M27V405-150N1 [STMICROELECTRONICS]

512KX8 OTPROM, 150ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32;
M27V405-150N1
型号: M27V405-150N1
厂家: ST    ST
描述:

512KX8 OTPROM, 150ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32

可编程只读存储器 光电二极管
文件: 总13页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27V405  
4 Mbit (512Kb x8) Low Voltage OTP EPROM  
NOT FOR NEW DESIGN  
3V to 3.6V SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 120ns  
LOW POWER CONSUMPTION:  
– Active Current 15mA at 5MHz  
– Standby Current 20µA  
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIMES:  
PLCC32 (K)  
TSOP32 (N)  
8 x 20 mm  
– Typical 48sec. (PRESTO II Algorithm)  
– Typical 27sec. (On-Board Programming)  
PIN COMPATIBLE with the 4 Mbit,  
Single Voltage Flash Memory  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: B4h  
Figure 1. Logic Diagram  
DESCRIPTION  
The M27V405 is a low voltage 4 Mbit EPROM of-  
fered in the OTP range (one time programmable).  
It is ideally suited for microprocessor systems re-  
quiring large data or program storage and is orga-  
nised as 524,288 by 8 bits.  
V
V
PP  
CC  
The M27V405 operates in the read mode with a  
supply voltage as low as 3V. The decrease in op-  
erating power allows either a reduction of the size  
of the battery or an increase in the time between  
battery recharges.  
The M27V405 is pin compatible with the industry  
standard 4 Mbit, single voltage Flash Memory. It  
can be considered as a Flash Low Cost solution  
for production quantities.  
19  
8
A0-A18  
Q0-Q7  
E
M27V405  
G
The M27V405 can also be operated as a standard  
4 Mbit OTP EPROM (similar to M27C405) with a  
5V power supply. The M27V405 is offered in  
PLCC32 and TSOP32 (12 x 20 mm) packages.  
V
SS  
AI01800  
July 2000  
1/13  
This is information on a product still in production but not recommended for new designs.  
M27V405  
Figure 2A. LCC Connections  
Figure 2B. TSOP Connections  
A11  
A9  
1
32  
G
A10  
E
A8  
1 32  
A13  
A14  
A17  
Q7  
Q6  
Q5  
Q4  
Q3  
A7  
A14  
A13  
A8  
A6  
A5  
A4  
V
PP  
A9  
V
8
9
M27V405  
(Normal)  
25  
24  
CC  
A3  
A2  
A1  
A0  
Q0  
9
M27V405  
25 A11  
G
A18  
A16  
A15  
A12  
A7  
V
SS  
Q2  
Q1  
Q0  
A0  
A1  
A2  
A3  
A10  
E
Q7  
17  
A6  
A5  
A4  
16  
17  
AI01801  
AI01802  
Table 1. Signal Names  
DEVICE OPERATION  
The modes of operations of the M27V405 are list-  
ed in the Operating Modes table. A single power  
supply is required in the read mode. All inputs are  
A0-A18  
Q0-Q7  
E
Address Inputs  
Data Outputs  
Chip Enable  
Output Enable  
TTL levels except for V and 12V on A9 for Elec-  
pp  
tronic Signature.  
Read Mode  
G
The M27V405 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable (G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
V
PP  
Program Supply  
Supply Voltage  
Ground  
V
CC  
V
SS  
(t  
(t  
of t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
AVQV  
ELQV  
from the falling edge of G, assuming that  
GLQV  
E has been low and the addresses have been sta-  
ble for at least t -t  
.
AVQV GLQV  
2/13  
M27V405  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Ambient Operating Temperature  
T
Temperature Under Bias  
BIAS  
T
STG  
Storage Temperature  
(2)  
Input or Output Voltage (except A9)  
V
IO  
V
Supply Voltage  
–2 to 7  
–2 to 13.5  
–2 to 14  
V
V
V
CC  
(2)  
A9 Voltage  
V
A9  
V
Program Supply Voltage  
PP  
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
A9  
X
Q7-Q0  
Data Out  
Hi-Z  
PP  
V
V
V
V
or V  
Read  
IL  
IL  
IL  
IH  
IH  
CC  
SS  
SS  
V
V
V
or V  
Output Disable  
Program  
X
CC  
V
IL  
Pulse  
V
X
Data In  
Data Out  
Hi-Z  
PP  
PP  
PP  
V
V
V
V
Verify  
X
IH  
IH  
IH  
IL  
V
V
V
Program Inhibit  
Standby  
X
IH  
V
or V  
SS  
X
X
Hi-Z  
CC  
V
V
IL  
V
ID  
V
CC  
Electronic Signature  
Codes  
IL  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
Q4  
0
Q3  
0
Q2  
0
Q1  
Q0  
0
Hex Data  
20h  
V
IL  
1
1
0
0
V
1
0
1
0
1
0
B4h  
IH  
3/13  
M27V405  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
IN  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
Standby Mode  
a. the lowest possible memory power dissipation,  
The M27V405 has a standby mode which reduces  
the active current from 15mA to 20µA with low volt-  
b. complete assurance that output bus contention  
will not occur.  
age operation V  
3.6V, see Read Mode DC  
CC  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Characteristics Table for details. The M27V405 is  
placed in the standby mode by applying a CMOS  
high signal to the E input. When in the standby  
mode, the outputs are in a high impedance state,  
independent of the G input.  
Two Line Output Control  
Because OTP EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
4/13  
M27V405  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70°C, –20 to 70°C, –20 to 85°C or –40 to 85°C; V = 3.3V ± 10%; V = V  
)
A
CC  
PP  
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
Unit  
µA  
I
±10  
±10  
0V V V  
LI  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
µA  
E = V , G = V , I  
= 0mA,  
IL  
IL OUT  
I
Supply Current  
15  
mA  
CC  
f = 5MHz, V 3.6V  
CC  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
20  
10  
0.8  
E > V – 0.2V, V 3.6V  
CC2  
CC  
CC  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
CC  
IH  
V
I
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
Output High Voltage TTL  
Output High Voltage CMOS  
2.4  
OH  
OH  
V
OH  
I
V
– 0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70°C, –20 to 70°C, –20 to 85°C or –40 to 85°C; V = 3.3V ± 10%; V = V  
)
A
CC  
PP  
CC  
M27V405  
Symbol  
Alt  
Parameter  
Test Condition  
-120  
-150  
Unit  
Min  
Max  
120  
120  
60  
Min Max  
t
t
E = V , G = V  
Address Valid to Output Valid  
150  
150  
80  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
ELQV  
CE  
IL  
t
t
E = V  
G = V  
E = V  
GLQV  
OE  
IL  
(2)  
t
0
0
50  
50  
0
0
50  
50  
t
DF  
DF  
IL  
IL  
EHQZ  
GHQZ  
t
(2)  
t
Output Enable High to Output Hi-Z  
ns  
ns  
t
Address Transition to Output  
Transition  
t
E = V , G = V  
IL IL  
0
0
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
5/13  
M27V405  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70°C, –20 to 70°C, –20 to 85°C or –40 to 85°C; V = 3.3V ± 10%; V = V  
)
A
CC  
PP  
CC  
M27V405  
Symbol  
Alt  
Parameter  
Test Condition  
-180  
-200  
Unit  
Min  
Max  
180  
180  
90  
Min Max  
200  
t
t
E = V , G = V  
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
t
t
G = V  
200  
ELQV  
CE  
IL  
t
t
E = V  
G = V  
E = V  
100  
GLQV  
OE  
IL  
(2)  
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
0
0
50  
50  
0
0
70  
70  
ns  
ns  
t
DF  
DF  
IL  
IL  
EHQZ  
(2)  
t
t
GHQZ  
Address Transition to Output  
Transition  
t
t
E = V , G = V  
IL IL  
0
0
ns  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested  
Figure 5. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A18  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00724B  
System Considerations  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
ic capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
devices. The supply current, I , has three seg-  
CC  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point.The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
6/13  
M27V405  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
0 V V  
Input Leakage Current  
Supply Current  
LI  
IN  
CC  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2
0.8  
IL  
V
IH  
V
+ 0.5  
CC  
V
V
OL  
I
= 2.1mA  
OL  
0.4  
V
V
OH  
I
= –400µA  
2.4  
V
OH  
V
ID  
11.5  
12.5  
V
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
t
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
2
2
AVEL  
AS  
t
QVEL  
DS  
t
t
t
V
High to Chip Enable Low  
High to Chip Enable Low  
2
VPHEL  
VPS  
PP  
CC  
t
V
2
VCHEL  
VCS  
t
t
PW  
Chip Enable Program Pulse Width  
Chip Enable High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
95  
2
105  
ELEH  
t
t
DH  
EHQX  
t
t
OES  
2
QXGL  
t
t
100  
130  
GLQV  
OE  
t
t
DFP  
0
0
GHQZ  
Output Enable High to Address  
Transition  
t
t
AH  
ns  
GHAX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
cations. Although only ’0’s will be programmed,  
both ’1’s and ’0’s can be present in the data word.  
The M27V405 is in the programming mode when  
The M27V405 has been designed to be fully com-  
patible with the M27C405 and has the same elec-  
tronic signature. As a result the M27V405 can be  
programmed as the M27C405 on the same pro-  
gramming equipments applying 12.75V on V  
and 6.25V on V  
TO II algorithm. When delivered, all bits of the  
M27V405 are in the ’1’ state. Data is introduced by  
selectively programming ’0’s into the desired bit lo-  
V
input is at 12.75V, G is at V and E is pulsed  
PP  
IH  
to V . The data to be programmed is applied to 8  
IL  
bits in parallel to the data output pins. The levels  
required for the address and data inputs are TTL.  
PP  
by the use of the same PRES-  
CC  
V
is specified to be 6.25V ± 0.25V, but it can be  
CC  
set to lower values in case of On-Board Program-  
ming (see dedicated paragraph).  
7/13  
M27V405  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A18  
tAVPL  
Q0-Q7  
DATA IN  
DATA OUT  
tQVEL  
tVPHEL  
tVCHEL  
tEHQX  
V
PP  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
tELEH  
tQXGL  
G
PROGRAM  
VERIFY  
AI00725  
PRESTO II Programming Algorithm  
Program Verify  
PRESTO II Programming Algorithm allows the  
whole array to be programmed with a guaranteed  
margin, in a typical time of 52.5 seconds. Pro-  
gramming with PRESTO II consists of applying a  
sequence of 100µs program pulses to each byte  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
since the verify in MARGIN MODE provides the  
necessary margin to each programmed cell.  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
at V , E at V , V at 12.75V and V at 6.25V.  
IL  
IH  
PP  
CC  
On-Board Programming  
Programming the M27V405 may be performed di-  
rectly in the application circuit, however this re-  
quires modification to the PRESTO II Algorithm  
(see Figure 8). For in-circuit programming V  
is  
CC  
determined by the user and normally is compatible  
with other components using the same supply volt-  
age. It is recommended that the maximum value of  
Program Inhibit  
V
which remains compatible with the circuit is  
CC  
Programming of multiple M27V405s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27V405 may be common. A TTL low level pulse  
used.  
Typically V = 5.5V for programming systems us-  
CC  
ing V = 5V, and V = 3.5V for low voltage 3V  
CC  
CC  
systems is recommended. The value of V  
not affect the programming, it gives a higher test  
capability in VERIFY mode.  
does  
CC  
applied to a M27V405's E input, with V  
at  
PP  
12.75V, will program that M27V405. A high level E  
input inhibits the other M27V405s from being pro-  
grammed.  
V
must be kept at 12.75 volts to maintain and  
PP  
enable the programming.  
8/13  
M27V405  
Figure 7. Programming Flowchart  
Figure 8. On-Board Programming Flowchart  
V
= 12.75V  
PP  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
SET MARGIN MODE  
n = 0  
n = 0  
E = 100µs Pulse  
E = 10µs Pulse  
NO  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
NO  
++n  
= 25  
VERIFY  
++ Addr  
?
YES  
YES  
YES  
Last  
Addr  
NO  
E = 10µs Pulse  
FAIL  
FAIL  
YES  
Last  
NO  
Addr  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
YES  
CHECK ALL BYTES  
= V  
AI00760B  
V
PP  
CC  
AI01349  
Warning: compatibility with Flash Memory  
Electronic Signature  
Compatibility issues may arise when replacing the  
compatible Single Supply 4 Mbit Flash Memory  
(the M29F040) by the M27V405.  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
This mode is functional in the 25°C ± 5°C ambient  
temperature range that is required when program-  
ming the M27V405. To activate the ES mode, the  
programming equipment must force 11.5V to  
12.5V on address line A9 of the M27V405 with  
The V pin of the M27V405 corresponds to the  
PP  
"W" pin of the M29F040. The M27V405 V  
pin  
PP  
can withstand voltages up to 12.75V, while the "W"  
pin of the M29F040 is a normal control signal input  
and may be damaged if a high voltage is applied;  
special precautions must be taken when program-  
ming in-circuit.  
However if an already programmed M27V405 is  
used, this can be directly put in place of the Flash  
V
= V = 5V. Two identifier bytes may then be  
PP  
CC  
sequenced from the device outputs by toggling ad-  
Memory as the V  
ming mode, is set to V or V  
input, when not in program-  
PP  
dress line A0 from V to V . All other address  
IL  
IH  
.
CC  
SS  
lines must be held at V during Electronic Signa-  
IL  
Changes to PRESTO II. The duration of the pro-  
gramming pulse is reduced to 20µs, making the  
programming time of the M27V405 comparable  
with the counterpart Flash Memory.  
ture mode. Byte 0 (A0 = V ) represents the man-  
IL  
ufacturer code and byte 1 (A0 = V ) the device  
IH  
identifier code. For the STMicroelectronics  
M27V405, these two identifier bytes are given in  
Table 4 and can be read-out on outputs Q7 to Q0.  
9/13  
M27V405  
Table 11. Ordering Information Scheme  
Example:  
M27V405  
-120 K  
1
TR  
Device Type  
M27  
Supply Voltage  
V = 3.3V ±10%  
Device Function  
405 = 4 Mbit (512Kb x8)  
Speed  
-120 = 120 ns  
-150 = 150 ns  
-180 = 180 ns  
-200 = 200 ns  
Package  
K = PLCC32  
N = TSOP32: 8 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
4 = –20 to 70 °C  
5 = –20 to 85 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
10/13  
M27V405  
Table 12. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
mm  
Min  
2.54  
1.52  
0.38  
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
inches  
Symb  
Typ  
Max  
3.56  
2.41  
Typ  
Min  
Max  
0.140  
0.095  
A
A1  
A2  
B
0.100  
0.060  
0.015  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 9. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
11/13  
M27V405  
Table 13. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
8.10  
Typ  
Max  
0.047  
0.007  
0.041  
0.011  
0.008  
0.795  
0.728  
0.319  
A
A1  
A2  
B
0.05  
0.95  
0.15  
0.10  
19.80  
18.30  
7.90  
0.002  
0.037  
0.006  
0.004  
0.780  
0.720  
0.311  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
32  
32  
CP  
0.10  
0.004  
Figure 10. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
12/13  
M27V405  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
13/13  

相关型号:

M27V405-180K1

512KX8 OTPROM, 180ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V405-180K1TR

512KX8 OTPROM, 180ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V405-180K4

512KX8 OTPROM, 180ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V405-180K6

512KX8 OTPROM, 180ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V405-180N1

512KX8 OTPROM, 180ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR

M27V405-180N5

512KX8 OTPROM, 180ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR

M27V405-180N6

512KX8 OTPROM, 180ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR

M27V405-180N6TR

512KX8 OTPROM, 180ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR

M27V405-200K4

512KX8 OTPROM, 200ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V405-200K6

512KX8 OTPROM, 200ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V405-200N1

512KX8 OTPROM, 200ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR

M27V405-200N4TR

512KX8 OTPROM, 200ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR