M27V402-150B4 [STMICROELECTRONICS]

256KX16 OTPROM, 150ns, PDIP40, 0.600 INCH, PLASTIC, DIP-40;
M27V402-150B4
型号: M27V402-150B4
厂家: ST    ST
描述:

256KX16 OTPROM, 150ns, PDIP40, 0.600 INCH, PLASTIC, DIP-40

可编程只读存储器 光电二极管
文件: 总15页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27V402  
4 Mbit (256Kb x16) Low Voltage UV EPROM and OTP EPROM  
NOT FOR NEW DESIGN  
M27V402 is replaced by the M27W402  
LOW VOLTAGE READ OPERATION:  
3V to 3.6V  
ACCESS TIME: 120ns  
LOW POWER CONSUMPTION:  
40  
40  
– Active Current 15mA at 5MHz  
1
1
– Standby Current 20µA  
FDIP40W (F)  
PDIP40 (B)  
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: 8Dh  
DESCRIPTION  
PLCC44 K)  
TSOP40 (N)  
10 x 20 mm  
The M27V402 is a low voltage, low power 4 Mbit  
UV erasable and electrically programmable  
EPROM, ideally suited for handheld and portable  
microprocessor systems requiring large programs.  
It is organized as 262,144 by 16 bits.  
Figure 1. Logic Diagram  
The M27V402 operates in the read mode with a  
supply voltage as low as 3V. The decrease in op-  
erating power allows either a reduction of the size  
of the battery or an increase in the time between  
battery recharges.  
V
V
PP  
CC  
The FDIP40W (window ceramc frit-seal package)  
has a transparent lid which alws the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
18  
16  
A0-A17  
Q0-Q15  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27V2is offered in PDIP40, PLCC44 and  
TSOP40 (10 x 20 mm) packages.  
E
M27V402  
G
V
SS  
AI01819  
July 2000  
1/15  
This is information on a product still in production but not recommended for new designs.  
M27V402  
Figure 2A. DIP Connections  
Figure 2B. LCC Connections  
V
1
2
3
4
5
6
7
8
9
40  
V
CC  
PP  
E
39 A17  
38 A16  
37 A15  
36 A14  
35 A13  
34 A12  
33 A11  
32 A10  
31 A9  
Q15  
Q14  
Q13  
Q12  
Q11  
Q10  
Q9  
1 44  
Q12  
A13  
A12  
A11  
A10  
A9  
Q11  
Q10  
Q9  
Q8  
Q8 10  
M27V402  
V
12  
M27V402  
34  
V
SS  
SS  
V
11  
30  
V
SS  
SS  
NC  
Q7  
Q6  
Q5  
Q4  
NC  
A8  
A7  
A6  
A5  
Q7 12  
Q6 13  
Q5 14  
Q4 15  
Q3 16  
Q2 17  
Q1 18  
Q0 19  
29 A8  
28 A7  
27 A6  
26 A5  
25 A4  
24 A3  
23 A2  
22 A1  
21 A0  
23  
AI01820  
G
20  
AI01862  
Figure 2C. TSOP Connections  
Table 1. Signal Names  
A0-A17  
Address Inputs  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
1
40  
V
SS  
A8  
Q0-Q15  
Data Outputs  
Chip Enable  
Output Enable  
Program Supply  
Supply Voltage  
Ground  
A7  
E
A6  
A5  
G
A4  
A3  
V
PP  
V
CC  
V
SS  
A2  
A1  
V
10  
11  
M27V402  
(Normal)  
31  
30  
A0  
CC  
V
G
PP  
E
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
NC  
Not Connected Internally  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
DQ8  
20  
21  
V
SS  
AI01821  
2/15  
M27V402  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Ambient Operating Temperature  
T
Temperature Under Bias  
BIAS  
T
STG  
Storage Temperature  
(2)  
Input or Output Voltage (except A9)  
V
IO  
V
Supply Voltage  
–2 to 7  
–2 to 13.5  
–2 to 14  
V
V
V
CC  
(2)  
A9 Voltage  
V
A9  
V
Program Supply Voltage  
PP  
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
A9  
X
Q15-Q0  
Data Out  
Hi-Z  
PP  
V
IL  
V
V
V
or V  
Read  
IL  
IH  
IH  
CC  
CC  
SS  
V
V
V
or V  
Output Disable  
Program  
X
IL  
SS  
V
IL  
Pulse  
V
X
Data In  
Data Out  
Hi-Z  
PP  
PP  
PP  
V
V
V
V
Verify  
X
IH  
IH  
IH  
IL  
V
V
V
Program Inhibit  
Standby  
X
IH  
V
or V  
SS  
X
X
Hi-Z  
CC  
V
IL  
V
V
ID  
V
CC  
Electronic Signature  
Codes  
IL  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
IL  
V
1
0
0
0
1
1
0
1
8Dh  
IH  
Note: Outputs Q15-Q8 are set to '0'.  
3/15  
M27V402  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
IN  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
(t  
(t  
of t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
AVQV  
ELQV  
The operating modes of the M27V402 are listed in  
the Operating Modes table. A single power supply  
is required in the read mode. All inputs are TTL  
from the falling edge of G, assuming that  
GLQV  
E has been low and the addresses have been  
stable for at least t  
-t  
.
AVQV GLQV  
levels except for V and 12V on A9 for Electronic  
PP  
Signature.  
Standby Mode  
Read Mode  
The M27V402 has a standby mode which reduces  
the supply current from 20mA to 20µA with low  
The M27V402 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable (G) is the output control and should  
be used to gate data to the output pins,  
independent of device selection. Assuming that  
the addresses are stable, the address access time  
voltage operation V 3.6V, see Read Mode DC  
CC  
Characteristics table for details. The M27V402 is  
placed in the standby mode by applying a CMOS  
high signal to the E input. When in the standby  
mode, the outputs are in a high impedance state,  
independent of the G input.  
4/15  
M27V402  
(1)  
Table 7. Read Mode DC Characteristics  
(TA = 0 to 70°C, –20 to 70°C, –20 to 85°C or –40 to 85°C; V  
= 3.3V ± 10%; V = V  
)
CC  
PP  
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
Unit  
µA  
I
±10  
±10  
0V V V  
LI  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
µA  
E = V , G = V , I  
= 0mA,  
IL  
IL OUT  
I
Supply Current  
20  
mA  
CC  
f = 5MHz, V = 3.6V  
CC  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
20  
10  
0.8  
E > V – 0.2V, V = 3.6V  
CC2  
CC  
CC  
I
V
= V  
PP CC  
PP  
V
IL  
Input Low Voltage  
–0.3  
2
(2)  
V
+ 1  
Input High Voltage  
V
V
CC  
IH  
V
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
OH  
OH  
I
I
Output High Voltage TTL  
Output High Voltage CMOS  
2.4  
V
OH  
V
–0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
Two Line Output Control  
System Considerations  
Because EPROMs are usually used in larger  
memory arrays, the product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
devices. The supply current, I , has three seg-  
CC  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
output capacitive and inductive loading of the de-  
vice.  
The associated transient voltage peaks can be  
suppressed by complying with the two line output  
control and by properly selected decoupling ca-  
pacitors. It is recommended that a 0.1µF ceramic  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point.The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
5/15  
M27V402  
(1)  
Table 8. Read Mode AC Characteristics  
(TA = 0 to 70°C, –20 to 70°C, –20 to 85°C or –40 to 85°C; V  
= 3.3V ± 10%; V = V  
)
CC  
PP  
CC  
M27V402  
Symbol  
Alt  
Parameter  
Test Condition  
-120  
-150  
-200  
Unit  
Min Max Min Max Min Max  
Address Valid to  
Output Valid  
t
t
E = V , G = V  
120  
120  
60  
150  
150  
80  
200  
200  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
t
G = V  
ELQV  
CE  
IL  
IL  
IL  
IL  
Output Enable Low to  
Output Valid  
t
t
E = V  
G = V  
E = V  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
(2)  
t
0
0
5
50  
0
0
0
50  
0
0
0
t
DF  
DF  
EHQZ  
Output Enable High to  
Output Hi-Z  
(2)  
t
50  
50  
50  
t
GHQZ  
Address Transition to  
Output Transition  
t
t
E = V , G = V  
IL IL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
VALID  
A0-A17  
tAVQV  
tAXQX  
E
tGLQV  
tEHQZ  
G
tELQV  
tGHQZ  
Hi-Z  
Q0-Q15  
DATA OUT  
AI00731  
6/15  
M27V402  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
0 V V  
Input Leakage Current  
Supply Current  
LI  
IN  
CC  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2
0.8  
IL  
V
IH  
V
+ 0.5  
CC  
V
V
OL  
I
= 2.1mA  
OL  
0.4  
V
V
OH  
I
= –400µA  
2.4  
V
OH  
V
ID  
11.5  
12.5  
V
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
t
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
AS  
t
2
QVEL  
DS  
t
t
t
V
High to Chip Enable Low  
High to Chip Enable Low  
2
VPHEL  
VPS  
PP  
CC  
t
V
2
VCHEL  
VCS  
t
t
PW  
Chip Enable Program Pulse Width  
Chip Enable High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
95  
2
105  
ELEH  
t
t
DH  
EHQX  
t
t
OES  
2
QXGL  
t
t
100  
130  
GLQV  
OE  
t
t
DFP  
0
0
GHQZ  
Output Enable High to Address  
Transition  
t
t
AH  
ns  
GHAX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
light (UV EPROM). The M27V402 is in the pro-  
gramming mode when V input is at 12.75V, G ia  
PP  
When delivered (and after each erasure for UV  
EPROM), all bits of the M27V402 are in the ’1’  
state. Data is introduced by selectively program-  
ming ’0’s into the desired bit locations. Although  
only ’0’s will be programmed, both ’1’s and ’0’s can  
be present in the data word. The only way to  
change a ’0’ to a ’1’ is by die exposure to ultraviolet  
at V and E is pulsed to V . The data to be pro-  
IH  
IL  
grammed is applied to 16 bits in parallel to the data  
output pins. The levels required for the address  
and data inputs are TTL. V  
is specified to be  
CC  
6.25V ± 0.25V.  
7/15  
M27V402  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A17  
tAVEL  
Q0-Q15  
DATA OUT  
DATA IN  
tQVEL  
tEHQX  
V
PP  
tVPHEL  
tVCHEL  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
tELEH  
tQXGL  
G
PROGRAM  
VERIFY  
AI00730  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows the  
whole array to be programmed with a guaranteed  
margin, in a typical time of 26.5 seconds. Pro-  
gramming with PRESTO II consists of applying a  
sequence of 100µs program pulses to each byte  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
E = 100µs Pulse  
since the verify in MARGIN MODE at V  
higher than 3.6V provides necessary margin to  
each programmed cell.  
much  
CC  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Program Inhibit  
YES  
Programming of multiple M27V402s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27V402 may be common. A TTL low level pulse  
Last  
NO  
FAIL  
Addr  
applied to a M27V402's E input, with V  
at  
PP  
YES  
12.75V, will program that M27V402. A high level E  
input inhibits the other M27V402s from being pro-  
grammed.  
CHECK ALL WORDS  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
AI00726C  
at V , E at V , V at 12.75V and V at 6.25V.  
IL  
IH  
PP  
CC  
8/15  
M27V402  
Electronic Signature  
posed to light with wavelengths shorter than ap-  
proximately 4000Å. It should be noted that sunlight  
and some type of fluorescent lamps have wave-  
lengths in the 3000-4000Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27V402 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27V402 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27V402 window to prevent unintentional era-  
sure. The recommended erasure procedure for  
the M27V402 is exposure to short wave ultraviolet  
light which has a wavelength of 2537Å. The inte-  
grated dose (i.e. UV intensity x exposure time) for  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27V402. To activate the ES mode,  
the programming equipment must force 11.5V to  
12.5V on address line A9 of the M27V402 with  
V
= V = 5V. Two identifier bytes may then be  
PP  
CC  
sequenced from the device outputs by toggling ad-  
dress line A0 from V to V . All other address  
IL  
IH  
lines must be held at V during Electronic Signa-  
ture mode. Byte 0 (A0 = V ) represents the man-  
ufacturer code and byte 1 (A0 = V ) the device  
identifier code. For the STMicroelectronics  
M27V402, these two identifier bytes are given in  
Table 4 and can be read-out on outputs Q7 to Q0.  
IL  
2
erasure should be a minimum of 15 W-sec/cm .  
IL  
The erasure time with this dosage is approximate-  
ly 15 to 20 minutes using an ultraviolet lamp with  
IH  
2
12000 µW/cm power rating. The M27V402  
should be placed within 2.5 cm (1 inch) of the lamp  
tubes during the erasure. Some lamps have a filter  
on their tubes which should be removed before  
erasure.  
ERASURE OPERATION (applies to UV EPROM)  
The erasure characteristics of the M27V402 is  
such that erasure begins when the cells are ex-  
9/15  
M27V402  
Table 11. Ordering Information Scheme  
Example:  
M27V402  
-120 K  
1
TR  
Device Type  
M27  
Supply Voltage  
V = 3.3V ±10%  
Device Function  
402 = 4 Mbit (256Kb x16)  
Speed  
-120 = 120 ns  
-150 = 150 ns  
-200 = 200 ns  
Package  
F = FDIP40W  
B = PDIP40  
K = PLCC44  
N = TSOP40: 10 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
4 = –20 to 70 °C  
5 = –20 to 85 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
M27V402 is replaced by the M27W402  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
10/15  
M27V402  
Table 12. FDIP40W - 40 pin Ceramic Frit-seal DIP with window, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
51.79  
0.30  
52.60  
0.009  
2.039  
0.012  
2.071  
D
D2  
E
48.26  
15.24  
1.900  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
7.62  
0.300  
α
4°  
11°  
4°  
11°  
N
40  
40  
Figure 8. FDIP40W - 40 pin Ceramic Frit-seal DIP with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
11/15  
M27V402  
Table 13. PDIP40 - 40 pin Plastic DIP, 600 mil width, Package Mechanical Data  
mm  
Min  
inches  
Symb  
Typ  
4.45  
0.64  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
0.175  
0.025  
0.38  
3.56  
0.38  
1.14  
0.20  
51.78  
0.015  
0.140  
0.015  
0.045  
0.008  
2.039  
3.91  
0.53  
1.78  
0.31  
52.58  
0.154  
0.021  
0.070  
0.012  
2.070  
B1  
C
D
D2  
E
48.26  
1.900  
14.80  
13.46  
16.26  
13.99  
0.583  
0.530  
0.640  
0.551  
E1  
e1  
eA  
eB  
L
2.54  
0.100  
0.600  
15.24  
15.24  
3.05  
1.52  
0°  
17.78  
3.81  
2.29  
15°  
0.600  
0.120  
0.060  
0°  
0.700  
0.150  
0.090  
15°  
S
α
N
40  
40  
Figure 9. PDIP40 - 40 pin Plastic DIP, 600 mil width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
12/15  
M27V402  
Table 14. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
mm  
Min  
4.20  
2.29  
inches  
Min  
Symb  
Typ  
Max  
4.70  
3.04  
0.51  
0.53  
0.81  
17.65  
16.66  
16.00  
17.65  
16.66  
16.00  
Typ  
Max  
0.185  
0.120  
0.020  
0.021  
0.032  
0.695  
0.656  
0.630  
0.695  
0.656  
0.630  
A
A1  
A2  
B
0.165  
0.090  
0.33  
0.66  
17.40  
16.51  
14.99  
17.40  
16.51  
14.99  
0.013  
0.026  
0.685  
0.650  
0.590  
0.685  
0.650  
0.590  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
44  
44  
CP  
0.10  
0.004  
Figure 10. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
13/15  
M27V402  
Table 15. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
10.10  
-
Typ  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.795  
0.728  
0.398  
-
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
9.90  
-
0.002  
0.037  
0.007  
0.004  
0.780  
0.720  
0.390  
-
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
40  
40  
CP  
0.10  
0.004  
Figure 11. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale  
A1  
α
L
14/15  
M27V402  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
15/15  

相关型号:

M27V402-150B4TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150B5TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150B6TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150F1

256KX16 UVPROM, 150ns, CDIP40, FRIT SEALED, WINDOWED, CERAMIC, DIP-40
STMICROELECTR

M27V402-150F1TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150F4

256KX16 UVPROM, 150ns, CDIP40, FRIT SEALED, WINDOWED, CERAMIC, DIP-40
STMICROELECTR

M27V402-150F4TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150F5

256KX16 UVPROM, 150ns, CDIP40, FRIT SEALED, WINDOWED, CERAMIC, DIP-40
STMICROELECTR

M27V402-150F5TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150F6TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V402-150K1

256KX16 OTPROM, 150ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

M27V402-150K1TR

4 Mbit 256Kb x 16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR