M27C202-150B3TR [STMICROELECTRONICS]

2 Mbit 128Kb x16 UV EPROM and OTP EPROM; 2兆位128KB X16 UV EPROM和OTP EPROM
M27C202-150B3TR
型号: M27C202-150B3TR
厂家: ST    ST
描述:

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
2兆位128KB X16 UV EPROM和OTP EPROM

可编程只读存储器 电动程控只读存储器
文件: 总15页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C202  
2 Mbit (128Kb x16) UV EPROM and OTP EPROM  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 45ns  
LOW POWER CONSUMPTION:  
– Active Current 50mA at 5MHz  
– Standby Current 100µA  
40  
40  
1
1
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
FDIP40W (F)  
PDIP40 (B)  
– Device Code: 1Ch  
TSOP40 (N)  
10 x 14 mm  
DESCRIPTION  
PLCC44 (K)  
The M27C202 is a 2 Mbit EPROM offered in the  
two ranges UV (ultra violet erase) and OTP (one  
time programmable). It is ideally suited for micro-  
processor systems requiring large programs, in  
the application where the contents is stable and  
needs to be programmed only one time, and is or-  
ganised as 131,072 by 16 bits.  
Figure 1. Logic Diagram  
The FDIP40W (window ceramic frit-seal package)  
has a transparent lids which allow the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27C202 is offered in PDIP40, PLCC44 and  
TSOP40 (10 x 14 mm) packages.  
V
V
CC  
PP  
17  
16  
A0-A16  
Q0-Q15  
P
E
M27C202  
G
V
SS  
AI01815  
April 1999  
1/15  
M27C202  
Figure 2A. DIP Connections  
Figure 2B. TSOP Connections  
V
1
2
3
4
5
6
7
8
9
40  
39  
V
P
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
P
1
40  
V
SS  
A8  
PP  
E
CC  
Q15  
Q14  
Q13  
Q12  
Q11  
Q10  
Q9  
38 A16  
37 A15  
36 A14  
35 A13  
34 A12  
33 A11  
32 A10  
31 A9  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
Q8 10  
V
10  
11  
31  
30  
A0  
CC  
M27C202  
M27C202  
V
11  
30  
V
SS  
V
G
SS  
PP  
E
Q7 12  
Q6 13  
Q5 14  
Q4 15  
Q3 16  
Q2 17  
Q1 18  
Q0 19  
29 A8  
28 A7  
27 A6  
26 A5  
25 A4  
24 A3  
23 A2  
22 A1  
21 A0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
G
20  
DQ8  
20  
21  
V
SS  
AI02784  
AI01817B  
Figure 2C. LCC Connections  
Table 1. Signal Names  
A0-A16  
Address Inputs  
Data Outputs  
Chip Enable  
Output Enable  
Program  
Q0-Q15  
E
G
P
1 44  
Q12  
A13  
A12  
A11  
A10  
A9  
Q11  
Q10  
Q9  
V
Program Supply  
Supply Voltage  
Ground  
PP  
Q8  
V
CC  
V
12  
M27C202  
34  
V
SS  
SS  
NC  
Q7  
Q6  
Q5  
Q4  
NC  
A8  
A7  
A6  
A5  
V
SS  
NC  
Not Connected Internally  
23  
AI01816  
2/15  
M27C202  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
P
A9  
X
Q15-Q0  
Data Output  
Hi-Z  
PP  
V
V
V
V
V
or V  
or V  
Read  
IL  
IL  
IL  
IL  
IL  
IH  
CC  
CC  
SS  
SS  
Output Disable  
Program  
V
V
V
V
V
X
X
IH  
V
Pulse  
V
X
X
Data Input  
Data Output  
Hi-Z  
IL  
PP  
PP  
PP  
Verify  
V
V
X
V
IL  
IH  
V
Program Inhibit  
Standby  
X
X
X
IH  
IH  
V
V
or V  
CC SS  
X
X
X
Hi-Z  
V
V
V
V
V
CC  
Electronic Signature  
Codes  
IL  
IL  
IH  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
Q1  
0
Q0  
Hex Data  
20h  
V
0
1
0
0
IL  
V
0
0
0
1
1
0
1Ch  
IH  
Note: Outputs Q15-Q8 are set to ’0’.  
3/15  
M27C202  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
IN  
C
OUT  
V
OUT  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
The operating modes of the M27C202 are listed in  
the Operating Modes table. A single power supply  
is required in the read mode. All inputs are TTL  
(t  
(t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
AVQV  
ELQV  
of t from the falling edge of G, assuming that E  
OE  
levels except for V and 12V on A9 for Electronic  
PP  
has been low and the addresses have been stable  
Signature.  
Read Mode  
for at least t  
-t  
.
AVQV GLQV  
Standby Mode  
The M27C202 has a standby mode which reduces  
the supply current from 50mA to 100µA.  
The M27C202 is placed in the standby mode by  
applying a TTL high signal to the E input. When in  
the standby mode, the outputs are in a high imped-  
ance state, independent of the G input.  
The M27C202 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable(G) is the output control and should  
be used to gate data to the output pins, indepen-  
4/15  
M27C202  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C, –40 to 85 °C or –40 to 125 °C; V = 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±10  
±10  
Unit  
µA  
I
0V V V  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
µA  
LO  
E = V , G = V ,  
IL  
IL  
I
Supply Current  
50  
mA  
CC  
I
= 0mA, f = 5MHz  
OUT  
I
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
E = V  
1
mA  
µA  
µA  
V
CC1  
IH  
I
E > V – 0.2V  
CC  
100  
100  
0.8  
CC2  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
CC  
IH  
V
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
Output High Voltage TTL  
Output High Voltage CMOS  
I
I
2.4  
OH  
OH  
V
OH  
V
– 0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
.
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
Two Line Output Control  
System Considerations  
Because OTP EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
For the most efficient use of these two control  
lines, Eshould be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
devices. The supply current, I , has three seg-  
CC  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
transient current peaks is dependent on the ca-  
pacitive and inductive loading of the device at the  
output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
ic capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point.The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
5/15  
M27C202  
(1)  
Table 8. Read Mode AC Characteristics  
(T = 0 to 70 °C, –40 to 85 °C or –40 to 125 °C; V = 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27C202  
(3)  
(3)  
Symbol  
Alt  
Parameter  
Test Condition  
-80  
-100  
Unit  
-45  
-70  
Min Max Min Max Min Max Min Max  
Address Validto  
Output Valid  
t
t
E = V , G = V  
45  
45  
25  
25  
25  
70  
70  
40  
30  
30  
80  
80  
40  
30  
30  
100  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
t
G = V  
IL  
ELQV  
CE  
Output Enable Low  
to Output Valid  
t
t
E = V  
IL  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
(2)  
t
G = V  
IL  
0
0
0
0
0
0
0
0
0
0
0
0
30  
t
DF  
EHQZ  
Output Enable High  
to Output Hi-Z  
(2)  
t
E = V  
IL  
30  
t
DF  
GHQZ  
Address Transition to  
Output Transition  
t
t
E = V , G = V  
IL IL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
Figure 5. Read Mode AC Waveforms  
VALID  
VALID  
A0-A16  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q15  
AI01818B  
6/15  
M27C202  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
Input Leakage Current  
Supply Current  
0 V V  
LI  
IN  
IH  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2
0.8  
IL  
V
V
+ 0.5  
CC  
V
IH  
V
OL  
I
= 2.1mA  
OL  
0.4  
V
V
I
= –400µA  
2.4  
V
OH  
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
t
Address Valid to Program Low  
Input Valid to Program Low  
AVPL  
AS  
t
2
QVPL  
DS  
t
t
V
V
High to Program Low  
High to Program Low  
2
VPHPL  
VPS  
VCS  
CES  
PP  
CC  
t
t
t
2
VCHPL  
t
t
Chip Enable Low to Program Low  
Program Pulse Width  
2
ELPL  
t
95  
2
105  
PLPH  
PW  
t
t
Program High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
PHQX  
DH  
t
t
2
QXGL  
GLQV  
OES  
t
t
100  
130  
OE  
(2)  
t
Output Enable High to Output Hi-Z  
0
0
ns  
ns  
t
DFP  
GHQZ  
Output Enable High to Address  
Transition  
t
t
GHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
light (UV EPROM). The M27C202 is in the pro-  
gramming mode when V input is at 12.75V, E is  
PP  
When delivered (and after each ‘1’s erasure for UV  
EPROM), all bits of the M27C202 are in the ’1’  
state. Data is introduced by selectively program-  
ming ’0’s into the desired bit locations. Although  
only ’0’s will be programmed, both ’1’s and ’0’s can  
be present in the data word. The only way to  
change a ‘0’ to a ‘1’ is by die exposure to ultraviolet  
at V and P is pulsed to V . The data to be pro-  
IL  
IL  
grammed is applied to 16 bits in parallel, to the  
data output pins. The levels required for the ad-  
dress and data inputs are TTL. V is specified to  
CC  
be 6.25V ± 0.25V.  
7/15  
M27C202  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A15  
Q0-Q15  
tAVPL  
tQVPL  
DATA IN  
DATA OUT  
tPHQX  
V
PP  
tVPHPL  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
tVCHPL  
E
tELPL  
tPLPH  
P
tQXGL  
G
PROGRAM  
VERIFY  
AI00706  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows pro-  
gramming of the whole array with a guaranteed  
margin, in a typical time of 13 seconds. Program-  
ming with PRESTO II consists of applying a se-  
quence of 100µs program pulses to each word  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
since the verify in MARGIN MODE provides nec-  
essary margin to each programmed cell.  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
P = 100µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Program Inhibit  
YES  
Programming of multiple M27C202s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27C202 may be common. A TTL low level pulse  
applied to a M27C202’s P input, with E low and  
Last  
Addr  
NO  
FAIL  
YES  
V
at 12.75V, will program that M27C202. A high  
PP  
CHECK ALL WORDS  
level E input inhibits the other M27C202s from be-  
ing programmed.  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Program Verify  
AI00707C  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with E  
and G at V , P at V , V at 12.75V and V at  
IL  
IH  
PP  
CC  
6.25V.  
8/15  
M27C202  
On-Board Programming  
ERASURE OPERATION (applies to UV EPROM)  
The M27C202 can be directly programmed in the  
application circuit. See the relevant Application  
Note AN620.  
The erasure characteristics of the M27C202 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27C202 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27C202 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27C202 window to prevent unintentional era-  
sure. The recommended erasure procedure for  
the M27C202 is exposure to short wave ultraviolet  
light which has wavelength 2537 Å. The integrated  
dose (i.e. UV intensity x exposure time) for erasure  
Electronic Signature  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27C202. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the M27C202  
with V = V = 5V. Two identifier bytes may  
PP  
CC  
then be sequenced from the device outputs by tog-  
gling address line A0 from V to V . All other ad-  
2
IL  
IH  
should be a minimum of 15 W-sec/cm . The era-  
dress lines must be held at V during Electronic  
IL  
sure time with this dosage is approximately 15 to  
20 minutes using an ultraviolet lamp with  
Signature mode. Byte 0 (A0 = V ) represents the  
IL  
manufacturer code and byte 1 (A0 = V ) the de-  
2
IH  
12000µW/cm power rating. The M27C202 should  
vice identifier code. For the STMicroelectronics  
M27C202, these two identifier bytes are given in  
Table 4 and can be read-out on outputs Q7 to Q0.  
be placed within 2.5 cm (1 inch) of the lamp tubes  
during the erasure. Some lamps have a filter on  
their tubes which should be removed before era-  
sure.  
9/15  
M27C202  
Table 11. Ordering Information Scheme  
Example:  
M27C202  
-80  
K
1
TR  
Device Type  
M27  
Supply Voltage  
C = 5V ±10%  
Device Function  
202 = 2 Mbit (128Kb x16)  
Speed  
(1)  
-45  
= 45 ns  
= 70 ns  
(1)  
-70  
-80 = 80 ns  
-100 = 100 ns  
(2)  
Not For New Design  
-120 = 120 ns  
-150 = 150 ns  
-200 = 200 ns  
Package  
F = FDIP40W  
B = PDIP40  
K = PLCC44  
N = TSOP40: 10 x 14 mm  
Temperature Range  
1 = 0 to 70 °C  
3 = –40 to 125 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
2. These speeds are replaced by the 100ns.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
10/15  
M27C202  
Table 12. FDIP40W - 40 lead Ceramic Frit-seal DIP with window, Package Mechanical Data  
mm  
inches  
Symb  
Typ  
Min  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Min  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
51.79  
0.30  
52.60  
0.009  
2.039  
0.012  
2.071  
D
D2  
E
48.26  
15.24  
1.900  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
8.13  
0.320  
α
4°  
11°  
4°  
11°  
N
40  
40  
Figure 8. FDIP40W - 40 lead Ceramic Frit-seal DIP with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
11/15  
M27C202  
Table 13. PDIP40 - 40 pin Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
4.45  
0.64  
Max  
Typ  
Max  
A
A1  
A2  
B
0.175  
0.025  
0.38  
3.56  
0.38  
1.14  
0.20  
51.78  
0.015  
0.140  
0.015  
0.045  
0.008  
2.039  
3.91  
0.53  
1.78  
0.31  
52.58  
0.154  
0.021  
0.070  
0.012  
2.070  
B1  
C
D
D2  
E
48.26  
1.900  
14.80  
13.46  
16.26  
13.99  
0.583  
0.530  
0.640  
0.551  
E1  
e1  
eA  
eB  
L
2.54  
0.100  
0.600  
15.24  
15.24  
3.05  
1.52  
0°  
17.78  
3.81  
2.29  
15°  
0.600  
0.120  
0.060  
0°  
0.700  
0.150  
0.090  
15°  
S
α
N
40  
40  
Figure 9. PDIP40 - 40 lead Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
12/15  
M27C202  
Table 14. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
mm  
Min  
4.20  
2.29  
inches  
Min  
Symb  
Typ  
Max  
4.70  
3.04  
0.51  
0.53  
0.81  
17.65  
16.66  
16.00  
17.65  
16.66  
16.00  
Typ  
Max  
0.185  
0.120  
0.020  
0.021  
0.032  
0.695  
0.656  
0.630  
0.695  
0.656  
0.630  
A
A1  
A2  
B
0.165  
0.090  
0.33  
0.66  
17.40  
16.51  
14.99  
17.40  
16.51  
14.99  
0.013  
0.026  
0.685  
0.650  
0.590  
0.685  
0.650  
0.590  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
44  
44  
CP  
0.10  
0.004  
Figure 10. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
13/15  
M27C202  
Table 15. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 14 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
14.20  
12.50  
10.10  
Typ  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.559  
0.492  
0.398  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
13.80  
12.30  
9.90  
0.002  
0.037  
0.007  
0.004  
0.543  
0.484  
0.390  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
40  
40  
CP  
0.10  
0.004  
Figure 11. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 14 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
14/15  
M27C202  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
1999 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
15/15  

相关型号:

M27C202-150B6TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C202-150F1

128KX16 UVPROM, 100ns, CDIP40, FRIT SEALED, WINDOWED, CERAMIC, DIP-40
STMICROELECTR

M27C202-150F1TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C202-150F3TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C202-150F6

128KX16 UVPROM, 100ns, CDIP40, FRIT SEALED, WINDOWED, CERAMIC, DIP-40
STMICROELECTR

M27C202-150F6TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C202-150K1

128KX16 OTPROM, 100ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

M27C202-150K1TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C202-150K3

128KX16 OTPROM, 100ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

M27C202-150K3TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C202-150K6

128KX16 OTPROM, 100ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

M27C202-150K6TR

2 Mbit 128Kb x16 UV EPROM and OTP EPROM
STMICROELECTR