M27C512-20B1X [STMICROELECTRONICS]

512 Kbit 64Kb x8 UV EPROM and OTP EPROM; 512 Kbit的64Kb的X8 UV EPROM和OTP EPROM
M27C512-20B1X
型号: M27C512-20B1X
厂家: ST    ST
描述:

512 Kbit 64Kb x8 UV EPROM and OTP EPROM
512 Kbit的64Kb的X8 UV EPROM和OTP EPROM

存储 内存集成电路 光电二极管 可编程只读存储器 OTP只读存储器 电动程控只读存储器
文件: 总22页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C512  
512 Kbit (64K x8) UV EPROM and OTP EPROM  
FEATURES SUMMARY  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
Figure 1. Packages  
ACCESS TIME: 45ns  
LOW POWER “CMOS” CONSUMPTION:  
Active Current 30mA  
Standby Current 100µA  
28  
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIMES of AROUND 6sec.  
ELECTRONIC SIGNATURE  
1
FDIP28W (F)  
Manufacturer Code: 20h  
Device Code: 3Dh  
PACKAGES  
Lead-Free Versions  
28  
1
PDIP28 (B)  
PLCC32 (C)  
TSOP28 (N)  
8 x 13.4 mm  
November 2004  
1/22  
M27C512  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. LCC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3. Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Two Line Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
System Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PRESTO IIB Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Program Verify. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ERASURE OPERATION (APPLIES FOR UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 5. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 7. Testing Input Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 8. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 6. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 7. Read Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 8. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 9. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 9. Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 10. Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 11. Margin Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10.Margin Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 12. Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 11.Programming and Verify Modes AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/22  
M27C512  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12.FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline. . . . . . . . . . . . 16  
Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data . . . . 16  
Figure 13.PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline . . . . . . . . . . . . . . . . . . . . 17  
Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data . . . . . . . . . . . . 17  
Figure 14.PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline . . . . . . . . . . . . . . . . . 18  
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data . . . . . . . . . . 18  
Figure 15.TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline . . . . . . . . 19  
Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data 19  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 17. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 18. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3/22  
M27C512  
SUMMARY DESCRIPTION  
The M27C512 is a 512 Kbit EPROM offered in the  
two ranges UV (ultra violet erase) and OTP (one  
time programmable). It is ideally suited for applica-  
tions where fast turn-around and pattern experi-  
mentation are important requirements and is  
organized as 65536 by 8 bits.  
The FDIP28W (window ceramic frit-seal package)  
has transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
Figure 2. Logic Diagram  
V
CC  
16  
8
A0-A15  
E
Q0-Q7  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27C512 is offered in PDIP28, PLCC32 and  
TSOP28 (8 x 13.4 mm) packages.  
M27C512  
GV  
PP  
In addition to the standard versions, the packages  
are also available in Lead-free versions, in compli-  
ance with JEDEC Std J-STD-020B, the ST ECO-  
PACK 7191395 Specification, and the RoHS  
(Restriction of Hazardous Substances) directive.  
V
SS  
AI00761B  
Table 1. Signal Names  
A0-A15  
Q0-Q7  
E
Address Inputs  
Data Outputs  
Chip Enable  
GV  
Output Enable / Program Supply  
Supply Voltage  
PP  
V
CC  
V
SS  
Ground  
NC  
DU  
Not Connected Internally  
Don’t Use  
4/22  
M27C512  
Figure 3. DIP Connections  
Figure 5. TSOP Connections  
A15  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
V
CC  
27 A14  
26 A13  
25 A8  
24 A9  
23 A11  
GV  
22  
21  
A10  
E
PP  
A11  
A9  
A6  
Q7  
Q6  
Q5  
Q4  
Q3  
A5  
A8  
A4  
A13  
A14  
A3  
22 GV  
PP  
21 A10  
20  
M27C512  
A2  
V
28  
1
15  
14  
CC  
M27C512  
A1  
E
A15  
V
SS  
A0 10  
Q0 11  
Q1 12  
Q2 13  
19 Q7  
18 Q6  
17 Q5  
16 Q4  
15 Q3  
A12  
A7  
A6  
A5  
A4  
A3  
Q2  
Q1  
Q0  
A0  
A1  
A2  
V
14  
SS  
AI00762  
7
8
AI00764B  
Figure 4. LCC Connections  
1 32  
A6  
A8  
A5  
A4  
A3  
A9  
A11  
NC  
A2  
A1  
A0  
NC  
Q0  
9
M27C512  
25 GV  
PP  
A10  
E
Q7  
Q6  
17  
AI00763  
5/22  
M27C512  
DEVICE OPERATION  
The modes of operations of the M27C512 are list-  
ed in the Operating Modes table. A single power  
supply is required in the read mode. All inputs are  
TTL levels except for GVPP and 12V on A9 for  
Electronic Signature.  
dresses are stable, the address access time  
(tAVQV) is equal to the delay from E to output  
(tELQV). Data is available at the output after a delay  
of tGLQV from the falling edge of G, assuming that  
E has been low and the addresses have been sta-  
ble for at least tAVQV-tGLQV  
.
Read Mode  
Standby Mode  
The M27C512 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable (G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
The M27C512 has a standby mode which reduces  
the active current from 30mA to 100µA The  
M27C512 is placed in the standby mode by apply-  
ing a CMOS high signal to the E input. When in the  
standby mode, the outputs are in a high imped-  
ance state, independent of the GVPP input.  
Table 2. Operating Modes  
GV  
Mode  
E
A9  
X
Q7-Q0  
Data Out  
Hi-Z  
PP  
V
V
IL  
Read  
IL  
IL  
V
V
V
Output Disable  
Program  
X
IH  
V
Pulse  
X
Data In  
Hi-Z  
IL  
PP  
PP  
V
IH  
V
Program Inhibit  
Standby  
X
V
IH  
X
X
Hi-Z  
V
V
IL  
V
ID  
Electronic Signature  
Codes  
IL  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 3. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
Q5  
1
Q4  
0
Q3  
Q2  
0
Q1  
Q0  
0
Hex Data  
V
0
0
0
1
0
0
20h  
3Dh  
IL  
V
IH  
0
1
1
1
1
Two Line Output Control  
when data is required from a particular memory  
device.  
System Considerations  
Because EPROMs are usually used in larger  
memory arrays, the product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power  
dissipation,  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
devices. The supply current, ICC, has three seg-  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
ic capacitor be used on every device between VCC  
and VSS. This should be a high frequency capaci-  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
b. complete assurance that output bus  
contention will not occur.  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
6/22  
M27C512  
tion, a 4.7µF bulk electrolytic capacitor should be  
used between VCC and VSS for every eight devic-  
es. The bulk capacitor should be located near the  
power supply connection point.The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
Nevertheless to achieve compatibility with all pro-  
gramming equipments, PRESTO Programming  
Algorithm can be used as well.  
PRESTO IIB Programming Algorithm  
PRESTO IIB Programming Algorithm allows the  
whole array to be programmed with a guaranteed  
margin, in a typical time of 6.5 seconds. This can  
be achieved with STMicroelectronics M27C512  
due to several design innovations described in the  
M27C512 datasheet to improve programming effi-  
ciency and to provide adequate margin for reliabil-  
ity. Before starting the programming the internal  
MARGIN MODE circuit is set in order to guarantee  
that each cell is programmed with enough margin.  
Then a sequence of 100µs program pulses are ap-  
plied to each byte until a correct verify occurs. No  
overprogram pulses are applied since the verify in  
MARGIN MODE provides the necessary margin.  
Figure 6. Programming Flowchart  
V
= 6.25V, V = 12.75V  
PP  
CC  
SET MARGIN MODE  
n = 0  
E = 100µs Pulse  
Program Inhibit  
NO  
Programming of multiple M27C512s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including GVPP of the par-  
allel M27C512 may be common. A TTL low level  
pulse applied to a M27C512's E input, with VPP at  
12.75V, will program that M27C512. A high level E  
input inhibits the other M27C512s from being pro-  
grammed.  
NO  
++n  
= 25  
VERIFY  
++ Addr  
YES  
YES  
Last  
Addr  
NO  
FAIL  
Program Verify  
YES  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
at VIL. Data should be verified with tELQV after the  
falling edge of E.  
RESET MARGIN MODE  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Electronic Signature  
AI00738B  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27C512. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
M27C512. Two identifier bytes may then be se-  
quenced from the device outputs by toggling ad-  
dress line A0 from VIL to VIH. All other address  
lines must be held at VIL during Electronic Signa-  
ture mode. Byte 0 (A0 = VIL) represents the man-  
ufacturer code and byte 1 (A0 = VIH) the device  
identifier code. For the STMicroelectronics  
M27C512, these two identifier bytes are given in  
Table 3. and can be read-out on outputs Q7 to Q0.  
Programming  
When delivered (and after each erasure for UV  
EPROM), all bits of the M27C512 are in the '1'  
state. Data is introduced by selectively program-  
ming '0's into the desired bit locations. Although  
only '0's will be programmed, both '1's and '0's can  
be present in the data word. The only way to  
change a '0' to a '1' is by die exposure to ultraviolet  
light (UV EPROM). The M27C512 is in the pro-  
gramming mode when VPP input is at 12.75V and  
E is pulsed to VIL. The data to be programmed is  
applied to 8 bits in parallel to the data output pins.  
The levels required for the address and data in-  
puts are TTL. VCC is specified to be 6.25V ±  
0.25V. The M27C512 can use PRESTO IIB Pro-  
gramming Algorithm that drastically reduces the  
programming time (typically less than 6 seconds).  
7/22  
M27C512  
ERASURE OPERATION (APPLIES FOR UV EPROM)  
The erasure characteristics of the M27C512 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range.  
Research shows that constant exposure to room  
level fluorescent lighting could erase a typical  
M27C512 in about 3 years, while it would take ap-  
proximately 1 week to cause erasure when ex-  
posed to direct sunlight. If the M27C512 is to be  
exposed to these types of lighting conditions for  
extended periods of time, it is suggested that  
opaque labels be put over the M27C512 window to  
prevent unintentional erasure. The recommended  
erasure procedure for the M27C512 is exposure to  
short wave ultraviolet light which has wavelength  
2537 Å. The integrated dose (i.e. UV intensity x  
exposure time) for erasure should be a minimum  
of 15 W-sec/cm2. The erasure time with this dos-  
age is approximately 15 to 20 minutes using an ul-  
traviolet lamp with 12000 µW/cm2 power rating.  
The M27C512 should be placed within 2.5 cm (1  
inch) of the lamp tubes during the erasure. Some  
lamps have a filter on their tubes which should be  
removed before erasure.  
8/22  
M27C512  
MAXIMUM RATING  
Stressing the device outside the ratings listed in  
Table 4. may cause permanent damage to the de-  
vice. These are stress ratings only, and operation  
of the device at these, or any other conditions out-  
side those indicated in the Operating sections of  
this specification, is not implied. Exposure to Ab-  
solute Maximum Rating conditions for extended  
periods may affect device reliability. Refer also to  
the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 4. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
(3)  
T
A
–40 to 125  
–50 to 125  
–65 to 150  
(note 1)  
Ambient Operating Temperature  
T
Temperature Under Bias  
°C  
BIAS  
T
Storage Temperature  
°C  
STG  
T
Lead Temperature during Soldering  
°C  
LEAD  
(2)  
Input or Output Voltage (except A9)  
Supply Voltage  
–2 to 7  
–2 to 7  
V
V
V
V
V
IO  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
V
A9  
V
Program Supply Voltage  
–2 to 14  
PP  
®
Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST ECOPACK 7191395 specification,  
and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
9/22  
M27C512  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 5. AC Measurement Conditions  
High Speed  
Standard  
20ns  
Input Rise and Fall Times  
10ns  
0 to 3V  
1.5V  
Input Pulse Voltages  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 7. Testing Input Output Waveform  
Figure 8. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
Table 6. Capacitance  
(1,2)  
Symbol  
Min  
Max  
6
Unit  
pF  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
C
V
IN  
= 0V  
= 0V  
IN  
C
V
OUT  
12  
pF  
OUT  
Note: 1. T = 25°C, f = 1MHz  
A
2. Sampled only, not 100% tested.  
10/22  
M27C512  
Table 7. Read Mode DC Characteristics  
(1)  
Symbol  
Min  
Max  
±10  
±10  
Unit  
µA  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
I
LI  
0V V V  
IN  
CC  
I
LO  
0V V  
V  
µA  
OUT CC  
E = V , G = V ,  
IL  
IL  
I
Supply Current  
30  
mA  
CC  
I
= 0mA, f = 5MHz  
OUT  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
E > V – 0.2V  
CC  
100  
10  
CC2  
I
PP  
V
= V  
PP CC  
V
Input Low Voltage  
–0.3  
2
0.8  
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
V
V
V
IH  
CC  
V
I
= 2.1mA  
= –1mA  
Output Low Voltage  
0.4  
OL  
OL  
I
Output High Voltage TTL  
Output High Voltage CMOS  
3.6  
OH  
V
OH  
I
= –100µA  
V
– 0.7V  
CC  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
.
CC  
PP  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
Table 8. Read Mode AC Characteristics  
M27C512  
(1)  
(3)  
Symbol Alt  
Parameter  
-60  
-70  
-80  
Unit  
Test Condition  
-45  
Min Max Min Max Min Max Min Max  
Address Valid to  
Output Valid  
t
t
t
t
E = V , G = V  
45  
45  
25  
25  
25  
60  
60  
30  
25  
25  
70  
70  
35  
30  
30  
80  
80  
40  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
G = V  
ELQV  
CE  
IL  
Output Enable Low  
to Output Valid  
t
E = V  
IL  
GLQV  
OE  
Chip Enable High  
to Output Hi-Z  
(2)  
t
t
t
G = V  
0
0
0
0
0
0
0
0
0
0
0
0
t
DF  
DF  
IL  
EHQZ  
Output Enable  
High to Output Hi-Z  
(2)  
E = V  
t
IL  
GHQZ  
Address Transition  
to Output Transition  
t
E = V , G = V  
IL IL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
11/22  
M27C512  
Table 9. Read Mode AC Characteristics  
M27C512  
-10  
Min Max Min Max Min Max Min Max  
(1)  
Symbol Alt  
Parameter  
-12  
-15/-20/-25 Unit  
Test Condition  
-90  
Address Valid to  
Output Valid  
t
t
t
t
E = V , G = V  
90  
90  
40  
30  
30  
100  
100  
40  
120  
120  
50  
150  
150  
60  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
G = V  
ELQV  
CE  
IL  
Output Enable Low  
to Output Valid  
t
E = V  
IL  
GLQV  
OE  
Chip Enable High  
to Output Hi-Z  
(2)  
t
t
t
G = V  
0
0
0
0
0
0
30  
0
0
0
40  
0
0
0
50  
t
DF  
DF  
IL  
EHQZ  
Output Enable  
High to Output Hi-Z  
(2)  
E = V  
30  
40  
50  
t
IL  
GHQZ  
Address Transition  
to Output Transition  
t
E = V , G = V  
IL IL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 9. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A15  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00735B  
12/22  
M27C512  
Table 10. Programming Mode DC Characteristics  
(1,2)  
Symbol  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
Parameter  
Input Leakage Current  
Supply Current  
Test Condition  
I
LI  
V
IL  
V V  
IN  
IH  
I
CC  
I
PP  
E = V  
Program Current  
50  
IL  
V
IL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
–0.3  
2
0.8  
V
IH  
V
+ 0.5  
V
CC  
V
I
= 2.1mA  
= –1mA  
0.4  
V
OL  
OL  
V
I
OH  
3.6  
V
OH  
V
ID  
11.5  
12.5  
V
Note: 1. T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V  
A
CC  
PP  
2. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
13/22  
M27C512  
Table 11. Margin Mode AC Characteristics  
(1,2)  
Symbol  
Alt  
Parameter  
Min  
2
Max  
Unit  
µs  
Test Condition  
t
t
V
High to V High  
A9 PP  
A9HVPH  
AS9  
t
t
V High to Chip Enable Low  
PP  
2
µs  
VPHEL  
VPS  
t
t
t
t
V
High to Chip Enable High (Set)  
Low to Chip Enable High (Reset)  
1
µs  
A10HEH  
AS10  
A10  
t
V
A10  
1
µs  
A10LEH  
AS10  
t
Chip Enable Transition to V  
Transition  
1
µs  
EXA10X  
AH10  
A10  
t
t
Chip Enable Transition to V Transition  
PP  
2
µs  
EXVPX  
VPH  
t
t
V Transition to V Transition  
PP A9  
2
µs  
VPXA9X  
AH9  
Note: 1. T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V  
A
CC  
PP  
2. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP.  
CC  
PP  
Figure 10. Margin Mode AC Waveforms  
V
CC  
A8  
A9  
tA9HVPH  
tVPXA9X  
GV  
E
PP  
tVPHEL  
tEXVPX  
tA10HEH  
tEXA10X  
A10 Set  
A10 Reset  
tA10LEH  
AI00736B  
Note: A8 High level = 5V; A9 High level = 12V.  
14/22  
M27C512  
Table 12. Programming Mode AC Characteristics  
(1,2)  
Symbol  
Alt  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
Parameter  
Test Condition  
t
t
AS  
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
t
t
2
QVEL  
DS  
t
t
V
V
V
High to Chip Enable Low  
High to Chip Enable Low  
Rise Time  
2
VCHEL  
VCS  
OES  
CC  
PP  
PP  
t
t
2
VPHEL  
t
t
50  
95  
2
VPLVPH  
PRT  
t
t
Chip Enable Program Pulse Width (Initial)  
Chip Enable High to Input Transition  
105  
ELEH  
PW  
t
t
DH  
EHQX  
t
t
Chip Enable High to V Transition  
2
EHVPX  
OEH  
PP  
t
t
V
PP  
Low to Chip Enable Low  
2
VPLEL  
VR  
t
t
Chip Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Chip Enable High to Address Transition  
1
ELQV  
DV  
(3)  
t
0
0
130  
t
DFP  
EHQZ  
t
t
ns  
EHAX  
AH  
Note: 1. T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V  
A
CC  
PP  
2. V must be applied simultaneously with or before V and removed simultaneously or after V .  
CC  
PP  
PP  
3. Sampled only, not 100% tested.  
Figure 11. Programming and Verify Modes AC Waveforms  
A0-A15  
Q0-Q7  
VALID  
tAVEL  
tQVEL  
tEHAX  
DATA IN  
DATA OUT  
tEHQX  
tEHQZ  
V
CC  
tELQV  
tVCHEL  
tVPHEL  
tEHVPX  
GV  
PP  
tVPLEL  
E
tELEH  
PROGRAM  
VERIFY  
AI00737  
15/22  
M27C512  
PACKAGE MECHANICAL  
Figure 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Note: Drawing is not to scale.  
Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
36.50  
0.30  
37.34  
0.009  
1.437  
0.012  
1.470  
D
D2  
E
33.02  
15.24  
1.300  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
4.10  
2.49  
0.637  
0.125  
0.060  
0.710  
0.161  
0.098  
S
7.11  
0.280  
α
4°  
11°  
4°  
11°  
N
28  
28  
16/22  
M27C512  
Figure 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Note: Drawing is not to scale.  
Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
4.445  
0.630  
3.810  
0.450  
1.270  
0.1750  
0.0248  
0.1500  
0.0177  
0.0500  
3.050  
4.570  
0.1201  
0.1799  
B1  
C
0.230  
36.580  
0.310  
37.080  
0.0091  
1.4402  
0.0122  
1.4598  
D
36.830  
33.020  
15.240  
13.720  
2.540  
1.4500  
1.3000  
0.6000  
0.5402  
0.1000  
0.5906  
D2  
E
E1  
e1  
eA  
eB  
L
12.700  
14.480  
0.5000  
0.5701  
15.000  
14.800  
15.200  
15.200  
16.680  
0.5827  
0.5984  
0.5984  
0.6567  
3.300  
0.1299  
S
1.78  
0°  
2.08  
10°  
0.070  
0°  
0.082  
10°  
α
N
28  
28  
17/22  
M27C512  
Figure 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
A2  
D1  
1 N  
B1  
e
E2  
E2  
E3  
E1 E  
F
B
0.51 (.020)  
1.14 (.045)  
D3  
A
R
CP  
D2  
D2  
PLCC-A  
Note: Drawing is not to scale.  
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
3.56  
2.41  
Typ  
Max  
A
A1  
A2  
B
3.18  
0.125  
0.060  
0.015  
0.013  
0.026  
0.140  
0.095  
1.53  
0.38  
0.33  
0.53  
0.81  
0.10  
12.57  
11.51  
5.66  
0.021  
0.032  
0.004  
0.495  
0.453  
0.223  
B1  
CP  
D
0.66  
12.32  
11.35  
4.78  
0.485  
0.447  
0.188  
D1  
D2  
D3  
E
7.62  
0.300  
14.86  
13.89  
6.05  
15.11  
14.05  
6.93  
0.585  
0.547  
0.238  
0.595  
0.553  
0.273  
E1  
E2  
E3  
e
10.16  
1.27  
0.400  
0.050  
F
0.00  
0.13  
0.000  
0.005  
R
0.89  
0.035  
N
32  
32  
18/22  
M27C512  
Figure 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale  
Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.250  
0.200  
1.150  
0.270  
0.210  
0.100  
13.600  
11.900  
Typ  
Max  
0.0492  
0.0079  
0.0453  
0.0106  
0.0083  
0.0039  
0.5354  
0.4685  
A
A1  
A2  
B
0.950  
0.170  
0.100  
0.0374  
0.0067  
0.0039  
C
CP  
D
13.200  
11.700  
0.5197  
0.4606  
D1  
e
0.550  
0.0217  
E
7.900  
0.500  
0°  
8.100  
0.700  
5°  
0.3110  
0.0197  
0°  
0.3189  
0.0276  
5°  
L
α
N
28  
28  
19/22  
M27C512  
PART NUMBERING  
Table 17. Ordering Information Scheme  
Example:  
M27C512  
-70  
X
C
1
TR  
Device Type  
M27  
Supply Voltage  
C = 5V  
Device Function  
512 = 512 Kbit (64Kb x8)  
Speed  
(1)  
-45  
= 45 ns  
-60 = 60 ns  
-70 = 70 ns  
-80 = 80 ns  
-90 = 90 ns  
-10 = 100 ns  
-12 = 120 ns  
-15 = 150 ns  
-20 = 200 ns  
-25 = 250 ns  
V
CC  
Tolerance  
blank = ± 10%  
X = ± 5%  
Package  
F = FDIP28W  
B = PDIP28  
C = PLCC32  
N = TSOP28: 8 x 13.4 mm  
Temperature Range  
1 = 0 to 70 °C  
3 = –40 to 125 °C  
6 = –40 to 85 °C  
Options  
Blank = Standard Packing  
TR = Tape and Reel Packing  
E = Lead-free and RoHS Package, Standard Packing  
F = Lead-free and RoHS Package, Tape and Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
20/22  
M27C512  
REVISION HISTORY  
Table 18. Revision History  
Date  
Version  
1.0  
Revision Details  
November 1998  
25-Sep-2000  
02-Apr-2001  
First Issue  
1.1  
AN620 Reference removed  
1.2  
FDIP28W mechanical dimensions changed (Table 13.)  
Package mechanical data clarified for PDIP28 (Table 14.),  
PLCC32 (Table 15., Figure 14.) and TSOP28 (Table 16., Figure 15.)  
29-Aug-2002  
08-Nov-2004  
1.3  
2.0  
Details of ECOPACK lead-free package options added.  
Additional Burn-in option removed  
21/22  
M27C512  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY