M27C400-80XF6TR [STMICROELECTRONICS]

4 Mbit 512Kb x8 or 256Kb x16 UV EPROM and OTP EPROM; 4兆位512KB ×8或256Kb的X16 UV EPROM和OTP EPROM
M27C400-80XF6TR
型号: M27C400-80XF6TR
厂家: ST    ST
描述:

4 Mbit 512Kb x8 or 256Kb x16 UV EPROM and OTP EPROM
4兆位512KB ×8或256Kb的X16 UV EPROM和OTP EPROM

可编程只读存储器 电动程控只读存储器
文件: 总14页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C400  
4 Mbit (512Kb x8 or 256Kb x16) UV EPROM and OTP EPROM  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 55ns  
BYTE-WIDE or WORD-WIDE  
CONFIGURABLE  
4 Mbit MASK ROM REPLACEMENT  
40  
40  
LOW POWER CONSUMPTION  
– Active Current 70mA at 8MHz  
– Stand-by Current 100µA  
1
1
FDIP40W (F)  
PDIP40 (B)  
PROGRAMMING VOLTAGE: 12.5V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
Figure 1. Logic Diagram  
– Device Code: B8h  
DESCRIPTION  
The M27C400 is an 4 Mbit EPROM offered in the  
two ranges UV (ultra violet erase) and OTP (one  
time programmable). It is ideally suited for micro-  
processor systems requiring large data or program  
storage. It is organised as either 512 Kwords of 8  
bit or 256 Kwords of 16 bit. The pin-out is compat-  
ible with the most common 8 Mbit Mask ROM.  
The FDIP40W (window ceramic frit-seal package)  
has a transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern.  
A new pattern can then be written rapidly to the de-  
vice by following the programming procedure.  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27C400 is offered in PDIP40 package.  
V
CC  
18  
Q15A–1  
A0-A17  
15  
Q0-Q14  
E
M27C400  
G
BYTEV  
PP  
V
SS  
AI01634  
May 1999  
1/14  
M27C400  
Figure 2. DIP Connections  
Table 1. Signal Names  
A0-A17  
Q0-Q7  
Q8-Q14  
Q15A–1  
E
Address Inputs  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
1
40 A8  
Data Outputs  
2
39 A9  
3
38 A10  
37 A11  
36 A12  
35 A13  
34 A14  
33 A15  
32 A16  
31 BYTEV  
Data Outputs  
4
Data Output / Address Input  
Chip Enable  
5
6
7
8
G
Output Enable  
9
BYTEV  
Byte Mode / Program Supply  
Supply Voltage  
10  
11  
12  
PP  
PP  
M27C400  
V
30  
V
SS  
SS  
G
V
CC  
SS  
29 Q15A–1  
Q0 13  
Q8 14  
Q1 15  
Q9 16  
Q2 17  
Q10 18  
Q3 19  
Q11 20  
28 Q7  
V
Ground  
27 Q14  
26 Q6  
25 Q13  
24 Q5  
logically regarded as 16 bit wide, but read in the  
Byte-wide organisation, then with A–1 at V the  
lower 8 bits of the 16 bit data are selected and with  
IL  
23 Q12  
22 Q4  
A–1 at V the upper 8 bits of the 16 bit data are  
IH  
selected.  
21  
V
CC  
The M27C400 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. In addition the Word-wide or  
Byte- wide organisation must be selected.  
AI01635  
Chip Enable (E) is the power control and should be  
used for device selection. Output Enable (G) is the  
output control and should be used to gate data to  
the output pins independent of device selection.  
Assuming that the addresses are stable, the ad-  
DEVICE OPERATION  
The operating modes of the M27C400 are listed in  
the Operating Modes Table. A single power supply  
is required in the read mode. All inputs are TTL  
compatible except for V and 12V on A9 for the  
Electronic Signature.  
PP  
dress access time (t  
) is equal to the delay  
). Data is available at the  
AVQV  
from E to output (t  
ELQV  
output after a delay of t  
from the falling edge  
Read Mode  
GLQV  
of G, assuming that E has been low and the ad-  
The M27C400 has two organisations, Word-wide  
and Byte-wide. The organisation is selected by the  
dresses have been stable for at least t  
-t  
.
AVQV GLQV  
signal level on the BYTEV pin. When BYTEV  
Standby Mode  
PP  
PP  
is at V the Word-wide organisation is selected  
and the Q15A–1 pin is used for Q15 Data Output.  
IH  
The M27C400 has a standby mode which reduces  
the supply current from 50mA to 100µA. The  
M27C400 is placed in the standby mode by apply-  
ing a CMOS high signal to the E input. When in the  
standby mode, the outputs are in a high imped-  
ance state, independent of the G input.  
When the BYTEV pin is at V the Byte-wide or-  
PP  
IL  
ganisation is selected and the Q15A–1 pin is used  
for the Address Input A–1. When the memory is  
2/14  
M27C400  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Ambient Operating Temperature  
T
Temperature Under Bias  
BIAS  
T
STG  
Storage Temperature  
(2)  
Input or Output Voltage (except A9)  
V
IO  
V
Supply Voltage  
–2 to 7  
–2 to 13.5  
–2 to 14  
V
V
V
CC  
(2)  
A9 Voltage  
V
A9  
V
Program Supply Voltage  
PP  
Note: 1. Except for the rating “Operating Temperature Range”, stresses above those listed in the Table “Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
BYTEV  
E
G
A9  
X
Q7-Q0  
Data Out  
Data Out  
Data Out  
Hi-Z  
Q14-Q8  
Data Out  
Hi-Z  
Q15A–1  
PP  
V
V
V
IH  
Read Word-wide  
Data Out  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
V
V
V
V
V
V
V
IL  
V
Read Byte-wide Upper  
Read Byte-wide Lower  
Output Disable  
X
IH  
V
IL  
V
IL  
X
Hi-Z  
X
X
Hi-Z  
Hi-Z  
Data In  
Data Out  
Hi-Z  
IH  
IH  
V
Pulse  
V
V
PP  
Program  
X
Data In  
Data Out  
Hi-Z  
Data In  
Data Out  
Hi-Z  
IL  
V
V
V
V
PP  
Verify  
X
IH  
IH  
IH  
IL  
V
V
V
PP  
Program Inhibit  
Standby  
X
IH  
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
V
IL  
V
V
IH  
V
Electronic Signature  
Codes  
Codes  
Code  
IL  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
Q0  
Hex Data  
20h  
V
IL  
0
1
0
0
V
1
0
1
1
0
0
B2h  
IH  
Note: Outputs Q15-Q8 are set to '0'.  
3/14  
M27C400  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
3V  
1N914  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
2.4V  
C
L
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
10  
Unit  
pF  
Input Capacitance (except BYTEV  
)
PP  
V
= 0V  
= 0V  
= 0V  
IN  
IN  
C
IN  
Input Capacitance (BYTEV  
Output Capacitance  
)
V
120  
12  
pF  
PP  
C
OUT  
V
OUT  
pF  
Note: 1. Sampled only, not 100% tested.  
Two Line Output Control  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2-line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two-line control  
function allows:  
a. the lowest possible memory power dissipation  
b. complete assurance that output bus contention  
will not occur.  
4/14  
M27C400  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
A
CC  
PP  
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0V V V  
LI  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
±10  
µA  
E = V , G = V ,  
IL  
IL  
70  
50  
mA  
mA  
I
I
= 0mA, f = 8MHz  
OUT  
I
Supply Current  
CC  
E = V , G = V ,  
IL  
IL  
= 0mA, f = 5MHz  
OUT  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
E > V – 0.2V  
CC  
100  
10  
CC2  
I
PP  
V
= V  
PP CC  
V
IL  
Input Low Voltage  
–0.3  
2
0.8  
(2)  
V
+ 1  
Input High Voltage  
V
V
V
V
CC  
IH  
V
I
= 2.1mA  
Output Low Voltage  
Output High Voltage TTL  
0.4  
OL  
OL  
V
I
= –400µA  
OH  
2.4  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
System Considerations  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
capacitor should be mounted near the power sup-  
ply connection point. The purpose of this capacitor  
is to overcome the voltage drop caused by the in-  
ductive effects of PCB traces.  
supplies to the devices. The supply current I  
CC  
has three segments of importance to the system  
designer: the standby current, the active current  
and the transient peaks that are produced by the  
falling and rising edges of E. The magnitude of the  
transient current peaks is dependent on the ca-  
pacitive and inductive loading of the device out-  
puts. The associated transient voltage peaks can  
be suppressed by complying with the two line out-  
put control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
Programming  
When delivered (and after each erasure for UV  
EPROM), all bits of the M27C400 are in the '1'  
state. Data is introduced by selectively program-  
ming '0's into the desired bit locations. Although  
only '0's will be programmed, both '1's and '0's can  
be present in the data word. The only way to  
change a '0' to a '1' is by die exposition to ultravio-  
let light (UVEPROM). The M27C400 is in the pro-  
gramming mode when V input is at 12.5V, G is  
PP  
ic capacitor is used on every device between V  
CC  
at V and E is pulsed to V . The data to be pro-  
IH  
IL  
and V . This should be a high frequency type of  
SS  
grammed is applied to 16 bits in parallel to the data  
output pins. The levels required for the address  
and data inputs are TTL. V  
6.25V ± 0.25V.  
low inherent inductance and should be placed as  
close as possible to the device. In addition, a  
4.7µF electrolytic capacitor should be used be-  
is specified to be  
CC  
tween V  
and V for every eight devices. This  
CC  
SS  
5/14  
M27C400  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V )  
A
CC  
PP  
CC  
M27C400  
(3)  
Symbol  
Alt  
Parameter  
Test Condition  
-70  
Min Max Min Max  
Unit  
-55  
t
t
t
E = V , G = V  
Address Valid to Output Valid  
BYTE High to Output Valid  
55  
55  
55  
30  
70  
70  
70  
35  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
IL  
t
E = V , G = V  
BHQV  
ST  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
ELQV  
CE  
IL  
t
t
E = V  
GLQV  
OE  
IL  
(2)  
(2)  
(2)  
t
E = V , G = V  
BYTE Low to Output Hi-Z  
30  
30  
30  
30  
30  
30  
ns  
ns  
t
t
STD  
IL  
IL  
BLQZ  
t
G = V  
Chip Enable High to Output Hi-Z  
0
0
DF  
IL  
EHQZ  
t
E = V  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
BYTE Low to Output Transition  
0
5
5
0
5
5
ns  
ns  
ns  
t
DF  
IL  
GHQZ  
t
t
E = V , G = V  
AXQX  
OH  
OH  
IL  
IL  
IL  
t
t
E = V , G = V  
BLQX  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed measurement conditions.  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V )  
A
CC  
PP  
CC  
M27C400  
-80 -100  
Min Max Min Max  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
t
t
t
E = V , G = V  
Address Valid to Output Valid  
BYTE High to Output Valid  
80  
80  
80  
40  
40  
100  
100  
100  
50  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
IL  
t
ST  
E = V , G = V  
BHQV  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
BYTE Low to Output Hi-Z  
ELQV  
CE  
IL  
t
t
E = V  
GLQV  
OE  
IL  
(2)  
(2)  
(2)  
t
E = V , G = V  
50  
t
STD  
IL  
IL  
BLQZ  
t
DF  
G = V  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
0
0
40  
40  
0
0
50  
50  
ns  
ns  
t
IL  
EHQZ  
t
DF  
E = V  
t
IL  
GHQZ  
t
t
E = V , G = V  
Address Transition to Output Transition  
BYTE Low to Output Transition  
5
5
5
5
ns  
ns  
AXQX  
OH  
OH  
IL  
IL  
IL  
t
t
E = V , G = V  
BLQX  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
6/14  
M27C400  
Figure 5. Word-Wide Read Mode AC Waveforms  
VALID  
VALID  
A0-A17  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q15  
AI01636  
Note: BYTEV = V  
.
IH  
PP  
Figure 6. Byte-Wide Read Mode AC Waveforms  
VALID  
tAVQV  
A–1,A0-A17  
E
VALID  
tAXQX  
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q7  
AI01637  
Note: BYTEV = V  
PP  
IL.  
7/14  
M27C400  
Figure 7. BYTE Transition AC Waveforms  
A0-A17  
VALID  
A–1  
VALID  
tAVQV  
tAXQX  
BYTEV  
PP  
tBHQV  
Q0-Q7  
tBLQX  
Q8-Q15  
tBLQZ  
DATA OUT  
DATA OUT  
Hi-Z  
AI01638B  
Note: Chip Enable (E) and Output Enable (G) = V .  
IL  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.5V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
mA  
mA  
V
I
0 V V  
Input Leakage Current  
Supply Current  
LI  
IN  
CC  
I
50  
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2.4  
0.8  
IL  
V
IH  
V
+ 0.5  
CC  
V
V
OL  
I
= 2.1mA  
OL  
0.4  
V
V
OH  
I
= –2.5mA  
3.5  
V
OH  
V
ID  
11.5  
12.5  
V
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
8/14  
M27C400  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.5V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
AS  
Address Valid to Chip Enable Low  
AVEL  
t
t
Input Valid to Chip Enable Low  
2
QVEL  
DS  
t
t
V
V
High to Address Valid  
High to Address Valid  
2
VPHAV  
VPS  
PP  
t
t
2
VCHAV  
VCS  
CC  
t
t
PW  
Chip Enable Program Pulse Width  
Chip Enable High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
45  
2
55  
ELEH  
t
t
DH  
EHQX  
t
t
OES  
2
QXGL  
t
t
120  
130  
GLQV  
OE  
(2)  
t
0
0
ns  
ns  
t
DFP  
GHQZ  
Output Enable High to Address  
Transition  
t
t
AH  
GHAX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 8. Programming and Verify Modes AC Waveforms  
A0-A17  
Q0-Q15  
VALID  
tAVEL  
DATA IN  
tQVEL  
DATA OUT  
tEHQX  
BYTEV  
PP  
tVPHAV  
tVCHAV  
tGLQV  
tGHQZ  
tGHAX  
V
E
CC  
tELEH  
tQXGL  
G
PROGRAM  
VERIFY  
AI01639  
9/14  
M27C400  
Figure 9. Programming Flowchart  
On-Board Programming  
The M27C400 can be directly programmed in the  
application circuit. See the relevant Application  
Note AN620.  
Electronic Signature  
V
= 6.25V, V  
= 12.5V  
PP  
CC  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27C400. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
n = 0  
E = 50µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
YES  
M27C400, with V = V = 5V. Two identifier  
PP  
CC  
bytes may then be sequenced from the device out-  
puts by toggling address line A0 from V to V . All  
Last  
Addr  
NO  
FAIL  
IL  
IH  
other address lines must be held at V during  
Electronic Signature mode.  
IL  
YES  
Byte 0 (A0 = V ) represents the manufacturer  
CHECK ALL WORDS  
IL  
code and byte 1 (A0 = V ) the device identifier  
BYTEV  
1st: V  
=V  
IH  
IH  
PP  
CC  
= 6V  
code. For the STMicroelectronics M27C400, these  
two identifier bytes are given in Table 4 and can be  
read-out on outputs Q7 to Q0.  
2nd: V  
= 4.2V  
CC  
AI01044B  
ERASURE OPERATION (applies to UV EPROM)  
The erasure characteristics of the M27C400 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27C400 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27C400 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27C400 window to prevent unintentional era-  
sure. The recommended erasure procedure for  
M27C400 is exposure to short wave ultraviolet  
light which has a wavelength of 2537 Å. The inte-  
grated dose (i.e. UV intensity x exposure time) for  
PRESTO III Programming Algorithm  
The PRESTO III Programming Algorithm allows  
the whole array to be programed with a guaran-  
teed margin in a typical time of 26 seconds. Pro-  
gramming with PRESTO III consists of applying a  
sequence of 50µs program pulses to each word  
until a correct verify occurs (see Figure 9). During  
programing and verify operation a MARGIN  
MODE circuit is automatically activated to guaran-  
tee that each cell is programed with enough mar-  
gin. No overpromise pulse is applied since the  
verify in MARGIN MODE provides the necessary  
margin to each programmed cell.  
Program Inhibit  
Programming of multiple M27C400s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27C400 may be common. A TTL low level pulse  
2
erasure should be a minimum of 30 W-sec/cm .  
The erasure time with this dosage is approximate-  
ly 30 to 40 minutes using an ultraviolet lamp with  
applied to a M27C400's E input and V at 12.5V,  
PP  
will program that M27C400. A high level E input in-  
hibits the other M27C400s from being pro-  
grammed.  
2
12000 µW/cm power rating. The M27C400  
should be placed within 2.5cm (1 inch) of the lamp  
tubes during the erasure. Some lamps have a filter  
on their tubes which should be removed before  
erasure.  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with E  
at V and G at V , V  
at 12.5V and V  
at  
IH  
IL  
PP  
CC  
6.25V.  
10/14  
M27C400  
Table 11. Ordering Information Scheme  
Example:  
M27C400  
-70  
X
F
1
TR  
Device Type  
M27  
Supply Voltage  
C = 5V  
Device Function  
400 = 4 Mbit (512Kb x8 or 256Kb x16)  
Speed  
(1)  
-55  
= 55 ns  
-70 = 70 ns  
-80 = 80 ns  
-100 = 100 ns  
V
Tolerance  
CC  
blank = ± 10%  
X = ± 5%  
Package  
F = FDIP40W  
B = PDIP40  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
11/14  
M27C400  
Table 12. FDIP40W - 40 lead Ceramic Frit-seal DIP with window, Package Mechanical Data  
mm  
inches  
Symb  
Typ  
Min  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Min  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
51.79  
0.30  
52.60  
0.009  
2.039  
0.012  
2.071  
D
D2  
E
48.26  
15.24  
1.900  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
ea.  
be  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
8.13  
0.320  
α
4°  
11°  
4°  
11°  
N
40  
40  
Figure 10. FDIP40W - 40 lead Ceramic Frit-seal DIP with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
12/14  
M27C400  
Table 13. PDIP40 - 40 pin Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
4.45  
0.64  
Max  
Typ  
Max  
A
A1  
A2  
B
0.175  
0.025  
0.38  
3.56  
0.38  
1.14  
0.20  
51.78  
0.015  
0.140  
0.015  
0.045  
0.008  
2.039  
3.91  
0.53  
1.78  
0.31  
52.58  
0.154  
0.021  
0.070  
0.012  
2.070  
B1  
C
D
D2  
E
48.26  
1.900  
14.80  
13.46  
16.26  
13.99  
0.583  
0.530  
0.640  
0.551  
E1  
e1  
ea.  
be  
L
2.54  
0.100  
0.600  
15.24  
15.24  
3.05  
1.52  
0°  
17.78  
3.81  
2.29  
15°  
0.600  
0.120  
0.060  
0°  
0.700  
0.150  
0.090  
15°  
S
α
N
40  
40  
Figure 11. PDIP40 - 40 lead Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
13/14  
M27C400  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
1999 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
14/14  

相关型号:

M27C4001

4 Mbit (512Kb x 8) UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10B1

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10B1TR

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10B1X

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10B6

4 Mbit (512Kb x 8) UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10B6TR

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10B6X

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10C1

4 Mbit (512Kb x 8) UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10C1TR

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10C1X

4 Mbit 512Kb x 8 UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10C6

4 Mbit (512Kb x 8) UV EPROM and OTP EPROM
STMICROELECTR

M27C4001-10C6E

暂无描述
STMICROELECTR