 
 
Instructions  
M24C64T-FCU  
5.1.4  
Minimizing Write delays by polling on ACK  
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy  
of the data from its internal latches to the memory cells. The maximum Write time (tw) is  
shown in AC characteristics tables in Section 8: DC and AC parameters, but the typical time  
is shorter. To make use of this, a polling sequence can be used by the bus master.  
The sequence, as shown in Figure 7, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
Figure 7. Write cycle polling flowchart using ACK  
:ULWHꢈF\FOH  
LQꢈSURJUHVVꢈꢈꢈꢈ  
6WDUWꢈFRQGLWLRQ  
'HYLFHꢈVHOHFW  
ZLWKꢈ5:ꢈ ꢈꢋ  
$&.  
12  
UHWXUQHG  
)LUVWꢈE\WHꢈRIꢈLQVWUXFWLRQ  
ZLWKꢈ5:ꢈ ꢈꢋꢈDOUHDG\  
GHFRGHGꢈE\ꢈWKHꢈGHYLFH  
<(6  
1H[W  
2SHUDWLRQꢈLV  
DGGUHVVLQJꢈWKH  
PHPRU\  
12  
<(6  
12  
6HQGꢈ$GGUHVV  
DQGꢈ5HFHLYHꢈ$&.  
5H6WDUW  
<(6  
6WRS  
6WDUW&RQGLWLRQ  
'HYLFHꢈVHOHFW  
ZLWKꢈ5:ꢈ ꢈꢄ  
'DWDꢈIRUꢈWKH  
:ULWHꢈFSHUDWLRQ  
&RQWLQXHꢈWKH  
5DQGRPꢈ5HDGꢈRSHUDWLRQ  
&RQWLQXHꢈWKH  
:ULWHꢈRSHUDWLRQ  
$,ꢋꢄꢁꢂꢇH  
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the  
figure) must be identical to the seven most significant bits of the Device Select code of the Write (polling  
instruction in the figure).  
18/36  
DocID028393 Rev 1  
 
 
M24C64T-FCU  
Instructions  
5.2  
Read operations  
Read operations are performed independently of the Write protection state.  
After the successful completion of a Read operation, the device internal address counter is  
incremented by one, to point to the next byte address.  
For the Read instructions, after each byte read (data out), the device waits for an  
acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge  
during this 9th time, the device terminates the data transfer and switches to its Standby  
mode.  
Figure 8. Read mode sequences  
!#+  
./ !#+  
#URRENT  
!DDRESS  
2EAD  
$EV SEL  
$ATA OUT  
2ꢅ7  
!#+  
!#+  
!#+  
!#+  
./ !#+  
2ANDOM  
!DDRESS  
2EAD  
$EV SEL ꢌ  
"YTE ADDR  
"YTE ADDR  
$EV SEL ꢌ  
$ATA OUT  
2ꢅ7  
2ꢅ7  
!#+  
!#+  
!#+  
./ !#+  
$ATA OUT .  
3EQUENTIAL  
#URRENT  
2EAD  
$EV SEL  
$ATA OUT ꢄ  
2ꢅ7  
!#+  
2ꢅ7  
!#+  
!#+  
!#+  
2ꢅ7  
!#+  
3EQUENTION  
2ANDOM  
2EAD  
$EV SEL ꢌ  
"YTE ADDR  
"YTE ADDR  
$EV SEL ꢌ  
$ATA OUTꢄ  
!#+  
./ !#+  
$ATA OUT .  
!)ꢁꢄꢄꢁꢃD  
5.2.1  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 8) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
DocID028393 Rev 1  
19/36  
35  
 
 
 
Instructions  
M24C64T-FCU  
5.2.2  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the R/W bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 8, without acknowledging the byte.  
5.2.3  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 8.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter “rolls-over”, and the device continues to output data from memory address  
00h.  
5.2.4  
Read the Write Protect register  
Reading the Write Protect register is performed with a Random Read instruction at address  
1xxx.xxxx.xxxx.xxxxb. Bits b7, b6, b5, b4 of the Write Protect register content are read as  
0, 0, 0, 0. The signification of the Protect Register lower bits b3, b2, b1, b0 are defined in  
Section 5.1.3: Write protection.  
Reading more than one byte will loop on reading the Write Protect Register value.  
The Write Protect register cannot be read while a write cycle (t ) is ongoing.  
w
20/36  
DocID028393 Rev 1  
 
 
 
M24C64T-FCU  
Initial delivery state  
6
Initial delivery state  
The device is delivered with all the memory array bits set to 1 (each byte contains FFh) and  
the Write Protect register set to 0 (00h).  
DocID028393 Rev 1  
21/36  
35  
 
Maximum rating  
M24C64T-FCU  
7
Maximum rating  
Stressing the device outside the ratings listed in Table 6 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 6. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
-
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VIO  
Lead temperature during soldering  
Input or output range  
see note(1)  
–0.50  
6
5
IOL  
DC output current (SDA = 0)  
Supply voltage  
-
–0.50  
-
mA  
V
VCC  
VESD  
6
Electrostatic pulse (Human Body model)(2)  
4000  
V
1. Compliant with JEDEC standard J-STD-020D (for small-body, Sn-Pb or Pb free assembly), the ST  
ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances  
(RoHS directive 2011/65/EU of July 2011).  
2. Positive and negative pulses applied on different combinations of pin connections, according to AEC-  
Q100-002 (compliant with , C1=100 pF, R1=1500 Ω).  
22/36  
DocID028393 Rev 1  
 
 
M24C64T-FCU  
DC and AC parameters  
8
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device.  
Table 7. Test conditions  
Symbol  
Parameter  
Min.  
Unit  
Data retention(1)  
Cycling  
TA = 55 °C  
TA = 25 °C  
200  
year  
4 million  
cycle  
1. The data retention behavior is checked in production. The 200-year limit is defined from characterization  
and qualification results.  
Table 8. Operating conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
Supply voltage  
1.60  
–40  
0
1.70  
–40  
–40  
5.5  
V
Ambient operating temperature: READ  
Ambient operating temperature: WRITE  
Operating clock frequency, VCC = 1.6 V  
Operating clock frequency, VCC = 1.7 V  
TA  
85  
°C  
-
-
400  
fC  
kHz  
1000  
DocID028393 Rev 1  
23/36  
35  
 
 
 
DC and AC parameters  
M24C64T-FCU  
Table 9. DC characteristics  
Test conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Input leakage current VIN = VSS or VCC  
ILI  
-
-
± 2  
± 2  
µA  
µA  
(SCL, SDA)  
device in Standby mode  
Output leakage  
current  
SDA in Hi-Z, external voltage applied  
on SDA: VSS or VCC  
ILO  
VCC < 1.8 V, fC = 400 kHz  
-
-
-
0.8  
2
mA  
mA  
mA  
ICC  
Supply current (Read)  
VCC >= 1.8 V, fC = 400 kHz  
VCC >= 1.8 V, fC = 1 MHz(1)  
2.5  
Supply current  
(Write)(2)  
ICC0  
During tW  
-
2
mA  
µA  
µA  
µA  
V
(3)  
Device not selected  
VIN = VSS or VCC, VCC = 1.8 V  
,
-
1
Standby supply  
current  
Device not selected (3)  
VIN = VSS or VCC, VCC = 2.5 V  
,
ICC1  
-
-
2
3
Device not selected (3)  
VIN = VSS or VCC, VCC = 5.5 V  
,
Input low voltage  
(SCL, SDA)  
VIL  
VIH  
-
–0.45  
0.25 VCC  
Input high voltage  
(SCL, SDA)  
-
0.75 VCC VCC + 1  
V
I
OL = 1 mA, VCC < 1.8 V  
-
-
-
0.2  
0.4  
0.4  
V
V
V
VOL  
Output low voltage  
IOL = 2.1 mA, VCC = 2.5 V  
IOL = 3 mA, VCC = 5.5 V  
1. Only for devices operating at fcMax = 1 MHz (See Table 8)  
2. Characterized value, not tested in production.  
3. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
24/36  
DocID028393 Rev 1  
 
M24C64T-FCU  
DC and AC parameters  
Table 10. 400 kHz AC characteristics  
Parameter  
Symbol  
Alt.  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tF  
Clock frequency  
-
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
SDA (out) fall time  
600  
-
-
1300  
20 (2)  
300  
(1)  
tQL1QL2  
tXH1XH2  
tXL1XL2  
tDXCH  
(3)  
(3)  
tR  
Input signal rise time  
Input signal fall time  
(3)  
(3)  
tF  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
-
tCLDX  
-
(4)  
tCLQX  
tDH  
tAA  
Data out hold time  
50  
-
(5)  
tCLQV  
Clock low to next data valid (access time)  
-
900  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
600  
600  
600  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tW  
tBUF  
tWR  
-
1300  
-
ns  
ms  
ns  
Write time  
-
-
5
Pulse width ignored (input filter on SCL and  
SDA) - single glitch  
(1)  
tNS  
50  
1. Characterized only, not tested in production.  
2. With CL = 10 pF.  
3. There is no min. or max. value for the input signal rise and fall times. It is however recommended by the I²C  
specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when  
f
C < 400 kHz.  
4. The min value for tCLQX (Data out hold time) offers a safe timing to bridge the undefined region of the falling  
edge SCL.  
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or  
0.7VCC, assuming that Rbus × Cbus time constant is less than 400 ns.  
DocID028393 Rev 1  
25/36  
35  
 
DC and AC parameters  
Symbol  
M24C64T-FCU  
Table 11. 1 MHz AC characteristics  
Parameter  
Alt.  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tR  
Clock frequency  
0
1
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
Clock pulse width high  
Clock pulse width low  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
260  
tCLCH  
700(1)  
-
(2)  
(2)  
tXH1XH2  
tXL1XL2  
(2)  
(2)  
tF  
(3)  
tQL1QL2  
tF  
20(4)  
50  
120  
tDXCH  
tCLDX  
tSU:DAT Data in setup time  
tHD:DAT Data in hold time  
-
0
-
(5)  
tCLQX  
tDH  
tAA  
Data out hold time  
50  
-
(6)  
tCLQV  
Clock low to next data valid (access time)  
-
650  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition setup time  
250  
250  
250  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tW  
tBUF  
tWR  
-
500  
-
ns  
ms  
ns  
Write time  
-
-
5
Pulse width ignored (input filter on SCL and  
SDA)  
(3)  
tNS  
50  
1. 600ns when -20°C +85°C. Characterized only, not tested in production.  
2. There is no min. or max. values for the input signal rise and fall times. However, it is recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 120 ns when  
f
C < 1 MHz.  
3. Characterized only, not tested in production.  
4. With CL = 10 pF.  
5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or  
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 10.  
26/36  
DocID028393 Rev 1  
 
M24C64T-FCU  
DC and AC parameters  
Figure 9. Maximum R  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz  
C
ꢄꢋꢋ  
7KHꢈ5EXVꢈ[ꢈ&EXVꢈWLPHꢈ  
FRQVWDQWꢈPXVWꢈEHꢈEHORZꢈ  
WKHꢈꢂꢋꢋꢈQVꢈWLPHꢈFRQVWDQWꢈ  
OLQHꢈUHSUHVHQWHGꢈRQꢈWKHꢈOHIW  
9&&  
ꢄꢋ  
+HUHꢈ5EXVꢈ[ꢈ&EXV ꢈꢄꢅꢋꢈQV  
5EXV  
ꢂꢈNȍ  
6&/  
6'$  
,ð&ꢈEXVꢈ  
PDVWHU  
0ꢅꢂ[[[  
ꢀꢋꢈS)  
ꢄꢋ  
ꢄꢋꢋ  
ꢄꢋꢋꢋ  
&
EXV  
%XVꢀOLQHꢀFDSDFLWRUꢀꢁS)ꢂ  
06Yꢀꢇꢌꢄꢃ9ꢄ  
Figure 10. Maximum R  
value versus bus parasitic capacitance (C  
for an I C bus at 1 MHz  
)
bus  
bus  
2
7KHꢈPD[LPXPꢈYDOXHꢈRIꢈWKHꢈ  
WLPHꢈFRQVWDQWꢈꢈꢉ5EXVꢈ[ꢈ&EXVꢊꢍ  
ꢄꢅꢎꢈQVꢈZKHQꢈ9&&ꢈ•ꢈꢈꢄꢏꢇꢈ9  
ꢅꢋꢋꢈQVꢈZKHQꢈ9&&ꢈ•ꢈꢈꢅꢏꢎꢈ9  
9&&  
5EXVꢄꢀ&EXVꢀYDOXHVꢀIRUꢀIFꢀ ꢀꢅꢀ0+]  
ꢄꢋ  
5EXV  
,&ꢈEXV  
6&/  
0ꢅꢂ[[[  
PDVWHU  
6'$  
&
EXV  
ꢄꢋ  
ꢄꢋꢋ  
ꢄꢋꢋꢋ  
&EXVꢃꢀ6'$ꢀOLQHꢀSDUDVLWLFꢀFDSDFLWRUꢀꢁS)ꢂ  
06Yꢀꢇꢌꢄꢄ9ꢄ  
DocID028393 Rev 1  
27/36  
35  
 
 
DC and AC parameters  
M24C64T-FCU  
Figure 11. AC waveforms  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ƚŽƉ  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ ĐŽŶĚŝƚŝŽŶ  
ƚy>ϭy>Ϯ  
ƚꢀ,ꢀ>  
ƚꢀ>ꢀ,  
ƚy,ϭy,Ϯ  
^ꢀ>  
ƚꢁ>ꢀ>  
ƚy>ϭy>Ϯ  
^ꢁꢂꢃ/Ŷ  
^ꢁꢂ  
/ŶƉƵƚ  
ƚꢀ,ꢁ>  
ƚꢀ>ꢁy  
ƚꢁyꢀ,  
^ꢁꢂ  
ꢀŚĂŶŐĞ  
ƚy,ϭy,Ϯ  
ƚꢀ,ꢁ,  
ƚꢁ,ꢁ>  
^ƚŽƉ  
ĐŽŶĚŝƚŝŽŶ  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ꢀ>  
^ꢁꢂꢃ/Ŷ  
ƚt  
tƌŝƚĞꢃĐLJĐůĞ  
ƚꢀ,ꢁ,  
ƚꢀ,ꢁ>  
ƚꢀ,ꢀ>  
^ꢀ>  
ƚꢀ>Ys  
ƚꢀ>Yy  
ꢁĂƚĂꢃǀĂůŝĚ  
ƚY>ϭY>Ϯ  
ꢁĂƚĂꢃǀĂůŝĚ  
^ꢁꢂꢃKƵƚ  
ꢂ/ϬϬϳϵϱũ  
28/36  
DocID028393 Rev 1  
 
M24C64T-FCU  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
9.1  
Ultra Thin WLCSP package information  
Figure 12. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package outline  
EEE  
=
2ULHQWDWLRQꢈ  
UHIHUHQFH  
'HWDLOꢈ$  
Hꢄ  
;
<
'
)
)
(
H
DDD  
ꢉꢂ;ꢊ  
$
2ULHQWDWLRQꢈ  
UHIHUHQFH  
$ꢅ  
*
*
:DIHUꢈEDFNꢈVLGH  
6LGHꢈYLHZ  
%XPS  
$ꢄ  
HHH  
=
=
Eꢈꢉꢂ;ꢊ  
6HDWLQJꢈSODQH  
T
T
=
=
FFFꢈ0  
; <  
GGGꢈ0  
'HWDLOꢈ$  
5RWDWHGꢈꢌꢋꢈƒ  
$ꢋ=ꢇB0(B9ꢄ  
1. Drawing is not to scale.  
DocID028393 Rev 1  
29/36  
35  
 
 
 
Package mechanical data  
M24C64T-FCU  
Table 12. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b(2)  
D
0.2400  
0.2700  
0.0950  
0.1750  
0.1850  
0.8330  
0.8330  
0.4000  
0.5000  
0.2170  
0.1670  
0.1100  
0.1100  
0.1100  
0.0600  
0.0600  
0.3000  
0.0094  
0.0106  
0.0037  
0.0069  
0.0073  
0.0328  
0.0328  
0.0157  
0.0197  
0.0085  
0.0066  
0.0043  
0.0043  
0.0043  
0.0024  
0.0024  
0.0118  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.8530  
0.0336  
E
0.8530  
0.0336  
e
-
-
-
-
-
-
-
-
e1  
F
G
aaa  
bbb  
ccc  
ddd  
eee  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z  
30/36  
DocID028393 Rev 1  
 
M24C64T-FCU  
Package mechanical data  
Figure 13. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package outline with BSC  
%DFNꢈVLGHꢈFRDWLQJꢈ  
WKLFNQHVVꢈꢋꢏꢋꢅꢎꢈPP  
EEE  
=
2ULHQWDWLRQꢈ  
UHIHUHQFH  
'HWDLOꢈ$  
Hꢄ  
;
<
'
)
)
(
H
DDD  
ꢉꢂ;ꢊ  
$
2ULHQWDWLRQꢈ  
UHIHUHQFH  
$ꢅ  
*
*
$ꢀ  
:DIHUꢈEDFNꢈVLGH  
6LGHꢈYLHZ  
%XPS  
$ꢄ  
HHH  
=
=
Eꢈꢉꢂ;ꢊ  
6HDWLQJꢈSODQH  
T
T
=
=
FFFꢈ0  
; <  
GGGꢈ0  
'HWDLOꢈ$  
5RWDWHGꢈꢌꢋꢈƒ  
$ꢋ=ꢇB37GB0(B9ꢄ  
1. Drawing is not to scale.  
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
DocID028393 Rev 1  
31/36  
35  
 
Package mechanical data  
M24C64T-FCU  
Table 13. Ultra Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
0.265  
0.295  
0.095  
0.200  
0.025  
0.185  
0.833  
0.833  
0.400  
0.500  
0.217  
0.167  
-
0.330  
0.0104  
0.0116  
0.0037  
0.0079  
0.0010  
0.0073  
0.0328  
0.0328  
0.0157  
0.0197  
0.0085  
0.0066  
-
0.0130  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A2  
-
-
A3 (BSC)  
b(2) (3)  
D
-
-
-
-
0.853  
0.853  
-
0.0336  
0.0336  
-
E
e
e1  
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.110  
0.110  
0.110  
0.060  
0.060  
0.0043  
0.0043  
0.0043  
0.0024  
0.0024  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
Figure 14. Thin WLCSP- 4-bump, 0.833 x 0.833 mm, wafer level chip scale  
package recommended footprint  
Hꢄ  
ꢂꢈEXPSVꢈ[‘ꢈꢋꢏꢄꢁꢎꢈPP  
H
$ꢋ=ꢇB)3B9ꢄ  
32/36  
DocID028393 Rev 1  
 
 
M24C64T-FCU  
Part numbering  
10  
Part numbering  
Table 14. Ordering information scheme  
Example:  
M24 C64T -F CU 6  
T
/T  
F
Device type  
M24 = I2C serial access EEPROM  
Device function  
C64T = 64 Kbits (8 K x 8 bits)  
Operating voltage  
F = VCC = 1.7 V to 5.5 V  
Package(1)  
CU = ultra-thin 4-bump WLCSP  
Device grade  
6 = device tested with standard test flow over –40 to 85 °C  
Packing  
T = Tape and reel packing  
Process technology(2)  
/T = Process letter  
Option  
blank = no Back Side Coating (WLCSP height = 0.300mm)  
F = Back Side Coating (WLCSP height = 0.330mm)  
1. The package is ECOPACK2® (RoHS compliant and free of brominated, chlorinated and antimony oxide  
flame retardants).  
2. The process letter appears on the device package (marking) and on the shipment box. Please contact  
your nearest ST Sales Office for further information.  
DocID028393 Rev 1  
33/36  
35  
 
 
Part numbering  
M24C64T-FCU  
Engineering samples  
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are  
not yet qualified and therefore not yet ready to be used in production and any consequences  
deriving from such usage will not be at ST charge. In no event, ST will be liable for any  
customer usage of these engineering samples in production. ST Quality has to be contacted  
prior to any decision to use these Engineering samples to run qualification activity.  
34/36  
DocID028393 Rev 1  
M24C64T-FCU  
Revision history  
11  
Revision history  
Table 15. Document revision history  
Changes  
Date  
Revision  
06-Oct-2015  
1
Initial release  
DocID028393 Rev 1  
35/36  
35  
 
 
M24C64T-FCU  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
36/36  
DocID028393 Rev 1  

相关型号:

M24C64T-FCU6T

64-Kbit serial IC bus EEPROM 4 balls CSP
STMICROELECTR

M24C64WBN1T

64/32 Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C64WBN3G

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN3P

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN3T

64/32 Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C64WBN3TG

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN3TP

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN5G

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN5P

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN5T

64/32 Kbit Serial IC Bus EEPROM
STMICROELECTR

M24C64WBN5TG

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR

M24C64WBN5TP

128 Kbit, 64 Kbit and 32 Kbit serial IC bus EEPROM
STMICROELECTR