M27C800  
8 Mbit (1Mb x8 or 512Kb x16) UV EPROM and OTP EPROM  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 50ns  
BYTE-WIDE or WORD-WIDE  
CONFIGURABLE  
42  
42  
8 Mbit MASK ROM REPLACEMENT  
LOW POWER CONSUMPTION  
– Active Current 70mA at 8MHz  
– Stand-by Current 50µA  
1
1
FDIP42W (F)  
PDIP42 (B)  
PROGRAMMING VOLTAGE: 12.5V ± 0.25V  
PROGRAMMING TIME: 50µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
44  
1
PLCC44 (K)  
SO44 (M)  
– Device Code: B2h  
DESCRIPTION  
The M27C800 is an 8 Mbit EPROM offered in the  
two ranges UV (ultra violet erase) and OTP (one  
time programmable). It is ideally suited for micro-  
processor systems requiring large data or program  
storage. It is organised as either 1 Mwords of 8 bit  
or 512 Kwords of 16 bit. The pin-out is compatible  
with the most common 8 Mbit Mask ROM.  
Figure 1. Logic Diagram  
V
CC  
The FDIP42W (window ceramic frit-seal package)  
has a transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern.  
A new pattern can then be written rapidly to the de-  
vice by following the programming procedure.  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27C800 is offered in PDIP42, PLCC44 and  
SO44 packages.  
19  
Q15A–1  
A0-A18  
15  
Q0-Q14  
E
M27C800  
G
BYTEV  
PP  
V
SS  
AI01593  
December 2001  
1/18  
M27C800  
Figure 2A. DIP Connections  
Figure 2B. LCC Connections  
A18  
A17  
A7  
1
2
3
4
5
6
7
8
9
42 NC  
41 A8  
40 A9  
A6  
39 A10  
38 A11  
37 A12  
36 A13  
35 A14  
34 A15  
33 A16  
32 BYTEV  
A5  
1 44  
A4  
A4  
A12  
A13  
A3  
A3  
A2  
A1  
A0  
A2  
A14  
A1  
A15  
A0 10  
A16  
M27C800  
E
11  
12  
13  
PP  
E
12  
M27C800  
34 BYTEV  
PP  
V
31  
V
SS  
SS  
G
V
V
SS  
Q15A–1  
SS  
G
30 Q15A–1  
Q0 14  
Q8 15  
Q1 16  
Q9 17  
Q2 18  
29 Q7  
Q0  
Q8  
Q1  
Q7  
28 Q14  
27 Q6  
Q14  
Q6  
23  
26 Q13  
25 Q5  
Q10 19  
Q3 20  
24 Q12  
23 Q4  
AI02042  
Q11 21  
22  
V
CC  
AI01594  
Figure 2C. SO Connections  
Table 1. Signal Names  
A0-A18  
Q0-Q7  
Q8-Q14  
Q15A–1  
E
Address Inputs  
NC  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
Data Outputs  
Data Outputs  
2
NC  
3
A8  
4
A9  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTEV  
Data Output / Address Input  
Chip Enable  
6
7
8
9
G
Output Enable  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
BYTEV  
Byte Mode / Program Supply  
Supply Voltage  
PP  
M27C800  
PP  
V
V
V
V
CC  
SS  
SS  
G
SS  
Q15A–1  
Q7  
Ground  
Q0  
Q8  
Q14  
Q6  
NC  
Not Connected Internally  
Q1  
Q9  
Q13  
Q5  
Q2  
Q10  
Q3  
Q12  
Q4  
Q11  
V
CC  
AI01595  
2/18  
M27C800  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V  
+2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
BYTEV  
E
G
A9  
X
Q15A–1  
Q14-Q8  
Data Out  
Hi-Z  
Q7-Q0  
Data Out  
Data Out  
Data Out  
Hi-Z  
PP  
V
V
V
Read Word-wide  
Data Out  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
V
V
V
V
V
V
V
IL  
V
IH  
Read Byte-wide Upper  
Read Byte-wide Lower  
Output Disable  
X
V
IL  
V
IL  
X
Hi-Z  
X
X
Hi-Z  
Data In  
Data Out  
Hi-Z  
Hi-Z  
IH  
IH  
V
Pulse  
V
V
Program  
X
Data In  
Data Out  
Hi-Z  
Data In  
Data Out  
Hi-Z  
IL  
PP  
V
V
V
V
Verify  
X
IH  
IH  
IH  
IL  
PP  
V
V
V
Program Inhibit  
Standby  
X
IH  
PP  
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
V
V
IL  
V
V
ID  
Electronic Signature  
Code  
Codes  
Codes  
IL  
IH  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Q15  
and  
Q7  
Q14  
and  
Q6  
Q13  
and  
Q5  
Q12  
and  
Q4  
Q11  
and  
Q3  
Q10  
and  
Q2  
Q9  
and  
Q1  
Q8  
and  
Q0  
Identifier  
A0  
Hex Data  
V
Manufacturer’s Code  
Device Code  
0
1
0
0
1
1
0
1
0
0
0
0
0
1
0
0
20h  
B2h  
IL  
V
IH  
3/18  
M27C800  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3k  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
DEVICE OPERATION  
lower 8 bits of the 16 bit data are selected and with  
A–1 at V the upper 8 bits of the 16 bit data are  
IH  
The operating modes of the M27C800 are listed in  
the Operating Modes Table. A single power supply  
is required in the read mode. All inputs are TTL  
compatible except for V and 12V on A9 for the  
Electronic Signature.  
selected.  
The M27C800 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. In addition the Word-wide or  
Byte- wide organisation must be selected.  
PP  
Read Mode  
Chip Enable (E) is the power control and should be  
used for device selection. Output Enable (G) is the  
output control and should be used to gate data to  
the output pins independent of device selection.  
Assuming that the addresses are stable, the ad-  
The M27C800 has two organisations, Word-wide  
and Byte-wide. The organisation is selected by the  
signal level on the BYTEV pin. When BYTEV  
PP  
PP  
is at V the Word-wide organisation is selected  
IH  
and the Q15A–1 pin is used for Q15 Data Output.  
dress access time (t  
) is equal to the delay  
). Data is available at the  
AVQV  
When the BYTEV pin is at V the Byte-wide or-  
PP  
IL  
from E to output (t  
ELQV  
ganisation is selected and the Q15A–1 pin is used  
for the Address Input A–1. When the memory is  
logically regarded as 16 bit wide, but read in the  
output after a delay of t  
from the falling edge  
GLQV  
of G, assuming that E has been low and the ad-  
dresses have been stable for at least t -t  
.
AVQV GLQV  
Byte-wide organisation, then with A–1 at V the  
IL  
4/18  
M27C800  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
10  
Unit  
pF  
Input Capacitance (except BYTEV  
)
V
V
= 0V  
= 0V  
= 0V  
PP  
IN  
IN  
C
IN  
Input Capacitance (BYTEV  
)
120  
12  
pF  
PP  
C
V
OUT  
Output Capacitance  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
A
CC  
PP  
Test Condition  
0V V V  
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Min  
Max  
Unit  
µA  
I
LI  
±1  
IN  
CC  
I
0V V  
V  
OUT CC  
±10  
µA  
LO  
E = V , G = V ,  
IL  
IL  
70  
50  
mA  
mA  
I
I
= 0mA, f = 8MHz  
OUT  
I
Supply Current  
CC  
E = V , G = V ,  
IL  
IL  
= 0mA, f = 5MHz  
OUT  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
E > V – 0.2V  
CC  
50  
10  
0.8  
CC2  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
V
V
CC  
IH  
V
I
= 2.1mA  
Output Low Voltage  
Output High Voltage TTL  
0.4  
OL  
OL  
V
I
= –400µA  
2.4  
OH  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V + 0.5V.  
CC  
Standby Mode  
M27C800 is placed in the standby mode by apply-  
ing a CMOS high signal to the E input. When in the  
standby mode, the outputs are in a high imped-  
ance state, independent of the G input.  
The M27C800 has a standby mode which reduces  
the supply current from 50mA to 100µA. The  
5/18  
M27C800  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
A
CC  
PP  
CC  
M27C800  
-70  
(3)  
Symbol  
Alt  
Parameter  
Test Condition  
-90  
Unit  
-50  
Min Max  
Min  
Max Min  
Max  
Address Valid to Output  
Valid  
t
t
E = V , G = V  
50  
70  
90  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
BYTE High to Output  
Valid  
t
t
ST  
E = V , G = V  
50  
50  
70  
70  
90  
90  
BHQV  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
t
G = V  
ELQV  
CE  
IL  
Output Enable Low to  
Output Valid  
t
t
E = V  
30  
30  
35  
30  
45  
30  
30  
ns  
ns  
ns  
GLQV  
OE  
IL  
(2)  
t
E = V , G = V  
BYTE Low to Output Hi-Z  
t
STD  
IL  
IL  
BLQZ  
Chip Enable High to  
Output Hi-Z  
(2)  
t
G = V  
0
0
5
5
30  
30  
0
0
5
5
30  
30  
0
0
5
5
t
DF  
IL  
EHQZ  
Output Enable High to  
Output Hi-Z  
(2)  
t
E = V  
30  
ns  
ns  
ns  
t
DF  
IL  
GHQZ  
Address Transition to  
Output Transition  
t
t
t
E = V , G = V  
AXQX  
OH  
IL  
IL  
BYTE Low to Output  
Transition  
t
E = V , G = V  
BLQX  
OH  
IL  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP.  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V )  
A
CC  
PP  
CC  
M27C800  
-100 -120/150  
Min Max Min Max  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
t
t
t
E = V , G = V  
Address Valid to Output Valid  
BYTE High to Output Valid  
100  
100  
100  
50  
120  
120  
120  
60  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
IL  
t
ST  
E = V , G = V  
BHQV  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
BYTE Low to Output Hi-Z  
ELQV  
GLQV  
CE  
IL  
t
t
E = V  
OE  
IL  
(2)  
(2)  
(2)  
t
E = V , G = V  
40  
50  
t
t
STD  
IL  
IL  
BLQZ  
t
DF  
G = V  
Chip Enable High to Output Hi-Z  
0
40  
40  
0
50  
50  
ns  
IL  
EHQZ  
t
DF  
E = V  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
BYTE Low to Output Transition  
0
5
5
0
5
5
ns  
ns  
ns  
t
IL  
GHQZ  
t
t
E = V , G = V  
AXQX  
OH  
IL  
IL  
IL  
t
t
E = V , G = V  
BLQX  
OH  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP.  
CC  
PP  
2. Sampled only, not 100% tested.  
6/18  
M27C800  
Figure 5. Word-Wide Read Mode AC Waveforms  
VALID  
VALID  
A0-A18  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q15  
AI01596B  
Note: BYTEV = V  
.
IH  
PP  
Two Line Output Control  
System Considerations  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2-line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two-line control  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
supplies to the devices. The supply current I  
CC  
has three segments of importance to the system  
designer: the standby current, the active current  
and the transient peaks that are produced by the  
falling and rising edges of E.  
The magnitude of the transient current peaks is  
dependent on the capacitive and inductive loading  
of the device outputs. The associated transient  
voltage peaks can be suppressed by complying  
with the two line output control and by properly se-  
lected decoupling capacitors. It is recommended  
that a 0.1µF ceramic capacitor is used on every  
function  
allows:  
a. the lowest possible memory power dissipation  
b. complete assurance that output bus contention  
will not occur.  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
device between V and V  
.
SS  
CC  
This should be a high frequency type of low inher-  
ent inductance and should be placed as close as  
possible to the device. In addition, a 4.7µF electro-  
lytic capacitor should be used between V  
and  
CC  
V
for every eight devices. This capacitor should  
SS  
be mounted near the power supply connection  
point. The purpose of this capacitor is to overcome  
the voltage drop caused by the inductive effects of  
PCB traces.  
7/18  
M27C800  
Figure 6. Byte-Wide Read Mode AC Waveforms  
VALID  
tAVQV  
A–1,A0-A18  
E
VALID  
tAXQX  
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q7  
AI01597B  
Note: BYTEV = V  
PP  
IL.  
Figure 7. BYTE Transition AC Waveforms  
A0-A18  
VALID  
A–1  
VALID  
tAVQV  
tAXQX  
BYTEV  
PP  
tBHQV  
Q0-Q7  
tBLQX  
Q8-Q15  
tBLQZ  
DATA OUT  
Hi-Z  
DATA OUT  
AI01598C  
Note: Chip Enable (E) and Output Enable (G) = V  
.
IL  
8/18  
M27C800  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.5V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
mA  
mA  
V
I
LI  
0 V V  
Input Leakage Current  
Supply Current  
IN  
CC  
I
50  
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2.4  
0.8  
IL  
V
V
+ 0.5  
V
IH  
CC  
V
I
OL  
= 2.1mA  
0.4  
V
OL  
V
I
= –2.5mA  
3.5  
V
OH  
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.5V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
2
2
AVEL  
AS  
QVEL  
VPHAV  
VCHAV  
DS  
t
t
t
V
V
High to Address Valid  
High to Address Valid  
2
VPS  
VCS  
PP  
CC  
t
2
t
t
PW  
Chip Enable Program Pulse Width  
Chip Enable High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
45  
2
55  
ELEH  
t
t
DH  
EHQX  
t
t
2
QXGL  
GLQV  
OES  
t
t
120  
130  
OE  
(2)  
t
0
0
ns  
ns  
t
DFP  
GHQZ  
Output Enable High to Address  
Transition  
t
t
GHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
change a '0' to a '1' is by die exposition to ultravio-  
let light (UVEPROM). The M27C800 is in the pro-  
When delivered (and after each erasure for UV  
EPROM), all bits of the M27C800 are in the '1'  
state. Data is introduced by selectively program-  
ming '0's into the desired bit locations. Although  
only '0's will be programmed, both '1's and '0's can  
be present in the data word. The only way to  
gramming mode when V input is at 12.5V, G is  
PP  
at V and E is pulsed to V . The data to be pro-  
IH  
IL  
grammed is applied to 16 bits in parallel to the data  
output pins. The levels required for the address  
and data inputs are TTL. V  
6.25V ± 0.25V.  
is specified to be  
CC  
9/18  
M27C800  
Figure 8. Programming and Verify Modes AC Waveforms  
A0-A18  
Q0-Q15  
VALID  
tAVEL  
DATA IN  
tQVEL  
DATA OUT  
tEHQX  
BYTEV  
PP  
tVPHAV  
tVCHAV  
tGLQV  
tGHQZ  
tGHAX  
V
E
CC  
tELEH  
tQXGL  
G
PROGRAM  
VERIFY  
AI01599  
Figure 9. Programming Flowchart  
PRESTO III Programming Algorithm  
The PRESTO III Programming Algorithm allows  
the whole array to be programed with a guaran-  
teed margin in a typical time of 26 seconds. Pro-  
gramming with PRESTO III consists of applying a  
sequence of 50µs program pulses to each word  
until a correct verify occurs (see Figure 9). During  
programing and verify operation a MARGIN  
MODE circuit is automatically activated to guaran-  
tee that each cell is programed with enough mar-  
gin. No overprogram pulse is applied since the  
verify in MARGIN MODE provides the necessary  
margin to each programmed cell.  
V
= 6.25V, V  
= 12.5V  
PP  
CC  
n = 0  
E = 50µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Program Inhibit  
Programming of multiple M27C800s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27C800 may be common. A TTL low level pulse  
YES  
Last  
Addr  
NO  
FAIL  
applied to a M27C800's E input and V at 12.5V,  
PP  
YES  
will program that M27C800. A high level E input in-  
hibits the other M27C800s from being pro-  
grammed.  
CHECK ALL WORDS  
BYTEV  
1st: V  
=V  
IH  
PP  
Program Verify  
= 6V  
CC  
2nd: V  
= 4.2V  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with E  
CC  
AI01044B  
at V and G at V , V  
at 12.5V and V  
at  
IH  
IL  
PP  
CC  
6.25V.  
10/18  
M27C800  
Electronic Signature  
ERASURE OPERATION (applies to UV EPROM)  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27C800. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
The erasure characteristics of the M27C800 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27C800 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27C800 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27C800 window to prevent unintentional era-  
sure. The recommended erasure procedure for  
M27C800 is exposure to short wave ultraviolet  
light which has a wavelength of 2537 Å. The inte-  
grated dose (i.e. UV intensity x exposure time) for  
M27C800, with V = V  
= 5V. Two identifier  
PP  
CC  
bytes may then be sequenced from the device out-  
puts by toggling address line A0 from V to V . All  
IL  
IH  
other address lines must be held at V during  
IL  
Electronic Signature mode.  
Byte 0 (A0 = V ) represents the manufacturer  
IL  
code and byte 1 (A0 = V ) the device identifier  
IH  
2
erasure should be a minimum of 30 W-sec/cm .  
code. For the STMicroelectronics M27C800, these  
two identifier bytes are given in Table 4 and can be  
read-out on outputs Q7 to Q0.  
The erasure time with this dosage is approximate-  
ly 30 to 40 minutes using an ultraviolet lamp with  
2
12000 µW/cm power rating. The M27C800  
should be placed within 2.5cm (1 inch) of the lamp  
tubes during the erasure. Some lamps have a filter  
on their tubes which should be removed before  
erasure.  
11/18  
M27C800  
Table 11. Ordering Information Scheme  
Example:  
M27C800  
-50  
X
M
1
TR  
Device Type  
M27  
Supply Voltage  
C = 5V  
Device Function  
800 = 8 Mbit (1Mb x8 or 512Kb x16)  
Speed  
(1)  
-50  
= 50 ns  
-70 = 70 ns  
-90 = 90 ns  
-100 = 100 ns  
-120 = 120 ns  
-150 = 150 ns  
V
CC  
Tolerance  
blank = ± 10%  
X = ± 5%  
Package  
F = FDIP42W  
B = PDIP42  
K = PLCC44  
M = SO44  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
12/18  
M27C800  
Table 1. Revision History  
Date  
Revision Details  
March 1999  
First Issue  
50ns speed class addes (Tables 8A and 11)  
Electronic Signature change (Table 4)  
25-Jan-2000  
FDIP42W Package Dimension, L Max added (Table 12)  
25-Sep-2000  
10-Dec-2001  
AN620 Reference removed  
Ordering Information Scheme (Table 11) clarified  
13/18  
M27C800  
Table 12. FDIP42W - 42 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
54.41  
0.30  
54.86  
0.009  
2.142  
0.012  
2.160  
D
D2  
E
50.80  
15.24  
2.000  
0.600  
E1  
e
14.50  
14.90  
0.571  
0.587  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
4.10  
2.49  
0.637  
0.125  
0.060  
0.710  
0.161  
0.098  
S
K
9.40  
0.370  
0.450  
K1  
α
11.43  
4°  
11°  
4°  
11°  
N
42  
42  
Figure 10. FDIP42W - 42 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A
L
A1  
e1  
α
B1  
B
C
eA  
eB  
D2  
D
S
N
1
K
E1  
E
K1  
FDIPW-b  
Drawing is not to scale.  
14/18  
M27C800  
Table 13. PDIP42 - 42 pin Plastic DIP, 600 mils width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
5.08  
Typ  
Max  
0.200  
A
A1  
A2  
B
0.25  
3.56  
0.38  
1.27  
0.20  
52.20  
0.010  
0.140  
0.015  
0.050  
0.008  
2.055  
4.06  
0.53  
1.65  
0.36  
52.71  
0.160  
0.021  
0.065  
0.014  
2.075  
B1  
C
D
D2  
E
50.80  
15.24  
2.000  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.590  
14.99  
15.24  
3.18  
0.86  
0°  
17.78  
3.43  
1.37  
10°  
0.600  
0.125  
0.034  
0°  
0.700  
0.135  
0.054  
10°  
S
α
N
42  
42  
Figure 11. PDIP42 - 42 pin Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
15/18  
M27C800  
Table 14. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
4.70  
3.04  
0.51  
0.53  
0.81  
17.65  
16.66  
16.00  
17.65  
16.66  
16.00  
Typ  
Max  
0.185  
0.120  
0.020  
0.021  
0.032  
0.695  
0.656  
0.630  
0.695  
0.656  
0.630  
A
A1  
A2  
B
4.20  
2.29  
0.165  
0.090  
0.33  
0.66  
17.40  
16.51  
14.99  
17.40  
16.51  
14.99  
0.013  
0.026  
0.685  
0.650  
0.590  
0.685  
0.650  
0.590  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
44  
44  
CP  
0.10  
0.004  
Figure 12. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
16/18  
M27C800  
Table 15. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
2.62  
0.23  
2.35  
0.50  
0.25  
28.30  
13.40  
Typ  
Max  
0.103  
0.010  
0.093  
0.020  
0.010  
1.114  
0.528  
A
A1  
A2  
B
2.42  
0.095  
0.009  
0.089  
0.22  
2.25  
C
0.10  
28.10  
13.20  
0.004  
1.106  
0.520  
D
E
e
1.27  
0.050  
H
15.90  
16.10  
0.626  
0.634  
L
0.80  
3°  
0.031  
3°  
α
N
44  
44  
CP  
0.10  
0.004  
Figure 13. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Drawing is not to scale.  
17/18  
M27C800  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2001 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Austalia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
18/18