M27V801-180N6 [STMICROELECTRONICS]

1MX8 OTPROM, 180ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32;
M27V801-180N6
型号: M27V801-180N6
厂家: ST    ST
描述:

1MX8 OTPROM, 180ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32

可编程只读存储器 光电二极管
文件: 总16页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27V801  
8 Mbit (1Mb x 8) Low Voltage UV EPROM and OTP EPROM  
NOT FOR NEW DESIGN  
M27V801 is replaced by the M27W801  
3V to 3.6V LOW VOLTAGE in READ  
OPERATION  
ACCESS TIME: 120ns  
32  
32  
LOW POWER CONSUMPTION:  
– Active Current 15mA at 5MHz  
1
1
– Standby Current 20µA  
FDIP32W (F)  
PDIP32 (B)  
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: 42h  
PLCC32 (K)  
TSOP32 (N)  
8 x 20 mm  
DESCRIPTION  
The M27V801 is a low voltage 8 Mbit EPROM of-  
fered in the two ranges UV (ultra violet erase) and  
OTP (one time programmable). It is ideally suited  
for microprocessor systems requiring large data or  
program storage and is organized as 1,048,576 by  
8 bits.  
Figure 1. Logic Diagram  
The M27V801 operates in the read mode with a  
supply voltage as low as 3V. The decrease in op-  
erating power allows either a reduction of the size  
of the battery or an increase in the time between  
battery recharges.  
V
CC  
The FDIP32W (window ceramic frit-seal package)  
has transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
20  
8
A0-A19  
E
Q0-Q7  
M27V801  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27V801 is offered in PDIP32, PLCC32 and  
TSOP32 (8 x 20 mm) packages.  
GV  
PP  
V
SS  
AI01902  
July 2000  
1/16  
This is information on a product still in production but not recommended for new designs.  
M27V801  
Figure 2A. DIP Connections  
Figure 2B. PLCC Connections  
A19  
A16  
A15  
A12  
A7  
1
2
3
4
5
6
7
8
9
32  
V
CC  
31 A18  
30 A17  
29 A14  
28 A13  
27 A8  
1 32  
A7  
A14  
A13  
A6  
A5  
A4  
A6  
A8  
A5  
26 A9  
A9  
A4  
25 A11  
M27V801  
A3  
A2  
A1  
A0  
Q0  
9
M27V801  
25 A11  
GV  
A3  
24 GV  
PP  
23 A10  
PP  
A2 10  
A1 11  
A0 12  
Q0 13  
Q1 14  
Q2 15  
A10  
22  
E
E
21 Q7  
20 Q6  
19 Q5  
18 Q4  
17 Q3  
Q7  
17  
V
16  
SS  
AI01904  
AI01903  
Figure 2C. TSOP Connections  
Table 1. Signal Names  
A0-A19  
Q0-Q7  
E
Address Inputs  
Data Outputs  
Chip Enable  
A11  
A9  
1
32  
GV  
PP  
A10  
GV  
Output Enable / Program Supply  
Supply Voltage  
PP  
A8  
E
V
CC  
A13  
A14  
A17  
A18  
Q7  
Q6  
Q5  
Q4  
Q3  
V
Ground  
SS  
V
8
9
M27V801  
(Normal)  
25  
24  
CC  
A19  
V
SS  
A16  
A15  
A12  
A7  
Q2  
Q1  
Q0  
A0  
A1  
A2  
A3  
A6  
A5  
A4  
16  
17  
AI01905  
2/16  
M27V801  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V  
+2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
GV  
E
A9  
X
Q7-Q0  
Data Out  
Hi-Z  
PP  
V
V
V
Read  
IL  
IL  
V
Output Disable  
Program  
X
IL  
IH  
PP  
PP  
V
Pulse  
V
V
X
Data In  
Hi-Z  
IL  
V
Program Inhibit  
Standby  
X
IH  
IH  
V
X
X
Hi-Z  
V
V
V
Electronic Signature  
Codes  
IL  
IL  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
V
0
0
20h  
42h  
IL  
V
1
0
0
0
0
1
0
IH  
3/16  
M27V801  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
IN  
IN  
C
OUT  
V
OUT  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
(t  
(t  
of t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
AVQV  
ELQV  
The operating modes of the M27V801 are listed in  
the Operating Modes table. A single power supply  
is required in the read mode. All inputs are TTL  
from the falling edge of G, assuming that  
GLQV  
E has been low and the addresses have been sta-  
ble for at least t  
-t  
.
AVQV GLQV  
levels except for GV and 12V on A9 for Elec-  
PP  
tronic Signature and Margin Mode Set or Reset.  
Standby Mode  
Read Mode  
The M27V801 has a standby mode which reduces  
the active current from 15mA to 20µA with low volt-  
The M27V801 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable(G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
age operation V  
3.6V, see Read Mode DC  
CC  
Characteristics table for details. The M27V801 is  
placed in the standby mode by applying a CMOS  
high signal to the E input. When in the standby  
mode, the outputs are in a high impedance state,  
independent of the GV input.  
PP  
4/16  
M27V801  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 3.3V ± 10%)  
A
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±10  
±10  
Unit  
µA  
I
0V V V  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
µA  
LO  
E = V , G = V , I  
= 0mA,  
IL  
IL OUT  
I
Supply Current  
15  
mA  
CC  
f = 5MHz, V 3.6V  
CC  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
20  
10  
0.8  
E > V – 0.2V, V 3.6V  
CC2  
CC  
CC  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
CC  
IH  
V
I
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
Output High Voltage TTL  
Output High Voltage CMOS  
2.4  
OH  
OH  
V
OH  
I
V
–0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 3.3V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27V801  
-120 -150  
Min Max Min Max  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
t
t
E = V , GV = V  
IL  
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
120  
120  
60  
150  
150  
80  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
PP  
t
t
GV = V  
ELQV  
CE  
PP  
IL  
t
t
E = V  
GLQV  
OE  
IL  
(2)  
t
DF  
GV = V  
0
0
0
50  
0
0
0
50  
t
PP  
IL  
EHQZ  
(2)  
t
E = V  
Output Enable High to Output Hi-Z  
50  
50  
ns  
ns  
t
DF  
OH  
IL  
GHQZ  
t
t
E = V , GV = V  
IL PP IL  
Address Transition to Output Transition  
AXQX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP.  
CC  
PP  
2. Sampled only, not 100% tested.  
Two Line Output Control  
For the most efficient use of these two control  
lines, Eshould be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Because EPROMs are usually used in larger  
memory arrays, the product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection.  
The two line control function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
5/16  
M27V801  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 3.3V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27V801  
-180 -200  
Min Max Min Max  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
t
t
E = V , GV = V  
IL  
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
180  
180  
90  
200  
200  
100  
ns  
ns  
ns  
AVQV  
ACC  
IL  
PP  
t
t
GV = V  
PP  
ELQV  
CE  
IL  
t
t
E = V  
IL  
GLQV  
OE  
(2)  
(2)  
t
GV = V  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
0
0
0
50  
50  
0
0
0
70  
70  
ns  
ns  
ns  
t
t
DF  
PP  
IL  
EHQZ  
t
E = V  
DF  
OH  
IL  
GHQZ  
t
t
E = V , GV = V  
IL PP IL  
AXQX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP.  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A19  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q7  
AI01583B  
SYSTEM CONSIDERATIONS  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
The power switching characteristics of Advanced  
CMOS EPROMs requirecareful decoupling of the  
devices. The supply current, I , has three seg-  
ic capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
CC  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point. The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
6/16  
M27V801  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
V
V V  
Input Leakage Current  
Supply Current  
LI  
IL  
IN  
IH  
I
CC  
I
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
PP  
IL  
V
–0.3  
2.4  
0.8  
IL  
V
V
V
+ 0.5  
CC  
V
IH  
I
= 2.1mA  
= –1mA  
OH  
0.4  
V
OL  
OL  
V
OH  
I
3.6  
V
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. MARGIN MODE AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
t
t
t
V
High to V High  
A9 PP  
A9HVPH  
AS9  
t
V
V
High to Chip Enable Low  
High to Chip Enable High (Set)  
Low to Chip Enable High (Reset)  
2
VPHEL  
VPS  
AS10  
AS10  
AH10  
PP  
t
t
t
t
1
A10HEH  
A10  
t
V
A10  
1
A10LEH  
t
Chip Enable Transition to V  
Transition  
1
EXA10X  
A10  
t
t
Chip Enable Transition to V Transition  
2
EXVPX  
VPH  
PP  
t
t
V
Transition to V Transition  
PP A9  
2
VPXA9X  
AH9  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
Programming  
olet light (UV EPROM). The M27V801 is in the  
programming mode when V input is at 12.75V  
PP  
The M27V801 has been designed to be fully com-  
patible with the M27C801 and has the same elec-  
tronic signature. As a result the M27V801 can be  
programmed as the M27C801 on the same pro-  
gramming equipments applying 12.75V on V  
and 6.25V on V by the use of the same PRES-  
and E is pulsed to V . The data to be programmed  
IL  
is applied to 8 bits in parallel to the data output  
pins. The levels required for the address and data  
inputs are TTL. V  
0.25V.  
is specified to be 6.25V ±  
CC  
PP  
CC  
TO IIB algorithm. When delivered (and after each  
erasure for UV EPROM), all bits of the M27V801  
are in the ’1’ state. Data is introduced by selective-  
ly programming ’0’s into the desired bit locations.  
Although only ’0’ will be programmed, both ’1’ and  
’0’ can be present in the data word. The only way  
to change a ’0to a ’1’ is by die exposure to ultravi-  
The M27V801 can use PRESTO IIB Programming  
Algorithm that drastically reduces the program-  
ming time (typically 52 seconds). Nevertheless to  
achieve compatibility with all programming equip-  
ments, PRESTO Programming Algorithm can be  
used.  
7/16  
M27V801  
(1)  
Table 11. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
t
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
AS  
t
2
QVEL  
DS  
t
t
V
V
V
High to Chip Enable Low  
High to Chip Enable Low  
Rise Time  
2
VCHEL  
VCS  
OES  
CC  
PP  
PP  
t
t
2
VPHEL  
t
t
50  
45  
2
VPLVPH  
PRT  
t
t
PW  
Chip Enable Program Pulse Width (Initial)  
Chip Enable High to Input Transition  
55  
ELEH  
t
t
DH  
EHQX  
t
t
Chip Enable High to V Transition  
2
EHVPX  
OEH  
PP  
t
t
V
Low to Chip Enable Low  
PP  
2
VPLEL  
VR  
t
t
Chip Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Chip Enable High to Address Transition  
1
ELQV  
DV  
(2)  
t
0
0
130  
ns  
ns  
t
DFP  
EHQZ  
t
t
EHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 6. MARGIN MODE AC Waveforms  
V
CC  
A8  
A9  
tA9HVPH  
tVPXA9X  
GV  
E
PP  
tVPHEL  
tEXVPX  
tA10HEH  
tEXA10X  
A10 Set  
A10 Reset  
tA10LEH  
AI00736B  
Note: A8 High level = 5V; A9 High level = 12V.  
8/16  
M27V801  
Figure 7. Programming and Verify Modes AC Waveforms  
VALID  
A0-A19  
Q0-Q7  
tAVEL  
tQVEL  
tEHAX  
tEHQZ  
DATA IN  
DATA OUT  
tEHQX  
V
CC  
tVCHEL  
tVPHEL  
tEHVPX  
tELQV  
GV  
PP  
tVPLEL  
E
tELEH  
PROGRAM  
VERIFY  
AI01270  
Figure 8. Programming Flowchart  
PRESTO IIB Programming Algorithm  
PRESTO IIB Programming Algorithm allows the  
whole array to be programmed with a guaranteed  
margin, in a typical time of 52.5 seconds. This can  
be achieved with STMicroelectronics M27V801  
due to several design innovations to improve pro-  
gramming efficiency and to provide adequate mar-  
gin for reliability. Before starting the programming  
the internal MARGIN MODE circuit is set in order  
to guarantee that each cell is programmed with  
enough margin. Then a sequence of 50µs pro-  
gram pulses are applied to each byte until a cor-  
rect verify occurs. No overprogram pulses are  
applied since the verify in MARGIN MODE pro-  
vides the necessary margin.  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
SET MARGIN MODE  
n = 0  
E = 50µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
++ Addr  
Program Inhibit  
YES  
YES  
Programming of multiple M27V801s in parallel  
with different data is also easily accomplished. Ex-  
Last  
Addr  
NO  
FAIL  
cept for E, all like inputs including GV of the par-  
PP  
allel M27V801 may be common. A TTL low level  
YES  
pulse applied to a M27V801’s E input, with V at  
PP  
12.75V, will program that M27V801. A high level E  
input inhibits the other M27V801s from being pro-  
grammed.  
RESET MARGIN MODE  
CHECK ALL BYTES  
Program Verify  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
AI01271B  
at V . Data should be verified with t  
after the  
IL  
ELQV  
falling edge of E.  
9/16  
M27V801  
ELECTRONIC SIGNATURE  
ERASURE OPERATION (applies to UV EPROM)  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming theM27V801. To activate the ES mode,  
the programming equipment must force 11.5V to  
12.5V on address line A9 of the M27V801. Two  
identifier bytes may then be sequenced from the  
device outputs by toggling address line A0 from  
The erasure characteristics of the M27V801 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range.  
Research shows that constant exposure to room  
level fluorescent lighting could erase a typical  
M27V801 in about 3 years, while it would take ap-  
proximately 1 week to cause erasure when ex-  
posed to direct sunlight. If the M27V801 is to be  
exposed to these types of lighting conditions for  
extended periods of time, it is suggested that  
opaque labels be put over the M27V801 window to  
prevent unintentional erasure. The recommended  
erasure procedure for theM27V801 is exposure to  
short wave ultraviolet light which has wavelength  
2537 Å. The integrated dose (i.e. UV intensity x  
exposure time) for erasure should be a minimum  
V
V
to V . All other address lines must be held at  
IL  
IL  
IH  
during Electronic Signature mode. Byte 0  
(A0 = V ) represents the manufacturer code and  
IL  
byte 1 (A0 = V ) thedevice identifier code. For the  
IH  
STMicroelectronics M27V801, these two identifier  
bytes are given in Table 4 and can be read-out on  
outputs Q7 to Q0. Note that the M27V801 and  
M27C801 have the same identifier bytes.  
2
of 30 W-sec/cm . The erasure time with this dos-  
age is approximately 30 to 40 minutes using an ul-  
2
traviolet lamp with 12000 µW/cm power rating.  
The M27V801 should be placed within 2.5 cm (1  
inch) of the lamp tubes during the erasure. Some  
lamps have a filter on their tubes which should be  
removed before erasure.  
10/16  
M27V801  
Table 12. Ordering Information Scheme  
Example:  
M27V801  
-100 K  
1
TR  
Device Type  
M27  
Supply Voltage  
V = 3V to 3.6V  
Device Function  
801 = 8 Mbit (1Mb x 8)  
Speed  
-120 = 120 ns  
-150 = 150 ns  
-180 = 180 ns  
-200 = 200 ns  
Package  
F = FDIP32W  
P = PDIP32  
K = PLCC32  
N = TSOP32: 8 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
M27V801 is replaced by the M27W801  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
11/16  
M27V801  
Table 13. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
41.73  
0.30  
42.04  
0.009  
1.643  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
K
6.60  
0.260  
0.420  
K1  
α
10.67  
4°  
11°  
4°  
11°  
N
32  
32  
Figure 9. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A
L
A1  
e1  
α
B1  
B
C
eA  
eB  
D2  
D
S
N
1
K
E1  
E
K1  
FDIPW-b  
Drawing is not to scale.  
12/16  
M27V801  
Table 14. PDIP32 - 32 pin Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
5.08  
Typ  
Max  
0.200  
A
A1  
A2  
B
0.38  
3.56  
0.38  
0.015  
0.140  
0.015  
4.06  
0.51  
0.160  
0.020  
B1  
C
1.52  
0.060  
0.20  
41.78  
0.30  
42.04  
0.008  
1.645  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.600  
15.24  
15.24  
3.18  
1.78  
0°  
17.78  
3.43  
2.03  
10°  
0.600  
0.125  
0.070  
0°  
0.700  
0.135  
0.080  
10°  
S
α
N
32  
32  
Figure 10. PDIP32 - 32 pin Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
13/16  
M27V801  
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
mm  
Min  
2.54  
1.52  
0.38  
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
inches  
Min  
Symb  
Typ  
Max  
3.56  
2.41  
Typ  
Max  
0.140  
0.095  
A
A1  
A2  
B
0.100  
0.060  
0.015  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 11. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
14/16  
M27V801  
Table 16. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
8.10  
Typ  
Max  
0.047  
0.007  
0.041  
0.011  
0.008  
0.795  
0.728  
0.319  
A
A1  
A2  
B
0.05  
0.95  
0.15  
0.10  
19.80  
18.30  
7.90  
0.002  
0.037  
0.006  
0.004  
0.780  
0.720  
0.311  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
32  
32  
CP  
0.10  
0.004  
Figure 12. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
15/16  
M27V801  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
16/16  

相关型号:

M27V801-180N6TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-180P1TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-180P6

1MX8 OTPROM, 180ns, PDIP32, 0.600 INCH, PLASTIC, DIP-32
STMICROELECTR

M27V801-180P6TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-200F1

1MX8 UVPROM, 200ns, CDIP32, FRIT SEALED, WINDOWED, CERAMIC, DIP-32
STMICROELECTR

M27V801-200F1TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-200F6

1MX8 UVPROM, 200ns, CDIP32, FRIT SEALED, WINDOWED, CERAMIC, DIP-32
STMICROELECTR

M27V801-200F6TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-200K1TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-200K6TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V801-200N1

1MX8 OTPROM, 200ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32
STMICROELECTR

M27V801-200N1TR

8 Mbit 1Mb x8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR